xref: /netbsd/sys/kern/kern_resource.c (revision d731d091)
1 /*	$NetBSD: kern_resource.c,v 1.191 2023/07/08 20:02:10 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.191 2023/07/08 20:02:10 riastradh Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 /*
62  * Maximum process data and stack limits.
63  * They are variables so they are patchable.
64  */
65 rlim_t			maxdmap = MAXDSIZ;
66 rlim_t			maxsmap = MAXSSIZ;
67 
68 static pool_cache_t	plimit_cache	__read_mostly;
69 static pool_cache_t	pstats_cache	__read_mostly;
70 
71 static kauth_listener_t	resource_listener;
72 static struct sysctllog	*proc_sysctllog;
73 
74 static int	donice(struct lwp *, struct proc *, int);
75 static void	sysctl_proc_setup(void);
76 
77 static int
resource_listener_cb(kauth_cred_t cred,kauth_action_t action,void * cookie,void * arg0,void * arg1,void * arg2,void * arg3)78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79     void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 	struct proc *p;
82 	int result;
83 
84 	result = KAUTH_RESULT_DEFER;
85 	p = arg0;
86 
87 	switch (action) {
88 	case KAUTH_PROCESS_NICE:
89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 			break;
92 		}
93 
94 		if ((u_long)arg1 >= p->p_nice)
95 			result = KAUTH_RESULT_ALLOW;
96 
97 		break;
98 
99 	case KAUTH_PROCESS_RLIMIT: {
100 		enum kauth_process_req req;
101 
102 		req = (enum kauth_process_req)(uintptr_t)arg1;
103 
104 		switch (req) {
105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 			result = KAUTH_RESULT_ALLOW;
107 			break;
108 
109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 			struct rlimit *new_rlimit;
111 			u_long which;
112 
113 			if ((p != curlwp->l_proc) &&
114 			    (proc_uidmatch(cred, p->p_cred) != 0))
115 				break;
116 
117 			new_rlimit = arg2;
118 			which = (u_long)arg3;
119 
120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 				result = KAUTH_RESULT_ALLOW;
122 
123 			break;
124 			}
125 
126 		default:
127 			break;
128 		}
129 
130 		break;
131 	}
132 
133 	default:
134 		break;
135 	}
136 
137 	return result;
138 }
139 
140 void
resource_init(void)141 resource_init(void)
142 {
143 
144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148 
149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 	    resource_listener_cb, NULL);
151 
152 	sysctl_proc_setup();
153 }
154 
155 /*
156  * Resource controls and accounting.
157  */
158 
159 int
sys_getpriority(struct lwp * l,const struct sys_getpriority_args * uap,register_t * retval)160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161     register_t *retval)
162 {
163 	/* {
164 		syscallarg(int) which;
165 		syscallarg(id_t) who;
166 	} */
167 	struct proc *curp = l->l_proc, *p;
168 	id_t who = SCARG(uap, who);
169 	int low = NZERO + PRIO_MAX + 1;
170 
171 	mutex_enter(&proc_lock);
172 	switch (SCARG(uap, which)) {
173 	case PRIO_PROCESS:
174 		p = who ? proc_find(who) : curp;
175 		if (p != NULL)
176 			low = p->p_nice;
177 		break;
178 
179 	case PRIO_PGRP: {
180 		struct pgrp *pg;
181 
182 		if (who == 0)
183 			pg = curp->p_pgrp;
184 		else if ((pg = pgrp_find(who)) == NULL)
185 			break;
186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 			if (p->p_nice < low)
188 				low = p->p_nice;
189 		}
190 		break;
191 	}
192 
193 	case PRIO_USER:
194 		if (who == 0)
195 			who = (int)kauth_cred_geteuid(l->l_cred);
196 		PROCLIST_FOREACH(p, &allproc) {
197 			mutex_enter(p->p_lock);
198 			if (kauth_cred_geteuid(p->p_cred) ==
199 			    (uid_t)who && p->p_nice < low)
200 				low = p->p_nice;
201 			mutex_exit(p->p_lock);
202 		}
203 		break;
204 
205 	default:
206 		mutex_exit(&proc_lock);
207 		return EINVAL;
208 	}
209 	mutex_exit(&proc_lock);
210 
211 	if (low == NZERO + PRIO_MAX + 1) {
212 		return ESRCH;
213 	}
214 	*retval = low - NZERO;
215 	return 0;
216 }
217 
218 int
sys_setpriority(struct lwp * l,const struct sys_setpriority_args * uap,register_t * retval)219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220     register_t *retval)
221 {
222 	/* {
223 		syscallarg(int) which;
224 		syscallarg(id_t) who;
225 		syscallarg(int) prio;
226 	} */
227 	struct proc *curp = l->l_proc, *p;
228 	id_t who = SCARG(uap, who);
229 	int found = 0, error = 0;
230 
231 	mutex_enter(&proc_lock);
232 	switch (SCARG(uap, which)) {
233 	case PRIO_PROCESS:
234 		p = who ? proc_find(who) : curp;
235 		if (p != NULL) {
236 			mutex_enter(p->p_lock);
237 			found++;
238 			error = donice(l, p, SCARG(uap, prio));
239 			mutex_exit(p->p_lock);
240 		}
241 		break;
242 
243 	case PRIO_PGRP: {
244 		struct pgrp *pg;
245 
246 		if (who == 0)
247 			pg = curp->p_pgrp;
248 		else if ((pg = pgrp_find(who)) == NULL)
249 			break;
250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 			mutex_enter(p->p_lock);
252 			found++;
253 			error = donice(l, p, SCARG(uap, prio));
254 			mutex_exit(p->p_lock);
255 			if (error)
256 				break;
257 		}
258 		break;
259 	}
260 
261 	case PRIO_USER:
262 		if (who == 0)
263 			who = (int)kauth_cred_geteuid(l->l_cred);
264 		PROCLIST_FOREACH(p, &allproc) {
265 			mutex_enter(p->p_lock);
266 			if (kauth_cred_geteuid(p->p_cred) ==
267 			    (uid_t)SCARG(uap, who)) {
268 				found++;
269 				error = donice(l, p, SCARG(uap, prio));
270 			}
271 			mutex_exit(p->p_lock);
272 			if (error)
273 				break;
274 		}
275 		break;
276 
277 	default:
278 		mutex_exit(&proc_lock);
279 		return EINVAL;
280 	}
281 	mutex_exit(&proc_lock);
282 
283 	return (found == 0) ? ESRCH : error;
284 }
285 
286 /*
287  * Renice a process.
288  *
289  * Call with the target process' credentials locked.
290  */
291 static int
donice(struct lwp * l,struct proc * chgp,int n)292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 	kauth_cred_t cred = l->l_cred;
295 
296 	KASSERT(mutex_owned(chgp->p_lock));
297 
298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 		return EPERM;
302 
303 	if (n > PRIO_MAX) {
304 		n = PRIO_MAX;
305 	}
306 	if (n < PRIO_MIN) {
307 		n = PRIO_MIN;
308 	}
309 	n += NZERO;
310 
311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 	    KAUTH_ARG(n), NULL, NULL)) {
313 		return EACCES;
314 	}
315 
316 	sched_nice(chgp, n);
317 	return 0;
318 }
319 
320 int
sys_setrlimit(struct lwp * l,const struct sys_setrlimit_args * uap,register_t * retval)321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322     register_t *retval)
323 {
324 	/* {
325 		syscallarg(int) which;
326 		syscallarg(const struct rlimit *) rlp;
327 	} */
328 	int error, which = SCARG(uap, which);
329 	struct rlimit alim;
330 
331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 	if (error) {
333 		return error;
334 	}
335 	return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337 
338 int
dosetrlimit(struct lwp * l,struct proc * p,int which,struct rlimit * limp)339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 	struct rlimit *alimp;
342 	int error;
343 
344 	if ((u_int)which >= RLIM_NLIMITS)
345 		return EINVAL;
346 
347 	if (limp->rlim_cur > limp->rlim_max) {
348 		/*
349 		 * This is programming error. According to SUSv2, we should
350 		 * return error in this case.
351 		 */
352 		return EINVAL;
353 	}
354 
355 	alimp = &p->p_rlimit[which];
356 	/* if we don't change the value, no need to limcopy() */
357 	if (limp->rlim_cur == alimp->rlim_cur &&
358 	    limp->rlim_max == alimp->rlim_max)
359 		return 0;
360 
361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 	if (error)
364 		return error;
365 
366 	lim_privatise(p);
367 	/* p->p_limit is now unchangeable */
368 	alimp = &p->p_rlimit[which];
369 
370 	switch (which) {
371 
372 	case RLIMIT_DATA:
373 		if (limp->rlim_cur > maxdmap)
374 			limp->rlim_cur = maxdmap;
375 		if (limp->rlim_max > maxdmap)
376 			limp->rlim_max = maxdmap;
377 		break;
378 
379 	case RLIMIT_STACK:
380 		if (limp->rlim_cur > maxsmap)
381 			limp->rlim_cur = maxsmap;
382 		if (limp->rlim_max > maxsmap)
383 			limp->rlim_max = maxsmap;
384 
385 		/*
386 		 * Return EINVAL if the new stack size limit is lower than
387 		 * current usage. Otherwise, the process would get SIGSEGV the
388 		 * moment it would try to access anything on its current stack.
389 		 * This conforms to SUSv2.
390 		 */
391 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
392 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
393 			return EINVAL;
394 		}
395 
396 		/*
397 		 * Stack is allocated to the max at exec time with
398 		 * only "rlim_cur" bytes accessible (In other words,
399 		 * allocates stack dividing two contiguous regions at
400 		 * "rlim_cur" bytes boundary).
401 		 *
402 		 * Since allocation is done in terms of page, roundup
403 		 * "rlim_cur" (otherwise, contiguous regions
404 		 * overlap).  If stack limit is going up make more
405 		 * accessible, if going down make inaccessible.
406 		 */
407 		limp->rlim_max = round_page(limp->rlim_max);
408 		limp->rlim_cur = round_page(limp->rlim_cur);
409 		if (limp->rlim_cur != alimp->rlim_cur) {
410 			vaddr_t addr;
411 			vsize_t size;
412 			vm_prot_t prot;
413 			char *base, *tmp;
414 
415 			base = p->p_vmspace->vm_minsaddr;
416 			if (limp->rlim_cur > alimp->rlim_cur) {
417 				prot = VM_PROT_READ | VM_PROT_WRITE;
418 				size = limp->rlim_cur - alimp->rlim_cur;
419 				tmp = STACK_GROW(base, alimp->rlim_cur);
420 			} else {
421 				prot = VM_PROT_NONE;
422 				size = alimp->rlim_cur - limp->rlim_cur;
423 				tmp = STACK_GROW(base, limp->rlim_cur);
424 			}
425 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
426 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
427 			    addr, addr + size, prot, false);
428 		}
429 		break;
430 
431 	case RLIMIT_NOFILE:
432 		if (limp->rlim_cur > maxfiles)
433 			limp->rlim_cur = maxfiles;
434 		if (limp->rlim_max > maxfiles)
435 			limp->rlim_max = maxfiles;
436 		break;
437 
438 	case RLIMIT_NPROC:
439 		if (limp->rlim_cur > maxproc)
440 			limp->rlim_cur = maxproc;
441 		if (limp->rlim_max > maxproc)
442 			limp->rlim_max = maxproc;
443 		break;
444 
445 	case RLIMIT_NTHR:
446 		if (limp->rlim_cur > maxlwp)
447 			limp->rlim_cur = maxlwp;
448 		if (limp->rlim_max > maxlwp)
449 			limp->rlim_max = maxlwp;
450 		break;
451 	}
452 
453 	mutex_enter(&p->p_limit->pl_lock);
454 	*alimp = *limp;
455 	mutex_exit(&p->p_limit->pl_lock);
456 	return 0;
457 }
458 
459 int
sys_getrlimit(struct lwp * l,const struct sys_getrlimit_args * uap,register_t * retval)460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
461     register_t *retval)
462 {
463 	/* {
464 		syscallarg(int) which;
465 		syscallarg(struct rlimit *) rlp;
466 	} */
467 	struct proc *p = l->l_proc;
468 	int which = SCARG(uap, which);
469 	struct rlimit rl;
470 
471 	if ((u_int)which >= RLIM_NLIMITS)
472 		return EINVAL;
473 
474 	mutex_enter(p->p_lock);
475 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
476 	mutex_exit(p->p_lock);
477 
478 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
479 }
480 
481 void
addrulwp(struct lwp * l,struct bintime * tm)482 addrulwp(struct lwp *l, struct bintime *tm)
483 {
484 
485 	lwp_lock(l);
486 	bintime_add(tm, &l->l_rtime);
487 	if ((l->l_pflag & LP_RUNNING) != 0 &&
488 	    (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
489 		struct bintime diff;
490 		/*
491 		 * Adjust for the current time slice.  This is
492 		 * actually fairly important since the error
493 		 * here is on the order of a time quantum,
494 		 * which is much greater than the sampling
495 		 * error.
496 		 */
497 		binuptime(&diff);
498 		membar_consumer(); /* for softint_dispatch() */
499 		bintime_sub(&diff, &l->l_stime);
500 		bintime_add(tm, &diff);
501 	}
502 	lwp_unlock(l);
503 }
504 
505 /*
506  * Transform the running time and tick information in proc p into user,
507  * system, and interrupt time usage.
508  *
509  * Should be called with p->p_lock held unless called from exit1().
510  */
511 void
calcru(struct proc * p,struct timeval * up,struct timeval * sp,struct timeval * ip,struct timeval * rp)512 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
513     struct timeval *ip, struct timeval *rp)
514 {
515 	uint64_t u, st, ut, it, tot, dt;
516 	struct lwp *l;
517 	struct bintime tm;
518 	struct timeval tv;
519 
520 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
521 
522 	mutex_spin_enter(&p->p_stmutex);
523 	st = p->p_sticks;
524 	ut = p->p_uticks;
525 	it = p->p_iticks;
526 	mutex_spin_exit(&p->p_stmutex);
527 
528 	tm = p->p_rtime;
529 
530 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
531 		addrulwp(l, &tm);
532 	}
533 
534 	tot = st + ut + it;
535 	bintime2timeval(&tm, &tv);
536 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
537 
538 	if (tot == 0) {
539 		/* No ticks, so can't use to share time out, split 50-50 */
540 		st = ut = u / 2;
541 	} else {
542 		st = (u * st) / tot;
543 		ut = (u * ut) / tot;
544 	}
545 
546 	/*
547 	 * Try to avoid lying to the users (too much)
548 	 *
549 	 * Of course, user/sys time are based on sampling (ie: statistics)
550 	 * so that would be impossible, but convincing the mark
551 	 * that we have used less ?time this call than we had
552 	 * last time, is beyond reasonable...  (the con fails!)
553 	 *
554 	 * Note that since actual used time cannot decrease, either
555 	 * utime or stime (or both) must be greater now than last time
556 	 * (or both the same) - if one seems to have decreased, hold
557 	 * it constant and steal the necessary bump from the other
558 	 * which must have increased.
559 	 */
560 	if (p->p_xutime > ut) {
561 		dt = p->p_xutime - ut;
562 		st -= uimin(dt, st);
563 		ut = p->p_xutime;
564 	} else if (p->p_xstime > st) {
565 		dt = p->p_xstime - st;
566 		ut -= uimin(dt, ut);
567 		st = p->p_xstime;
568 	}
569 
570 	if (sp != NULL) {
571 		p->p_xstime = st;
572 		sp->tv_sec = st / 1000000;
573 		sp->tv_usec = st % 1000000;
574 	}
575 	if (up != NULL) {
576 		p->p_xutime = ut;
577 		up->tv_sec = ut / 1000000;
578 		up->tv_usec = ut % 1000000;
579 	}
580 	if (ip != NULL) {
581 		if (it != 0)		/* it != 0 --> tot != 0 */
582 			it = (u * it) / tot;
583 		ip->tv_sec = it / 1000000;
584 		ip->tv_usec = it % 1000000;
585 	}
586 	if (rp != NULL) {
587 		*rp = tv;
588 	}
589 }
590 
591 int
sys___getrusage50(struct lwp * l,const struct sys___getrusage50_args * uap,register_t * retval)592 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
593     register_t *retval)
594 {
595 	/* {
596 		syscallarg(int) who;
597 		syscallarg(struct rusage *) rusage;
598 	} */
599 	int error;
600 	struct rusage ru;
601 	struct proc *p = l->l_proc;
602 
603 	error = getrusage1(p, SCARG(uap, who), &ru);
604 	if (error != 0)
605 		return error;
606 
607 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
608 }
609 
610 int
getrusage1(struct proc * p,int who,struct rusage * ru)611 getrusage1(struct proc *p, int who, struct rusage *ru)
612 {
613 
614 	switch (who) {
615 	case RUSAGE_SELF:
616 		mutex_enter(p->p_lock);
617 		ruspace(p);
618 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
619 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
620 		rulwps(p, ru);
621 		mutex_exit(p->p_lock);
622 		break;
623 	case RUSAGE_CHILDREN:
624 		mutex_enter(p->p_lock);
625 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
626 		mutex_exit(p->p_lock);
627 		break;
628 	default:
629 		return EINVAL;
630 	}
631 
632 	return 0;
633 }
634 
635 void
ruspace(struct proc * p)636 ruspace(struct proc *p)
637 {
638 	struct vmspace *vm = p->p_vmspace;
639 	struct rusage *ru = &p->p_stats->p_ru;
640 
641 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
642 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
643 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
644 #ifdef __HAVE_NO_PMAP_STATS
645 	/* We don't keep track of the max so we get the current */
646 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
647 #else
648 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
649 #endif
650 }
651 
652 void
ruadd(struct rusage * ru,struct rusage * ru2)653 ruadd(struct rusage *ru, struct rusage *ru2)
654 {
655 	long *ip, *ip2;
656 	int i;
657 
658 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
659 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
660 	if (ru->ru_maxrss < ru2->ru_maxrss)
661 		ru->ru_maxrss = ru2->ru_maxrss;
662 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
663 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
664 		*ip++ += *ip2++;
665 }
666 
667 void
rulwps(proc_t * p,struct rusage * ru)668 rulwps(proc_t *p, struct rusage *ru)
669 {
670 	lwp_t *l;
671 
672 	KASSERT(mutex_owned(p->p_lock));
673 
674 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
675 		ruadd(ru, &l->l_ru);
676 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
677 		ru->ru_nivcsw += l->l_nivcsw;
678 	}
679 }
680 
681 /*
682  * lim_copy: make a copy of the plimit structure.
683  *
684  * We use copy-on-write after fork, and copy when a limit is changed.
685  */
686 struct plimit *
lim_copy(struct plimit * lim)687 lim_copy(struct plimit *lim)
688 {
689 	struct plimit *newlim;
690 	char *corename;
691 	size_t alen, len;
692 
693 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
694 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
695 	newlim->pl_writeable = false;
696 	newlim->pl_refcnt = 1;
697 	newlim->pl_sv_limit = NULL;
698 
699 	mutex_enter(&lim->pl_lock);
700 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
701 	    sizeof(struct rlimit) * RLIM_NLIMITS);
702 
703 	/*
704 	 * Note: the common case is a use of default core name.
705 	 */
706 	alen = 0;
707 	corename = NULL;
708 	for (;;) {
709 		if (lim->pl_corename == defcorename) {
710 			newlim->pl_corename = defcorename;
711 			newlim->pl_cnlen = 0;
712 			break;
713 		}
714 		len = lim->pl_cnlen;
715 		if (len == alen) {
716 			newlim->pl_corename = corename;
717 			newlim->pl_cnlen = len;
718 			memcpy(corename, lim->pl_corename, len);
719 			corename = NULL;
720 			break;
721 		}
722 		mutex_exit(&lim->pl_lock);
723 		if (corename) {
724 			kmem_free(corename, alen);
725 		}
726 		alen = len;
727 		corename = kmem_alloc(alen, KM_SLEEP);
728 		mutex_enter(&lim->pl_lock);
729 	}
730 	mutex_exit(&lim->pl_lock);
731 
732 	if (corename) {
733 		kmem_free(corename, alen);
734 	}
735 	return newlim;
736 }
737 
738 void
lim_addref(struct plimit * lim)739 lim_addref(struct plimit *lim)
740 {
741 	atomic_inc_uint(&lim->pl_refcnt);
742 }
743 
744 /*
745  * lim_privatise: give a process its own private plimit structure.
746  */
747 void
lim_privatise(proc_t * p)748 lim_privatise(proc_t *p)
749 {
750 	struct plimit *lim = p->p_limit, *newlim;
751 
752 	if (lim->pl_writeable) {
753 		return;
754 	}
755 
756 	newlim = lim_copy(lim);
757 
758 	mutex_enter(p->p_lock);
759 	if (p->p_limit->pl_writeable) {
760 		/* Other thread won the race. */
761 		mutex_exit(p->p_lock);
762 		lim_free(newlim);
763 		return;
764 	}
765 
766 	/*
767 	 * Since p->p_limit can be accessed without locked held,
768 	 * old limit structure must not be deleted yet.
769 	 */
770 	newlim->pl_sv_limit = p->p_limit;
771 	newlim->pl_writeable = true;
772 	p->p_limit = newlim;
773 	mutex_exit(p->p_lock);
774 }
775 
776 void
lim_setcorename(proc_t * p,char * name,size_t len)777 lim_setcorename(proc_t *p, char *name, size_t len)
778 {
779 	struct plimit *lim;
780 	char *oname;
781 	size_t olen;
782 
783 	lim_privatise(p);
784 	lim = p->p_limit;
785 
786 	mutex_enter(&lim->pl_lock);
787 	oname = lim->pl_corename;
788 	olen = lim->pl_cnlen;
789 	lim->pl_corename = name;
790 	lim->pl_cnlen = len;
791 	mutex_exit(&lim->pl_lock);
792 
793 	if (oname != defcorename) {
794 		kmem_free(oname, olen);
795 	}
796 }
797 
798 void
lim_free(struct plimit * lim)799 lim_free(struct plimit *lim)
800 {
801 	struct plimit *sv_lim;
802 
803 	do {
804 		membar_release();
805 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
806 			return;
807 		}
808 		membar_acquire();
809 		if (lim->pl_corename != defcorename) {
810 			kmem_free(lim->pl_corename, lim->pl_cnlen);
811 		}
812 		sv_lim = lim->pl_sv_limit;
813 		mutex_destroy(&lim->pl_lock);
814 		pool_cache_put(plimit_cache, lim);
815 	} while ((lim = sv_lim) != NULL);
816 }
817 
818 struct pstats *
pstatscopy(struct pstats * ps)819 pstatscopy(struct pstats *ps)
820 {
821 	struct pstats *nps;
822 	size_t len;
823 
824 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
825 
826 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
827 	memset(&nps->pstat_startzero, 0, len);
828 
829 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
830 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
831 
832 	return nps;
833 }
834 
835 void
pstatsfree(struct pstats * ps)836 pstatsfree(struct pstats *ps)
837 {
838 
839 	pool_cache_put(pstats_cache, ps);
840 }
841 
842 /*
843  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
844  * need to pick a valid process by PID.
845  *
846  * => Hold a reference on the process, on success.
847  */
848 static int
sysctl_proc_findproc(lwp_t * l,pid_t pid,proc_t ** p2)849 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
850 {
851 	proc_t *p;
852 	int error;
853 
854 	if (pid == PROC_CURPROC) {
855 		p = l->l_proc;
856 	} else {
857 		mutex_enter(&proc_lock);
858 		p = proc_find(pid);
859 		if (p == NULL) {
860 			mutex_exit(&proc_lock);
861 			return ESRCH;
862 		}
863 	}
864 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
865 	if (pid != PROC_CURPROC) {
866 		mutex_exit(&proc_lock);
867 	}
868 	*p2 = p;
869 	return error;
870 }
871 
872 /*
873  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
874  */
875 static int
sysctl_proc_paxflags(SYSCTLFN_ARGS)876 sysctl_proc_paxflags(SYSCTLFN_ARGS)
877 {
878 	struct proc *p;
879 	struct sysctlnode node;
880 	int paxflags;
881 	int error;
882 
883 	/* First, validate the request. */
884 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
885 		return EINVAL;
886 
887 	/* Find the process.  Hold a reference (p_reflock), if found. */
888 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
889 	if (error)
890 		return error;
891 
892 	/* XXX-elad */
893 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
894 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
895 	if (error) {
896 		rw_exit(&p->p_reflock);
897 		return error;
898 	}
899 
900 	/* Retrieve the limits. */
901 	node = *rnode;
902 	paxflags = p->p_pax;
903 	node.sysctl_data = &paxflags;
904 
905 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
906 
907 	/* If attempting to write new value, it's an error */
908 	if (error == 0 && newp != NULL)
909 		error = EACCES;
910 
911 	rw_exit(&p->p_reflock);
912 	return error;
913 }
914 
915 /*
916  * sysctl_proc_corename: helper routine to get or set the core file name
917  * for a process specified by PID.
918  */
919 static int
sysctl_proc_corename(SYSCTLFN_ARGS)920 sysctl_proc_corename(SYSCTLFN_ARGS)
921 {
922 	struct proc *p;
923 	struct plimit *lim;
924 	char *cnbuf, *cname;
925 	struct sysctlnode node;
926 	size_t len;
927 	int error;
928 
929 	/* First, validate the request. */
930 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
931 		return EINVAL;
932 
933 	/* Find the process.  Hold a reference (p_reflock), if found. */
934 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
935 	if (error)
936 		return error;
937 
938 	/* XXX-elad */
939 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
940 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
941 	if (error) {
942 		rw_exit(&p->p_reflock);
943 		return error;
944 	}
945 
946 	cnbuf = PNBUF_GET();
947 
948 	if (oldp) {
949 		/* Get case: copy the core name into the buffer. */
950 		error = kauth_authorize_process(l->l_cred,
951 		    KAUTH_PROCESS_CORENAME, p,
952 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
953 		if (error) {
954 			goto done;
955 		}
956 		lim = p->p_limit;
957 		mutex_enter(&lim->pl_lock);
958 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
959 		mutex_exit(&lim->pl_lock);
960 	}
961 
962 	node = *rnode;
963 	node.sysctl_data = cnbuf;
964 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
965 
966 	/* Return if error, or if caller is only getting the core name. */
967 	if (error || newp == NULL) {
968 		goto done;
969 	}
970 
971 	/*
972 	 * Set case.  Check permission and then validate new core name.
973 	 * It must be either "core", "/core", or end in ".core".
974 	 */
975 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
976 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
977 	if (error) {
978 		goto done;
979 	}
980 	len = strlen(cnbuf);
981 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
982 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
983 		error = EINVAL;
984 		goto done;
985 	}
986 
987 	/* Allocate, copy and set the new core name for plimit structure. */
988 	cname = kmem_alloc(++len, KM_NOSLEEP);
989 	if (cname == NULL) {
990 		error = ENOMEM;
991 		goto done;
992 	}
993 	memcpy(cname, cnbuf, len);
994 	lim_setcorename(p, cname, len);
995 done:
996 	rw_exit(&p->p_reflock);
997 	PNBUF_PUT(cnbuf);
998 	return error;
999 }
1000 
1001 /*
1002  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
1003  */
1004 static int
sysctl_proc_stop(SYSCTLFN_ARGS)1005 sysctl_proc_stop(SYSCTLFN_ARGS)
1006 {
1007 	struct proc *p;
1008 	int isset, flag, error = 0;
1009 	struct sysctlnode node;
1010 
1011 	if (namelen != 0)
1012 		return EINVAL;
1013 
1014 	/* Find the process.  Hold a reference (p_reflock), if found. */
1015 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
1016 	if (error)
1017 		return error;
1018 
1019 	/* XXX-elad */
1020 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1021 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1022 	if (error) {
1023 		goto out;
1024 	}
1025 
1026 	/* Determine the flag. */
1027 	switch (rnode->sysctl_num) {
1028 	case PROC_PID_STOPFORK:
1029 		flag = PS_STOPFORK;
1030 		break;
1031 	case PROC_PID_STOPEXEC:
1032 		flag = PS_STOPEXEC;
1033 		break;
1034 	case PROC_PID_STOPEXIT:
1035 		flag = PS_STOPEXIT;
1036 		break;
1037 	default:
1038 		error = EINVAL;
1039 		goto out;
1040 	}
1041 	isset = (p->p_flag & flag) ? 1 : 0;
1042 	node = *rnode;
1043 	node.sysctl_data = &isset;
1044 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1045 
1046 	/* Return if error, or if callers is only getting the flag. */
1047 	if (error || newp == NULL) {
1048 		goto out;
1049 	}
1050 
1051 	/* Check if caller can set the flags. */
1052 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
1053 	    p, KAUTH_ARG(flag), NULL, NULL);
1054 	if (error) {
1055 		goto out;
1056 	}
1057 	mutex_enter(p->p_lock);
1058 	if (isset) {
1059 		p->p_sflag |= flag;
1060 	} else {
1061 		p->p_sflag &= ~flag;
1062 	}
1063 	mutex_exit(p->p_lock);
1064 out:
1065 	rw_exit(&p->p_reflock);
1066 	return error;
1067 }
1068 
1069 /*
1070  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
1071  */
1072 static int
sysctl_proc_plimit(SYSCTLFN_ARGS)1073 sysctl_proc_plimit(SYSCTLFN_ARGS)
1074 {
1075 	struct proc *p;
1076 	u_int limitno;
1077 	int which, error = 0;
1078         struct rlimit alim;
1079 	struct sysctlnode node;
1080 
1081 	if (namelen != 0)
1082 		return EINVAL;
1083 
1084 	which = name[-1];
1085 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
1086 	    which != PROC_PID_LIMIT_TYPE_HARD)
1087 		return EINVAL;
1088 
1089 	limitno = name[-2] - 1;
1090 	if (limitno >= RLIM_NLIMITS)
1091 		return EINVAL;
1092 
1093 	if (name[-3] != PROC_PID_LIMIT)
1094 		return EINVAL;
1095 
1096 	/* Find the process.  Hold a reference (p_reflock), if found. */
1097 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
1098 	if (error)
1099 		return error;
1100 
1101 	/* XXX-elad */
1102 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1103 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1104 	if (error)
1105 		goto out;
1106 
1107 	/* Check if caller can retrieve the limits. */
1108 	if (newp == NULL) {
1109 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1110 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1111 		    KAUTH_ARG(which));
1112 		if (error)
1113 			goto out;
1114 	}
1115 
1116 	/* Retrieve the limits. */
1117 	node = *rnode;
1118 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1119 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
1120 		node.sysctl_data = &alim.rlim_max;
1121 	} else {
1122 		node.sysctl_data = &alim.rlim_cur;
1123 	}
1124 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1125 
1126 	/* Return if error, or if we are only retrieving the limits. */
1127 	if (error || newp == NULL) {
1128 		goto out;
1129 	}
1130 	error = dosetrlimit(l, p, limitno, &alim);
1131 out:
1132 	rw_exit(&p->p_reflock);
1133 	return error;
1134 }
1135 
1136 /*
1137  * Setup sysctl nodes.
1138  */
1139 static void
sysctl_proc_setup(void)1140 sysctl_proc_setup(void)
1141 {
1142 
1143 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1144 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1145 		       CTLTYPE_NODE, "curproc",
1146 		       SYSCTL_DESCR("Per-process settings"),
1147 		       NULL, 0, NULL, 0,
1148 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
1149 
1150 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1151 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1152 		       CTLTYPE_INT, "paxflags",
1153 		       SYSCTL_DESCR("Process PAX control flags"),
1154 		       sysctl_proc_paxflags, 0, NULL, 0,
1155 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
1156 
1157 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1158 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1159 		       CTLTYPE_STRING, "corename",
1160 		       SYSCTL_DESCR("Core file name"),
1161 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1162 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1163 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1164 		       CTLFLAG_PERMANENT,
1165 		       CTLTYPE_NODE, "rlimit",
1166 		       SYSCTL_DESCR("Process limits"),
1167 		       NULL, 0, NULL, 0,
1168 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1169 
1170 #define create_proc_plimit(s, n) do {					\
1171 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1172 		       CTLFLAG_PERMANENT,				\
1173 		       CTLTYPE_NODE, s,					\
1174 		       SYSCTL_DESCR("Process " s " limits"),		\
1175 		       NULL, 0, NULL, 0,				\
1176 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1177 		       CTL_EOL);					\
1178 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1179 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1180 		       CTLTYPE_QUAD, "soft",				\
1181 		       SYSCTL_DESCR("Process soft " s " limit"),	\
1182 		       sysctl_proc_plimit, 0, NULL, 0,			\
1183 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1184 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
1185 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1186 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1187 		       CTLTYPE_QUAD, "hard",				\
1188 		       SYSCTL_DESCR("Process hard " s " limit"),	\
1189 		       sysctl_proc_plimit, 0, NULL, 0,			\
1190 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1191 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
1192 	} while (0/*CONSTCOND*/)
1193 
1194 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
1195 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
1196 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
1197 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
1198 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
1199 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
1200 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
1201 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
1202 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
1203 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
1204 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
1205 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
1206 
1207 #undef create_proc_plimit
1208 
1209 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1210 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1211 		       CTLTYPE_INT, "stopfork",
1212 		       SYSCTL_DESCR("Stop process at fork(2)"),
1213 		       sysctl_proc_stop, 0, NULL, 0,
1214 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1215 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1216 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1217 		       CTLTYPE_INT, "stopexec",
1218 		       SYSCTL_DESCR("Stop process at execve(2)"),
1219 		       sysctl_proc_stop, 0, NULL, 0,
1220 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1221 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1222 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1223 		       CTLTYPE_INT, "stopexit",
1224 		       SYSCTL_DESCR("Stop process before completing exit"),
1225 		       sysctl_proc_stop, 0, NULL, 0,
1226 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1227 }
1228