1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function.  This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "codegen"
80 
81 static cl::opt<unsigned>
82 AlignAllFunctions("align-all-functions",
83                   cl::desc("Force the alignment of all functions."),
84                   cl::init(0), cl::Hidden);
85 
getPropertyName(MachineFunctionProperties::Property Prop)86 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
87   using P = MachineFunctionProperties::Property;
88 
89   switch(Prop) {
90   case P::FailedISel: return "FailedISel";
91   case P::IsSSA: return "IsSSA";
92   case P::Legalized: return "Legalized";
93   case P::NoPHIs: return "NoPHIs";
94   case P::NoVRegs: return "NoVRegs";
95   case P::RegBankSelected: return "RegBankSelected";
96   case P::Selected: return "Selected";
97   case P::TracksLiveness: return "TracksLiveness";
98   }
99   llvm_unreachable("Invalid machine function property");
100 }
101 
print(raw_ostream & OS) const102 void MachineFunctionProperties::print(raw_ostream &OS) const {
103   const char *Separator = "";
104   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
105     if (!Properties[I])
106       continue;
107     OS << Separator << getPropertyName(static_cast<Property>(I));
108     Separator = ", ";
109   }
110 }
111 
112 //===----------------------------------------------------------------------===//
113 // MachineFunction implementation
114 //===----------------------------------------------------------------------===//
115 
116 // Out-of-line virtual method.
117 MachineFunctionInfo::~MachineFunctionInfo() = default;
118 
deleteNode(MachineBasicBlock * MBB)119 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
120   MBB->getParent()->DeleteMachineBasicBlock(MBB);
121 }
122 
getFnStackAlignment(const TargetSubtargetInfo * STI,const Function & F)123 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
124                                            const Function &F) {
125   if (F.hasFnAttribute(Attribute::StackAlignment))
126     return F.getFnStackAlignment();
127   return STI->getFrameLowering()->getStackAlignment();
128 }
129 
MachineFunction(const Function & F,const TargetMachine & Target,const TargetSubtargetInfo & STI,unsigned FunctionNum,MachineModuleInfo & mmi)130 MachineFunction::MachineFunction(const Function &F, const TargetMachine &Target,
131                                  const TargetSubtargetInfo &STI,
132                                  unsigned FunctionNum, MachineModuleInfo &mmi)
133     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
134   FunctionNumber = FunctionNum;
135   init();
136 }
137 
init()138 void MachineFunction::init() {
139   // Assume the function starts in SSA form with correct liveness.
140   Properties.set(MachineFunctionProperties::Property::IsSSA);
141   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
142   if (STI->getRegisterInfo())
143     RegInfo = new (Allocator) MachineRegisterInfo(this);
144   else
145     RegInfo = nullptr;
146 
147   MFInfo = nullptr;
148   // We can realign the stack if the target supports it and the user hasn't
149   // explicitly asked us not to.
150   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
151                       !F.hasFnAttribute("no-realign-stack");
152   FrameInfo = new (Allocator) MachineFrameInfo(
153       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
154       /*ForceRealign=*/CanRealignSP &&
155           F.hasFnAttribute(Attribute::StackAlignment));
156 
157   if (F.hasFnAttribute(Attribute::StackAlignment))
158     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
159 
160   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
161   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
162 
163   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
164   // FIXME: Use Function::optForSize().
165   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
166     Alignment = std::max(Alignment,
167                          STI->getTargetLowering()->getPrefFunctionAlignment());
168 
169   if (AlignAllFunctions)
170     Alignment = AlignAllFunctions;
171 
172   JumpTableInfo = nullptr;
173 
174   if (isFuncletEHPersonality(classifyEHPersonality(
175           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
176     WinEHInfo = new (Allocator) WinEHFuncInfo();
177   }
178 
179   if (isScopedEHPersonality(classifyEHPersonality(
180           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
181     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
182   }
183 
184   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
185          "Can't create a MachineFunction using a Module with a "
186          "Target-incompatible DataLayout attached\n");
187 
188   PSVManager =
189     llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
190                                                   getInstrInfo()));
191 }
192 
~MachineFunction()193 MachineFunction::~MachineFunction() {
194   clear();
195 }
196 
clear()197 void MachineFunction::clear() {
198   Properties.reset();
199   // Don't call destructors on MachineInstr and MachineOperand. All of their
200   // memory comes from the BumpPtrAllocator which is about to be purged.
201   //
202   // Do call MachineBasicBlock destructors, it contains std::vectors.
203   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
204     I->Insts.clearAndLeakNodesUnsafely();
205   MBBNumbering.clear();
206 
207   InstructionRecycler.clear(Allocator);
208   OperandRecycler.clear(Allocator);
209   BasicBlockRecycler.clear(Allocator);
210   CodeViewAnnotations.clear();
211   VariableDbgInfos.clear();
212   if (RegInfo) {
213     RegInfo->~MachineRegisterInfo();
214     Allocator.Deallocate(RegInfo);
215   }
216   if (MFInfo) {
217     MFInfo->~MachineFunctionInfo();
218     Allocator.Deallocate(MFInfo);
219   }
220 
221   FrameInfo->~MachineFrameInfo();
222   Allocator.Deallocate(FrameInfo);
223 
224   ConstantPool->~MachineConstantPool();
225   Allocator.Deallocate(ConstantPool);
226 
227   if (JumpTableInfo) {
228     JumpTableInfo->~MachineJumpTableInfo();
229     Allocator.Deallocate(JumpTableInfo);
230   }
231 
232   if (WinEHInfo) {
233     WinEHInfo->~WinEHFuncInfo();
234     Allocator.Deallocate(WinEHInfo);
235   }
236 }
237 
getDataLayout() const238 const DataLayout &MachineFunction::getDataLayout() const {
239   return F.getParent()->getDataLayout();
240 }
241 
242 /// Get the JumpTableInfo for this function.
243 /// If it does not already exist, allocate one.
244 MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind)245 getOrCreateJumpTableInfo(unsigned EntryKind) {
246   if (JumpTableInfo) return JumpTableInfo;
247 
248   JumpTableInfo = new (Allocator)
249     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
250   return JumpTableInfo;
251 }
252 
253 /// Should we be emitting segmented stack stuff for the function
shouldSplitStack() const254 bool MachineFunction::shouldSplitStack() const {
255   return getFunction().hasFnAttribute("split-stack");
256 }
257 
258 /// This discards all of the MachineBasicBlock numbers and recomputes them.
259 /// This guarantees that the MBB numbers are sequential, dense, and match the
260 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
261 /// is specified, only that block and those after it are renumbered.
RenumberBlocks(MachineBasicBlock * MBB)262 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
263   if (empty()) { MBBNumbering.clear(); return; }
264   MachineFunction::iterator MBBI, E = end();
265   if (MBB == nullptr)
266     MBBI = begin();
267   else
268     MBBI = MBB->getIterator();
269 
270   // Figure out the block number this should have.
271   unsigned BlockNo = 0;
272   if (MBBI != begin())
273     BlockNo = std::prev(MBBI)->getNumber() + 1;
274 
275   for (; MBBI != E; ++MBBI, ++BlockNo) {
276     if (MBBI->getNumber() != (int)BlockNo) {
277       // Remove use of the old number.
278       if (MBBI->getNumber() != -1) {
279         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
280                "MBB number mismatch!");
281         MBBNumbering[MBBI->getNumber()] = nullptr;
282       }
283 
284       // If BlockNo is already taken, set that block's number to -1.
285       if (MBBNumbering[BlockNo])
286         MBBNumbering[BlockNo]->setNumber(-1);
287 
288       MBBNumbering[BlockNo] = &*MBBI;
289       MBBI->setNumber(BlockNo);
290     }
291   }
292 
293   // Okay, all the blocks are renumbered.  If we have compactified the block
294   // numbering, shrink MBBNumbering now.
295   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
296   MBBNumbering.resize(BlockNo);
297 }
298 
299 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
CreateMachineInstr(const MCInstrDesc & MCID,const DebugLoc & DL,bool NoImp)300 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
301                                                   const DebugLoc &DL,
302                                                   bool NoImp) {
303   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
304     MachineInstr(*this, MCID, DL, NoImp);
305 }
306 
307 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
308 /// identical in all ways except the instruction has no parent, prev, or next.
309 MachineInstr *
CloneMachineInstr(const MachineInstr * Orig)310 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
311   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
312              MachineInstr(*this, *Orig);
313 }
314 
CloneMachineInstrBundle(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig)315 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
316     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
317   MachineInstr *FirstClone = nullptr;
318   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
319   while (true) {
320     MachineInstr *Cloned = CloneMachineInstr(&*I);
321     MBB.insert(InsertBefore, Cloned);
322     if (FirstClone == nullptr) {
323       FirstClone = Cloned;
324     } else {
325       Cloned->bundleWithPred();
326     }
327 
328     if (!I->isBundledWithSucc())
329       break;
330     ++I;
331   }
332   return *FirstClone;
333 }
334 
335 /// Delete the given MachineInstr.
336 ///
337 /// This function also serves as the MachineInstr destructor - the real
338 /// ~MachineInstr() destructor must be empty.
339 void
DeleteMachineInstr(MachineInstr * MI)340 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
341   // Strip it for parts. The operand array and the MI object itself are
342   // independently recyclable.
343   if (MI->Operands)
344     deallocateOperandArray(MI->CapOperands, MI->Operands);
345   // Don't call ~MachineInstr() which must be trivial anyway because
346   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
347   // destructors.
348   InstructionRecycler.Deallocate(Allocator, MI);
349 }
350 
351 /// Allocate a new MachineBasicBlock. Use this instead of
352 /// `new MachineBasicBlock'.
353 MachineBasicBlock *
CreateMachineBasicBlock(const BasicBlock * bb)354 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
355   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
356              MachineBasicBlock(*this, bb);
357 }
358 
359 /// Delete the given MachineBasicBlock.
360 void
DeleteMachineBasicBlock(MachineBasicBlock * MBB)361 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
362   assert(MBB->getParent() == this && "MBB parent mismatch!");
363   MBB->~MachineBasicBlock();
364   BasicBlockRecycler.Deallocate(Allocator, MBB);
365 }
366 
getMachineMemOperand(MachinePointerInfo PtrInfo,MachineMemOperand::Flags f,uint64_t s,unsigned base_alignment,const AAMDNodes & AAInfo,const MDNode * Ranges,SyncScope::ID SSID,AtomicOrdering Ordering,AtomicOrdering FailureOrdering)367 MachineMemOperand *MachineFunction::getMachineMemOperand(
368     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
369     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
370     SyncScope::ID SSID, AtomicOrdering Ordering,
371     AtomicOrdering FailureOrdering) {
372   return new (Allocator)
373       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
374                         SSID, Ordering, FailureOrdering);
375 }
376 
377 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,int64_t Offset,uint64_t Size)378 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
379                                       int64_t Offset, uint64_t Size) {
380   if (MMO->getValue())
381     return new (Allocator)
382                MachineMemOperand(MachinePointerInfo(MMO->getValue(),
383                                                     MMO->getOffset()+Offset),
384                                  MMO->getFlags(), Size, MMO->getBaseAlignment(),
385                                  AAMDNodes(), nullptr, MMO->getSyncScopeID(),
386                                  MMO->getOrdering(), MMO->getFailureOrdering());
387   return new (Allocator)
388              MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
389                                                   MMO->getOffset()+Offset),
390                                MMO->getFlags(), Size, MMO->getBaseAlignment(),
391                                AAMDNodes(), nullptr, MMO->getSyncScopeID(),
392                                MMO->getOrdering(), MMO->getFailureOrdering());
393 }
394 
395 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,const AAMDNodes & AAInfo)396 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
397                                       const AAMDNodes &AAInfo) {
398   MachinePointerInfo MPI = MMO->getValue() ?
399              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
400              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
401 
402   return new (Allocator)
403              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
404                                MMO->getBaseAlignment(), AAInfo,
405                                MMO->getRanges(), MMO->getSyncScopeID(),
406                                MMO->getOrdering(), MMO->getFailureOrdering());
407 }
408 
409 MachineInstr::mmo_iterator
allocateMemRefsArray(unsigned long Num)410 MachineFunction::allocateMemRefsArray(unsigned long Num) {
411   return Allocator.Allocate<MachineMemOperand *>(Num);
412 }
413 
414 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
extractLoadMemRefs(MachineInstr::mmo_iterator Begin,MachineInstr::mmo_iterator End)415 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
416                                     MachineInstr::mmo_iterator End) {
417   // Count the number of load mem refs.
418   unsigned Num = 0;
419   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
420     if ((*I)->isLoad())
421       ++Num;
422 
423   // Allocate a new array and populate it with the load information.
424   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
425   unsigned Index = 0;
426   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
427     if ((*I)->isLoad()) {
428       if (!(*I)->isStore())
429         // Reuse the MMO.
430         Result[Index] = *I;
431       else {
432         // Clone the MMO and unset the store flag.
433         MachineMemOperand *JustLoad =
434           getMachineMemOperand((*I)->getPointerInfo(),
435                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
436                                (*I)->getSize(), (*I)->getBaseAlignment(),
437                                (*I)->getAAInfo(), nullptr,
438                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
439                                (*I)->getFailureOrdering());
440         Result[Index] = JustLoad;
441       }
442       ++Index;
443     }
444   }
445   return std::make_pair(Result, Result + Num);
446 }
447 
448 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
extractStoreMemRefs(MachineInstr::mmo_iterator Begin,MachineInstr::mmo_iterator End)449 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
450                                      MachineInstr::mmo_iterator End) {
451   // Count the number of load mem refs.
452   unsigned Num = 0;
453   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
454     if ((*I)->isStore())
455       ++Num;
456 
457   // Allocate a new array and populate it with the store information.
458   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
459   unsigned Index = 0;
460   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
461     if ((*I)->isStore()) {
462       if (!(*I)->isLoad())
463         // Reuse the MMO.
464         Result[Index] = *I;
465       else {
466         // Clone the MMO and unset the load flag.
467         MachineMemOperand *JustStore =
468           getMachineMemOperand((*I)->getPointerInfo(),
469                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
470                                (*I)->getSize(), (*I)->getBaseAlignment(),
471                                (*I)->getAAInfo(), nullptr,
472                                (*I)->getSyncScopeID(), (*I)->getOrdering(),
473                                (*I)->getFailureOrdering());
474         Result[Index] = JustStore;
475       }
476       ++Index;
477     }
478   }
479   return std::make_pair(Result, Result + Num);
480 }
481 
createExternalSymbolName(StringRef Name)482 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
483   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
484   std::copy(Name.begin(), Name.end(), Dest);
485   Dest[Name.size()] = 0;
486   return Dest;
487 }
488 
allocateRegMask()489 uint32_t *MachineFunction::allocateRegMask() {
490   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
491   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
492   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
493   memset(Mask, 0, Size * sizeof(Mask[0]));
494   return Mask;
495 }
496 
497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const498 LLVM_DUMP_METHOD void MachineFunction::dump() const {
499   print(dbgs());
500 }
501 #endif
502 
getName() const503 StringRef MachineFunction::getName() const {
504   return getFunction().getName();
505 }
506 
print(raw_ostream & OS,const SlotIndexes * Indexes) const507 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
508   OS << "# Machine code for function " << getName() << ": ";
509   getProperties().print(OS);
510   OS << '\n';
511 
512   // Print Frame Information
513   FrameInfo->print(*this, OS);
514 
515   // Print JumpTable Information
516   if (JumpTableInfo)
517     JumpTableInfo->print(OS);
518 
519   // Print Constant Pool
520   ConstantPool->print(OS);
521 
522   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
523 
524   if (RegInfo && !RegInfo->livein_empty()) {
525     OS << "Function Live Ins: ";
526     for (MachineRegisterInfo::livein_iterator
527          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
528       OS << printReg(I->first, TRI);
529       if (I->second)
530         OS << " in " << printReg(I->second, TRI);
531       if (std::next(I) != E)
532         OS << ", ";
533     }
534     OS << '\n';
535   }
536 
537   ModuleSlotTracker MST(getFunction().getParent());
538   MST.incorporateFunction(getFunction());
539   for (const auto &BB : *this) {
540     OS << '\n';
541     // If we print the whole function, print it at its most verbose level.
542     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
543   }
544 
545   OS << "\n# End machine code for function " << getName() << ".\n\n";
546 }
547 
548 namespace llvm {
549 
550   template<>
551   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits552     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
553 
getGraphNamellvm::DOTGraphTraits554     static std::string getGraphName(const MachineFunction *F) {
555       return ("CFG for '" + F->getName() + "' function").str();
556     }
557 
getNodeLabelllvm::DOTGraphTraits558     std::string getNodeLabel(const MachineBasicBlock *Node,
559                              const MachineFunction *Graph) {
560       std::string OutStr;
561       {
562         raw_string_ostream OSS(OutStr);
563 
564         if (isSimple()) {
565           OSS << printMBBReference(*Node);
566           if (const BasicBlock *BB = Node->getBasicBlock())
567             OSS << ": " << BB->getName();
568         } else
569           Node->print(OSS);
570       }
571 
572       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
573 
574       // Process string output to make it nicer...
575       for (unsigned i = 0; i != OutStr.length(); ++i)
576         if (OutStr[i] == '\n') {                            // Left justify
577           OutStr[i] = '\\';
578           OutStr.insert(OutStr.begin()+i+1, 'l');
579         }
580       return OutStr;
581     }
582   };
583 
584 } // end namespace llvm
585 
viewCFG() const586 void MachineFunction::viewCFG() const
587 {
588 #ifndef NDEBUG
589   ViewGraph(this, "mf" + getName());
590 #else
591   errs() << "MachineFunction::viewCFG is only available in debug builds on "
592          << "systems with Graphviz or gv!\n";
593 #endif // NDEBUG
594 }
595 
viewCFGOnly() const596 void MachineFunction::viewCFGOnly() const
597 {
598 #ifndef NDEBUG
599   ViewGraph(this, "mf" + getName(), true);
600 #else
601   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
602          << "systems with Graphviz or gv!\n";
603 #endif // NDEBUG
604 }
605 
606 /// Add the specified physical register as a live-in value and
607 /// create a corresponding virtual register for it.
addLiveIn(unsigned PReg,const TargetRegisterClass * RC)608 unsigned MachineFunction::addLiveIn(unsigned PReg,
609                                     const TargetRegisterClass *RC) {
610   MachineRegisterInfo &MRI = getRegInfo();
611   unsigned VReg = MRI.getLiveInVirtReg(PReg);
612   if (VReg) {
613     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
614     (void)VRegRC;
615     // A physical register can be added several times.
616     // Between two calls, the register class of the related virtual register
617     // may have been constrained to match some operation constraints.
618     // In that case, check that the current register class includes the
619     // physical register and is a sub class of the specified RC.
620     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
621                              RC->hasSubClassEq(VRegRC))) &&
622             "Register class mismatch!");
623     return VReg;
624   }
625   VReg = MRI.createVirtualRegister(RC);
626   MRI.addLiveIn(PReg, VReg);
627   return VReg;
628 }
629 
630 /// Return the MCSymbol for the specified non-empty jump table.
631 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
632 /// normal 'L' label is returned.
getJTISymbol(unsigned JTI,MCContext & Ctx,bool isLinkerPrivate) const633 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
634                                         bool isLinkerPrivate) const {
635   const DataLayout &DL = getDataLayout();
636   assert(JumpTableInfo && "No jump tables");
637   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
638 
639   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
640                                      : DL.getPrivateGlobalPrefix();
641   SmallString<60> Name;
642   raw_svector_ostream(Name)
643     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
644   return Ctx.getOrCreateSymbol(Name);
645 }
646 
647 /// Return a function-local symbol to represent the PIC base.
getPICBaseSymbol() const648 MCSymbol *MachineFunction::getPICBaseSymbol() const {
649   const DataLayout &DL = getDataLayout();
650   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
651                                Twine(getFunctionNumber()) + "$pb");
652 }
653 
654 /// \name Exception Handling
655 /// \{
656 
657 LandingPadInfo &
getOrCreateLandingPadInfo(MachineBasicBlock * LandingPad)658 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
659   unsigned N = LandingPads.size();
660   for (unsigned i = 0; i < N; ++i) {
661     LandingPadInfo &LP = LandingPads[i];
662     if (LP.LandingPadBlock == LandingPad)
663       return LP;
664   }
665 
666   LandingPads.push_back(LandingPadInfo(LandingPad));
667   return LandingPads[N];
668 }
669 
addInvoke(MachineBasicBlock * LandingPad,MCSymbol * BeginLabel,MCSymbol * EndLabel)670 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
671                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
672   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
673   LP.BeginLabels.push_back(BeginLabel);
674   LP.EndLabels.push_back(EndLabel);
675 }
676 
addLandingPad(MachineBasicBlock * LandingPad)677 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
678   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
679   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
680   LP.LandingPadLabel = LandingPadLabel;
681   return LandingPadLabel;
682 }
683 
addCatchTypeInfo(MachineBasicBlock * LandingPad,ArrayRef<const GlobalValue * > TyInfo)684 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
685                                        ArrayRef<const GlobalValue *> TyInfo) {
686   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
687   for (unsigned N = TyInfo.size(); N; --N)
688     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
689 }
690 
addFilterTypeInfo(MachineBasicBlock * LandingPad,ArrayRef<const GlobalValue * > TyInfo)691 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
692                                         ArrayRef<const GlobalValue *> TyInfo) {
693   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
694   std::vector<unsigned> IdsInFilter(TyInfo.size());
695   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
696     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
697   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
698 }
699 
tidyLandingPads(DenseMap<MCSymbol *,uintptr_t> * LPMap)700 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
701   for (unsigned i = 0; i != LandingPads.size(); ) {
702     LandingPadInfo &LandingPad = LandingPads[i];
703     if (LandingPad.LandingPadLabel &&
704         !LandingPad.LandingPadLabel->isDefined() &&
705         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
706       LandingPad.LandingPadLabel = nullptr;
707 
708     // Special case: we *should* emit LPs with null LP MBB. This indicates
709     // "nounwind" case.
710     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
711       LandingPads.erase(LandingPads.begin() + i);
712       continue;
713     }
714 
715     for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
716       MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
717       MCSymbol *EndLabel = LandingPad.EndLabels[j];
718       if ((BeginLabel->isDefined() ||
719            (LPMap && (*LPMap)[BeginLabel] != 0)) &&
720           (EndLabel->isDefined() ||
721            (LPMap && (*LPMap)[EndLabel] != 0))) continue;
722 
723       LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
724       LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
725       --j;
726       --e;
727     }
728 
729     // Remove landing pads with no try-ranges.
730     if (LandingPads[i].BeginLabels.empty()) {
731       LandingPads.erase(LandingPads.begin() + i);
732       continue;
733     }
734 
735     // If there is no landing pad, ensure that the list of typeids is empty.
736     // If the only typeid is a cleanup, this is the same as having no typeids.
737     if (!LandingPad.LandingPadBlock ||
738         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
739       LandingPad.TypeIds.clear();
740     ++i;
741   }
742 }
743 
addCleanup(MachineBasicBlock * LandingPad)744 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
745   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
746   LP.TypeIds.push_back(0);
747 }
748 
addSEHCatchHandler(MachineBasicBlock * LandingPad,const Function * Filter,const BlockAddress * RecoverBA)749 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
750                                          const Function *Filter,
751                                          const BlockAddress *RecoverBA) {
752   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
753   SEHHandler Handler;
754   Handler.FilterOrFinally = Filter;
755   Handler.RecoverBA = RecoverBA;
756   LP.SEHHandlers.push_back(Handler);
757 }
758 
addSEHCleanupHandler(MachineBasicBlock * LandingPad,const Function * Cleanup)759 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
760                                            const Function *Cleanup) {
761   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
762   SEHHandler Handler;
763   Handler.FilterOrFinally = Cleanup;
764   Handler.RecoverBA = nullptr;
765   LP.SEHHandlers.push_back(Handler);
766 }
767 
setCallSiteLandingPad(MCSymbol * Sym,ArrayRef<unsigned> Sites)768 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
769                                             ArrayRef<unsigned> Sites) {
770   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
771 }
772 
getTypeIDFor(const GlobalValue * TI)773 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
774   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
775     if (TypeInfos[i] == TI) return i + 1;
776 
777   TypeInfos.push_back(TI);
778   return TypeInfos.size();
779 }
780 
getFilterIDFor(std::vector<unsigned> & TyIds)781 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
782   // If the new filter coincides with the tail of an existing filter, then
783   // re-use the existing filter.  Folding filters more than this requires
784   // re-ordering filters and/or their elements - probably not worth it.
785   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
786        E = FilterEnds.end(); I != E; ++I) {
787     unsigned i = *I, j = TyIds.size();
788 
789     while (i && j)
790       if (FilterIds[--i] != TyIds[--j])
791         goto try_next;
792 
793     if (!j)
794       // The new filter coincides with range [i, end) of the existing filter.
795       return -(1 + i);
796 
797 try_next:;
798   }
799 
800   // Add the new filter.
801   int FilterID = -(1 + FilterIds.size());
802   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
803   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
804   FilterEnds.push_back(FilterIds.size());
805   FilterIds.push_back(0); // terminator
806   return FilterID;
807 }
808 
addLandingPadInfo(const LandingPadInst & I,MachineBasicBlock & MBB)809 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) {
810   MachineFunction &MF = *MBB.getParent();
811   if (const auto *PF = dyn_cast<Function>(
812           I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
813     MF.getMMI().addPersonality(PF);
814 
815   if (I.isCleanup())
816     MF.addCleanup(&MBB);
817 
818   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
819   //        but we need to do it this way because of how the DWARF EH emitter
820   //        processes the clauses.
821   for (unsigned i = I.getNumClauses(); i != 0; --i) {
822     Value *Val = I.getClause(i - 1);
823     if (I.isCatch(i - 1)) {
824       MF.addCatchTypeInfo(&MBB,
825                           dyn_cast<GlobalValue>(Val->stripPointerCasts()));
826     } else {
827       // Add filters in a list.
828       Constant *CVal = cast<Constant>(Val);
829       SmallVector<const GlobalValue *, 4> FilterList;
830       for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
831            II != IE; ++II)
832         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
833 
834       MF.addFilterTypeInfo(&MBB, FilterList);
835     }
836   }
837 }
838 
839 /// \}
840 
841 //===----------------------------------------------------------------------===//
842 //  MachineJumpTableInfo implementation
843 //===----------------------------------------------------------------------===//
844 
845 /// Return the size of each entry in the jump table.
getEntrySize(const DataLayout & TD) const846 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
847   // The size of a jump table entry is 4 bytes unless the entry is just the
848   // address of a block, in which case it is the pointer size.
849   switch (getEntryKind()) {
850   case MachineJumpTableInfo::EK_BlockAddress:
851     return TD.getPointerSize();
852   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
853     return 8;
854   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
855   case MachineJumpTableInfo::EK_LabelDifference32:
856   case MachineJumpTableInfo::EK_Custom32:
857     return 4;
858   case MachineJumpTableInfo::EK_Inline:
859     return 0;
860   }
861   llvm_unreachable("Unknown jump table encoding!");
862 }
863 
864 /// Return the alignment of each entry in the jump table.
getEntryAlignment(const DataLayout & TD) const865 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
866   // The alignment of a jump table entry is the alignment of int32 unless the
867   // entry is just the address of a block, in which case it is the pointer
868   // alignment.
869   switch (getEntryKind()) {
870   case MachineJumpTableInfo::EK_BlockAddress:
871     return TD.getPointerABIAlignment(0);
872   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
873     return TD.getABIIntegerTypeAlignment(64);
874   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
875   case MachineJumpTableInfo::EK_LabelDifference32:
876   case MachineJumpTableInfo::EK_Custom32:
877     return TD.getABIIntegerTypeAlignment(32);
878   case MachineJumpTableInfo::EK_Inline:
879     return 1;
880   }
881   llvm_unreachable("Unknown jump table encoding!");
882 }
883 
884 /// Create a new jump table entry in the jump table info.
createJumpTableIndex(const std::vector<MachineBasicBlock * > & DestBBs)885 unsigned MachineJumpTableInfo::createJumpTableIndex(
886                                const std::vector<MachineBasicBlock*> &DestBBs) {
887   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
888   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
889   return JumpTables.size()-1;
890 }
891 
892 /// If Old is the target of any jump tables, update the jump tables to branch
893 /// to New instead.
ReplaceMBBInJumpTables(MachineBasicBlock * Old,MachineBasicBlock * New)894 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
895                                                   MachineBasicBlock *New) {
896   assert(Old != New && "Not making a change?");
897   bool MadeChange = false;
898   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
899     ReplaceMBBInJumpTable(i, Old, New);
900   return MadeChange;
901 }
902 
903 /// If Old is a target of the jump tables, update the jump table to branch to
904 /// New instead.
ReplaceMBBInJumpTable(unsigned Idx,MachineBasicBlock * Old,MachineBasicBlock * New)905 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
906                                                  MachineBasicBlock *Old,
907                                                  MachineBasicBlock *New) {
908   assert(Old != New && "Not making a change?");
909   bool MadeChange = false;
910   MachineJumpTableEntry &JTE = JumpTables[Idx];
911   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
912     if (JTE.MBBs[j] == Old) {
913       JTE.MBBs[j] = New;
914       MadeChange = true;
915     }
916   return MadeChange;
917 }
918 
print(raw_ostream & OS) const919 void MachineJumpTableInfo::print(raw_ostream &OS) const {
920   if (JumpTables.empty()) return;
921 
922   OS << "Jump Tables:\n";
923 
924   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
925     OS << printJumpTableEntryReference(i) << ": ";
926     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
927       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
928   }
929 
930   OS << '\n';
931 }
932 
933 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const934 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
935 #endif
936 
printJumpTableEntryReference(unsigned Idx)937 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
938   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
939 }
940 
941 //===----------------------------------------------------------------------===//
942 //  MachineConstantPool implementation
943 //===----------------------------------------------------------------------===//
944 
anchor()945 void MachineConstantPoolValue::anchor() {}
946 
getType() const947 Type *MachineConstantPoolEntry::getType() const {
948   if (isMachineConstantPoolEntry())
949     return Val.MachineCPVal->getType();
950   return Val.ConstVal->getType();
951 }
952 
needsRelocation() const953 bool MachineConstantPoolEntry::needsRelocation() const {
954   if (isMachineConstantPoolEntry())
955     return true;
956   return Val.ConstVal->needsRelocation();
957 }
958 
959 SectionKind
getSectionKind(const DataLayout * DL) const960 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
961   if (needsRelocation())
962     return SectionKind::getReadOnlyWithRel();
963   switch (DL->getTypeAllocSize(getType())) {
964   case 4:
965     return SectionKind::getMergeableConst4();
966   case 8:
967     return SectionKind::getMergeableConst8();
968   case 16:
969     return SectionKind::getMergeableConst16();
970   case 32:
971     return SectionKind::getMergeableConst32();
972   default:
973     return SectionKind::getReadOnly();
974   }
975 }
976 
~MachineConstantPool()977 MachineConstantPool::~MachineConstantPool() {
978   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
979   // so keep track of which we've deleted to avoid double deletions.
980   DenseSet<MachineConstantPoolValue*> Deleted;
981   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
982     if (Constants[i].isMachineConstantPoolEntry()) {
983       Deleted.insert(Constants[i].Val.MachineCPVal);
984       delete Constants[i].Val.MachineCPVal;
985     }
986   for (DenseSet<MachineConstantPoolValue*>::iterator I =
987        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
988        I != E; ++I) {
989     if (Deleted.count(*I) == 0)
990       delete *I;
991   }
992 }
993 
994 /// Test whether the given two constants can be allocated the same constant pool
995 /// entry.
CanShareConstantPoolEntry(const Constant * A,const Constant * B,const DataLayout & DL)996 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
997                                       const DataLayout &DL) {
998   // Handle the trivial case quickly.
999   if (A == B) return true;
1000 
1001   // If they have the same type but weren't the same constant, quickly
1002   // reject them.
1003   if (A->getType() == B->getType()) return false;
1004 
1005   // We can't handle structs or arrays.
1006   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1007       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1008     return false;
1009 
1010   // For now, only support constants with the same size.
1011   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1012   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1013     return false;
1014 
1015   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1016 
1017   // Try constant folding a bitcast of both instructions to an integer.  If we
1018   // get two identical ConstantInt's, then we are good to share them.  We use
1019   // the constant folding APIs to do this so that we get the benefit of
1020   // DataLayout.
1021   if (isa<PointerType>(A->getType()))
1022     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1023                                 const_cast<Constant *>(A), IntTy, DL);
1024   else if (A->getType() != IntTy)
1025     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1026                                 IntTy, DL);
1027   if (isa<PointerType>(B->getType()))
1028     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1029                                 const_cast<Constant *>(B), IntTy, DL);
1030   else if (B->getType() != IntTy)
1031     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1032                                 IntTy, DL);
1033 
1034   return A == B;
1035 }
1036 
1037 /// Create a new entry in the constant pool or return an existing one.
1038 /// User must specify the log2 of the minimum required alignment for the object.
getConstantPoolIndex(const Constant * C,unsigned Alignment)1039 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1040                                                    unsigned Alignment) {
1041   assert(Alignment && "Alignment must be specified!");
1042   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1043 
1044   // Check to see if we already have this constant.
1045   //
1046   // FIXME, this could be made much more efficient for large constant pools.
1047   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1048     if (!Constants[i].isMachineConstantPoolEntry() &&
1049         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1050       if ((unsigned)Constants[i].getAlignment() < Alignment)
1051         Constants[i].Alignment = Alignment;
1052       return i;
1053     }
1054 
1055   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1056   return Constants.size()-1;
1057 }
1058 
getConstantPoolIndex(MachineConstantPoolValue * V,unsigned Alignment)1059 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1060                                                    unsigned Alignment) {
1061   assert(Alignment && "Alignment must be specified!");
1062   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1063 
1064   // Check to see if we already have this constant.
1065   //
1066   // FIXME, this could be made much more efficient for large constant pools.
1067   int Idx = V->getExistingMachineCPValue(this, Alignment);
1068   if (Idx != -1) {
1069     MachineCPVsSharingEntries.insert(V);
1070     return (unsigned)Idx;
1071   }
1072 
1073   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1074   return Constants.size()-1;
1075 }
1076 
print(raw_ostream & OS) const1077 void MachineConstantPool::print(raw_ostream &OS) const {
1078   if (Constants.empty()) return;
1079 
1080   OS << "Constant Pool:\n";
1081   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1082     OS << "  cp#" << i << ": ";
1083     if (Constants[i].isMachineConstantPoolEntry())
1084       Constants[i].Val.MachineCPVal->print(OS);
1085     else
1086       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1087     OS << ", align=" << Constants[i].getAlignment();
1088     OS << "\n";
1089   }
1090 }
1091 
1092 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1093 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1094 #endif
1095