1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code information for a function. This allows
11 // target-specific information about the generated code to be stored with each
12 // function.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 using namespace llvm;
78
79 #define DEBUG_TYPE "codegen"
80
81 static cl::opt<unsigned>
82 AlignAllFunctions("align-all-functions",
83 cl::desc("Force the alignment of all functions."),
84 cl::init(0), cl::Hidden);
85
getPropertyName(MachineFunctionProperties::Property Prop)86 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
87 using P = MachineFunctionProperties::Property;
88
89 switch(Prop) {
90 case P::FailedISel: return "FailedISel";
91 case P::IsSSA: return "IsSSA";
92 case P::Legalized: return "Legalized";
93 case P::NoPHIs: return "NoPHIs";
94 case P::NoVRegs: return "NoVRegs";
95 case P::RegBankSelected: return "RegBankSelected";
96 case P::Selected: return "Selected";
97 case P::TracksLiveness: return "TracksLiveness";
98 }
99 llvm_unreachable("Invalid machine function property");
100 }
101
print(raw_ostream & OS) const102 void MachineFunctionProperties::print(raw_ostream &OS) const {
103 const char *Separator = "";
104 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
105 if (!Properties[I])
106 continue;
107 OS << Separator << getPropertyName(static_cast<Property>(I));
108 Separator = ", ";
109 }
110 }
111
112 //===----------------------------------------------------------------------===//
113 // MachineFunction implementation
114 //===----------------------------------------------------------------------===//
115
116 // Out-of-line virtual method.
117 MachineFunctionInfo::~MachineFunctionInfo() = default;
118
deleteNode(MachineBasicBlock * MBB)119 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
120 MBB->getParent()->DeleteMachineBasicBlock(MBB);
121 }
122
getFnStackAlignment(const TargetSubtargetInfo * STI,const Function & F)123 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
124 const Function &F) {
125 if (F.hasFnAttribute(Attribute::StackAlignment))
126 return F.getFnStackAlignment();
127 return STI->getFrameLowering()->getStackAlignment();
128 }
129
MachineFunction(const Function & F,const TargetMachine & Target,const TargetSubtargetInfo & STI,unsigned FunctionNum,MachineModuleInfo & mmi)130 MachineFunction::MachineFunction(const Function &F, const TargetMachine &Target,
131 const TargetSubtargetInfo &STI,
132 unsigned FunctionNum, MachineModuleInfo &mmi)
133 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
134 FunctionNumber = FunctionNum;
135 init();
136 }
137
init()138 void MachineFunction::init() {
139 // Assume the function starts in SSA form with correct liveness.
140 Properties.set(MachineFunctionProperties::Property::IsSSA);
141 Properties.set(MachineFunctionProperties::Property::TracksLiveness);
142 if (STI->getRegisterInfo())
143 RegInfo = new (Allocator) MachineRegisterInfo(this);
144 else
145 RegInfo = nullptr;
146
147 MFInfo = nullptr;
148 // We can realign the stack if the target supports it and the user hasn't
149 // explicitly asked us not to.
150 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
151 !F.hasFnAttribute("no-realign-stack");
152 FrameInfo = new (Allocator) MachineFrameInfo(
153 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
154 /*ForceRealign=*/CanRealignSP &&
155 F.hasFnAttribute(Attribute::StackAlignment));
156
157 if (F.hasFnAttribute(Attribute::StackAlignment))
158 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
159
160 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
161 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
162
163 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
164 // FIXME: Use Function::optForSize().
165 if (!F.hasFnAttribute(Attribute::OptimizeForSize))
166 Alignment = std::max(Alignment,
167 STI->getTargetLowering()->getPrefFunctionAlignment());
168
169 if (AlignAllFunctions)
170 Alignment = AlignAllFunctions;
171
172 JumpTableInfo = nullptr;
173
174 if (isFuncletEHPersonality(classifyEHPersonality(
175 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
176 WinEHInfo = new (Allocator) WinEHFuncInfo();
177 }
178
179 if (isScopedEHPersonality(classifyEHPersonality(
180 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
181 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
182 }
183
184 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
185 "Can't create a MachineFunction using a Module with a "
186 "Target-incompatible DataLayout attached\n");
187
188 PSVManager =
189 llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
190 getInstrInfo()));
191 }
192
~MachineFunction()193 MachineFunction::~MachineFunction() {
194 clear();
195 }
196
clear()197 void MachineFunction::clear() {
198 Properties.reset();
199 // Don't call destructors on MachineInstr and MachineOperand. All of their
200 // memory comes from the BumpPtrAllocator which is about to be purged.
201 //
202 // Do call MachineBasicBlock destructors, it contains std::vectors.
203 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
204 I->Insts.clearAndLeakNodesUnsafely();
205 MBBNumbering.clear();
206
207 InstructionRecycler.clear(Allocator);
208 OperandRecycler.clear(Allocator);
209 BasicBlockRecycler.clear(Allocator);
210 CodeViewAnnotations.clear();
211 VariableDbgInfos.clear();
212 if (RegInfo) {
213 RegInfo->~MachineRegisterInfo();
214 Allocator.Deallocate(RegInfo);
215 }
216 if (MFInfo) {
217 MFInfo->~MachineFunctionInfo();
218 Allocator.Deallocate(MFInfo);
219 }
220
221 FrameInfo->~MachineFrameInfo();
222 Allocator.Deallocate(FrameInfo);
223
224 ConstantPool->~MachineConstantPool();
225 Allocator.Deallocate(ConstantPool);
226
227 if (JumpTableInfo) {
228 JumpTableInfo->~MachineJumpTableInfo();
229 Allocator.Deallocate(JumpTableInfo);
230 }
231
232 if (WinEHInfo) {
233 WinEHInfo->~WinEHFuncInfo();
234 Allocator.Deallocate(WinEHInfo);
235 }
236 }
237
getDataLayout() const238 const DataLayout &MachineFunction::getDataLayout() const {
239 return F.getParent()->getDataLayout();
240 }
241
242 /// Get the JumpTableInfo for this function.
243 /// If it does not already exist, allocate one.
244 MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind)245 getOrCreateJumpTableInfo(unsigned EntryKind) {
246 if (JumpTableInfo) return JumpTableInfo;
247
248 JumpTableInfo = new (Allocator)
249 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
250 return JumpTableInfo;
251 }
252
253 /// Should we be emitting segmented stack stuff for the function
shouldSplitStack() const254 bool MachineFunction::shouldSplitStack() const {
255 return getFunction().hasFnAttribute("split-stack");
256 }
257
258 /// This discards all of the MachineBasicBlock numbers and recomputes them.
259 /// This guarantees that the MBB numbers are sequential, dense, and match the
260 /// ordering of the blocks within the function. If a specific MachineBasicBlock
261 /// is specified, only that block and those after it are renumbered.
RenumberBlocks(MachineBasicBlock * MBB)262 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
263 if (empty()) { MBBNumbering.clear(); return; }
264 MachineFunction::iterator MBBI, E = end();
265 if (MBB == nullptr)
266 MBBI = begin();
267 else
268 MBBI = MBB->getIterator();
269
270 // Figure out the block number this should have.
271 unsigned BlockNo = 0;
272 if (MBBI != begin())
273 BlockNo = std::prev(MBBI)->getNumber() + 1;
274
275 for (; MBBI != E; ++MBBI, ++BlockNo) {
276 if (MBBI->getNumber() != (int)BlockNo) {
277 // Remove use of the old number.
278 if (MBBI->getNumber() != -1) {
279 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
280 "MBB number mismatch!");
281 MBBNumbering[MBBI->getNumber()] = nullptr;
282 }
283
284 // If BlockNo is already taken, set that block's number to -1.
285 if (MBBNumbering[BlockNo])
286 MBBNumbering[BlockNo]->setNumber(-1);
287
288 MBBNumbering[BlockNo] = &*MBBI;
289 MBBI->setNumber(BlockNo);
290 }
291 }
292
293 // Okay, all the blocks are renumbered. If we have compactified the block
294 // numbering, shrink MBBNumbering now.
295 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
296 MBBNumbering.resize(BlockNo);
297 }
298
299 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
CreateMachineInstr(const MCInstrDesc & MCID,const DebugLoc & DL,bool NoImp)300 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
301 const DebugLoc &DL,
302 bool NoImp) {
303 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
304 MachineInstr(*this, MCID, DL, NoImp);
305 }
306
307 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
308 /// identical in all ways except the instruction has no parent, prev, or next.
309 MachineInstr *
CloneMachineInstr(const MachineInstr * Orig)310 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
311 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
312 MachineInstr(*this, *Orig);
313 }
314
CloneMachineInstrBundle(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig)315 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
316 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
317 MachineInstr *FirstClone = nullptr;
318 MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
319 while (true) {
320 MachineInstr *Cloned = CloneMachineInstr(&*I);
321 MBB.insert(InsertBefore, Cloned);
322 if (FirstClone == nullptr) {
323 FirstClone = Cloned;
324 } else {
325 Cloned->bundleWithPred();
326 }
327
328 if (!I->isBundledWithSucc())
329 break;
330 ++I;
331 }
332 return *FirstClone;
333 }
334
335 /// Delete the given MachineInstr.
336 ///
337 /// This function also serves as the MachineInstr destructor - the real
338 /// ~MachineInstr() destructor must be empty.
339 void
DeleteMachineInstr(MachineInstr * MI)340 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
341 // Strip it for parts. The operand array and the MI object itself are
342 // independently recyclable.
343 if (MI->Operands)
344 deallocateOperandArray(MI->CapOperands, MI->Operands);
345 // Don't call ~MachineInstr() which must be trivial anyway because
346 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
347 // destructors.
348 InstructionRecycler.Deallocate(Allocator, MI);
349 }
350
351 /// Allocate a new MachineBasicBlock. Use this instead of
352 /// `new MachineBasicBlock'.
353 MachineBasicBlock *
CreateMachineBasicBlock(const BasicBlock * bb)354 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
355 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
356 MachineBasicBlock(*this, bb);
357 }
358
359 /// Delete the given MachineBasicBlock.
360 void
DeleteMachineBasicBlock(MachineBasicBlock * MBB)361 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
362 assert(MBB->getParent() == this && "MBB parent mismatch!");
363 MBB->~MachineBasicBlock();
364 BasicBlockRecycler.Deallocate(Allocator, MBB);
365 }
366
getMachineMemOperand(MachinePointerInfo PtrInfo,MachineMemOperand::Flags f,uint64_t s,unsigned base_alignment,const AAMDNodes & AAInfo,const MDNode * Ranges,SyncScope::ID SSID,AtomicOrdering Ordering,AtomicOrdering FailureOrdering)367 MachineMemOperand *MachineFunction::getMachineMemOperand(
368 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
369 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
370 SyncScope::ID SSID, AtomicOrdering Ordering,
371 AtomicOrdering FailureOrdering) {
372 return new (Allocator)
373 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
374 SSID, Ordering, FailureOrdering);
375 }
376
377 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,int64_t Offset,uint64_t Size)378 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
379 int64_t Offset, uint64_t Size) {
380 if (MMO->getValue())
381 return new (Allocator)
382 MachineMemOperand(MachinePointerInfo(MMO->getValue(),
383 MMO->getOffset()+Offset),
384 MMO->getFlags(), Size, MMO->getBaseAlignment(),
385 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
386 MMO->getOrdering(), MMO->getFailureOrdering());
387 return new (Allocator)
388 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
389 MMO->getOffset()+Offset),
390 MMO->getFlags(), Size, MMO->getBaseAlignment(),
391 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
392 MMO->getOrdering(), MMO->getFailureOrdering());
393 }
394
395 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,const AAMDNodes & AAInfo)396 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
397 const AAMDNodes &AAInfo) {
398 MachinePointerInfo MPI = MMO->getValue() ?
399 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
400 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
401
402 return new (Allocator)
403 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
404 MMO->getBaseAlignment(), AAInfo,
405 MMO->getRanges(), MMO->getSyncScopeID(),
406 MMO->getOrdering(), MMO->getFailureOrdering());
407 }
408
409 MachineInstr::mmo_iterator
allocateMemRefsArray(unsigned long Num)410 MachineFunction::allocateMemRefsArray(unsigned long Num) {
411 return Allocator.Allocate<MachineMemOperand *>(Num);
412 }
413
414 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
extractLoadMemRefs(MachineInstr::mmo_iterator Begin,MachineInstr::mmo_iterator End)415 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
416 MachineInstr::mmo_iterator End) {
417 // Count the number of load mem refs.
418 unsigned Num = 0;
419 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
420 if ((*I)->isLoad())
421 ++Num;
422
423 // Allocate a new array and populate it with the load information.
424 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
425 unsigned Index = 0;
426 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
427 if ((*I)->isLoad()) {
428 if (!(*I)->isStore())
429 // Reuse the MMO.
430 Result[Index] = *I;
431 else {
432 // Clone the MMO and unset the store flag.
433 MachineMemOperand *JustLoad =
434 getMachineMemOperand((*I)->getPointerInfo(),
435 (*I)->getFlags() & ~MachineMemOperand::MOStore,
436 (*I)->getSize(), (*I)->getBaseAlignment(),
437 (*I)->getAAInfo(), nullptr,
438 (*I)->getSyncScopeID(), (*I)->getOrdering(),
439 (*I)->getFailureOrdering());
440 Result[Index] = JustLoad;
441 }
442 ++Index;
443 }
444 }
445 return std::make_pair(Result, Result + Num);
446 }
447
448 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
extractStoreMemRefs(MachineInstr::mmo_iterator Begin,MachineInstr::mmo_iterator End)449 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
450 MachineInstr::mmo_iterator End) {
451 // Count the number of load mem refs.
452 unsigned Num = 0;
453 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
454 if ((*I)->isStore())
455 ++Num;
456
457 // Allocate a new array and populate it with the store information.
458 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
459 unsigned Index = 0;
460 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
461 if ((*I)->isStore()) {
462 if (!(*I)->isLoad())
463 // Reuse the MMO.
464 Result[Index] = *I;
465 else {
466 // Clone the MMO and unset the load flag.
467 MachineMemOperand *JustStore =
468 getMachineMemOperand((*I)->getPointerInfo(),
469 (*I)->getFlags() & ~MachineMemOperand::MOLoad,
470 (*I)->getSize(), (*I)->getBaseAlignment(),
471 (*I)->getAAInfo(), nullptr,
472 (*I)->getSyncScopeID(), (*I)->getOrdering(),
473 (*I)->getFailureOrdering());
474 Result[Index] = JustStore;
475 }
476 ++Index;
477 }
478 }
479 return std::make_pair(Result, Result + Num);
480 }
481
createExternalSymbolName(StringRef Name)482 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
483 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
484 std::copy(Name.begin(), Name.end(), Dest);
485 Dest[Name.size()] = 0;
486 return Dest;
487 }
488
allocateRegMask()489 uint32_t *MachineFunction::allocateRegMask() {
490 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
491 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
492 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
493 memset(Mask, 0, Size * sizeof(Mask[0]));
494 return Mask;
495 }
496
497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const498 LLVM_DUMP_METHOD void MachineFunction::dump() const {
499 print(dbgs());
500 }
501 #endif
502
getName() const503 StringRef MachineFunction::getName() const {
504 return getFunction().getName();
505 }
506
print(raw_ostream & OS,const SlotIndexes * Indexes) const507 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
508 OS << "# Machine code for function " << getName() << ": ";
509 getProperties().print(OS);
510 OS << '\n';
511
512 // Print Frame Information
513 FrameInfo->print(*this, OS);
514
515 // Print JumpTable Information
516 if (JumpTableInfo)
517 JumpTableInfo->print(OS);
518
519 // Print Constant Pool
520 ConstantPool->print(OS);
521
522 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
523
524 if (RegInfo && !RegInfo->livein_empty()) {
525 OS << "Function Live Ins: ";
526 for (MachineRegisterInfo::livein_iterator
527 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
528 OS << printReg(I->first, TRI);
529 if (I->second)
530 OS << " in " << printReg(I->second, TRI);
531 if (std::next(I) != E)
532 OS << ", ";
533 }
534 OS << '\n';
535 }
536
537 ModuleSlotTracker MST(getFunction().getParent());
538 MST.incorporateFunction(getFunction());
539 for (const auto &BB : *this) {
540 OS << '\n';
541 // If we print the whole function, print it at its most verbose level.
542 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
543 }
544
545 OS << "\n# End machine code for function " << getName() << ".\n\n";
546 }
547
548 namespace llvm {
549
550 template<>
551 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits552 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
553
getGraphNamellvm::DOTGraphTraits554 static std::string getGraphName(const MachineFunction *F) {
555 return ("CFG for '" + F->getName() + "' function").str();
556 }
557
getNodeLabelllvm::DOTGraphTraits558 std::string getNodeLabel(const MachineBasicBlock *Node,
559 const MachineFunction *Graph) {
560 std::string OutStr;
561 {
562 raw_string_ostream OSS(OutStr);
563
564 if (isSimple()) {
565 OSS << printMBBReference(*Node);
566 if (const BasicBlock *BB = Node->getBasicBlock())
567 OSS << ": " << BB->getName();
568 } else
569 Node->print(OSS);
570 }
571
572 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
573
574 // Process string output to make it nicer...
575 for (unsigned i = 0; i != OutStr.length(); ++i)
576 if (OutStr[i] == '\n') { // Left justify
577 OutStr[i] = '\\';
578 OutStr.insert(OutStr.begin()+i+1, 'l');
579 }
580 return OutStr;
581 }
582 };
583
584 } // end namespace llvm
585
viewCFG() const586 void MachineFunction::viewCFG() const
587 {
588 #ifndef NDEBUG
589 ViewGraph(this, "mf" + getName());
590 #else
591 errs() << "MachineFunction::viewCFG is only available in debug builds on "
592 << "systems with Graphviz or gv!\n";
593 #endif // NDEBUG
594 }
595
viewCFGOnly() const596 void MachineFunction::viewCFGOnly() const
597 {
598 #ifndef NDEBUG
599 ViewGraph(this, "mf" + getName(), true);
600 #else
601 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
602 << "systems with Graphviz or gv!\n";
603 #endif // NDEBUG
604 }
605
606 /// Add the specified physical register as a live-in value and
607 /// create a corresponding virtual register for it.
addLiveIn(unsigned PReg,const TargetRegisterClass * RC)608 unsigned MachineFunction::addLiveIn(unsigned PReg,
609 const TargetRegisterClass *RC) {
610 MachineRegisterInfo &MRI = getRegInfo();
611 unsigned VReg = MRI.getLiveInVirtReg(PReg);
612 if (VReg) {
613 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
614 (void)VRegRC;
615 // A physical register can be added several times.
616 // Between two calls, the register class of the related virtual register
617 // may have been constrained to match some operation constraints.
618 // In that case, check that the current register class includes the
619 // physical register and is a sub class of the specified RC.
620 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
621 RC->hasSubClassEq(VRegRC))) &&
622 "Register class mismatch!");
623 return VReg;
624 }
625 VReg = MRI.createVirtualRegister(RC);
626 MRI.addLiveIn(PReg, VReg);
627 return VReg;
628 }
629
630 /// Return the MCSymbol for the specified non-empty jump table.
631 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
632 /// normal 'L' label is returned.
getJTISymbol(unsigned JTI,MCContext & Ctx,bool isLinkerPrivate) const633 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
634 bool isLinkerPrivate) const {
635 const DataLayout &DL = getDataLayout();
636 assert(JumpTableInfo && "No jump tables");
637 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
638
639 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
640 : DL.getPrivateGlobalPrefix();
641 SmallString<60> Name;
642 raw_svector_ostream(Name)
643 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
644 return Ctx.getOrCreateSymbol(Name);
645 }
646
647 /// Return a function-local symbol to represent the PIC base.
getPICBaseSymbol() const648 MCSymbol *MachineFunction::getPICBaseSymbol() const {
649 const DataLayout &DL = getDataLayout();
650 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
651 Twine(getFunctionNumber()) + "$pb");
652 }
653
654 /// \name Exception Handling
655 /// \{
656
657 LandingPadInfo &
getOrCreateLandingPadInfo(MachineBasicBlock * LandingPad)658 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
659 unsigned N = LandingPads.size();
660 for (unsigned i = 0; i < N; ++i) {
661 LandingPadInfo &LP = LandingPads[i];
662 if (LP.LandingPadBlock == LandingPad)
663 return LP;
664 }
665
666 LandingPads.push_back(LandingPadInfo(LandingPad));
667 return LandingPads[N];
668 }
669
addInvoke(MachineBasicBlock * LandingPad,MCSymbol * BeginLabel,MCSymbol * EndLabel)670 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
671 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
672 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
673 LP.BeginLabels.push_back(BeginLabel);
674 LP.EndLabels.push_back(EndLabel);
675 }
676
addLandingPad(MachineBasicBlock * LandingPad)677 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
678 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
679 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
680 LP.LandingPadLabel = LandingPadLabel;
681 return LandingPadLabel;
682 }
683
addCatchTypeInfo(MachineBasicBlock * LandingPad,ArrayRef<const GlobalValue * > TyInfo)684 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
685 ArrayRef<const GlobalValue *> TyInfo) {
686 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
687 for (unsigned N = TyInfo.size(); N; --N)
688 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
689 }
690
addFilterTypeInfo(MachineBasicBlock * LandingPad,ArrayRef<const GlobalValue * > TyInfo)691 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
692 ArrayRef<const GlobalValue *> TyInfo) {
693 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
694 std::vector<unsigned> IdsInFilter(TyInfo.size());
695 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
696 IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
697 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
698 }
699
tidyLandingPads(DenseMap<MCSymbol *,uintptr_t> * LPMap)700 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
701 for (unsigned i = 0; i != LandingPads.size(); ) {
702 LandingPadInfo &LandingPad = LandingPads[i];
703 if (LandingPad.LandingPadLabel &&
704 !LandingPad.LandingPadLabel->isDefined() &&
705 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
706 LandingPad.LandingPadLabel = nullptr;
707
708 // Special case: we *should* emit LPs with null LP MBB. This indicates
709 // "nounwind" case.
710 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
711 LandingPads.erase(LandingPads.begin() + i);
712 continue;
713 }
714
715 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
716 MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
717 MCSymbol *EndLabel = LandingPad.EndLabels[j];
718 if ((BeginLabel->isDefined() ||
719 (LPMap && (*LPMap)[BeginLabel] != 0)) &&
720 (EndLabel->isDefined() ||
721 (LPMap && (*LPMap)[EndLabel] != 0))) continue;
722
723 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
724 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
725 --j;
726 --e;
727 }
728
729 // Remove landing pads with no try-ranges.
730 if (LandingPads[i].BeginLabels.empty()) {
731 LandingPads.erase(LandingPads.begin() + i);
732 continue;
733 }
734
735 // If there is no landing pad, ensure that the list of typeids is empty.
736 // If the only typeid is a cleanup, this is the same as having no typeids.
737 if (!LandingPad.LandingPadBlock ||
738 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
739 LandingPad.TypeIds.clear();
740 ++i;
741 }
742 }
743
addCleanup(MachineBasicBlock * LandingPad)744 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
745 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
746 LP.TypeIds.push_back(0);
747 }
748
addSEHCatchHandler(MachineBasicBlock * LandingPad,const Function * Filter,const BlockAddress * RecoverBA)749 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
750 const Function *Filter,
751 const BlockAddress *RecoverBA) {
752 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
753 SEHHandler Handler;
754 Handler.FilterOrFinally = Filter;
755 Handler.RecoverBA = RecoverBA;
756 LP.SEHHandlers.push_back(Handler);
757 }
758
addSEHCleanupHandler(MachineBasicBlock * LandingPad,const Function * Cleanup)759 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
760 const Function *Cleanup) {
761 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
762 SEHHandler Handler;
763 Handler.FilterOrFinally = Cleanup;
764 Handler.RecoverBA = nullptr;
765 LP.SEHHandlers.push_back(Handler);
766 }
767
setCallSiteLandingPad(MCSymbol * Sym,ArrayRef<unsigned> Sites)768 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
769 ArrayRef<unsigned> Sites) {
770 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
771 }
772
getTypeIDFor(const GlobalValue * TI)773 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
774 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
775 if (TypeInfos[i] == TI) return i + 1;
776
777 TypeInfos.push_back(TI);
778 return TypeInfos.size();
779 }
780
getFilterIDFor(std::vector<unsigned> & TyIds)781 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
782 // If the new filter coincides with the tail of an existing filter, then
783 // re-use the existing filter. Folding filters more than this requires
784 // re-ordering filters and/or their elements - probably not worth it.
785 for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
786 E = FilterEnds.end(); I != E; ++I) {
787 unsigned i = *I, j = TyIds.size();
788
789 while (i && j)
790 if (FilterIds[--i] != TyIds[--j])
791 goto try_next;
792
793 if (!j)
794 // The new filter coincides with range [i, end) of the existing filter.
795 return -(1 + i);
796
797 try_next:;
798 }
799
800 // Add the new filter.
801 int FilterID = -(1 + FilterIds.size());
802 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
803 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
804 FilterEnds.push_back(FilterIds.size());
805 FilterIds.push_back(0); // terminator
806 return FilterID;
807 }
808
addLandingPadInfo(const LandingPadInst & I,MachineBasicBlock & MBB)809 void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) {
810 MachineFunction &MF = *MBB.getParent();
811 if (const auto *PF = dyn_cast<Function>(
812 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
813 MF.getMMI().addPersonality(PF);
814
815 if (I.isCleanup())
816 MF.addCleanup(&MBB);
817
818 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
819 // but we need to do it this way because of how the DWARF EH emitter
820 // processes the clauses.
821 for (unsigned i = I.getNumClauses(); i != 0; --i) {
822 Value *Val = I.getClause(i - 1);
823 if (I.isCatch(i - 1)) {
824 MF.addCatchTypeInfo(&MBB,
825 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
826 } else {
827 // Add filters in a list.
828 Constant *CVal = cast<Constant>(Val);
829 SmallVector<const GlobalValue *, 4> FilterList;
830 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
831 II != IE; ++II)
832 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
833
834 MF.addFilterTypeInfo(&MBB, FilterList);
835 }
836 }
837 }
838
839 /// \}
840
841 //===----------------------------------------------------------------------===//
842 // MachineJumpTableInfo implementation
843 //===----------------------------------------------------------------------===//
844
845 /// Return the size of each entry in the jump table.
getEntrySize(const DataLayout & TD) const846 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
847 // The size of a jump table entry is 4 bytes unless the entry is just the
848 // address of a block, in which case it is the pointer size.
849 switch (getEntryKind()) {
850 case MachineJumpTableInfo::EK_BlockAddress:
851 return TD.getPointerSize();
852 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
853 return 8;
854 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
855 case MachineJumpTableInfo::EK_LabelDifference32:
856 case MachineJumpTableInfo::EK_Custom32:
857 return 4;
858 case MachineJumpTableInfo::EK_Inline:
859 return 0;
860 }
861 llvm_unreachable("Unknown jump table encoding!");
862 }
863
864 /// Return the alignment of each entry in the jump table.
getEntryAlignment(const DataLayout & TD) const865 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
866 // The alignment of a jump table entry is the alignment of int32 unless the
867 // entry is just the address of a block, in which case it is the pointer
868 // alignment.
869 switch (getEntryKind()) {
870 case MachineJumpTableInfo::EK_BlockAddress:
871 return TD.getPointerABIAlignment(0);
872 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
873 return TD.getABIIntegerTypeAlignment(64);
874 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
875 case MachineJumpTableInfo::EK_LabelDifference32:
876 case MachineJumpTableInfo::EK_Custom32:
877 return TD.getABIIntegerTypeAlignment(32);
878 case MachineJumpTableInfo::EK_Inline:
879 return 1;
880 }
881 llvm_unreachable("Unknown jump table encoding!");
882 }
883
884 /// Create a new jump table entry in the jump table info.
createJumpTableIndex(const std::vector<MachineBasicBlock * > & DestBBs)885 unsigned MachineJumpTableInfo::createJumpTableIndex(
886 const std::vector<MachineBasicBlock*> &DestBBs) {
887 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
888 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
889 return JumpTables.size()-1;
890 }
891
892 /// If Old is the target of any jump tables, update the jump tables to branch
893 /// to New instead.
ReplaceMBBInJumpTables(MachineBasicBlock * Old,MachineBasicBlock * New)894 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
895 MachineBasicBlock *New) {
896 assert(Old != New && "Not making a change?");
897 bool MadeChange = false;
898 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
899 ReplaceMBBInJumpTable(i, Old, New);
900 return MadeChange;
901 }
902
903 /// If Old is a target of the jump tables, update the jump table to branch to
904 /// New instead.
ReplaceMBBInJumpTable(unsigned Idx,MachineBasicBlock * Old,MachineBasicBlock * New)905 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
906 MachineBasicBlock *Old,
907 MachineBasicBlock *New) {
908 assert(Old != New && "Not making a change?");
909 bool MadeChange = false;
910 MachineJumpTableEntry &JTE = JumpTables[Idx];
911 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
912 if (JTE.MBBs[j] == Old) {
913 JTE.MBBs[j] = New;
914 MadeChange = true;
915 }
916 return MadeChange;
917 }
918
print(raw_ostream & OS) const919 void MachineJumpTableInfo::print(raw_ostream &OS) const {
920 if (JumpTables.empty()) return;
921
922 OS << "Jump Tables:\n";
923
924 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
925 OS << printJumpTableEntryReference(i) << ": ";
926 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
927 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
928 }
929
930 OS << '\n';
931 }
932
933 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const934 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
935 #endif
936
printJumpTableEntryReference(unsigned Idx)937 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
938 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
939 }
940
941 //===----------------------------------------------------------------------===//
942 // MachineConstantPool implementation
943 //===----------------------------------------------------------------------===//
944
anchor()945 void MachineConstantPoolValue::anchor() {}
946
getType() const947 Type *MachineConstantPoolEntry::getType() const {
948 if (isMachineConstantPoolEntry())
949 return Val.MachineCPVal->getType();
950 return Val.ConstVal->getType();
951 }
952
needsRelocation() const953 bool MachineConstantPoolEntry::needsRelocation() const {
954 if (isMachineConstantPoolEntry())
955 return true;
956 return Val.ConstVal->needsRelocation();
957 }
958
959 SectionKind
getSectionKind(const DataLayout * DL) const960 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
961 if (needsRelocation())
962 return SectionKind::getReadOnlyWithRel();
963 switch (DL->getTypeAllocSize(getType())) {
964 case 4:
965 return SectionKind::getMergeableConst4();
966 case 8:
967 return SectionKind::getMergeableConst8();
968 case 16:
969 return SectionKind::getMergeableConst16();
970 case 32:
971 return SectionKind::getMergeableConst32();
972 default:
973 return SectionKind::getReadOnly();
974 }
975 }
976
~MachineConstantPool()977 MachineConstantPool::~MachineConstantPool() {
978 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
979 // so keep track of which we've deleted to avoid double deletions.
980 DenseSet<MachineConstantPoolValue*> Deleted;
981 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
982 if (Constants[i].isMachineConstantPoolEntry()) {
983 Deleted.insert(Constants[i].Val.MachineCPVal);
984 delete Constants[i].Val.MachineCPVal;
985 }
986 for (DenseSet<MachineConstantPoolValue*>::iterator I =
987 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
988 I != E; ++I) {
989 if (Deleted.count(*I) == 0)
990 delete *I;
991 }
992 }
993
994 /// Test whether the given two constants can be allocated the same constant pool
995 /// entry.
CanShareConstantPoolEntry(const Constant * A,const Constant * B,const DataLayout & DL)996 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
997 const DataLayout &DL) {
998 // Handle the trivial case quickly.
999 if (A == B) return true;
1000
1001 // If they have the same type but weren't the same constant, quickly
1002 // reject them.
1003 if (A->getType() == B->getType()) return false;
1004
1005 // We can't handle structs or arrays.
1006 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1007 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1008 return false;
1009
1010 // For now, only support constants with the same size.
1011 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1012 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1013 return false;
1014
1015 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1016
1017 // Try constant folding a bitcast of both instructions to an integer. If we
1018 // get two identical ConstantInt's, then we are good to share them. We use
1019 // the constant folding APIs to do this so that we get the benefit of
1020 // DataLayout.
1021 if (isa<PointerType>(A->getType()))
1022 A = ConstantFoldCastOperand(Instruction::PtrToInt,
1023 const_cast<Constant *>(A), IntTy, DL);
1024 else if (A->getType() != IntTy)
1025 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1026 IntTy, DL);
1027 if (isa<PointerType>(B->getType()))
1028 B = ConstantFoldCastOperand(Instruction::PtrToInt,
1029 const_cast<Constant *>(B), IntTy, DL);
1030 else if (B->getType() != IntTy)
1031 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1032 IntTy, DL);
1033
1034 return A == B;
1035 }
1036
1037 /// Create a new entry in the constant pool or return an existing one.
1038 /// User must specify the log2 of the minimum required alignment for the object.
getConstantPoolIndex(const Constant * C,unsigned Alignment)1039 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1040 unsigned Alignment) {
1041 assert(Alignment && "Alignment must be specified!");
1042 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1043
1044 // Check to see if we already have this constant.
1045 //
1046 // FIXME, this could be made much more efficient for large constant pools.
1047 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1048 if (!Constants[i].isMachineConstantPoolEntry() &&
1049 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1050 if ((unsigned)Constants[i].getAlignment() < Alignment)
1051 Constants[i].Alignment = Alignment;
1052 return i;
1053 }
1054
1055 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1056 return Constants.size()-1;
1057 }
1058
getConstantPoolIndex(MachineConstantPoolValue * V,unsigned Alignment)1059 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1060 unsigned Alignment) {
1061 assert(Alignment && "Alignment must be specified!");
1062 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1063
1064 // Check to see if we already have this constant.
1065 //
1066 // FIXME, this could be made much more efficient for large constant pools.
1067 int Idx = V->getExistingMachineCPValue(this, Alignment);
1068 if (Idx != -1) {
1069 MachineCPVsSharingEntries.insert(V);
1070 return (unsigned)Idx;
1071 }
1072
1073 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1074 return Constants.size()-1;
1075 }
1076
print(raw_ostream & OS) const1077 void MachineConstantPool::print(raw_ostream &OS) const {
1078 if (Constants.empty()) return;
1079
1080 OS << "Constant Pool:\n";
1081 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1082 OS << " cp#" << i << ": ";
1083 if (Constants[i].isMachineConstantPoolEntry())
1084 Constants[i].Val.MachineCPVal->print(OS);
1085 else
1086 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1087 OS << ", align=" << Constants[i].getAlignment();
1088 OS << "\n";
1089 }
1090 }
1091
1092 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1093 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1094 #endif
1095