1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "DWARF.h"
19 #include "EhFrame.h"
20 #include "InputFiles.h"
21 #include "LinkerScript.h"
22 #include "OutputSections.h"
23 #include "SymbolTable.h"
24 #include "Symbols.h"
25 #include "Target.h"
26 #include "Thunks.h"
27 #include "Writer.h"
28 #include "lld/Common/CommonLinkerContext.h"
29 #include "lld/Common/DWARF.h"
30 #include "lld/Common/Strings.h"
31 #include "lld/Common/Version.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/LEB128.h"
40 #include "llvm/Support/Parallel.h"
41 #include "llvm/Support/TimeProfiler.h"
42 #include <cstdlib>
43
44 using namespace llvm;
45 using namespace llvm::dwarf;
46 using namespace llvm::ELF;
47 using namespace llvm::object;
48 using namespace llvm::support;
49 using namespace lld;
50 using namespace lld::elf;
51
52 using llvm::support::endian::read32le;
53 using llvm::support::endian::write32le;
54 using llvm::support::endian::write64le;
55
56 constexpr size_t MergeNoTailSection::numShards;
57
readUint(uint8_t * buf)58 static uint64_t readUint(uint8_t *buf) {
59 return config->is64 ? read64(buf) : read32(buf);
60 }
61
writeUint(uint8_t * buf,uint64_t val)62 static void writeUint(uint8_t *buf, uint64_t val) {
63 if (config->is64)
64 write64(buf, val);
65 else
66 write32(buf, val);
67 }
68
69 // Returns an LLD version string.
getVersion()70 static ArrayRef<uint8_t> getVersion() {
71 // Check LLD_VERSION first for ease of testing.
72 // You can get consistent output by using the environment variable.
73 // This is only for testing.
74 StringRef s = getenv("LLD_VERSION");
75 if (s.empty())
76 s = saver().save(Twine("Linker: ") + getLLDVersion());
77
78 // +1 to include the terminating '\0'.
79 return {(const uint8_t *)s.data(), s.size() + 1};
80 }
81
82 // Creates a .comment section containing LLD version info.
83 // With this feature, you can identify LLD-generated binaries easily
84 // by "readelf --string-dump .comment <file>".
85 // The returned object is a mergeable string section.
createCommentSection()86 MergeInputSection *elf::createCommentSection() {
87 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
88 getVersion(), ".comment");
89 sec->splitIntoPieces();
90 return sec;
91 }
92
93 // .MIPS.abiflags section.
94 template <class ELFT>
MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)95 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
96 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
97 flags(flags) {
98 this->entsize = sizeof(Elf_Mips_ABIFlags);
99 }
100
writeTo(uint8_t * buf)101 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
102 memcpy(buf, &flags, sizeof(flags));
103 }
104
105 template <class ELFT>
create()106 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() {
107 Elf_Mips_ABIFlags flags = {};
108 bool create = false;
109
110 for (InputSectionBase *sec : ctx.inputSections) {
111 if (sec->type != SHT_MIPS_ABIFLAGS)
112 continue;
113 sec->markDead();
114 create = true;
115
116 std::string filename = toString(sec->file);
117 const size_t size = sec->content().size();
118 // Older version of BFD (such as the default FreeBSD linker) concatenate
119 // .MIPS.abiflags instead of merging. To allow for this case (or potential
120 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
121 if (size < sizeof(Elf_Mips_ABIFlags)) {
122 error(filename + ": invalid size of .MIPS.abiflags section: got " +
123 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
124 return nullptr;
125 }
126 auto *s =
127 reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
128 if (s->version != 0) {
129 error(filename + ": unexpected .MIPS.abiflags version " +
130 Twine(s->version));
131 return nullptr;
132 }
133
134 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
135 // select the highest number of ISA/Rev/Ext.
136 flags.isa_level = std::max(flags.isa_level, s->isa_level);
137 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
138 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
139 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
140 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
141 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
142 flags.ases |= s->ases;
143 flags.flags1 |= s->flags1;
144 flags.flags2 |= s->flags2;
145 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
146 };
147
148 if (create)
149 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags);
150 return nullptr;
151 }
152
153 // .MIPS.options section.
154 template <class ELFT>
MipsOptionsSection(Elf_Mips_RegInfo reginfo)155 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
156 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
157 reginfo(reginfo) {
158 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
159 }
160
writeTo(uint8_t * buf)161 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
162 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
163 options->kind = ODK_REGINFO;
164 options->size = getSize();
165
166 if (!config->relocatable)
167 reginfo.ri_gp_value = in.mipsGot->getGp();
168 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo));
169 }
170
171 template <class ELFT>
create()172 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() {
173 // N64 ABI only.
174 if (!ELFT::Is64Bits)
175 return nullptr;
176
177 SmallVector<InputSectionBase *, 0> sections;
178 for (InputSectionBase *sec : ctx.inputSections)
179 if (sec->type == SHT_MIPS_OPTIONS)
180 sections.push_back(sec);
181
182 if (sections.empty())
183 return nullptr;
184
185 Elf_Mips_RegInfo reginfo = {};
186 for (InputSectionBase *sec : sections) {
187 sec->markDead();
188
189 std::string filename = toString(sec->file);
190 ArrayRef<uint8_t> d = sec->content();
191
192 while (!d.empty()) {
193 if (d.size() < sizeof(Elf_Mips_Options)) {
194 error(filename + ": invalid size of .MIPS.options section");
195 break;
196 }
197
198 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
199 if (opt->kind == ODK_REGINFO) {
200 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
201 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
202 break;
203 }
204
205 if (!opt->size)
206 fatal(filename + ": zero option descriptor size");
207 d = d.slice(opt->size);
208 }
209 };
210
211 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo);
212 }
213
214 // MIPS .reginfo section.
215 template <class ELFT>
MipsReginfoSection(Elf_Mips_RegInfo reginfo)216 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
217 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
218 reginfo(reginfo) {
219 this->entsize = sizeof(Elf_Mips_RegInfo);
220 }
221
writeTo(uint8_t * buf)222 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
223 if (!config->relocatable)
224 reginfo.ri_gp_value = in.mipsGot->getGp();
225 memcpy(buf, ®info, sizeof(reginfo));
226 }
227
228 template <class ELFT>
create()229 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() {
230 // Section should be alive for O32 and N32 ABIs only.
231 if (ELFT::Is64Bits)
232 return nullptr;
233
234 SmallVector<InputSectionBase *, 0> sections;
235 for (InputSectionBase *sec : ctx.inputSections)
236 if (sec->type == SHT_MIPS_REGINFO)
237 sections.push_back(sec);
238
239 if (sections.empty())
240 return nullptr;
241
242 Elf_Mips_RegInfo reginfo = {};
243 for (InputSectionBase *sec : sections) {
244 sec->markDead();
245
246 if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
247 error(toString(sec->file) + ": invalid size of .reginfo section");
248 return nullptr;
249 }
250
251 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
252 reginfo.ri_gprmask |= r->ri_gprmask;
253 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
254 };
255
256 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo);
257 }
258
createInterpSection()259 InputSection *elf::createInterpSection() {
260 // StringSaver guarantees that the returned string ends with '\0'.
261 StringRef s = saver().save(config->dynamicLinker);
262 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
263
264 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
265 ".interp");
266 }
267
addSyntheticLocal(StringRef name,uint8_t type,uint64_t value,uint64_t size,InputSectionBase & section)268 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
269 uint64_t size, InputSectionBase §ion) {
270 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type,
271 value, size, §ion);
272 if (in.symTab)
273 in.symTab->addSymbol(s);
274 return s;
275 }
276
getHashSize()277 static size_t getHashSize() {
278 switch (config->buildId) {
279 case BuildIdKind::Fast:
280 return 8;
281 case BuildIdKind::Md5:
282 case BuildIdKind::Uuid:
283 return 16;
284 case BuildIdKind::Sha1:
285 return 20;
286 case BuildIdKind::Hexstring:
287 return config->buildIdVector.size();
288 default:
289 llvm_unreachable("unknown BuildIdKind");
290 }
291 }
292
293 // This class represents a linker-synthesized .note.gnu.property section.
294 //
295 // In x86 and AArch64, object files may contain feature flags indicating the
296 // features that they have used. The flags are stored in a .note.gnu.property
297 // section.
298 //
299 // lld reads the sections from input files and merges them by computing AND of
300 // the flags. The result is written as a new .note.gnu.property section.
301 //
302 // If the flag is zero (which indicates that the intersection of the feature
303 // sets is empty, or some input files didn't have .note.gnu.property sections),
304 // we don't create this section.
GnuPropertySection()305 GnuPropertySection::GnuPropertySection()
306 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
307 config->wordsize, ".note.gnu.property") {}
308
writeTo(uint8_t * buf)309 void GnuPropertySection::writeTo(uint8_t *buf) {
310 uint32_t featureAndType = config->emachine == EM_AARCH64
311 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
312 : GNU_PROPERTY_X86_FEATURE_1_AND;
313
314 write32(buf, 4); // Name size
315 write32(buf + 4, config->is64 ? 16 : 12); // Content size
316 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type
317 memcpy(buf + 12, "GNU", 4); // Name string
318 write32(buf + 16, featureAndType); // Feature type
319 write32(buf + 20, 4); // Feature size
320 write32(buf + 24, config->andFeatures); // Feature flags
321 if (config->is64)
322 write32(buf + 28, 0); // Padding
323 }
324
getSize() const325 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
326
BuildIdSection()327 BuildIdSection::BuildIdSection()
328 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
329 hashSize(getHashSize()) {}
330
writeTo(uint8_t * buf)331 void BuildIdSection::writeTo(uint8_t *buf) {
332 write32(buf, 4); // Name size
333 write32(buf + 4, hashSize); // Content size
334 write32(buf + 8, NT_GNU_BUILD_ID); // Type
335 memcpy(buf + 12, "GNU", 4); // Name string
336 hashBuf = buf + 16;
337 }
338
writeBuildId(ArrayRef<uint8_t> buf)339 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
340 assert(buf.size() == hashSize);
341 memcpy(hashBuf, buf.data(), hashSize);
342 }
343
BssSection(StringRef name,uint64_t size,uint32_t alignment)344 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
345 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
346 this->bss = true;
347 this->size = size;
348 }
349
EhFrameSection()350 EhFrameSection::EhFrameSection()
351 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
352
353 // Search for an existing CIE record or create a new one.
354 // CIE records from input object files are uniquified by their contents
355 // and where their relocations point to.
356 template <class ELFT, class RelTy>
addCie(EhSectionPiece & cie,ArrayRef<RelTy> rels)357 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
358 Symbol *personality = nullptr;
359 unsigned firstRelI = cie.firstRelocation;
360 if (firstRelI != (unsigned)-1)
361 personality =
362 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
363
364 // Search for an existing CIE by CIE contents/relocation target pair.
365 CieRecord *&rec = cieMap[{cie.data(), personality}];
366
367 // If not found, create a new one.
368 if (!rec) {
369 rec = make<CieRecord>();
370 rec->cie = &cie;
371 cieRecords.push_back(rec);
372 }
373 return rec;
374 }
375
376 // There is one FDE per function. Returns a non-null pointer to the function
377 // symbol if the given FDE points to a live function.
378 template <class ELFT, class RelTy>
isFdeLive(EhSectionPiece & fde,ArrayRef<RelTy> rels)379 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
380 auto *sec = cast<EhInputSection>(fde.sec);
381 unsigned firstRelI = fde.firstRelocation;
382
383 // An FDE should point to some function because FDEs are to describe
384 // functions. That's however not always the case due to an issue of
385 // ld.gold with -r. ld.gold may discard only functions and leave their
386 // corresponding FDEs, which results in creating bad .eh_frame sections.
387 // To deal with that, we ignore such FDEs.
388 if (firstRelI == (unsigned)-1)
389 return nullptr;
390
391 const RelTy &rel = rels[firstRelI];
392 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
393
394 // FDEs for garbage-collected or merged-by-ICF sections, or sections in
395 // another partition, are dead.
396 if (auto *d = dyn_cast<Defined>(&b))
397 if (!d->folded && d->section && d->section->partition == partition)
398 return d;
399 return nullptr;
400 }
401
402 // .eh_frame is a sequence of CIE or FDE records. In general, there
403 // is one CIE record per input object file which is followed by
404 // a list of FDEs. This function searches an existing CIE or create a new
405 // one and associates FDEs to the CIE.
406 template <class ELFT, class RelTy>
addRecords(EhInputSection * sec,ArrayRef<RelTy> rels)407 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
408 offsetToCie.clear();
409 for (EhSectionPiece &cie : sec->cies)
410 offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
411 for (EhSectionPiece &fde : sec->fdes) {
412 uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
413 CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
414 if (!rec)
415 fatal(toString(sec) + ": invalid CIE reference");
416
417 if (!isFdeLive<ELFT>(fde, rels))
418 continue;
419 rec->fdes.push_back(&fde);
420 numFdes++;
421 }
422 }
423
424 template <class ELFT>
addSectionAux(EhInputSection * sec)425 void EhFrameSection::addSectionAux(EhInputSection *sec) {
426 if (!sec->isLive())
427 return;
428 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
429 if (rels.areRelocsRel())
430 addRecords<ELFT>(sec, rels.rels);
431 else
432 addRecords<ELFT>(sec, rels.relas);
433 }
434
435 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to
436 // EhFrameSection::addRecords().
437 template <class ELFT, class RelTy>
iterateFDEWithLSDAAux(EhInputSection & sec,ArrayRef<RelTy> rels,DenseSet<size_t> & ciesWithLSDA,llvm::function_ref<void (InputSection &)> fn)438 void EhFrameSection::iterateFDEWithLSDAAux(
439 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
440 llvm::function_ref<void(InputSection &)> fn) {
441 for (EhSectionPiece &cie : sec.cies)
442 if (hasLSDA(cie))
443 ciesWithLSDA.insert(cie.inputOff);
444 for (EhSectionPiece &fde : sec.fdes) {
445 uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
446 if (!ciesWithLSDA.contains(fde.inputOff + 4 - id))
447 continue;
448
449 // The CIE has a LSDA argument. Call fn with d's section.
450 if (Defined *d = isFdeLive<ELFT>(fde, rels))
451 if (auto *s = dyn_cast_or_null<InputSection>(d->section))
452 fn(*s);
453 }
454 }
455
456 template <class ELFT>
iterateFDEWithLSDA(llvm::function_ref<void (InputSection &)> fn)457 void EhFrameSection::iterateFDEWithLSDA(
458 llvm::function_ref<void(InputSection &)> fn) {
459 DenseSet<size_t> ciesWithLSDA;
460 for (EhInputSection *sec : sections) {
461 ciesWithLSDA.clear();
462 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
463 if (rels.areRelocsRel())
464 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
465 else
466 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
467 }
468 }
469
writeCieFde(uint8_t * buf,ArrayRef<uint8_t> d)470 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
471 memcpy(buf, d.data(), d.size());
472 // Fix the size field. -4 since size does not include the size field itself.
473 write32(buf, d.size() - 4);
474 }
475
finalizeContents()476 void EhFrameSection::finalizeContents() {
477 assert(!this->size); // Not finalized.
478
479 switch (config->ekind) {
480 case ELFNoneKind:
481 llvm_unreachable("invalid ekind");
482 case ELF32LEKind:
483 for (EhInputSection *sec : sections)
484 addSectionAux<ELF32LE>(sec);
485 break;
486 case ELF32BEKind:
487 for (EhInputSection *sec : sections)
488 addSectionAux<ELF32BE>(sec);
489 break;
490 case ELF64LEKind:
491 for (EhInputSection *sec : sections)
492 addSectionAux<ELF64LE>(sec);
493 break;
494 case ELF64BEKind:
495 for (EhInputSection *sec : sections)
496 addSectionAux<ELF64BE>(sec);
497 break;
498 }
499
500 size_t off = 0;
501 for (CieRecord *rec : cieRecords) {
502 rec->cie->outputOff = off;
503 off += rec->cie->size;
504
505 for (EhSectionPiece *fde : rec->fdes) {
506 fde->outputOff = off;
507 off += fde->size;
508 }
509 }
510
511 // The LSB standard does not allow a .eh_frame section with zero
512 // Call Frame Information records. glibc unwind-dw2-fde.c
513 // classify_object_over_fdes expects there is a CIE record length 0 as a
514 // terminator. Thus we add one unconditionally.
515 off += 4;
516
517 this->size = off;
518 }
519
520 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
521 // to get an FDE from an address to which FDE is applied. This function
522 // returns a list of such pairs.
getFdeData() const523 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
524 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
525 SmallVector<FdeData, 0> ret;
526
527 uint64_t va = getPartition().ehFrameHdr->getVA();
528 for (CieRecord *rec : cieRecords) {
529 uint8_t enc = getFdeEncoding(rec->cie);
530 for (EhSectionPiece *fde : rec->fdes) {
531 uint64_t pc = getFdePc(buf, fde->outputOff, enc);
532 uint64_t fdeVA = getParent()->addr + fde->outputOff;
533 if (!isInt<32>(pc - va))
534 fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
535 Twine::utohexstr(pc - va));
536 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
537 }
538 }
539
540 // Sort the FDE list by their PC and uniqueify. Usually there is only
541 // one FDE for a PC (i.e. function), but if ICF merges two functions
542 // into one, there can be more than one FDEs pointing to the address.
543 auto less = [](const FdeData &a, const FdeData &b) {
544 return a.pcRel < b.pcRel;
545 };
546 llvm::stable_sort(ret, less);
547 auto eq = [](const FdeData &a, const FdeData &b) {
548 return a.pcRel == b.pcRel;
549 };
550 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
551
552 return ret;
553 }
554
readFdeAddr(uint8_t * buf,int size)555 static uint64_t readFdeAddr(uint8_t *buf, int size) {
556 switch (size) {
557 case DW_EH_PE_udata2:
558 return read16(buf);
559 case DW_EH_PE_sdata2:
560 return (int16_t)read16(buf);
561 case DW_EH_PE_udata4:
562 return read32(buf);
563 case DW_EH_PE_sdata4:
564 return (int32_t)read32(buf);
565 case DW_EH_PE_udata8:
566 case DW_EH_PE_sdata8:
567 return read64(buf);
568 case DW_EH_PE_absptr:
569 return readUint(buf);
570 }
571 fatal("unknown FDE size encoding");
572 }
573
574 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
575 // We need it to create .eh_frame_hdr section.
getFdePc(uint8_t * buf,size_t fdeOff,uint8_t enc) const576 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
577 uint8_t enc) const {
578 // The starting address to which this FDE applies is
579 // stored at FDE + 8 byte.
580 size_t off = fdeOff + 8;
581 uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
582 if ((enc & 0x70) == DW_EH_PE_absptr)
583 return addr;
584 if ((enc & 0x70) == DW_EH_PE_pcrel)
585 return addr + getParent()->addr + off;
586 fatal("unknown FDE size relative encoding");
587 }
588
writeTo(uint8_t * buf)589 void EhFrameSection::writeTo(uint8_t *buf) {
590 // Write CIE and FDE records.
591 for (CieRecord *rec : cieRecords) {
592 size_t cieOffset = rec->cie->outputOff;
593 writeCieFde(buf + cieOffset, rec->cie->data());
594
595 for (EhSectionPiece *fde : rec->fdes) {
596 size_t off = fde->outputOff;
597 writeCieFde(buf + off, fde->data());
598
599 // FDE's second word should have the offset to an associated CIE.
600 // Write it.
601 write32(buf + off + 4, off + 4 - cieOffset);
602 }
603 }
604
605 // Apply relocations. .eh_frame section contents are not contiguous
606 // in the output buffer, but relocateAlloc() still works because
607 // getOffset() takes care of discontiguous section pieces.
608 for (EhInputSection *s : sections)
609 target->relocateAlloc(*s, buf);
610
611 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
612 getPartition().ehFrameHdr->write();
613 }
614
GotSection()615 GotSection::GotSection()
616 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
617 target->gotEntrySize, ".got") {
618 numEntries = target->gotHeaderEntriesNum;
619 }
620
addConstant(const Relocation & r)621 void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); }
addEntry(Symbol & sym)622 void GotSection::addEntry(Symbol &sym) {
623 assert(sym.auxIdx == symAux.size() - 1);
624 symAux.back().gotIdx = numEntries++;
625 }
626
addTlsDescEntry(Symbol & sym)627 bool GotSection::addTlsDescEntry(Symbol &sym) {
628 assert(sym.auxIdx == symAux.size() - 1);
629 symAux.back().tlsDescIdx = numEntries;
630 numEntries += 2;
631 return true;
632 }
633
addDynTlsEntry(Symbol & sym)634 bool GotSection::addDynTlsEntry(Symbol &sym) {
635 assert(sym.auxIdx == symAux.size() - 1);
636 symAux.back().tlsGdIdx = numEntries;
637 // Global Dynamic TLS entries take two GOT slots.
638 numEntries += 2;
639 return true;
640 }
641
642 // Reserves TLS entries for a TLS module ID and a TLS block offset.
643 // In total it takes two GOT slots.
addTlsIndex()644 bool GotSection::addTlsIndex() {
645 if (tlsIndexOff != uint32_t(-1))
646 return false;
647 tlsIndexOff = numEntries * config->wordsize;
648 numEntries += 2;
649 return true;
650 }
651
getTlsDescOffset(const Symbol & sym) const652 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
653 return sym.getTlsDescIdx() * config->wordsize;
654 }
655
getTlsDescAddr(const Symbol & sym) const656 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
657 return getVA() + getTlsDescOffset(sym);
658 }
659
getGlobalDynAddr(const Symbol & b) const660 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
661 return this->getVA() + b.getTlsGdIdx() * config->wordsize;
662 }
663
getGlobalDynOffset(const Symbol & b) const664 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
665 return b.getTlsGdIdx() * config->wordsize;
666 }
667
finalizeContents()668 void GotSection::finalizeContents() {
669 if (config->emachine == EM_PPC64 &&
670 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
671 size = 0;
672 else
673 size = numEntries * config->wordsize;
674 }
675
isNeeded() const676 bool GotSection::isNeeded() const {
677 // Needed if the GOT symbol is used or the number of entries is more than just
678 // the header. A GOT with just the header may not be needed.
679 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
680 }
681
writeTo(uint8_t * buf)682 void GotSection::writeTo(uint8_t *buf) {
683 // On PPC64 .got may be needed but empty. Skip the write.
684 if (size == 0)
685 return;
686 target->writeGotHeader(buf);
687 target->relocateAlloc(*this, buf);
688 }
689
getMipsPageAddr(uint64_t addr)690 static uint64_t getMipsPageAddr(uint64_t addr) {
691 return (addr + 0x8000) & ~0xffff;
692 }
693
getMipsPageCount(uint64_t size)694 static uint64_t getMipsPageCount(uint64_t size) {
695 return (size + 0xfffe) / 0xffff + 1;
696 }
697
MipsGotSection()698 MipsGotSection::MipsGotSection()
699 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
700 ".got") {}
701
addEntry(InputFile & file,Symbol & sym,int64_t addend,RelExpr expr)702 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
703 RelExpr expr) {
704 FileGot &g = getGot(file);
705 if (expr == R_MIPS_GOT_LOCAL_PAGE) {
706 if (const OutputSection *os = sym.getOutputSection())
707 g.pagesMap.insert({os, {}});
708 else
709 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
710 } else if (sym.isTls())
711 g.tls.insert({&sym, 0});
712 else if (sym.isPreemptible && expr == R_ABS)
713 g.relocs.insert({&sym, 0});
714 else if (sym.isPreemptible)
715 g.global.insert({&sym, 0});
716 else if (expr == R_MIPS_GOT_OFF32)
717 g.local32.insert({{&sym, addend}, 0});
718 else
719 g.local16.insert({{&sym, addend}, 0});
720 }
721
addDynTlsEntry(InputFile & file,Symbol & sym)722 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
723 getGot(file).dynTlsSymbols.insert({&sym, 0});
724 }
725
addTlsIndex(InputFile & file)726 void MipsGotSection::addTlsIndex(InputFile &file) {
727 getGot(file).dynTlsSymbols.insert({nullptr, 0});
728 }
729
getEntriesNum() const730 size_t MipsGotSection::FileGot::getEntriesNum() const {
731 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
732 tls.size() + dynTlsSymbols.size() * 2;
733 }
734
getPageEntriesNum() const735 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
736 size_t num = 0;
737 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
738 num += p.second.count;
739 return num;
740 }
741
getIndexedEntriesNum() const742 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
743 size_t count = getPageEntriesNum() + local16.size() + global.size();
744 // If there are relocation-only entries in the GOT, TLS entries
745 // are allocated after them. TLS entries should be addressable
746 // by 16-bit index so count both reloc-only and TLS entries.
747 if (!tls.empty() || !dynTlsSymbols.empty())
748 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
749 return count;
750 }
751
getGot(InputFile & f)752 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
753 if (f.mipsGotIndex == uint32_t(-1)) {
754 gots.emplace_back();
755 gots.back().file = &f;
756 f.mipsGotIndex = gots.size() - 1;
757 }
758 return gots[f.mipsGotIndex];
759 }
760
getPageEntryOffset(const InputFile * f,const Symbol & sym,int64_t addend) const761 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
762 const Symbol &sym,
763 int64_t addend) const {
764 const FileGot &g = gots[f->mipsGotIndex];
765 uint64_t index = 0;
766 if (const OutputSection *outSec = sym.getOutputSection()) {
767 uint64_t secAddr = getMipsPageAddr(outSec->addr);
768 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
769 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
770 } else {
771 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
772 }
773 return index * config->wordsize;
774 }
775
getSymEntryOffset(const InputFile * f,const Symbol & s,int64_t addend) const776 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
777 int64_t addend) const {
778 const FileGot &g = gots[f->mipsGotIndex];
779 Symbol *sym = const_cast<Symbol *>(&s);
780 if (sym->isTls())
781 return g.tls.lookup(sym) * config->wordsize;
782 if (sym->isPreemptible)
783 return g.global.lookup(sym) * config->wordsize;
784 return g.local16.lookup({sym, addend}) * config->wordsize;
785 }
786
getTlsIndexOffset(const InputFile * f) const787 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
788 const FileGot &g = gots[f->mipsGotIndex];
789 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
790 }
791
getGlobalDynOffset(const InputFile * f,const Symbol & s) const792 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
793 const Symbol &s) const {
794 const FileGot &g = gots[f->mipsGotIndex];
795 Symbol *sym = const_cast<Symbol *>(&s);
796 return g.dynTlsSymbols.lookup(sym) * config->wordsize;
797 }
798
getFirstGlobalEntry() const799 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
800 if (gots.empty())
801 return nullptr;
802 const FileGot &primGot = gots.front();
803 if (!primGot.global.empty())
804 return primGot.global.front().first;
805 if (!primGot.relocs.empty())
806 return primGot.relocs.front().first;
807 return nullptr;
808 }
809
getLocalEntriesNum() const810 unsigned MipsGotSection::getLocalEntriesNum() const {
811 if (gots.empty())
812 return headerEntriesNum;
813 return headerEntriesNum + gots.front().getPageEntriesNum() +
814 gots.front().local16.size();
815 }
816
tryMergeGots(FileGot & dst,FileGot & src,bool isPrimary)817 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
818 FileGot tmp = dst;
819 set_union(tmp.pagesMap, src.pagesMap);
820 set_union(tmp.local16, src.local16);
821 set_union(tmp.global, src.global);
822 set_union(tmp.relocs, src.relocs);
823 set_union(tmp.tls, src.tls);
824 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
825
826 size_t count = isPrimary ? headerEntriesNum : 0;
827 count += tmp.getIndexedEntriesNum();
828
829 if (count * config->wordsize > config->mipsGotSize)
830 return false;
831
832 std::swap(tmp, dst);
833 return true;
834 }
835
finalizeContents()836 void MipsGotSection::finalizeContents() { updateAllocSize(); }
837
updateAllocSize()838 bool MipsGotSection::updateAllocSize() {
839 size = headerEntriesNum * config->wordsize;
840 for (const FileGot &g : gots)
841 size += g.getEntriesNum() * config->wordsize;
842 return false;
843 }
844
build()845 void MipsGotSection::build() {
846 if (gots.empty())
847 return;
848
849 std::vector<FileGot> mergedGots(1);
850
851 // For each GOT move non-preemptible symbols from the `Global`
852 // to `Local16` list. Preemptible symbol might become non-preemptible
853 // one if, for example, it gets a related copy relocation.
854 for (FileGot &got : gots) {
855 for (auto &p: got.global)
856 if (!p.first->isPreemptible)
857 got.local16.insert({{p.first, 0}, 0});
858 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
859 return !p.first->isPreemptible;
860 });
861 }
862
863 // For each GOT remove "reloc-only" entry if there is "global"
864 // entry for the same symbol. And add local entries which indexed
865 // using 32-bit value at the end of 16-bit entries.
866 for (FileGot &got : gots) {
867 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
868 return got.global.count(p.first);
869 });
870 set_union(got.local16, got.local32);
871 got.local32.clear();
872 }
873
874 // Evaluate number of "reloc-only" entries in the resulting GOT.
875 // To do that put all unique "reloc-only" and "global" entries
876 // from all GOTs to the future primary GOT.
877 FileGot *primGot = &mergedGots.front();
878 for (FileGot &got : gots) {
879 set_union(primGot->relocs, got.global);
880 set_union(primGot->relocs, got.relocs);
881 got.relocs.clear();
882 }
883
884 // Evaluate number of "page" entries in each GOT.
885 for (FileGot &got : gots) {
886 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
887 got.pagesMap) {
888 const OutputSection *os = p.first;
889 uint64_t secSize = 0;
890 for (SectionCommand *cmd : os->commands) {
891 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
892 for (InputSection *isec : isd->sections) {
893 uint64_t off = alignToPowerOf2(secSize, isec->addralign);
894 secSize = off + isec->getSize();
895 }
896 }
897 p.second.count = getMipsPageCount(secSize);
898 }
899 }
900
901 // Merge GOTs. Try to join as much as possible GOTs but do not exceed
902 // maximum GOT size. At first, try to fill the primary GOT because
903 // the primary GOT can be accessed in the most effective way. If it
904 // is not possible, try to fill the last GOT in the list, and finally
905 // create a new GOT if both attempts failed.
906 for (FileGot &srcGot : gots) {
907 InputFile *file = srcGot.file;
908 if (tryMergeGots(mergedGots.front(), srcGot, true)) {
909 file->mipsGotIndex = 0;
910 } else {
911 // If this is the first time we failed to merge with the primary GOT,
912 // MergedGots.back() will also be the primary GOT. We must make sure not
913 // to try to merge again with isPrimary=false, as otherwise, if the
914 // inputs are just right, we could allow the primary GOT to become 1 or 2
915 // words bigger due to ignoring the header size.
916 if (mergedGots.size() == 1 ||
917 !tryMergeGots(mergedGots.back(), srcGot, false)) {
918 mergedGots.emplace_back();
919 std::swap(mergedGots.back(), srcGot);
920 }
921 file->mipsGotIndex = mergedGots.size() - 1;
922 }
923 }
924 std::swap(gots, mergedGots);
925
926 // Reduce number of "reloc-only" entries in the primary GOT
927 // by subtracting "global" entries in the primary GOT.
928 primGot = &gots.front();
929 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
930 return primGot->global.count(p.first);
931 });
932
933 // Calculate indexes for each GOT entry.
934 size_t index = headerEntriesNum;
935 for (FileGot &got : gots) {
936 got.startIndex = &got == primGot ? 0 : index;
937 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
938 got.pagesMap) {
939 // For each output section referenced by GOT page relocations calculate
940 // and save into pagesMap an upper bound of MIPS GOT entries required
941 // to store page addresses of local symbols. We assume the worst case -
942 // each 64kb page of the output section has at least one GOT relocation
943 // against it. And take in account the case when the section intersects
944 // page boundaries.
945 p.second.firstIndex = index;
946 index += p.second.count;
947 }
948 for (auto &p: got.local16)
949 p.second = index++;
950 for (auto &p: got.global)
951 p.second = index++;
952 for (auto &p: got.relocs)
953 p.second = index++;
954 for (auto &p: got.tls)
955 p.second = index++;
956 for (auto &p: got.dynTlsSymbols) {
957 p.second = index;
958 index += 2;
959 }
960 }
961
962 // Update SymbolAux::gotIdx field to use this
963 // value later in the `sortMipsSymbols` function.
964 for (auto &p : primGot->global) {
965 if (p.first->auxIdx == 0)
966 p.first->allocateAux();
967 symAux.back().gotIdx = p.second;
968 }
969 for (auto &p : primGot->relocs) {
970 if (p.first->auxIdx == 0)
971 p.first->allocateAux();
972 symAux.back().gotIdx = p.second;
973 }
974
975 // Create dynamic relocations.
976 for (FileGot &got : gots) {
977 // Create dynamic relocations for TLS entries.
978 for (std::pair<Symbol *, size_t> &p : got.tls) {
979 Symbol *s = p.first;
980 uint64_t offset = p.second * config->wordsize;
981 // When building a shared library we still need a dynamic relocation
982 // for the TP-relative offset as we don't know how much other data will
983 // be allocated before us in the static TLS block.
984 if (s->isPreemptible || config->shared)
985 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
986 DynamicReloc::AgainstSymbolWithTargetVA,
987 *s, 0, R_ABS});
988 }
989 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
990 Symbol *s = p.first;
991 uint64_t offset = p.second * config->wordsize;
992 if (s == nullptr) {
993 if (!config->shared)
994 continue;
995 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
996 } else {
997 // When building a shared library we still need a dynamic relocation
998 // for the module index. Therefore only checking for
999 // S->isPreemptible is not sufficient (this happens e.g. for
1000 // thread-locals that have been marked as local through a linker script)
1001 if (!s->isPreemptible && !config->shared)
1002 continue;
1003 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this,
1004 offset, *s);
1005 // However, we can skip writing the TLS offset reloc for non-preemptible
1006 // symbols since it is known even in shared libraries
1007 if (!s->isPreemptible)
1008 continue;
1009 offset += config->wordsize;
1010 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset,
1011 *s);
1012 }
1013 }
1014
1015 // Do not create dynamic relocations for non-TLS
1016 // entries in the primary GOT.
1017 if (&got == primGot)
1018 continue;
1019
1020 // Dynamic relocations for "global" entries.
1021 for (const std::pair<Symbol *, size_t> &p : got.global) {
1022 uint64_t offset = p.second * config->wordsize;
1023 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset,
1024 *p.first);
1025 }
1026 if (!config->isPic)
1027 continue;
1028 // Dynamic relocations for "local" entries in case of PIC.
1029 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1030 got.pagesMap) {
1031 size_t pageCount = l.second.count;
1032 for (size_t pi = 0; pi < pageCount; ++pi) {
1033 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1034 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1035 int64_t(pi * 0x10000)});
1036 }
1037 }
1038 for (const std::pair<GotEntry, size_t> &p : got.local16) {
1039 uint64_t offset = p.second * config->wordsize;
1040 mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1041 DynamicReloc::AddendOnlyWithTargetVA,
1042 *p.first.first, p.first.second, R_ABS});
1043 }
1044 }
1045 }
1046
isNeeded() const1047 bool MipsGotSection::isNeeded() const {
1048 // We add the .got section to the result for dynamic MIPS target because
1049 // its address and properties are mentioned in the .dynamic section.
1050 return !config->relocatable;
1051 }
1052
getGp(const InputFile * f) const1053 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1054 // For files without related GOT or files refer a primary GOT
1055 // returns "common" _gp value. For secondary GOTs calculate
1056 // individual _gp values.
1057 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1058 return ElfSym::mipsGp->getVA(0);
1059 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0;
1060 }
1061
writeTo(uint8_t * buf)1062 void MipsGotSection::writeTo(uint8_t *buf) {
1063 // Set the MSB of the second GOT slot. This is not required by any
1064 // MIPS ABI documentation, though.
1065 //
1066 // There is a comment in glibc saying that "The MSB of got[1] of a
1067 // gnu object is set to identify gnu objects," and in GNU gold it
1068 // says "the second entry will be used by some runtime loaders".
1069 // But how this field is being used is unclear.
1070 //
1071 // We are not really willing to mimic other linkers behaviors
1072 // without understanding why they do that, but because all files
1073 // generated by GNU tools have this special GOT value, and because
1074 // we've been doing this for years, it is probably a safe bet to
1075 // keep doing this for now. We really need to revisit this to see
1076 // if we had to do this.
1077 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1078 for (const FileGot &g : gots) {
1079 auto write = [&](size_t i, const Symbol *s, int64_t a) {
1080 uint64_t va = a;
1081 if (s)
1082 va = s->getVA(a);
1083 writeUint(buf + i * config->wordsize, va);
1084 };
1085 // Write 'page address' entries to the local part of the GOT.
1086 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1087 g.pagesMap) {
1088 size_t pageCount = l.second.count;
1089 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1090 for (size_t pi = 0; pi < pageCount; ++pi)
1091 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1092 }
1093 // Local, global, TLS, reloc-only entries.
1094 // If TLS entry has a corresponding dynamic relocations, leave it
1095 // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1096 // To calculate the adjustments use offsets for thread-local storage.
1097 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1098 for (const std::pair<GotEntry, size_t> &p : g.local16)
1099 write(p.second, p.first.first, p.first.second);
1100 // Write VA to the primary GOT only. For secondary GOTs that
1101 // will be done by REL32 dynamic relocations.
1102 if (&g == &gots.front())
1103 for (const std::pair<Symbol *, size_t> &p : g.global)
1104 write(p.second, p.first, 0);
1105 for (const std::pair<Symbol *, size_t> &p : g.relocs)
1106 write(p.second, p.first, 0);
1107 for (const std::pair<Symbol *, size_t> &p : g.tls)
1108 write(p.second, p.first,
1109 p.first->isPreemptible || config->shared ? 0 : -0x7000);
1110 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1111 if (p.first == nullptr && !config->shared)
1112 write(p.second, nullptr, 1);
1113 else if (p.first && !p.first->isPreemptible) {
1114 // If we are emitting a shared library with relocations we mustn't write
1115 // anything to the GOT here. When using Elf_Rel relocations the value
1116 // one will be treated as an addend and will cause crashes at runtime
1117 if (!config->shared)
1118 write(p.second, nullptr, 1);
1119 write(p.second + 1, p.first, -0x8000);
1120 }
1121 }
1122 }
1123 }
1124
1125 // On PowerPC the .plt section is used to hold the table of function addresses
1126 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1127 // section. I don't know why we have a BSS style type for the section but it is
1128 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
GotPltSection()1129 GotPltSection::GotPltSection()
1130 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1131 ".got.plt") {
1132 if (config->emachine == EM_PPC) {
1133 name = ".plt";
1134 } else if (config->emachine == EM_PPC64) {
1135 type = SHT_NOBITS;
1136 name = ".plt";
1137 }
1138 }
1139
addEntry(Symbol & sym)1140 void GotPltSection::addEntry(Symbol &sym) {
1141 assert(sym.auxIdx == symAux.size() - 1 &&
1142 symAux.back().pltIdx == entries.size());
1143 entries.push_back(&sym);
1144 }
1145
getSize() const1146 size_t GotPltSection::getSize() const {
1147 return (target->gotPltHeaderEntriesNum + entries.size()) *
1148 target->gotEntrySize;
1149 }
1150
writeTo(uint8_t * buf)1151 void GotPltSection::writeTo(uint8_t *buf) {
1152 target->writeGotPltHeader(buf);
1153 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1154 for (const Symbol *b : entries) {
1155 target->writeGotPlt(buf, *b);
1156 buf += target->gotEntrySize;
1157 }
1158 }
1159
isNeeded() const1160 bool GotPltSection::isNeeded() const {
1161 // We need to emit GOTPLT even if it's empty if there's a relocation relative
1162 // to it.
1163 return !entries.empty() || hasGotPltOffRel;
1164 }
1165
getIgotPltName()1166 static StringRef getIgotPltName() {
1167 // On ARM the IgotPltSection is part of the GotSection.
1168 if (config->emachine == EM_ARM)
1169 return ".got";
1170
1171 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1172 // needs to be named the same.
1173 if (config->emachine == EM_PPC64)
1174 return ".plt";
1175
1176 return ".got.plt";
1177 }
1178
1179 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1180 // with the IgotPltSection.
IgotPltSection()1181 IgotPltSection::IgotPltSection()
1182 : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1183 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1184 target->gotEntrySize, getIgotPltName()) {}
1185
addEntry(Symbol & sym)1186 void IgotPltSection::addEntry(Symbol &sym) {
1187 assert(symAux.back().pltIdx == entries.size());
1188 entries.push_back(&sym);
1189 }
1190
getSize() const1191 size_t IgotPltSection::getSize() const {
1192 return entries.size() * target->gotEntrySize;
1193 }
1194
writeTo(uint8_t * buf)1195 void IgotPltSection::writeTo(uint8_t *buf) {
1196 for (const Symbol *b : entries) {
1197 target->writeIgotPlt(buf, *b);
1198 buf += target->gotEntrySize;
1199 }
1200 }
1201
StringTableSection(StringRef name,bool dynamic)1202 StringTableSection::StringTableSection(StringRef name, bool dynamic)
1203 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1204 dynamic(dynamic) {
1205 // ELF string tables start with a NUL byte.
1206 strings.push_back("");
1207 stringMap.try_emplace(CachedHashStringRef(""), 0);
1208 size = 1;
1209 }
1210
1211 // Adds a string to the string table. If `hashIt` is true we hash and check for
1212 // duplicates. It is optional because the name of global symbols are already
1213 // uniqued and hashing them again has a big cost for a small value: uniquing
1214 // them with some other string that happens to be the same.
addString(StringRef s,bool hashIt)1215 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1216 if (hashIt) {
1217 auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1218 if (!r.second)
1219 return r.first->second;
1220 }
1221 if (s.empty())
1222 return 0;
1223 unsigned ret = this->size;
1224 this->size = this->size + s.size() + 1;
1225 strings.push_back(s);
1226 return ret;
1227 }
1228
writeTo(uint8_t * buf)1229 void StringTableSection::writeTo(uint8_t *buf) {
1230 for (StringRef s : strings) {
1231 memcpy(buf, s.data(), s.size());
1232 buf[s.size()] = '\0';
1233 buf += s.size() + 1;
1234 }
1235 }
1236
1237 // Returns the number of entries in .gnu.version_d: the number of
1238 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1239 // Note that we don't support vd_cnt > 1 yet.
getVerDefNum()1240 static unsigned getVerDefNum() {
1241 return namedVersionDefs().size() + 1;
1242 }
1243
1244 template <class ELFT>
DynamicSection()1245 DynamicSection<ELFT>::DynamicSection()
1246 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1247 ".dynamic") {
1248 this->entsize = ELFT::Is64Bits ? 16 : 8;
1249
1250 // .dynamic section is not writable on MIPS and on Fuchsia OS
1251 // which passes -z rodynamic.
1252 // See "Special Section" in Chapter 4 in the following document:
1253 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1254 if (config->emachine == EM_MIPS || config->zRodynamic)
1255 this->flags = SHF_ALLOC;
1256 }
1257
1258 // The output section .rela.dyn may include these synthetic sections:
1259 //
1260 // - part.relaDyn
1261 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1262 // - in.relaPlt: this is included if a linker script places .rela.plt inside
1263 // .rela.dyn
1264 //
1265 // DT_RELASZ is the total size of the included sections.
addRelaSz(const RelocationBaseSection & relaDyn)1266 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) {
1267 size_t size = relaDyn.getSize();
1268 if (in.relaIplt->getParent() == relaDyn.getParent())
1269 size += in.relaIplt->getSize();
1270 if (in.relaPlt->getParent() == relaDyn.getParent())
1271 size += in.relaPlt->getSize();
1272 return size;
1273 }
1274
1275 // A Linker script may assign the RELA relocation sections to the same
1276 // output section. When this occurs we cannot just use the OutputSection
1277 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1278 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
addPltRelSz()1279 static uint64_t addPltRelSz() {
1280 size_t size = in.relaPlt->getSize();
1281 if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1282 in.relaIplt->name == in.relaPlt->name)
1283 size += in.relaIplt->getSize();
1284 return size;
1285 }
1286
1287 // Add remaining entries to complete .dynamic contents.
1288 template <class ELFT>
1289 std::vector<std::pair<int32_t, uint64_t>>
computeContents()1290 DynamicSection<ELFT>::computeContents() {
1291 elf::Partition &part = getPartition();
1292 bool isMain = part.name.empty();
1293 std::vector<std::pair<int32_t, uint64_t>> entries;
1294
1295 auto addInt = [&](int32_t tag, uint64_t val) {
1296 entries.emplace_back(tag, val);
1297 };
1298 auto addInSec = [&](int32_t tag, const InputSection &sec) {
1299 entries.emplace_back(tag, sec.getVA());
1300 };
1301
1302 for (StringRef s : config->filterList)
1303 addInt(DT_FILTER, part.dynStrTab->addString(s));
1304 for (StringRef s : config->auxiliaryList)
1305 addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1306
1307 if (!config->rpath.empty())
1308 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1309 part.dynStrTab->addString(config->rpath));
1310
1311 for (SharedFile *file : ctx.sharedFiles)
1312 if (file->isNeeded)
1313 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1314
1315 if (isMain) {
1316 if (!config->soName.empty())
1317 addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1318 } else {
1319 if (!config->soName.empty())
1320 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1321 addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1322 }
1323
1324 // Set DT_FLAGS and DT_FLAGS_1.
1325 uint32_t dtFlags = 0;
1326 uint32_t dtFlags1 = 0;
1327 if (config->bsymbolic == BsymbolicKind::All)
1328 dtFlags |= DF_SYMBOLIC;
1329 if (config->zGlobal)
1330 dtFlags1 |= DF_1_GLOBAL;
1331 if (config->zInitfirst)
1332 dtFlags1 |= DF_1_INITFIRST;
1333 if (config->zInterpose)
1334 dtFlags1 |= DF_1_INTERPOSE;
1335 if (config->zNodefaultlib)
1336 dtFlags1 |= DF_1_NODEFLIB;
1337 if (config->zNodelete)
1338 dtFlags1 |= DF_1_NODELETE;
1339 if (config->zNodlopen)
1340 dtFlags1 |= DF_1_NOOPEN;
1341 if (config->pie)
1342 dtFlags1 |= DF_1_PIE;
1343 if (config->zNow) {
1344 dtFlags |= DF_BIND_NOW;
1345 dtFlags1 |= DF_1_NOW;
1346 }
1347 if (config->zOrigin) {
1348 dtFlags |= DF_ORIGIN;
1349 dtFlags1 |= DF_1_ORIGIN;
1350 }
1351 if (!config->zText)
1352 dtFlags |= DF_TEXTREL;
1353 if (ctx.hasTlsIe && config->shared)
1354 dtFlags |= DF_STATIC_TLS;
1355
1356 if (dtFlags)
1357 addInt(DT_FLAGS, dtFlags);
1358 if (dtFlags1)
1359 addInt(DT_FLAGS_1, dtFlags1);
1360
1361 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1362 // need it for each process, so we don't write it for DSOs. The loader writes
1363 // the pointer into this entry.
1364 //
1365 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1366 // systems (currently only Fuchsia OS) provide other means to give the
1367 // debugger this information. Such systems may choose make .dynamic read-only.
1368 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1369 if (!config->shared && !config->relocatable && !config->zRodynamic)
1370 addInt(DT_DEBUG, 0);
1371
1372 if (part.relaDyn->isNeeded() ||
1373 (in.relaIplt->isNeeded() &&
1374 part.relaDyn->getParent() == in.relaIplt->getParent())) {
1375 addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1376 entries.emplace_back(part.relaDyn->sizeDynamicTag,
1377 addRelaSz(*part.relaDyn));
1378
1379 bool isRela = config->isRela;
1380 addInt(isRela ? DT_RELAENT : DT_RELENT,
1381 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1382
1383 // MIPS dynamic loader does not support RELCOUNT tag.
1384 // The problem is in the tight relation between dynamic
1385 // relocations and GOT. So do not emit this tag on MIPS.
1386 if (config->emachine != EM_MIPS) {
1387 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1388 if (config->zCombreloc && numRelativeRels)
1389 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1390 }
1391 }
1392 if (part.relrDyn && part.relrDyn->getParent() &&
1393 !part.relrDyn->relocs.empty()) {
1394 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1395 *part.relrDyn);
1396 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1397 part.relrDyn->getParent()->size);
1398 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1399 sizeof(Elf_Relr));
1400 }
1401 // .rel[a].plt section usually consists of two parts, containing plt and
1402 // iplt relocations. It is possible to have only iplt relocations in the
1403 // output. In that case relaPlt is empty and have zero offset, the same offset
1404 // as relaIplt has. And we still want to emit proper dynamic tags for that
1405 // case, so here we always use relaPlt as marker for the beginning of
1406 // .rel[a].plt section.
1407 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1408 addInSec(DT_JMPREL, *in.relaPlt);
1409 entries.emplace_back(DT_PLTRELSZ, addPltRelSz());
1410 switch (config->emachine) {
1411 case EM_MIPS:
1412 addInSec(DT_MIPS_PLTGOT, *in.gotPlt);
1413 break;
1414 case EM_SPARCV9:
1415 addInSec(DT_PLTGOT, *in.plt);
1416 break;
1417 case EM_AARCH64:
1418 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1419 return r.type == target->pltRel &&
1420 r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1421 }) != in.relaPlt->relocs.end())
1422 addInt(DT_AARCH64_VARIANT_PCS, 0);
1423 addInSec(DT_PLTGOT, *in.gotPlt);
1424 break;
1425 case EM_RISCV:
1426 if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) {
1427 return r.type == target->pltRel &&
1428 (r.sym->stOther & STO_RISCV_VARIANT_CC);
1429 }))
1430 addInt(DT_RISCV_VARIANT_CC, 0);
1431 [[fallthrough]];
1432 default:
1433 addInSec(DT_PLTGOT, *in.gotPlt);
1434 break;
1435 }
1436 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1437 }
1438
1439 if (config->emachine == EM_AARCH64) {
1440 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1441 addInt(DT_AARCH64_BTI_PLT, 0);
1442 if (config->zPacPlt)
1443 addInt(DT_AARCH64_PAC_PLT, 0);
1444 }
1445
1446 addInSec(DT_SYMTAB, *part.dynSymTab);
1447 addInt(DT_SYMENT, sizeof(Elf_Sym));
1448 addInSec(DT_STRTAB, *part.dynStrTab);
1449 addInt(DT_STRSZ, part.dynStrTab->getSize());
1450 if (!config->zText)
1451 addInt(DT_TEXTREL, 0);
1452 if (part.gnuHashTab && part.gnuHashTab->getParent())
1453 addInSec(DT_GNU_HASH, *part.gnuHashTab);
1454 if (part.hashTab && part.hashTab->getParent())
1455 addInSec(DT_HASH, *part.hashTab);
1456
1457 if (isMain) {
1458 if (Out::preinitArray) {
1459 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr);
1460 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size);
1461 }
1462 if (Out::initArray) {
1463 addInt(DT_INIT_ARRAY, Out::initArray->addr);
1464 addInt(DT_INIT_ARRAYSZ, Out::initArray->size);
1465 }
1466 if (Out::finiArray) {
1467 addInt(DT_FINI_ARRAY, Out::finiArray->addr);
1468 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size);
1469 }
1470
1471 if (Symbol *b = symtab.find(config->init))
1472 if (b->isDefined())
1473 addInt(DT_INIT, b->getVA());
1474 if (Symbol *b = symtab.find(config->fini))
1475 if (b->isDefined())
1476 addInt(DT_FINI, b->getVA());
1477 }
1478
1479 if (part.verSym && part.verSym->isNeeded())
1480 addInSec(DT_VERSYM, *part.verSym);
1481 if (part.verDef && part.verDef->isLive()) {
1482 addInSec(DT_VERDEF, *part.verDef);
1483 addInt(DT_VERDEFNUM, getVerDefNum());
1484 }
1485 if (part.verNeed && part.verNeed->isNeeded()) {
1486 addInSec(DT_VERNEED, *part.verNeed);
1487 unsigned needNum = 0;
1488 for (SharedFile *f : ctx.sharedFiles)
1489 if (!f->vernauxs.empty())
1490 ++needNum;
1491 addInt(DT_VERNEEDNUM, needNum);
1492 }
1493
1494 if (config->emachine == EM_MIPS) {
1495 addInt(DT_MIPS_RLD_VERSION, 1);
1496 addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1497 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1498 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1499 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum());
1500
1501 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1502 addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1503 else
1504 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1505 addInSec(DT_PLTGOT, *in.mipsGot);
1506 if (in.mipsRldMap) {
1507 if (!config->pie)
1508 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap);
1509 // Store the offset to the .rld_map section
1510 // relative to the address of the tag.
1511 addInt(DT_MIPS_RLD_MAP_REL,
1512 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1513 }
1514 }
1515
1516 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1517 // glibc assumes the old-style BSS PLT layout which we don't support.
1518 if (config->emachine == EM_PPC)
1519 addInSec(DT_PPC_GOT, *in.got);
1520
1521 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1522 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1523 // The Glink tag points to 32 bytes before the first lazy symbol resolution
1524 // stub, which starts directly after the header.
1525 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32);
1526 }
1527
1528 addInt(DT_NULL, 0);
1529 return entries;
1530 }
1531
finalizeContents()1532 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1533 if (OutputSection *sec = getPartition().dynStrTab->getParent())
1534 getParent()->link = sec->sectionIndex;
1535 this->size = computeContents().size() * this->entsize;
1536 }
1537
writeTo(uint8_t * buf)1538 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1539 auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1540
1541 for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1542 p->d_tag = kv.first;
1543 p->d_un.d_val = kv.second;
1544 ++p;
1545 }
1546 }
1547
getOffset() const1548 uint64_t DynamicReloc::getOffset() const {
1549 return inputSec->getVA(offsetInSec);
1550 }
1551
computeAddend() const1552 int64_t DynamicReloc::computeAddend() const {
1553 switch (kind) {
1554 case AddendOnly:
1555 assert(sym == nullptr);
1556 return addend;
1557 case AgainstSymbol:
1558 assert(sym != nullptr);
1559 return addend;
1560 case AddendOnlyWithTargetVA:
1561 case AgainstSymbolWithTargetVA:
1562 return InputSection::getRelocTargetVA(inputSec->file, type, addend,
1563 getOffset(), *sym, expr);
1564 case MipsMultiGotPage:
1565 assert(sym == nullptr);
1566 return getMipsPageAddr(outputSec->addr) + addend;
1567 }
1568 llvm_unreachable("Unknown DynamicReloc::Kind enum");
1569 }
1570
getSymIndex(SymbolTableBaseSection * symTab) const1571 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1572 if (!needsDynSymIndex())
1573 return 0;
1574
1575 size_t index = symTab->getSymbolIndex(sym);
1576 assert((index != 0 || (type != target->gotRel && type != target->pltRel) ||
1577 !mainPart->dynSymTab->getParent()) &&
1578 "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1579 return index;
1580 }
1581
RelocationBaseSection(StringRef name,uint32_t type,int32_t dynamicTag,int32_t sizeDynamicTag,bool combreloc,unsigned concurrency)1582 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1583 int32_t dynamicTag,
1584 int32_t sizeDynamicTag,
1585 bool combreloc,
1586 unsigned concurrency)
1587 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1588 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1589 relocsVec(concurrency), combreloc(combreloc) {}
1590
addSymbolReloc(RelType dynType,InputSectionBase & isec,uint64_t offsetInSec,Symbol & sym,int64_t addend,std::optional<RelType> addendRelType)1591 void RelocationBaseSection::addSymbolReloc(
1592 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1593 int64_t addend, std::optional<RelType> addendRelType) {
1594 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1595 R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1596 }
1597
addAddendOnlyRelocIfNonPreemptible(RelType dynType,GotSection & sec,uint64_t offsetInSec,Symbol & sym,RelType addendRelType)1598 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1599 RelType dynType, GotSection &sec, uint64_t offsetInSec, Symbol &sym,
1600 RelType addendRelType) {
1601 // No need to write an addend to the section for preemptible symbols.
1602 if (sym.isPreemptible)
1603 addReloc({dynType, &sec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1604 R_ABS});
1605 else
1606 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, sec, offsetInSec,
1607 sym, 0, R_ABS, addendRelType);
1608 }
1609
mergeRels()1610 void RelocationBaseSection::mergeRels() {
1611 size_t newSize = relocs.size();
1612 for (const auto &v : relocsVec)
1613 newSize += v.size();
1614 relocs.reserve(newSize);
1615 for (const auto &v : relocsVec)
1616 llvm::append_range(relocs, v);
1617 relocsVec.clear();
1618 }
1619
partitionRels()1620 void RelocationBaseSection::partitionRels() {
1621 if (!combreloc)
1622 return;
1623 const RelType relativeRel = target->relativeRel;
1624 numRelativeRelocs =
1625 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) -
1626 relocs.begin();
1627 }
1628
finalizeContents()1629 void RelocationBaseSection::finalizeContents() {
1630 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1631
1632 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1633 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1634 // case.
1635 if (symTab && symTab->getParent())
1636 getParent()->link = symTab->getParent()->sectionIndex;
1637 else
1638 getParent()->link = 0;
1639
1640 if (in.relaPlt.get() == this && in.gotPlt->getParent()) {
1641 getParent()->flags |= ELF::SHF_INFO_LINK;
1642 getParent()->info = in.gotPlt->getParent()->sectionIndex;
1643 }
1644 if (in.relaIplt.get() == this && in.igotPlt->getParent()) {
1645 getParent()->flags |= ELF::SHF_INFO_LINK;
1646 getParent()->info = in.igotPlt->getParent()->sectionIndex;
1647 }
1648 }
1649
computeRaw(SymbolTableBaseSection * symtab)1650 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) {
1651 r_offset = getOffset();
1652 r_sym = getSymIndex(symtab);
1653 addend = computeAddend();
1654 kind = AddendOnly; // Catch errors
1655 }
1656
computeRels()1657 void RelocationBaseSection::computeRels() {
1658 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1659 parallelForEach(relocs,
1660 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); });
1661 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1662 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1663 // is to make results easier to read.
1664 if (combreloc) {
1665 auto nonRelative = relocs.begin() + numRelativeRelocs;
1666 parallelSort(relocs.begin(), nonRelative,
1667 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1668 // Non-relative relocations are few, so don't bother with parallelSort.
1669 llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) {
1670 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1671 });
1672 }
1673 }
1674
1675 template <class ELFT>
RelocationSection(StringRef name,bool combreloc,unsigned concurrency)1676 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc,
1677 unsigned concurrency)
1678 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1679 config->isRela ? DT_RELA : DT_REL,
1680 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc,
1681 concurrency) {
1682 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1683 }
1684
writeTo(uint8_t * buf)1685 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1686 computeRels();
1687 for (const DynamicReloc &rel : relocs) {
1688 auto *p = reinterpret_cast<Elf_Rela *>(buf);
1689 p->r_offset = rel.r_offset;
1690 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL);
1691 if (config->isRela)
1692 p->r_addend = rel.addend;
1693 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1694 }
1695 }
1696
RelrBaseSection(unsigned concurrency)1697 RelrBaseSection::RelrBaseSection(unsigned concurrency)
1698 : SyntheticSection(SHF_ALLOC,
1699 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1700 config->wordsize, ".relr.dyn"),
1701 relocsVec(concurrency) {}
1702
mergeRels()1703 void RelrBaseSection::mergeRels() {
1704 size_t newSize = relocs.size();
1705 for (const auto &v : relocsVec)
1706 newSize += v.size();
1707 relocs.reserve(newSize);
1708 for (const auto &v : relocsVec)
1709 llvm::append_range(relocs, v);
1710 relocsVec.clear();
1711 }
1712
1713 template <class ELFT>
AndroidPackedRelocationSection(StringRef name,unsigned concurrency)1714 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1715 StringRef name, unsigned concurrency)
1716 : RelocationBaseSection(
1717 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1718 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1719 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1720 /*combreloc=*/false, concurrency) {
1721 this->entsize = 1;
1722 }
1723
1724 template <class ELFT>
updateAllocSize()1725 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1726 // This function computes the contents of an Android-format packed relocation
1727 // section.
1728 //
1729 // This format compresses relocations by using relocation groups to factor out
1730 // fields that are common between relocations and storing deltas from previous
1731 // relocations in SLEB128 format (which has a short representation for small
1732 // numbers). A good example of a relocation type with common fields is
1733 // R_*_RELATIVE, which is normally used to represent function pointers in
1734 // vtables. In the REL format, each relative relocation has the same r_info
1735 // field, and is only different from other relative relocations in terms of
1736 // the r_offset field. By sorting relocations by offset, grouping them by
1737 // r_info and representing each relocation with only the delta from the
1738 // previous offset, each 8-byte relocation can be compressed to as little as 1
1739 // byte (or less with run-length encoding). This relocation packer was able to
1740 // reduce the size of the relocation section in an Android Chromium DSO from
1741 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1742 //
1743 // A relocation section consists of a header containing the literal bytes
1744 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1745 // elements are the total number of relocations in the section and an initial
1746 // r_offset value. The remaining elements define a sequence of relocation
1747 // groups. Each relocation group starts with a header consisting of the
1748 // following elements:
1749 //
1750 // - the number of relocations in the relocation group
1751 // - flags for the relocation group
1752 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1753 // for each relocation in the group.
1754 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1755 // field for each relocation in the group.
1756 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1757 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1758 // each relocation in the group.
1759 //
1760 // Following the relocation group header are descriptions of each of the
1761 // relocations in the group. They consist of the following elements:
1762 //
1763 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1764 // delta for this relocation.
1765 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1766 // field for this relocation.
1767 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1768 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1769 // this relocation.
1770
1771 size_t oldSize = relocData.size();
1772
1773 relocData = {'A', 'P', 'S', '2'};
1774 raw_svector_ostream os(relocData);
1775 auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1776
1777 // The format header includes the number of relocations and the initial
1778 // offset (we set this to zero because the first relocation group will
1779 // perform the initial adjustment).
1780 add(relocs.size());
1781 add(0);
1782
1783 std::vector<Elf_Rela> relatives, nonRelatives;
1784
1785 for (const DynamicReloc &rel : relocs) {
1786 Elf_Rela r;
1787 r.r_offset = rel.getOffset();
1788 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()),
1789 rel.type, false);
1790 r.r_addend = config->isRela ? rel.computeAddend() : 0;
1791
1792 if (r.getType(config->isMips64EL) == target->relativeRel)
1793 relatives.push_back(r);
1794 else
1795 nonRelatives.push_back(r);
1796 }
1797
1798 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1799 return a.r_offset < b.r_offset;
1800 });
1801
1802 // Try to find groups of relative relocations which are spaced one word
1803 // apart from one another. These generally correspond to vtable entries. The
1804 // format allows these groups to be encoded using a sort of run-length
1805 // encoding, but each group will cost 7 bytes in addition to the offset from
1806 // the previous group, so it is only profitable to do this for groups of
1807 // size 8 or larger.
1808 std::vector<Elf_Rela> ungroupedRelatives;
1809 std::vector<std::vector<Elf_Rela>> relativeGroups;
1810 for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1811 std::vector<Elf_Rela> group;
1812 do {
1813 group.push_back(*i++);
1814 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1815
1816 if (group.size() < 8)
1817 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1818 group.end());
1819 else
1820 relativeGroups.emplace_back(std::move(group));
1821 }
1822
1823 // For non-relative relocations, we would like to:
1824 // 1. Have relocations with the same symbol offset to be consecutive, so
1825 // that the runtime linker can speed-up symbol lookup by implementing an
1826 // 1-entry cache.
1827 // 2. Group relocations by r_info to reduce the size of the relocation
1828 // section.
1829 // Since the symbol offset is the high bits in r_info, sorting by r_info
1830 // allows us to do both.
1831 //
1832 // For Rela, we also want to sort by r_addend when r_info is the same. This
1833 // enables us to group by r_addend as well.
1834 llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1835 if (a.r_info != b.r_info)
1836 return a.r_info < b.r_info;
1837 if (a.r_addend != b.r_addend)
1838 return a.r_addend < b.r_addend;
1839 return a.r_offset < b.r_offset;
1840 });
1841
1842 // Group relocations with the same r_info. Note that each group emits a group
1843 // header and that may make the relocation section larger. It is hard to
1844 // estimate the size of a group header as the encoded size of that varies
1845 // based on r_info. However, we can approximate this trade-off by the number
1846 // of values encoded. Each group header contains 3 values, and each relocation
1847 // in a group encodes one less value, as compared to when it is not grouped.
1848 // Therefore, we only group relocations if there are 3 or more of them with
1849 // the same r_info.
1850 //
1851 // For Rela, the addend for most non-relative relocations is zero, and thus we
1852 // can usually get a smaller relocation section if we group relocations with 0
1853 // addend as well.
1854 std::vector<Elf_Rela> ungroupedNonRelatives;
1855 std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1856 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1857 auto j = i + 1;
1858 while (j != e && i->r_info == j->r_info &&
1859 (!config->isRela || i->r_addend == j->r_addend))
1860 ++j;
1861 if (j - i < 3 || (config->isRela && i->r_addend != 0))
1862 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1863 else
1864 nonRelativeGroups.emplace_back(i, j);
1865 i = j;
1866 }
1867
1868 // Sort ungrouped relocations by offset to minimize the encoded length.
1869 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1870 return a.r_offset < b.r_offset;
1871 });
1872
1873 unsigned hasAddendIfRela =
1874 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1875
1876 uint64_t offset = 0;
1877 uint64_t addend = 0;
1878
1879 // Emit the run-length encoding for the groups of adjacent relative
1880 // relocations. Each group is represented using two groups in the packed
1881 // format. The first is used to set the current offset to the start of the
1882 // group (and also encodes the first relocation), and the second encodes the
1883 // remaining relocations.
1884 for (std::vector<Elf_Rela> &g : relativeGroups) {
1885 // The first relocation in the group.
1886 add(1);
1887 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1888 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1889 add(g[0].r_offset - offset);
1890 add(target->relativeRel);
1891 if (config->isRela) {
1892 add(g[0].r_addend - addend);
1893 addend = g[0].r_addend;
1894 }
1895
1896 // The remaining relocations.
1897 add(g.size() - 1);
1898 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1899 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1900 add(config->wordsize);
1901 add(target->relativeRel);
1902 if (config->isRela) {
1903 for (const auto &i : llvm::drop_begin(g)) {
1904 add(i.r_addend - addend);
1905 addend = i.r_addend;
1906 }
1907 }
1908
1909 offset = g.back().r_offset;
1910 }
1911
1912 // Now the ungrouped relatives.
1913 if (!ungroupedRelatives.empty()) {
1914 add(ungroupedRelatives.size());
1915 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1916 add(target->relativeRel);
1917 for (Elf_Rela &r : ungroupedRelatives) {
1918 add(r.r_offset - offset);
1919 offset = r.r_offset;
1920 if (config->isRela) {
1921 add(r.r_addend - addend);
1922 addend = r.r_addend;
1923 }
1924 }
1925 }
1926
1927 // Grouped non-relatives.
1928 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1929 add(g.size());
1930 add(RELOCATION_GROUPED_BY_INFO_FLAG);
1931 add(g[0].r_info);
1932 for (const Elf_Rela &r : g) {
1933 add(r.r_offset - offset);
1934 offset = r.r_offset;
1935 }
1936 addend = 0;
1937 }
1938
1939 // Finally the ungrouped non-relative relocations.
1940 if (!ungroupedNonRelatives.empty()) {
1941 add(ungroupedNonRelatives.size());
1942 add(hasAddendIfRela);
1943 for (Elf_Rela &r : ungroupedNonRelatives) {
1944 add(r.r_offset - offset);
1945 offset = r.r_offset;
1946 add(r.r_info);
1947 if (config->isRela) {
1948 add(r.r_addend - addend);
1949 addend = r.r_addend;
1950 }
1951 }
1952 }
1953
1954 // Don't allow the section to shrink; otherwise the size of the section can
1955 // oscillate infinitely.
1956 if (relocData.size() < oldSize)
1957 relocData.append(oldSize - relocData.size(), 0);
1958
1959 // Returns whether the section size changed. We need to keep recomputing both
1960 // section layout and the contents of this section until the size converges
1961 // because changing this section's size can affect section layout, which in
1962 // turn can affect the sizes of the LEB-encoded integers stored in this
1963 // section.
1964 return relocData.size() != oldSize;
1965 }
1966
1967 template <class ELFT>
RelrSection(unsigned concurrency)1968 RelrSection<ELFT>::RelrSection(unsigned concurrency)
1969 : RelrBaseSection(concurrency) {
1970 this->entsize = config->wordsize;
1971 }
1972
updateAllocSize()1973 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1974 // This function computes the contents of an SHT_RELR packed relocation
1975 // section.
1976 //
1977 // Proposal for adding SHT_RELR sections to generic-abi is here:
1978 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1979 //
1980 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
1981 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
1982 //
1983 // i.e. start with an address, followed by any number of bitmaps. The address
1984 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
1985 // relocations each, at subsequent offsets following the last address entry.
1986 //
1987 // The bitmap entries must have 1 in the least significant bit. The assumption
1988 // here is that an address cannot have 1 in lsb. Odd addresses are not
1989 // supported.
1990 //
1991 // Excluding the least significant bit in the bitmap, each non-zero bit in
1992 // the bitmap represents a relocation to be applied to a corresponding machine
1993 // word that follows the base address word. The second least significant bit
1994 // represents the machine word immediately following the initial address, and
1995 // each bit that follows represents the next word, in linear order. As such,
1996 // a single bitmap can encode up to 31 relocations in a 32-bit object, and
1997 // 63 relocations in a 64-bit object.
1998 //
1999 // This encoding has a couple of interesting properties:
2000 // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2001 // even means address, odd means bitmap.
2002 // 2. Just a simple list of addresses is a valid encoding.
2003
2004 size_t oldSize = relrRelocs.size();
2005 relrRelocs.clear();
2006
2007 // Same as Config->Wordsize but faster because this is a compile-time
2008 // constant.
2009 const size_t wordsize = sizeof(typename ELFT::uint);
2010
2011 // Number of bits to use for the relocation offsets bitmap.
2012 // Must be either 63 or 31.
2013 const size_t nBits = wordsize * 8 - 1;
2014
2015 // Get offsets for all relative relocations and sort them.
2016 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2017 for (auto [i, r] : llvm::enumerate(relocs))
2018 offsets[i] = r.getOffset();
2019 llvm::sort(offsets.get(), offsets.get() + relocs.size());
2020
2021 // For each leading relocation, find following ones that can be folded
2022 // as a bitmap and fold them.
2023 for (size_t i = 0, e = relocs.size(); i != e;) {
2024 // Add a leading relocation.
2025 relrRelocs.push_back(Elf_Relr(offsets[i]));
2026 uint64_t base = offsets[i] + wordsize;
2027 ++i;
2028
2029 // Find foldable relocations to construct bitmaps.
2030 for (;;) {
2031 uint64_t bitmap = 0;
2032 for (; i != e; ++i) {
2033 uint64_t d = offsets[i] - base;
2034 if (d >= nBits * wordsize || d % wordsize)
2035 break;
2036 bitmap |= uint64_t(1) << (d / wordsize);
2037 }
2038 if (!bitmap)
2039 break;
2040 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2041 base += nBits * wordsize;
2042 }
2043 }
2044
2045 // Don't allow the section to shrink; otherwise the size of the section can
2046 // oscillate infinitely. Trailing 1s do not decode to more relocations.
2047 if (relrRelocs.size() < oldSize) {
2048 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2049 " padding word(s)");
2050 relrRelocs.resize(oldSize, Elf_Relr(1));
2051 }
2052
2053 return relrRelocs.size() != oldSize;
2054 }
2055
SymbolTableBaseSection(StringTableSection & strTabSec)2056 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2057 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2058 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2059 config->wordsize,
2060 strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2061 strTabSec(strTabSec) {}
2062
2063 // Orders symbols according to their positions in the GOT,
2064 // in compliance with MIPS ABI rules.
2065 // See "Global Offset Table" in Chapter 5 in the following document
2066 // for detailed description:
2067 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
sortMipsSymbols(const SymbolTableEntry & l,const SymbolTableEntry & r)2068 static bool sortMipsSymbols(const SymbolTableEntry &l,
2069 const SymbolTableEntry &r) {
2070 // Sort entries related to non-local preemptible symbols by GOT indexes.
2071 // All other entries go to the beginning of a dynsym in arbitrary order.
2072 if (l.sym->isInGot() && r.sym->isInGot())
2073 return l.sym->getGotIdx() < r.sym->getGotIdx();
2074 if (!l.sym->isInGot() && !r.sym->isInGot())
2075 return false;
2076 return !l.sym->isInGot();
2077 }
2078
finalizeContents()2079 void SymbolTableBaseSection::finalizeContents() {
2080 if (OutputSection *sec = strTabSec.getParent())
2081 getParent()->link = sec->sectionIndex;
2082
2083 if (this->type != SHT_DYNSYM) {
2084 sortSymTabSymbols();
2085 return;
2086 }
2087
2088 // If it is a .dynsym, there should be no local symbols, but we need
2089 // to do a few things for the dynamic linker.
2090
2091 // Section's Info field has the index of the first non-local symbol.
2092 // Because the first symbol entry is a null entry, 1 is the first.
2093 getParent()->info = 1;
2094
2095 if (getPartition().gnuHashTab) {
2096 // NB: It also sorts Symbols to meet the GNU hash table requirements.
2097 getPartition().gnuHashTab->addSymbols(symbols);
2098 } else if (config->emachine == EM_MIPS) {
2099 llvm::stable_sort(symbols, sortMipsSymbols);
2100 }
2101
2102 // Only the main partition's dynsym indexes are stored in the symbols
2103 // themselves. All other partitions use a lookup table.
2104 if (this == mainPart->dynSymTab.get()) {
2105 size_t i = 0;
2106 for (const SymbolTableEntry &s : symbols)
2107 s.sym->dynsymIndex = ++i;
2108 }
2109 }
2110
2111 // The ELF spec requires that all local symbols precede global symbols, so we
2112 // sort symbol entries in this function. (For .dynsym, we don't do that because
2113 // symbols for dynamic linking are inherently all globals.)
2114 //
2115 // Aside from above, we put local symbols in groups starting with the STT_FILE
2116 // symbol. That is convenient for purpose of identifying where are local symbols
2117 // coming from.
sortSymTabSymbols()2118 void SymbolTableBaseSection::sortSymTabSymbols() {
2119 // Move all local symbols before global symbols.
2120 auto e = std::stable_partition(
2121 symbols.begin(), symbols.end(),
2122 [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2123 size_t numLocals = e - symbols.begin();
2124 getParent()->info = numLocals + 1;
2125
2126 // We want to group the local symbols by file. For that we rebuild the local
2127 // part of the symbols vector. We do not need to care about the STT_FILE
2128 // symbols, they are already naturally placed first in each group. That
2129 // happens because STT_FILE is always the first symbol in the object and hence
2130 // precede all other local symbols we add for a file.
2131 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2132 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2133 arr[s.sym->file].push_back(s);
2134
2135 auto i = symbols.begin();
2136 for (auto &p : arr)
2137 for (SymbolTableEntry &entry : p.second)
2138 *i++ = entry;
2139 }
2140
addSymbol(Symbol * b)2141 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2142 // Adding a local symbol to a .dynsym is a bug.
2143 assert(this->type != SHT_DYNSYM || !b->isLocal());
2144 symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2145 }
2146
getSymbolIndex(Symbol * sym)2147 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2148 if (this == mainPart->dynSymTab.get())
2149 return sym->dynsymIndex;
2150
2151 // Initializes symbol lookup tables lazily. This is used only for -r,
2152 // --emit-relocs and dynsyms in partitions other than the main one.
2153 llvm::call_once(onceFlag, [&] {
2154 symbolIndexMap.reserve(symbols.size());
2155 size_t i = 0;
2156 for (const SymbolTableEntry &e : symbols) {
2157 if (e.sym->type == STT_SECTION)
2158 sectionIndexMap[e.sym->getOutputSection()] = ++i;
2159 else
2160 symbolIndexMap[e.sym] = ++i;
2161 }
2162 });
2163
2164 // Section symbols are mapped based on their output sections
2165 // to maintain their semantics.
2166 if (sym->type == STT_SECTION)
2167 return sectionIndexMap.lookup(sym->getOutputSection());
2168 return symbolIndexMap.lookup(sym);
2169 }
2170
2171 template <class ELFT>
SymbolTableSection(StringTableSection & strTabSec)2172 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2173 : SymbolTableBaseSection(strTabSec) {
2174 this->entsize = sizeof(Elf_Sym);
2175 }
2176
getCommonSec(Symbol * sym)2177 static BssSection *getCommonSec(Symbol *sym) {
2178 if (config->relocatable)
2179 if (auto *d = dyn_cast<Defined>(sym))
2180 return dyn_cast_or_null<BssSection>(d->section);
2181 return nullptr;
2182 }
2183
getSymSectionIndex(Symbol * sym)2184 static uint32_t getSymSectionIndex(Symbol *sym) {
2185 assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
2186 if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY))
2187 return SHN_UNDEF;
2188 if (const OutputSection *os = sym->getOutputSection())
2189 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2190 : os->sectionIndex;
2191 return SHN_ABS;
2192 }
2193
2194 // Write the internal symbol table contents to the output symbol table.
writeTo(uint8_t * buf)2195 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2196 // The first entry is a null entry as per the ELF spec.
2197 buf += sizeof(Elf_Sym);
2198
2199 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2200
2201 for (SymbolTableEntry &ent : symbols) {
2202 Symbol *sym = ent.sym;
2203 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2204
2205 // Set st_name, st_info and st_other.
2206 eSym->st_name = ent.strTabOffset;
2207 eSym->setBindingAndType(sym->binding, sym->type);
2208 eSym->st_other = sym->stOther;
2209
2210 if (BssSection *commonSec = getCommonSec(sym)) {
2211 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2212 // holds SHN_COMMON and st_value holds the alignment.
2213 eSym->st_shndx = SHN_COMMON;
2214 eSym->st_value = commonSec->addralign;
2215 eSym->st_size = cast<Defined>(sym)->size;
2216 } else {
2217 const uint32_t shndx = getSymSectionIndex(sym);
2218 if (isDefinedHere) {
2219 eSym->st_shndx = shndx;
2220 eSym->st_value = sym->getVA();
2221 // Copy symbol size if it is a defined symbol. st_size is not
2222 // significant for undefined symbols, so whether copying it or not is up
2223 // to us if that's the case. We'll leave it as zero because by not
2224 // setting a value, we can get the exact same outputs for two sets of
2225 // input files that differ only in undefined symbol size in DSOs.
2226 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2227 } else {
2228 eSym->st_shndx = 0;
2229 eSym->st_value = 0;
2230 eSym->st_size = 0;
2231 }
2232 }
2233
2234 ++eSym;
2235 }
2236
2237 // On MIPS we need to mark symbol which has a PLT entry and requires
2238 // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2239 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2240 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2241 if (config->emachine == EM_MIPS) {
2242 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2243
2244 for (SymbolTableEntry &ent : symbols) {
2245 Symbol *sym = ent.sym;
2246 if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY))
2247 eSym->st_other |= STO_MIPS_PLT;
2248 if (isMicroMips()) {
2249 // We already set the less-significant bit for symbols
2250 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2251 // records. That allows us to distinguish such symbols in
2252 // the `MIPS<ELFT>::relocate()` routine. Now we should
2253 // clear that bit for non-dynamic symbol table, so tools
2254 // like `objdump` will be able to deal with a correct
2255 // symbol position.
2256 if (sym->isDefined() &&
2257 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) {
2258 if (!strTabSec.isDynamic())
2259 eSym->st_value &= ~1;
2260 eSym->st_other |= STO_MIPS_MICROMIPS;
2261 }
2262 }
2263 if (config->relocatable)
2264 if (auto *d = dyn_cast<Defined>(sym))
2265 if (isMipsPIC<ELFT>(d))
2266 eSym->st_other |= STO_MIPS_PIC;
2267 ++eSym;
2268 }
2269 }
2270 }
2271
SymtabShndxSection()2272 SymtabShndxSection::SymtabShndxSection()
2273 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2274 this->entsize = 4;
2275 }
2276
writeTo(uint8_t * buf)2277 void SymtabShndxSection::writeTo(uint8_t *buf) {
2278 // We write an array of 32 bit values, where each value has 1:1 association
2279 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2280 // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2281 buf += 4; // Ignore .symtab[0] entry.
2282 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2283 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX)
2284 write32(buf, entry.sym->getOutputSection()->sectionIndex);
2285 buf += 4;
2286 }
2287 }
2288
isNeeded() const2289 bool SymtabShndxSection::isNeeded() const {
2290 // SHT_SYMTAB can hold symbols with section indices values up to
2291 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2292 // section. Problem is that we reveal the final section indices a bit too
2293 // late, and we do not know them here. For simplicity, we just always create
2294 // a .symtab_shndx section when the amount of output sections is huge.
2295 size_t size = 0;
2296 for (SectionCommand *cmd : script->sectionCommands)
2297 if (isa<OutputDesc>(cmd))
2298 ++size;
2299 return size >= SHN_LORESERVE;
2300 }
2301
finalizeContents()2302 void SymtabShndxSection::finalizeContents() {
2303 getParent()->link = in.symTab->getParent()->sectionIndex;
2304 }
2305
getSize() const2306 size_t SymtabShndxSection::getSize() const {
2307 return in.symTab->getNumSymbols() * 4;
2308 }
2309
2310 // .hash and .gnu.hash sections contain on-disk hash tables that map
2311 // symbol names to their dynamic symbol table indices. Their purpose
2312 // is to help the dynamic linker resolve symbols quickly. If ELF files
2313 // don't have them, the dynamic linker has to do linear search on all
2314 // dynamic symbols, which makes programs slower. Therefore, a .hash
2315 // section is added to a DSO by default.
2316 //
2317 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2318 // Each ELF file has a list of DSOs that the ELF file depends on and a
2319 // list of dynamic symbols that need to be resolved from any of the
2320 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2321 // where m is the number of DSOs and n is the number of dynamic
2322 // symbols. For modern large programs, both m and n are large. So
2323 // making each step faster by using hash tables substantially
2324 // improves time to load programs.
2325 //
2326 // (Note that this is not the only way to design the shared library.
2327 // For instance, the Windows DLL takes a different approach. On
2328 // Windows, each dynamic symbol has a name of DLL from which the symbol
2329 // has to be resolved. That makes the cost of symbol resolution O(n).
2330 // This disables some hacky techniques you can use on Unix such as
2331 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2332 //
2333 // Due to historical reasons, we have two different hash tables, .hash
2334 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2335 // and better version of .hash. .hash is just an on-disk hash table, but
2336 // .gnu.hash has a bloom filter in addition to a hash table to skip
2337 // DSOs very quickly. If you are sure that your dynamic linker knows
2338 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2339 // safe bet is to specify --hash-style=both for backward compatibility.
GnuHashTableSection()2340 GnuHashTableSection::GnuHashTableSection()
2341 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2342 }
2343
finalizeContents()2344 void GnuHashTableSection::finalizeContents() {
2345 if (OutputSection *sec = getPartition().dynSymTab->getParent())
2346 getParent()->link = sec->sectionIndex;
2347
2348 // Computes bloom filter size in word size. We want to allocate 12
2349 // bits for each symbol. It must be a power of two.
2350 if (symbols.empty()) {
2351 maskWords = 1;
2352 } else {
2353 uint64_t numBits = symbols.size() * 12;
2354 maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2355 }
2356
2357 size = 16; // Header
2358 size += config->wordsize * maskWords; // Bloom filter
2359 size += nBuckets * 4; // Hash buckets
2360 size += symbols.size() * 4; // Hash values
2361 }
2362
writeTo(uint8_t * buf)2363 void GnuHashTableSection::writeTo(uint8_t *buf) {
2364 // Write a header.
2365 write32(buf, nBuckets);
2366 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2367 write32(buf + 8, maskWords);
2368 write32(buf + 12, Shift2);
2369 buf += 16;
2370
2371 // Write the 2-bit bloom filter.
2372 const unsigned c = config->is64 ? 64 : 32;
2373 for (const Entry &sym : symbols) {
2374 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2375 // the word using bits [0:5] and [26:31].
2376 size_t i = (sym.hash / c) & (maskWords - 1);
2377 uint64_t val = readUint(buf + i * config->wordsize);
2378 val |= uint64_t(1) << (sym.hash % c);
2379 val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2380 writeUint(buf + i * config->wordsize, val);
2381 }
2382 buf += config->wordsize * maskWords;
2383
2384 // Write the hash table.
2385 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2386 uint32_t oldBucket = -1;
2387 uint32_t *values = buckets + nBuckets;
2388 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2389 // Write a hash value. It represents a sequence of chains that share the
2390 // same hash modulo value. The last element of each chain is terminated by
2391 // LSB 1.
2392 uint32_t hash = i->hash;
2393 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2394 hash = isLastInChain ? hash | 1 : hash & ~1;
2395 write32(values++, hash);
2396
2397 if (i->bucketIdx == oldBucket)
2398 continue;
2399 // Write a hash bucket. Hash buckets contain indices in the following hash
2400 // value table.
2401 write32(buckets + i->bucketIdx,
2402 getPartition().dynSymTab->getSymbolIndex(i->sym));
2403 oldBucket = i->bucketIdx;
2404 }
2405 }
2406
2407 // Add symbols to this symbol hash table. Note that this function
2408 // destructively sort a given vector -- which is needed because
2409 // GNU-style hash table places some sorting requirements.
addSymbols(SmallVectorImpl<SymbolTableEntry> & v)2410 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2411 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2412 // its type correctly.
2413 auto mid =
2414 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2415 return !s.sym->isDefined() || s.sym->partition != partition;
2416 });
2417
2418 // We chose load factor 4 for the on-disk hash table. For each hash
2419 // collision, the dynamic linker will compare a uint32_t hash value.
2420 // Since the integer comparison is quite fast, we believe we can
2421 // make the load factor even larger. 4 is just a conservative choice.
2422 //
2423 // Note that we don't want to create a zero-sized hash table because
2424 // Android loader as of 2018 doesn't like a .gnu.hash containing such
2425 // table. If that's the case, we create a hash table with one unused
2426 // dummy slot.
2427 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2428
2429 if (mid == v.end())
2430 return;
2431
2432 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2433 Symbol *b = ent.sym;
2434 uint32_t hash = hashGnu(b->getName());
2435 uint32_t bucketIdx = hash % nBuckets;
2436 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2437 }
2438
2439 llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2440 return std::tie(l.bucketIdx, l.strTabOffset) <
2441 std::tie(r.bucketIdx, r.strTabOffset);
2442 });
2443
2444 v.erase(mid, v.end());
2445 for (const Entry &ent : symbols)
2446 v.push_back({ent.sym, ent.strTabOffset});
2447 }
2448
HashTableSection()2449 HashTableSection::HashTableSection()
2450 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2451 this->entsize = 4;
2452 }
2453
finalizeContents()2454 void HashTableSection::finalizeContents() {
2455 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2456
2457 if (OutputSection *sec = symTab->getParent())
2458 getParent()->link = sec->sectionIndex;
2459
2460 unsigned numEntries = 2; // nbucket and nchain.
2461 numEntries += symTab->getNumSymbols(); // The chain entries.
2462
2463 // Create as many buckets as there are symbols.
2464 numEntries += symTab->getNumSymbols();
2465 this->size = numEntries * 4;
2466 }
2467
writeTo(uint8_t * buf)2468 void HashTableSection::writeTo(uint8_t *buf) {
2469 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2470 unsigned numSymbols = symTab->getNumSymbols();
2471
2472 uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2473 write32(p++, numSymbols); // nbucket
2474 write32(p++, numSymbols); // nchain
2475
2476 uint32_t *buckets = p;
2477 uint32_t *chains = p + numSymbols;
2478
2479 for (const SymbolTableEntry &s : symTab->getSymbols()) {
2480 Symbol *sym = s.sym;
2481 StringRef name = sym->getName();
2482 unsigned i = sym->dynsymIndex;
2483 uint32_t hash = hashSysV(name) % numSymbols;
2484 chains[i] = buckets[hash];
2485 write32(buckets + hash, i);
2486 }
2487 }
2488
PltSection()2489 PltSection::PltSection()
2490 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2491 headerSize(target->pltHeaderSize) {
2492 // On PowerPC, this section contains lazy symbol resolvers.
2493 if (config->emachine == EM_PPC64) {
2494 name = ".glink";
2495 addralign = 4;
2496 }
2497
2498 // On x86 when IBT is enabled, this section contains the second PLT (lazy
2499 // symbol resolvers).
2500 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2501 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2502 name = ".plt.sec";
2503 #ifdef __OpenBSD__
2504 else if (config->emachine == EM_X86_64)
2505 name = ".plt.sec";
2506 #endif
2507
2508 // The PLT needs to be writable on SPARC as the dynamic linker will
2509 // modify the instructions in the PLT entries.
2510 if (config->emachine == EM_SPARCV9)
2511 this->flags |= SHF_WRITE;
2512 }
2513
writeTo(uint8_t * buf)2514 void PltSection::writeTo(uint8_t *buf) {
2515 // At beginning of PLT, we have code to call the dynamic
2516 // linker to resolve dynsyms at runtime. Write such code.
2517 target->writePltHeader(buf);
2518 size_t off = headerSize;
2519
2520 for (const Symbol *sym : entries) {
2521 target->writePlt(buf + off, *sym, getVA() + off);
2522 off += target->pltEntrySize;
2523 }
2524 }
2525
addEntry(Symbol & sym)2526 void PltSection::addEntry(Symbol &sym) {
2527 assert(sym.auxIdx == symAux.size() - 1);
2528 symAux.back().pltIdx = entries.size();
2529 entries.push_back(&sym);
2530 }
2531
getSize() const2532 size_t PltSection::getSize() const {
2533 return headerSize + entries.size() * target->pltEntrySize;
2534 }
2535
isNeeded() const2536 bool PltSection::isNeeded() const {
2537 // For -z retpolineplt, .iplt needs the .plt header.
2538 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2539 }
2540
2541 // Used by ARM to add mapping symbols in the PLT section, which aid
2542 // disassembly.
addSymbols()2543 void PltSection::addSymbols() {
2544 target->addPltHeaderSymbols(*this);
2545
2546 size_t off = headerSize;
2547 for (size_t i = 0; i < entries.size(); ++i) {
2548 target->addPltSymbols(*this, off);
2549 off += target->pltEntrySize;
2550 }
2551 }
2552
IpltSection()2553 IpltSection::IpltSection()
2554 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2555 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2556 name = ".glink";
2557 addralign = 4;
2558 }
2559 }
2560
writeTo(uint8_t * buf)2561 void IpltSection::writeTo(uint8_t *buf) {
2562 uint32_t off = 0;
2563 for (const Symbol *sym : entries) {
2564 target->writeIplt(buf + off, *sym, getVA() + off);
2565 off += target->ipltEntrySize;
2566 }
2567 }
2568
getSize() const2569 size_t IpltSection::getSize() const {
2570 return entries.size() * target->ipltEntrySize;
2571 }
2572
addEntry(Symbol & sym)2573 void IpltSection::addEntry(Symbol &sym) {
2574 assert(sym.auxIdx == symAux.size() - 1);
2575 symAux.back().pltIdx = entries.size();
2576 entries.push_back(&sym);
2577 }
2578
2579 // ARM uses mapping symbols to aid disassembly.
addSymbols()2580 void IpltSection::addSymbols() {
2581 size_t off = 0;
2582 for (size_t i = 0, e = entries.size(); i != e; ++i) {
2583 target->addPltSymbols(*this, off);
2584 off += target->pltEntrySize;
2585 }
2586 }
2587
PPC32GlinkSection()2588 PPC32GlinkSection::PPC32GlinkSection() {
2589 name = ".glink";
2590 addralign = 4;
2591 }
2592
writeTo(uint8_t * buf)2593 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2594 writePPC32GlinkSection(buf, entries.size());
2595 }
2596
getSize() const2597 size_t PPC32GlinkSection::getSize() const {
2598 return headerSize + entries.size() * target->pltEntrySize + footerSize;
2599 }
2600
2601 // This is an x86-only extra PLT section and used only when a security
2602 // enhancement feature called CET is enabled. In this comment, I'll explain what
2603 // the feature is and why we have two PLT sections if CET is enabled.
2604 //
2605 // So, what does CET do? CET introduces a new restriction to indirect jump
2606 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2607 // execute an indirect jump instruction, the processor verifies that a special
2608 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2609 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2610 // does not start with that instruction, the processor raises an exception
2611 // instead of continuing executing code.
2612 //
2613 // If CET is enabled, the compiler emits endbr to all locations where indirect
2614 // jumps may jump to.
2615 //
2616 // This mechanism makes it extremely hard to transfer the control to a middle of
2617 // a function that is not supporsed to be a indirect jump target, preventing
2618 // certain types of attacks such as ROP or JOP.
2619 //
2620 // Note that the processors in the market as of 2019 don't actually support the
2621 // feature. Only the spec is available at the moment.
2622 //
2623 // Now, I'll explain why we have this extra PLT section for CET.
2624 //
2625 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2626 // start with endbr. The problem is there's no extra space for endbr (which is 4
2627 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2628 // used.
2629 //
2630 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2631 // Remember that each PLT entry contains code to jump to an address read from
2632 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2633 // the former code is written to .plt.sec, and the latter code is written to
2634 // .plt.
2635 //
2636 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2637 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2638 // contain only code for lazy symbol resolution.
2639 //
2640 // In other words, this is how the 2-PLT scheme works. Application code is
2641 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2642 // entry contains code to read an address from a corresponding .got.plt entry
2643 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2644 // when an application calls an external function for the first time, the
2645 // control is transferred to a function that resolves a symbol name from
2646 // external shared object files. That function then rewrites a .got.plt entry
2647 // with a resolved address, so that the subsequent function calls directly jump
2648 // to a desired location from .plt.sec.
2649 //
2650 // There is an open question as to whether the 2-PLT scheme was desirable or
2651 // not. We could have simply extended the PLT entry size to 32-bytes to
2652 // accommodate endbr, and that scheme would have been much simpler than the
2653 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2654 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2655 // that the optimization actually makes a difference.
2656 //
2657 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2658 // depend on it, so we implement the ABI.
IBTPltSection()2659 IBTPltSection::IBTPltSection()
2660 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2661
writeTo(uint8_t * buf)2662 void IBTPltSection::writeTo(uint8_t *buf) {
2663 target->writeIBTPlt(buf, in.plt->getNumEntries());
2664 }
2665
getSize() const2666 size_t IBTPltSection::getSize() const {
2667 // 16 is the header size of .plt.
2668 return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2669 }
2670
isNeeded() const2671 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; }
2672
2673 // The string hash function for .gdb_index.
computeGdbHash(StringRef s)2674 static uint32_t computeGdbHash(StringRef s) {
2675 uint32_t h = 0;
2676 for (uint8_t c : s)
2677 h = h * 67 + toLower(c) - 113;
2678 return h;
2679 }
2680
GdbIndexSection()2681 GdbIndexSection::GdbIndexSection()
2682 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2683
2684 // Returns the desired size of an on-disk hash table for a .gdb_index section.
2685 // There's a tradeoff between size and collision rate. We aim 75% utilization.
computeSymtabSize() const2686 size_t GdbIndexSection::computeSymtabSize() const {
2687 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2688 }
2689
2690 static SmallVector<GdbIndexSection::CuEntry, 0>
readCuList(DWARFContext & dwarf)2691 readCuList(DWARFContext &dwarf) {
2692 SmallVector<GdbIndexSection::CuEntry, 0> ret;
2693 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2694 ret.push_back({cu->getOffset(), cu->getLength() + 4});
2695 return ret;
2696 }
2697
2698 static SmallVector<GdbIndexSection::AddressEntry, 0>
readAddressAreas(DWARFContext & dwarf,InputSection * sec)2699 readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2700 SmallVector<GdbIndexSection::AddressEntry, 0> ret;
2701
2702 uint32_t cuIdx = 0;
2703 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2704 if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2705 warn(toString(sec) + ": " + toString(std::move(e)));
2706 return {};
2707 }
2708 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2709 if (!ranges) {
2710 warn(toString(sec) + ": " + toString(ranges.takeError()));
2711 return {};
2712 }
2713
2714 ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2715 for (DWARFAddressRange &r : *ranges) {
2716 if (r.SectionIndex == -1ULL)
2717 continue;
2718 // Range list with zero size has no effect.
2719 InputSectionBase *s = sections[r.SectionIndex];
2720 if (s && s != &InputSection::discarded && s->isLive())
2721 if (r.LowPC != r.HighPC)
2722 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2723 }
2724 ++cuIdx;
2725 }
2726
2727 return ret;
2728 }
2729
2730 template <class ELFT>
2731 static SmallVector<GdbIndexSection::NameAttrEntry, 0>
readPubNamesAndTypes(const LLDDwarfObj<ELFT> & obj,const SmallVectorImpl<GdbIndexSection::CuEntry> & cus)2732 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2733 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
2734 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2735 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2736
2737 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
2738 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2739 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2740 DWARFDebugPubTable table;
2741 table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2742 warn(toString(pub->sec) + ": " + toString(std::move(e)));
2743 });
2744 for (const DWARFDebugPubTable::Set &set : table.getData()) {
2745 // The value written into the constant pool is kind << 24 | cuIndex. As we
2746 // don't know how many compilation units precede this object to compute
2747 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2748 // the number of preceding compilation units later.
2749 uint32_t i = llvm::partition_point(cus,
2750 [&](GdbIndexSection::CuEntry cu) {
2751 return cu.cuOffset < set.Offset;
2752 }) -
2753 cus.begin();
2754 for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2755 ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2756 (ent.Descriptor.toBits() << 24) | i});
2757 }
2758 }
2759 return ret;
2760 }
2761
2762 // Create a list of symbols from a given list of symbol names and types
2763 // by uniquifying them by name.
2764 static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
createSymbols(ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry,0>> nameAttrs,const SmallVector<GdbIndexSection::GdbChunk,0> & chunks)2765 createSymbols(
2766 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
2767 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
2768 using GdbSymbol = GdbIndexSection::GdbSymbol;
2769 using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2770
2771 // For each chunk, compute the number of compilation units preceding it.
2772 uint32_t cuIdx = 0;
2773 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
2774 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2775 cuIdxs[i] = cuIdx;
2776 cuIdx += chunks[i].compilationUnits.size();
2777 }
2778
2779 // The number of symbols we will handle in this function is of the order
2780 // of millions for very large executables, so we use multi-threading to
2781 // speed it up.
2782 constexpr size_t numShards = 32;
2783 const size_t concurrency =
2784 PowerOf2Floor(std::min<size_t>(config->threadCount, numShards));
2785
2786 // A sharded map to uniquify symbols by name.
2787 auto map =
2788 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
2789 size_t shift = 32 - countTrailingZeros(numShards);
2790
2791 // Instantiate GdbSymbols while uniqufying them by name.
2792 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
2793
2794 parallelFor(0, concurrency, [&](size_t threadId) {
2795 uint32_t i = 0;
2796 for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2797 for (const NameAttrEntry &ent : entries) {
2798 size_t shardId = ent.name.hash() >> shift;
2799 if ((shardId & (concurrency - 1)) != threadId)
2800 continue;
2801
2802 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2803 size_t &idx = map[shardId][ent.name];
2804 if (idx) {
2805 symbols[shardId][idx - 1].cuVector.push_back(v);
2806 continue;
2807 }
2808
2809 idx = symbols[shardId].size() + 1;
2810 symbols[shardId].push_back({ent.name, {v}, 0, 0});
2811 }
2812 ++i;
2813 }
2814 });
2815
2816 size_t numSymbols = 0;
2817 for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
2818 numSymbols += v.size();
2819
2820 // The return type is a flattened vector, so we'll copy each vector
2821 // contents to Ret.
2822 SmallVector<GdbSymbol, 0> ret;
2823 ret.reserve(numSymbols);
2824 for (SmallVector<GdbSymbol, 0> &vec :
2825 MutableArrayRef(symbols.get(), numShards))
2826 for (GdbSymbol &sym : vec)
2827 ret.push_back(std::move(sym));
2828
2829 // CU vectors and symbol names are adjacent in the output file.
2830 // We can compute their offsets in the output file now.
2831 size_t off = 0;
2832 for (GdbSymbol &sym : ret) {
2833 sym.cuVectorOff = off;
2834 off += (sym.cuVector.size() + 1) * 4;
2835 }
2836 for (GdbSymbol &sym : ret) {
2837 sym.nameOff = off;
2838 off += sym.name.size() + 1;
2839 }
2840 // If off overflows, the last symbol's nameOff likely overflows.
2841 if (!isUInt<32>(off))
2842 errorOrWarn("--gdb-index: constant pool size (" + Twine(off) +
2843 ") exceeds UINT32_MAX");
2844
2845 return {ret, off};
2846 }
2847
2848 // Returns a newly-created .gdb_index section.
create()2849 template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2850 llvm::TimeTraceScope timeScope("Create gdb index");
2851
2852 // Collect InputFiles with .debug_info. See the comment in
2853 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2854 // note that isec->data() may uncompress the full content, which should be
2855 // parallelized.
2856 SetVector<InputFile *> files;
2857 for (InputSectionBase *s : ctx.inputSections) {
2858 InputSection *isec = dyn_cast<InputSection>(s);
2859 if (!isec)
2860 continue;
2861 // .debug_gnu_pub{names,types} are useless in executables.
2862 // They are present in input object files solely for creating
2863 // a .gdb_index. So we can remove them from the output.
2864 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2865 s->markDead();
2866 else if (isec->name == ".debug_info")
2867 files.insert(isec->file);
2868 }
2869 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2870 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
2871 if (auto *isec = dyn_cast<InputSection>(s))
2872 if (InputSectionBase *rel = isec->getRelocatedSection())
2873 return !rel->isLive();
2874 return !s->isLive();
2875 });
2876
2877 SmallVector<GdbChunk, 0> chunks(files.size());
2878 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
2879
2880 parallelFor(0, files.size(), [&](size_t i) {
2881 // To keep memory usage low, we don't want to keep cached DWARFContext, so
2882 // avoid getDwarf() here.
2883 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2884 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2885 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2886
2887 // If the are multiple compile units .debug_info (very rare ld -r --unique),
2888 // this only picks the last one. Other address ranges are lost.
2889 chunks[i].sec = dobj.getInfoSection();
2890 chunks[i].compilationUnits = readCuList(dwarf);
2891 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2892 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2893 });
2894
2895 auto *ret = make<GdbIndexSection>();
2896 ret->chunks = std::move(chunks);
2897 std::tie(ret->symbols, ret->size) = createSymbols(nameAttrs, ret->chunks);
2898
2899 // Count the areas other than the constant pool.
2900 ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
2901 for (GdbChunk &chunk : ret->chunks)
2902 ret->size +=
2903 chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2904
2905 return ret;
2906 }
2907
writeTo(uint8_t * buf)2908 void GdbIndexSection::writeTo(uint8_t *buf) {
2909 // Write the header.
2910 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2911 uint8_t *start = buf;
2912 hdr->version = 7;
2913 buf += sizeof(*hdr);
2914
2915 // Write the CU list.
2916 hdr->cuListOff = buf - start;
2917 for (GdbChunk &chunk : chunks) {
2918 for (CuEntry &cu : chunk.compilationUnits) {
2919 write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2920 write64le(buf + 8, cu.cuLength);
2921 buf += 16;
2922 }
2923 }
2924
2925 // Write the address area.
2926 hdr->cuTypesOff = buf - start;
2927 hdr->addressAreaOff = buf - start;
2928 uint32_t cuOff = 0;
2929 for (GdbChunk &chunk : chunks) {
2930 for (AddressEntry &e : chunk.addressAreas) {
2931 // In the case of ICF there may be duplicate address range entries.
2932 const uint64_t baseAddr = e.section->repl->getVA(0);
2933 write64le(buf, baseAddr + e.lowAddress);
2934 write64le(buf + 8, baseAddr + e.highAddress);
2935 write32le(buf + 16, e.cuIndex + cuOff);
2936 buf += 20;
2937 }
2938 cuOff += chunk.compilationUnits.size();
2939 }
2940
2941 // Write the on-disk open-addressing hash table containing symbols.
2942 hdr->symtabOff = buf - start;
2943 size_t symtabSize = computeSymtabSize();
2944 uint32_t mask = symtabSize - 1;
2945
2946 for (GdbSymbol &sym : symbols) {
2947 uint32_t h = sym.name.hash();
2948 uint32_t i = h & mask;
2949 uint32_t step = ((h * 17) & mask) | 1;
2950
2951 while (read32le(buf + i * 8))
2952 i = (i + step) & mask;
2953
2954 write32le(buf + i * 8, sym.nameOff);
2955 write32le(buf + i * 8 + 4, sym.cuVectorOff);
2956 }
2957
2958 buf += symtabSize * 8;
2959
2960 // Write the string pool.
2961 hdr->constantPoolOff = buf - start;
2962 parallelForEach(symbols, [&](GdbSymbol &sym) {
2963 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2964 });
2965
2966 // Write the CU vectors.
2967 for (GdbSymbol &sym : symbols) {
2968 write32le(buf, sym.cuVector.size());
2969 buf += 4;
2970 for (uint32_t val : sym.cuVector) {
2971 write32le(buf, val);
2972 buf += 4;
2973 }
2974 }
2975 }
2976
isNeeded() const2977 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
2978
EhFrameHeader()2979 EhFrameHeader::EhFrameHeader()
2980 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
2981
writeTo(uint8_t * buf)2982 void EhFrameHeader::writeTo(uint8_t *buf) {
2983 // Unlike most sections, the EhFrameHeader section is written while writing
2984 // another section, namely EhFrameSection, which calls the write() function
2985 // below from its writeTo() function. This is necessary because the contents
2986 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
2987 // don't know which order the sections will be written in.
2988 }
2989
2990 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
2991 // Each entry of the search table consists of two values,
2992 // the starting PC from where FDEs covers, and the FDE's address.
2993 // It is sorted by PC.
write()2994 void EhFrameHeader::write() {
2995 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
2996 using FdeData = EhFrameSection::FdeData;
2997 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData();
2998
2999 buf[0] = 1;
3000 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3001 buf[2] = DW_EH_PE_udata4;
3002 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3003 write32(buf + 4,
3004 getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3005 write32(buf + 8, fdes.size());
3006 buf += 12;
3007
3008 for (FdeData &fde : fdes) {
3009 write32(buf, fde.pcRel);
3010 write32(buf + 4, fde.fdeVARel);
3011 buf += 8;
3012 }
3013 }
3014
getSize() const3015 size_t EhFrameHeader::getSize() const {
3016 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3017 return 12 + getPartition().ehFrame->numFdes * 8;
3018 }
3019
isNeeded() const3020 bool EhFrameHeader::isNeeded() const {
3021 return isLive() && getPartition().ehFrame->isNeeded();
3022 }
3023
VersionDefinitionSection()3024 VersionDefinitionSection::VersionDefinitionSection()
3025 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3026 ".gnu.version_d") {}
3027
getFileDefName()3028 StringRef VersionDefinitionSection::getFileDefName() {
3029 if (!getPartition().name.empty())
3030 return getPartition().name;
3031 if (!config->soName.empty())
3032 return config->soName;
3033 return config->outputFile;
3034 }
3035
finalizeContents()3036 void VersionDefinitionSection::finalizeContents() {
3037 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3038 for (const VersionDefinition &v : namedVersionDefs())
3039 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3040
3041 if (OutputSection *sec = getPartition().dynStrTab->getParent())
3042 getParent()->link = sec->sectionIndex;
3043
3044 // sh_info should be set to the number of definitions. This fact is missed in
3045 // documentation, but confirmed by binutils community:
3046 // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3047 getParent()->info = getVerDefNum();
3048 }
3049
writeOne(uint8_t * buf,uint32_t index,StringRef name,size_t nameOff)3050 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3051 StringRef name, size_t nameOff) {
3052 uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3053
3054 // Write a verdef.
3055 write16(buf, 1); // vd_version
3056 write16(buf + 2, flags); // vd_flags
3057 write16(buf + 4, index); // vd_ndx
3058 write16(buf + 6, 1); // vd_cnt
3059 write32(buf + 8, hashSysV(name)); // vd_hash
3060 write32(buf + 12, 20); // vd_aux
3061 write32(buf + 16, 28); // vd_next
3062
3063 // Write a veraux.
3064 write32(buf + 20, nameOff); // vda_name
3065 write32(buf + 24, 0); // vda_next
3066 }
3067
writeTo(uint8_t * buf)3068 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3069 writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3070
3071 auto nameOffIt = verDefNameOffs.begin();
3072 for (const VersionDefinition &v : namedVersionDefs()) {
3073 buf += EntrySize;
3074 writeOne(buf, v.id, v.name, *nameOffIt++);
3075 }
3076
3077 // Need to terminate the last version definition.
3078 write32(buf + 16, 0); // vd_next
3079 }
3080
getSize() const3081 size_t VersionDefinitionSection::getSize() const {
3082 return EntrySize * getVerDefNum();
3083 }
3084
3085 // .gnu.version is a table where each entry is 2 byte long.
VersionTableSection()3086 VersionTableSection::VersionTableSection()
3087 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3088 ".gnu.version") {
3089 this->entsize = 2;
3090 }
3091
finalizeContents()3092 void VersionTableSection::finalizeContents() {
3093 // At the moment of june 2016 GNU docs does not mention that sh_link field
3094 // should be set, but Sun docs do. Also readelf relies on this field.
3095 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3096 }
3097
getSize() const3098 size_t VersionTableSection::getSize() const {
3099 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3100 }
3101
writeTo(uint8_t * buf)3102 void VersionTableSection::writeTo(uint8_t *buf) {
3103 buf += 2;
3104 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3105 // For an unextracted lazy symbol (undefined weak), it must have been
3106 // converted to Undefined and have VER_NDX_GLOBAL version here.
3107 assert(!s.sym->isLazy());
3108 write16(buf, s.sym->versionId);
3109 buf += 2;
3110 }
3111 }
3112
isNeeded() const3113 bool VersionTableSection::isNeeded() const {
3114 return isLive() &&
3115 (getPartition().verDef || getPartition().verNeed->isNeeded());
3116 }
3117
addVerneed(Symbol * ss)3118 void elf::addVerneed(Symbol *ss) {
3119 auto &file = cast<SharedFile>(*ss->file);
3120 if (ss->verdefIndex == VER_NDX_GLOBAL) {
3121 ss->versionId = VER_NDX_GLOBAL;
3122 return;
3123 }
3124
3125 if (file.vernauxs.empty())
3126 file.vernauxs.resize(file.verdefs.size());
3127
3128 // Select a version identifier for the vernaux data structure, if we haven't
3129 // already allocated one. The verdef identifiers cover the range
3130 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3131 // getVerDefNum()+1.
3132 if (file.vernauxs[ss->verdefIndex] == 0)
3133 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3134
3135 ss->versionId = file.vernauxs[ss->verdefIndex];
3136 }
3137
3138 template <class ELFT>
VersionNeedSection()3139 VersionNeedSection<ELFT>::VersionNeedSection()
3140 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3141 ".gnu.version_r") {}
3142
finalizeContents()3143 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3144 for (SharedFile *f : ctx.sharedFiles) {
3145 if (f->vernauxs.empty())
3146 continue;
3147 verneeds.emplace_back();
3148 Verneed &vn = verneeds.back();
3149 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3150 bool isLibc = config->relrGlibc && f->soName.startswith("libc.so.");
3151 bool isGlibc2 = false;
3152 for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3153 if (f->vernauxs[i] == 0)
3154 continue;
3155 auto *verdef =
3156 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3157 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3158 if (isLibc && ver.startswith("GLIBC_2."))
3159 isGlibc2 = true;
3160 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3161 getPartition().dynStrTab->addString(ver)});
3162 }
3163 if (isGlibc2) {
3164 const char *ver = "GLIBC_ABI_DT_RELR";
3165 vn.vernauxs.push_back({hashSysV(ver),
3166 ++SharedFile::vernauxNum + getVerDefNum(),
3167 getPartition().dynStrTab->addString(ver)});
3168 }
3169 }
3170
3171 if (OutputSection *sec = getPartition().dynStrTab->getParent())
3172 getParent()->link = sec->sectionIndex;
3173 getParent()->info = verneeds.size();
3174 }
3175
writeTo(uint8_t * buf)3176 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3177 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3178 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3179 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3180
3181 for (auto &vn : verneeds) {
3182 // Create an Elf_Verneed for this DSO.
3183 verneed->vn_version = 1;
3184 verneed->vn_cnt = vn.vernauxs.size();
3185 verneed->vn_file = vn.nameStrTab;
3186 verneed->vn_aux =
3187 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3188 verneed->vn_next = sizeof(Elf_Verneed);
3189 ++verneed;
3190
3191 // Create the Elf_Vernauxs for this Elf_Verneed.
3192 for (auto &vna : vn.vernauxs) {
3193 vernaux->vna_hash = vna.hash;
3194 vernaux->vna_flags = 0;
3195 vernaux->vna_other = vna.verneedIndex;
3196 vernaux->vna_name = vna.nameStrTab;
3197 vernaux->vna_next = sizeof(Elf_Vernaux);
3198 ++vernaux;
3199 }
3200
3201 vernaux[-1].vna_next = 0;
3202 }
3203 verneed[-1].vn_next = 0;
3204 }
3205
getSize() const3206 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3207 return verneeds.size() * sizeof(Elf_Verneed) +
3208 SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3209 }
3210
isNeeded() const3211 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3212 return isLive() && SharedFile::vernauxNum != 0;
3213 }
3214
addSection(MergeInputSection * ms)3215 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3216 ms->parent = this;
3217 sections.push_back(ms);
3218 assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
3219 addralign = std::max(addralign, ms->addralign);
3220 }
3221
MergeTailSection(StringRef name,uint32_t type,uint64_t flags,uint32_t alignment)3222 MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3223 uint64_t flags, uint32_t alignment)
3224 : MergeSyntheticSection(name, type, flags, alignment),
3225 builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
3226
getSize() const3227 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3228
writeTo(uint8_t * buf)3229 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3230
finalizeContents()3231 void MergeTailSection::finalizeContents() {
3232 // Add all string pieces to the string table builder to create section
3233 // contents.
3234 for (MergeInputSection *sec : sections)
3235 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3236 if (sec->pieces[i].live)
3237 builder.add(sec->getData(i));
3238
3239 // Fix the string table content. After this, the contents will never change.
3240 builder.finalize();
3241
3242 // finalize() fixed tail-optimized strings, so we can now get
3243 // offsets of strings. Get an offset for each string and save it
3244 // to a corresponding SectionPiece for easy access.
3245 for (MergeInputSection *sec : sections)
3246 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3247 if (sec->pieces[i].live)
3248 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3249 }
3250
writeTo(uint8_t * buf)3251 void MergeNoTailSection::writeTo(uint8_t *buf) {
3252 parallelFor(0, numShards,
3253 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3254 }
3255
3256 // This function is very hot (i.e. it can take several seconds to finish)
3257 // because sometimes the number of inputs is in an order of magnitude of
3258 // millions. So, we use multi-threading.
3259 //
3260 // For any strings S and T, we know S is not mergeable with T if S's hash
3261 // value is different from T's. If that's the case, we can safely put S and
3262 // T into different string builders without worrying about merge misses.
3263 // We do it in parallel.
finalizeContents()3264 void MergeNoTailSection::finalizeContents() {
3265 // Initializes string table builders.
3266 for (size_t i = 0; i < numShards; ++i)
3267 shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign));
3268
3269 // Concurrency level. Must be a power of 2 to avoid expensive modulo
3270 // operations in the following tight loop.
3271 const size_t concurrency =
3272 PowerOf2Floor(std::min<size_t>(config->threadCount, numShards));
3273
3274 // Add section pieces to the builders.
3275 parallelFor(0, concurrency, [&](size_t threadId) {
3276 for (MergeInputSection *sec : sections) {
3277 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3278 if (!sec->pieces[i].live)
3279 continue;
3280 size_t shardId = getShardId(sec->pieces[i].hash);
3281 if ((shardId & (concurrency - 1)) == threadId)
3282 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3283 }
3284 }
3285 });
3286
3287 // Compute an in-section offset for each shard.
3288 size_t off = 0;
3289 for (size_t i = 0; i < numShards; ++i) {
3290 shards[i].finalizeInOrder();
3291 if (shards[i].getSize() > 0)
3292 off = alignToPowerOf2(off, addralign);
3293 shardOffsets[i] = off;
3294 off += shards[i].getSize();
3295 }
3296 size = off;
3297
3298 // So far, section pieces have offsets from beginning of shards, but
3299 // we want offsets from beginning of the whole section. Fix them.
3300 parallelForEach(sections, [&](MergeInputSection *sec) {
3301 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3302 if (sec->pieces[i].live)
3303 sec->pieces[i].outputOff +=
3304 shardOffsets[getShardId(sec->pieces[i].hash)];
3305 });
3306 }
3307
splitSections()3308 template <class ELFT> void elf::splitSections() {
3309 llvm::TimeTraceScope timeScope("Split sections");
3310 // splitIntoPieces needs to be called on each MergeInputSection
3311 // before calling finalizeContents().
3312 parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
3313 for (InputSectionBase *sec : file->getSections()) {
3314 if (!sec)
3315 continue;
3316 if (auto *s = dyn_cast<MergeInputSection>(sec))
3317 s->splitIntoPieces();
3318 else if (auto *eh = dyn_cast<EhInputSection>(sec))
3319 eh->split<ELFT>();
3320 }
3321 });
3322 }
3323
combineEhSections()3324 void elf::combineEhSections() {
3325 llvm::TimeTraceScope timeScope("Combine EH sections");
3326 for (EhInputSection *sec : ctx.ehInputSections) {
3327 EhFrameSection &eh = *sec->getPartition().ehFrame;
3328 sec->parent = &eh;
3329 eh.addralign = std::max(eh.addralign, sec->addralign);
3330 eh.sections.push_back(sec);
3331 llvm::append_range(eh.dependentSections, sec->dependentSections);
3332 }
3333
3334 if (!mainPart->armExidx)
3335 return;
3336 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3337 // Ignore dead sections and the partition end marker (.part.end),
3338 // whose partition number is out of bounds.
3339 if (!s->isLive() || s->partition == 255)
3340 return false;
3341 Partition &part = s->getPartition();
3342 return s->kind() == SectionBase::Regular && part.armExidx &&
3343 part.armExidx->addSection(cast<InputSection>(s));
3344 });
3345 }
3346
MipsRldMapSection()3347 MipsRldMapSection::MipsRldMapSection()
3348 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3349 ".rld_map") {}
3350
ARMExidxSyntheticSection()3351 ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3352 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3353 config->wordsize, ".ARM.exidx") {}
3354
findExidxSection(InputSection * isec)3355 static InputSection *findExidxSection(InputSection *isec) {
3356 for (InputSection *d : isec->dependentSections)
3357 if (d->type == SHT_ARM_EXIDX && d->isLive())
3358 return d;
3359 return nullptr;
3360 }
3361
isValidExidxSectionDep(InputSection * isec)3362 static bool isValidExidxSectionDep(InputSection *isec) {
3363 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3364 isec->getSize() > 0;
3365 }
3366
addSection(InputSection * isec)3367 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3368 if (isec->type == SHT_ARM_EXIDX) {
3369 if (InputSection *dep = isec->getLinkOrderDep())
3370 if (isValidExidxSectionDep(dep)) {
3371 exidxSections.push_back(isec);
3372 // Every exidxSection is 8 bytes, we need an estimate of
3373 // size before assignAddresses can be called. Final size
3374 // will only be known after finalize is called.
3375 size += 8;
3376 }
3377 return true;
3378 }
3379
3380 if (isValidExidxSectionDep(isec)) {
3381 executableSections.push_back(isec);
3382 return false;
3383 }
3384
3385 // FIXME: we do not output a relocation section when --emit-relocs is used
3386 // as we do not have relocation sections for linker generated table entries
3387 // and we would have to erase at a late stage relocations from merged entries.
3388 // Given that exception tables are already position independent and a binary
3389 // analyzer could derive the relocations we choose to erase the relocations.
3390 if (config->emitRelocs && isec->type == SHT_REL)
3391 if (InputSectionBase *ex = isec->getRelocatedSection())
3392 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3393 return true;
3394
3395 return false;
3396 }
3397
3398 // References to .ARM.Extab Sections have bit 31 clear and are not the
3399 // special EXIDX_CANTUNWIND bit-pattern.
isExtabRef(uint32_t unwind)3400 static bool isExtabRef(uint32_t unwind) {
3401 return (unwind & 0x80000000) == 0 && unwind != 0x1;
3402 }
3403
3404 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3405 // section Prev, where Cur follows Prev in the table. This can be done if the
3406 // unwinding instructions in Cur are identical to Prev. Linker generated
3407 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3408 // InputSection.
isDuplicateArmExidxSec(InputSection * prev,InputSection * cur)3409 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3410
3411 struct ExidxEntry {
3412 ulittle32_t fn;
3413 ulittle32_t unwind;
3414 };
3415 // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3416 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3417 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3418 if (prev)
3419 prevEntry = prev->getDataAs<ExidxEntry>().back();
3420 if (isExtabRef(prevEntry.unwind))
3421 return false;
3422
3423 // We consider the unwind instructions of an .ARM.exidx table entry
3424 // a duplicate if the previous unwind instructions if:
3425 // - Both are the special EXIDX_CANTUNWIND.
3426 // - Both are the same inline unwind instructions.
3427 // We do not attempt to follow and check links into .ARM.extab tables as
3428 // consecutive identical entries are rare and the effort to check that they
3429 // are identical is high.
3430
3431 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3432 if (cur == nullptr)
3433 return prevEntry.unwind == 1;
3434
3435 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3436 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3437 return false;
3438
3439 // All table entries in this .ARM.exidx Section can be merged into the
3440 // previous Section.
3441 return true;
3442 }
3443
3444 // The .ARM.exidx table must be sorted in ascending order of the address of the
3445 // functions the table describes. std::optionally duplicate adjacent table
3446 // entries can be removed. At the end of the function the executableSections
3447 // must be sorted in ascending order of address, Sentinel is set to the
3448 // InputSection with the highest address and any InputSections that have
3449 // mergeable .ARM.exidx table entries are removed from it.
finalizeContents()3450 void ARMExidxSyntheticSection::finalizeContents() {
3451 // The executableSections and exidxSections that we use to derive the final
3452 // contents of this SyntheticSection are populated before
3453 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3454 // ICF may remove executable InputSections and their dependent .ARM.exidx
3455 // section that we recorded earlier.
3456 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3457 llvm::erase_if(exidxSections, isDiscarded);
3458 // We need to remove discarded InputSections and InputSections without
3459 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3460 // of range.
3461 auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3462 if (!isec->isLive())
3463 return true;
3464 if (findExidxSection(isec))
3465 return false;
3466 int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3467 return off != llvm::SignExtend64(off, 31);
3468 };
3469 llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3470
3471 // Sort the executable sections that may or may not have associated
3472 // .ARM.exidx sections by order of ascending address. This requires the
3473 // relative positions of InputSections and OutputSections to be known.
3474 auto compareByFilePosition = [](const InputSection *a,
3475 const InputSection *b) {
3476 OutputSection *aOut = a->getParent();
3477 OutputSection *bOut = b->getParent();
3478
3479 if (aOut != bOut)
3480 return aOut->addr < bOut->addr;
3481 return a->outSecOff < b->outSecOff;
3482 };
3483 llvm::stable_sort(executableSections, compareByFilePosition);
3484 sentinel = executableSections.back();
3485 // std::optionally merge adjacent duplicate entries.
3486 if (config->mergeArmExidx) {
3487 SmallVector<InputSection *, 0> selectedSections;
3488 selectedSections.reserve(executableSections.size());
3489 selectedSections.push_back(executableSections[0]);
3490 size_t prev = 0;
3491 for (size_t i = 1; i < executableSections.size(); ++i) {
3492 InputSection *ex1 = findExidxSection(executableSections[prev]);
3493 InputSection *ex2 = findExidxSection(executableSections[i]);
3494 if (!isDuplicateArmExidxSec(ex1, ex2)) {
3495 selectedSections.push_back(executableSections[i]);
3496 prev = i;
3497 }
3498 }
3499 executableSections = std::move(selectedSections);
3500 }
3501
3502 size_t offset = 0;
3503 size = 0;
3504 for (InputSection *isec : executableSections) {
3505 if (InputSection *d = findExidxSection(isec)) {
3506 d->outSecOff = offset;
3507 d->parent = getParent();
3508 offset += d->getSize();
3509 } else {
3510 offset += 8;
3511 }
3512 }
3513 // Size includes Sentinel.
3514 size = offset + 8;
3515 }
3516
getLinkOrderDep() const3517 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3518 return executableSections.front();
3519 }
3520
3521 // To write the .ARM.exidx table from the ExecutableSections we have three cases
3522 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3523 // We write the .ARM.exidx section contents and apply its relocations.
3524 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3525 // must write the contents of an EXIDX_CANTUNWIND directly. We use the
3526 // start of the InputSection as the purpose of the linker generated
3527 // section is to terminate the address range of the previous entry.
3528 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3529 // the table to terminate the address range of the final entry.
writeTo(uint8_t * buf)3530 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3531
3532 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target
3533 1, 0, 0, 0}; // EXIDX_CANTUNWIND
3534
3535 uint64_t offset = 0;
3536 for (InputSection *isec : executableSections) {
3537 assert(isec->getParent() != nullptr);
3538 if (InputSection *d = findExidxSection(isec)) {
3539 memcpy(buf + offset, d->content().data(), d->content().size());
3540 target->relocateAlloc(*d, buf + d->outSecOff);
3541 offset += d->getSize();
3542 } else {
3543 // A Linker generated CANTUNWIND section.
3544 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3545 uint64_t s = isec->getVA();
3546 uint64_t p = getVA() + offset;
3547 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3548 offset += 8;
3549 }
3550 }
3551 // Write Sentinel.
3552 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3553 uint64_t s = sentinel->getVA(sentinel->getSize());
3554 uint64_t p = getVA() + offset;
3555 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3556 assert(size == offset + 8);
3557 }
3558
isNeeded() const3559 bool ARMExidxSyntheticSection::isNeeded() const {
3560 return llvm::any_of(exidxSections,
3561 [](InputSection *isec) { return isec->isLive(); });
3562 }
3563
ThunkSection(OutputSection * os,uint64_t off)3564 ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3565 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3566 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3567 this->parent = os;
3568 this->outSecOff = off;
3569 }
3570
getSize() const3571 size_t ThunkSection::getSize() const {
3572 if (roundUpSizeForErrata)
3573 return alignTo(size, 4096);
3574 return size;
3575 }
3576
addThunk(Thunk * t)3577 void ThunkSection::addThunk(Thunk *t) {
3578 thunks.push_back(t);
3579 t->addSymbols(*this);
3580 }
3581
writeTo(uint8_t * buf)3582 void ThunkSection::writeTo(uint8_t *buf) {
3583 for (Thunk *t : thunks)
3584 t->writeTo(buf + t->offset);
3585 }
3586
getTargetInputSection() const3587 InputSection *ThunkSection::getTargetInputSection() const {
3588 if (thunks.empty())
3589 return nullptr;
3590 const Thunk *t = thunks.front();
3591 return t->getTargetInputSection();
3592 }
3593
assignOffsets()3594 bool ThunkSection::assignOffsets() {
3595 uint64_t off = 0;
3596 for (Thunk *t : thunks) {
3597 off = alignToPowerOf2(off, t->alignment);
3598 t->setOffset(off);
3599 uint32_t size = t->size();
3600 t->getThunkTargetSym()->size = size;
3601 off += size;
3602 }
3603 bool changed = off != size;
3604 size = off;
3605 return changed;
3606 }
3607
PPC32Got2Section()3608 PPC32Got2Section::PPC32Got2Section()
3609 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3610
isNeeded() const3611 bool PPC32Got2Section::isNeeded() const {
3612 // See the comment below. This is not needed if there is no other
3613 // InputSection.
3614 for (SectionCommand *cmd : getParent()->commands)
3615 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
3616 for (InputSection *isec : isd->sections)
3617 if (isec != this)
3618 return true;
3619 return false;
3620 }
3621
finalizeContents()3622 void PPC32Got2Section::finalizeContents() {
3623 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3624 // .got2 . This function computes outSecOff of each .got2 to be used in
3625 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3626 // to collect input sections named ".got2".
3627 for (SectionCommand *cmd : getParent()->commands)
3628 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
3629 for (InputSection *isec : isd->sections) {
3630 // isec->file may be nullptr for MergeSyntheticSection.
3631 if (isec != this && isec->file)
3632 isec->file->ppc32Got2 = isec;
3633 }
3634 }
3635 }
3636
3637 // If linking position-dependent code then the table will store the addresses
3638 // directly in the binary so the section has type SHT_PROGBITS. If linking
3639 // position-independent code the section has type SHT_NOBITS since it will be
3640 // allocated and filled in by the dynamic linker.
PPC64LongBranchTargetSection()3641 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3642 : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3643 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3644 ".branch_lt") {}
3645
getEntryVA(const Symbol * sym,int64_t addend)3646 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3647 int64_t addend) {
3648 return getVA() + entry_index.find({sym, addend})->second * 8;
3649 }
3650
3651 std::optional<uint32_t>
addEntry(const Symbol * sym,int64_t addend)3652 PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
3653 auto res =
3654 entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3655 if (!res.second)
3656 return std::nullopt;
3657 entries.emplace_back(sym, addend);
3658 return res.first->second;
3659 }
3660
getSize() const3661 size_t PPC64LongBranchTargetSection::getSize() const {
3662 return entries.size() * 8;
3663 }
3664
writeTo(uint8_t * buf)3665 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3666 // If linking non-pic we have the final addresses of the targets and they get
3667 // written to the table directly. For pic the dynamic linker will allocate
3668 // the section and fill it.
3669 if (config->isPic)
3670 return;
3671
3672 for (auto entry : entries) {
3673 const Symbol *sym = entry.first;
3674 int64_t addend = entry.second;
3675 assert(sym->getVA());
3676 // Need calls to branch to the local entry-point since a long-branch
3677 // must be a local-call.
3678 write64(buf, sym->getVA(addend) +
3679 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3680 buf += 8;
3681 }
3682 }
3683
isNeeded() const3684 bool PPC64LongBranchTargetSection::isNeeded() const {
3685 // `removeUnusedSyntheticSections()` is called before thunk allocation which
3686 // is too early to determine if this section will be empty or not. We need
3687 // Finalized to keep the section alive until after thunk creation. Finalized
3688 // only gets set to true once `finalizeSections()` is called after thunk
3689 // creation. Because of this, if we don't create any long-branch thunks we end
3690 // up with an empty .branch_lt section in the binary.
3691 return !finalized || !entries.empty();
3692 }
3693
getAbiVersion()3694 static uint8_t getAbiVersion() {
3695 // MIPS non-PIC executable gets ABI version 1.
3696 if (config->emachine == EM_MIPS) {
3697 if (!config->isPic && !config->relocatable &&
3698 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3699 return 1;
3700 return 0;
3701 }
3702
3703 if (config->emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
3704 uint8_t ver = ctx.objectFiles[0]->abiVersion;
3705 for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1))
3706 if (file->abiVersion != ver)
3707 error("incompatible ABI version: " + toString(file));
3708 return ver;
3709 }
3710
3711 return 0;
3712 }
3713
writeEhdr(uint8_t * buf,Partition & part)3714 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3715 memcpy(buf, "\177ELF", 4);
3716
3717 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3718 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3719 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3720 eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3721 eHdr->e_ident[EI_OSABI] = config->osabi;
3722 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3723 eHdr->e_machine = config->emachine;
3724 eHdr->e_version = EV_CURRENT;
3725 eHdr->e_flags = config->eflags;
3726 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3727 eHdr->e_phnum = part.phdrs.size();
3728 eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3729
3730 if (!config->relocatable) {
3731 eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3732 eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3733 }
3734 }
3735
writePhdrs(uint8_t * buf,Partition & part)3736 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3737 // Write the program header table.
3738 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3739 for (PhdrEntry *p : part.phdrs) {
3740 hBuf->p_type = p->p_type;
3741 hBuf->p_flags = p->p_flags;
3742 hBuf->p_offset = p->p_offset;
3743 hBuf->p_vaddr = p->p_vaddr;
3744 hBuf->p_paddr = p->p_paddr;
3745 hBuf->p_filesz = p->p_filesz;
3746 hBuf->p_memsz = p->p_memsz;
3747 hBuf->p_align = p->p_align;
3748 ++hBuf;
3749 }
3750 }
3751
3752 template <typename ELFT>
PartitionElfHeaderSection()3753 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3754 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3755
3756 template <typename ELFT>
getSize() const3757 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3758 return sizeof(typename ELFT::Ehdr);
3759 }
3760
3761 template <typename ELFT>
writeTo(uint8_t * buf)3762 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3763 writeEhdr<ELFT>(buf, getPartition());
3764
3765 // Loadable partitions are always ET_DYN.
3766 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3767 eHdr->e_type = ET_DYN;
3768 }
3769
3770 template <typename ELFT>
PartitionProgramHeadersSection()3771 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3772 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3773
3774 template <typename ELFT>
getSize() const3775 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3776 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3777 }
3778
3779 template <typename ELFT>
writeTo(uint8_t * buf)3780 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3781 writePhdrs<ELFT>(buf, getPartition());
3782 }
3783
PartitionIndexSection()3784 PartitionIndexSection::PartitionIndexSection()
3785 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3786
getSize() const3787 size_t PartitionIndexSection::getSize() const {
3788 return 12 * (partitions.size() - 1);
3789 }
3790
finalizeContents()3791 void PartitionIndexSection::finalizeContents() {
3792 for (size_t i = 1; i != partitions.size(); ++i)
3793 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3794 }
3795
writeTo(uint8_t * buf)3796 void PartitionIndexSection::writeTo(uint8_t *buf) {
3797 uint64_t va = getVA();
3798 for (size_t i = 1; i != partitions.size(); ++i) {
3799 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3800 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3801
3802 SyntheticSection *next = i == partitions.size() - 1
3803 ? in.partEnd.get()
3804 : partitions[i + 1].elfHeader.get();
3805 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3806
3807 va += 12;
3808 buf += 12;
3809 }
3810 }
3811
reset()3812 void InStruct::reset() {
3813 attributes.reset();
3814 riscvAttributes.reset();
3815 bss.reset();
3816 bssRelRo.reset();
3817 got.reset();
3818 gotPlt.reset();
3819 igotPlt.reset();
3820 ppc64LongBranchTarget.reset();
3821 mipsAbiFlags.reset();
3822 mipsGot.reset();
3823 mipsOptions.reset();
3824 mipsReginfo.reset();
3825 mipsRldMap.reset();
3826 partEnd.reset();
3827 partIndex.reset();
3828 plt.reset();
3829 iplt.reset();
3830 ppc32Got2.reset();
3831 ibtPlt.reset();
3832 relaPlt.reset();
3833 relaIplt.reset();
3834 shStrTab.reset();
3835 strTab.reset();
3836 symTab.reset();
3837 symTabShndx.reset();
3838 }
3839
3840 constexpr char kMemtagAndroidNoteName[] = "Android";
writeTo(uint8_t * buf)3841 void MemtagAndroidNote::writeTo(uint8_t *buf) {
3842 static_assert(sizeof(kMemtagAndroidNoteName) == 8,
3843 "ABI check for Android 11 & 12.");
3844 assert((config->androidMemtagStack || config->androidMemtagHeap) &&
3845 "Should only be synthesizing a note if heap || stack is enabled.");
3846
3847 write32(buf, sizeof(kMemtagAndroidNoteName));
3848 write32(buf + 4, sizeof(uint32_t));
3849 write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
3850 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
3851 buf += 12 + sizeof(kMemtagAndroidNoteName);
3852
3853 uint32_t value = 0;
3854 value |= config->androidMemtagMode;
3855 if (config->androidMemtagHeap)
3856 value |= ELF::NT_MEMTAG_HEAP;
3857 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
3858 // binary on Android 11 or 12 will result in a checkfail in the loader.
3859 if (config->androidMemtagStack)
3860 value |= ELF::NT_MEMTAG_STACK;
3861 write32(buf, value); // note value
3862 }
3863
getSize() const3864 size_t MemtagAndroidNote::getSize() const {
3865 return sizeof(llvm::ELF::Elf64_Nhdr) +
3866 /*namesz=*/sizeof(kMemtagAndroidNoteName) +
3867 /*descsz=*/sizeof(uint32_t);
3868 }
3869
writeTo(uint8_t * buf)3870 void PackageMetadataNote::writeTo(uint8_t *buf) {
3871 write32(buf, 4);
3872 write32(buf + 4, config->packageMetadata.size() + 1);
3873 write32(buf + 8, FDO_PACKAGING_METADATA);
3874 memcpy(buf + 12, "FDO", 4);
3875 memcpy(buf + 16, config->packageMetadata.data(),
3876 config->packageMetadata.size());
3877 }
3878
getSize() const3879 size_t PackageMetadataNote::getSize() const {
3880 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
3881 alignTo(config->packageMetadata.size() + 1, 4);
3882 }
3883
3884 InStruct elf::in;
3885
3886 std::vector<Partition> elf::partitions;
3887 Partition *elf::mainPart;
3888
3889 template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3890 template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3891 template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3892 template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3893
3894 template void elf::splitSections<ELF32LE>();
3895 template void elf::splitSections<ELF32BE>();
3896 template void elf::splitSections<ELF64LE>();
3897 template void elf::splitSections<ELF64BE>();
3898
3899 template class elf::MipsAbiFlagsSection<ELF32LE>;
3900 template class elf::MipsAbiFlagsSection<ELF32BE>;
3901 template class elf::MipsAbiFlagsSection<ELF64LE>;
3902 template class elf::MipsAbiFlagsSection<ELF64BE>;
3903
3904 template class elf::MipsOptionsSection<ELF32LE>;
3905 template class elf::MipsOptionsSection<ELF32BE>;
3906 template class elf::MipsOptionsSection<ELF64LE>;
3907 template class elf::MipsOptionsSection<ELF64BE>;
3908
3909 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
3910 function_ref<void(InputSection &)>);
3911 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
3912 function_ref<void(InputSection &)>);
3913 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
3914 function_ref<void(InputSection &)>);
3915 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
3916 function_ref<void(InputSection &)>);
3917
3918 template class elf::MipsReginfoSection<ELF32LE>;
3919 template class elf::MipsReginfoSection<ELF32BE>;
3920 template class elf::MipsReginfoSection<ELF64LE>;
3921 template class elf::MipsReginfoSection<ELF64BE>;
3922
3923 template class elf::DynamicSection<ELF32LE>;
3924 template class elf::DynamicSection<ELF32BE>;
3925 template class elf::DynamicSection<ELF64LE>;
3926 template class elf::DynamicSection<ELF64BE>;
3927
3928 template class elf::RelocationSection<ELF32LE>;
3929 template class elf::RelocationSection<ELF32BE>;
3930 template class elf::RelocationSection<ELF64LE>;
3931 template class elf::RelocationSection<ELF64BE>;
3932
3933 template class elf::AndroidPackedRelocationSection<ELF32LE>;
3934 template class elf::AndroidPackedRelocationSection<ELF32BE>;
3935 template class elf::AndroidPackedRelocationSection<ELF64LE>;
3936 template class elf::AndroidPackedRelocationSection<ELF64BE>;
3937
3938 template class elf::RelrSection<ELF32LE>;
3939 template class elf::RelrSection<ELF32BE>;
3940 template class elf::RelrSection<ELF64LE>;
3941 template class elf::RelrSection<ELF64BE>;
3942
3943 template class elf::SymbolTableSection<ELF32LE>;
3944 template class elf::SymbolTableSection<ELF32BE>;
3945 template class elf::SymbolTableSection<ELF64LE>;
3946 template class elf::SymbolTableSection<ELF64BE>;
3947
3948 template class elf::VersionNeedSection<ELF32LE>;
3949 template class elf::VersionNeedSection<ELF32BE>;
3950 template class elf::VersionNeedSection<ELF64LE>;
3951 template class elf::VersionNeedSection<ELF64BE>;
3952
3953 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3954 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3955 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3956 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3957
3958 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3959 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3960 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3961 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3962
3963 template class elf::PartitionElfHeaderSection<ELF32LE>;
3964 template class elf::PartitionElfHeaderSection<ELF32BE>;
3965 template class elf::PartitionElfHeaderSection<ELF64LE>;
3966 template class elf::PartitionElfHeaderSection<ELF64BE>;
3967
3968 template class elf::PartitionProgramHeadersSection<ELF32LE>;
3969 template class elf::PartitionProgramHeadersSection<ELF32BE>;
3970 template class elf::PartitionProgramHeadersSection<ELF64LE>;
3971 template class elf::PartitionProgramHeadersSection<ELF64BE>;
3972