xref: /openbsd/gnu/llvm/lld/ELF/LinkerScript.cpp (revision c8cb6751)
1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputFiles.h"
16 #include "InputSection.h"
17 #include "OutputSections.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "Writer.h"
23 #include "lld/Common/CommonLinkerContext.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <limits>
37 #include <string>
38 #include <vector>
39 
40 using namespace llvm;
41 using namespace llvm::ELF;
42 using namespace llvm::object;
43 using namespace llvm::support::endian;
44 using namespace lld;
45 using namespace lld::elf;
46 
47 std::unique_ptr<LinkerScript> elf::script;
48 
isSectionPrefix(StringRef prefix,StringRef name)49 static bool isSectionPrefix(StringRef prefix, StringRef name) {
50   return name.consume_front(prefix) && (name.empty() || name[0] == '.');
51 }
52 
getOutputSectionName(const InputSectionBase * s)53 static StringRef getOutputSectionName(const InputSectionBase *s) {
54   if (config->relocatable)
55     return s->name;
56 
57   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
58   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
59   // technically required, but not doing it is odd). This code guarantees that.
60   if (auto *isec = dyn_cast<InputSection>(s)) {
61     if (InputSectionBase *rel = isec->getRelocatedSection()) {
62       OutputSection *out = rel->getOutputSection();
63       if (s->type == SHT_RELA)
64         return saver().save(".rela" + out->name);
65       return saver().save(".rel" + out->name);
66     }
67   }
68 
69   // A BssSection created for a common symbol is identified as "COMMON" in
70   // linker scripts. It should go to .bss section.
71   if (s->name == "COMMON")
72     return ".bss";
73 
74   if (script->hasSectionsCommand)
75     return s->name;
76 
77   // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
78   // by grouping sections with certain prefixes.
79 
80   // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
81   // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
82   // We provide an option -z keep-text-section-prefix to group such sections
83   // into separate output sections. This is more flexible. See also
84   // sortISDBySectionOrder().
85   // ".text.unknown" means the hotness of the section is unknown. When
86   // SampleFDO is used, if a function doesn't have sample, it could be very
87   // cold or it could be a new function never being sampled. Those functions
88   // will be kept in the ".text.unknown" section.
89   // ".text.split." holds symbols which are split out from functions in other
90   // input sections. For example, with -fsplit-machine-functions, placing the
91   // cold parts in .text.split instead of .text.unlikely mitigates against poor
92   // profile inaccuracy. Techniques such as hugepage remapping can make
93   // conservative decisions at the section granularity.
94   if (isSectionPrefix(".text", s->name)) {
95     if (config->zKeepTextSectionPrefix)
96       for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely",
97                           ".text.startup", ".text.exit", ".text.split"})
98         if (isSectionPrefix(v.substr(5), s->name.substr(5)))
99           return v;
100     return ".text";
101   }
102 
103   for (StringRef v :
104        {".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss",
105         ".gcc_except_table", ".init_array", ".fini_array", ".tbss", ".tdata",
106         ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors",
107         ".openbsd.randomdata", ".openbsd.mutable"})
108     if (isSectionPrefix(v, s->name))
109       return v;
110 
111   return s->name;
112 }
113 
getValue() const114 uint64_t ExprValue::getValue() const {
115   if (sec)
116     return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val),
117                            alignment);
118   return alignToPowerOf2(val, alignment);
119 }
120 
getSecAddr() const121 uint64_t ExprValue::getSecAddr() const {
122   return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0;
123 }
124 
getSectionOffset() const125 uint64_t ExprValue::getSectionOffset() const {
126   // If the alignment is trivial, we don't have to compute the full
127   // value to know the offset. This allows this function to succeed in
128   // cases where the output section is not yet known.
129   if (alignment == 1 && !sec)
130     return val;
131   return getValue() - getSecAddr();
132 }
133 
createOutputSection(StringRef name,StringRef location)134 OutputDesc *LinkerScript::createOutputSection(StringRef name,
135                                               StringRef location) {
136   OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)];
137   OutputDesc *sec;
138   if (secRef && secRef->osec.location.empty()) {
139     // There was a forward reference.
140     sec = secRef;
141   } else {
142     sec = make<OutputDesc>(name, SHT_PROGBITS, 0);
143     if (!secRef)
144       secRef = sec;
145   }
146   sec->osec.location = std::string(location);
147   return sec;
148 }
149 
getOrCreateOutputSection(StringRef name)150 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) {
151   OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)];
152   if (!cmdRef)
153     cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0);
154   return cmdRef;
155 }
156 
157 // Expands the memory region by the specified size.
expandMemoryRegion(MemoryRegion * memRegion,uint64_t size,StringRef secName)158 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
159                                StringRef secName) {
160   memRegion->curPos += size;
161   uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue();
162   uint64_t length = (memRegion->length)().getValue();
163   if (newSize > length)
164     error("section '" + secName + "' will not fit in region '" +
165           memRegion->name + "': overflowed by " + Twine(newSize - length) +
166           " bytes");
167 }
168 
expandMemoryRegions(uint64_t size)169 void LinkerScript::expandMemoryRegions(uint64_t size) {
170   if (state->memRegion)
171     expandMemoryRegion(state->memRegion, size, state->outSec->name);
172   // Only expand the LMARegion if it is different from memRegion.
173   if (state->lmaRegion && state->memRegion != state->lmaRegion)
174     expandMemoryRegion(state->lmaRegion, size, state->outSec->name);
175 }
176 
expandOutputSection(uint64_t size)177 void LinkerScript::expandOutputSection(uint64_t size) {
178   state->outSec->size += size;
179   expandMemoryRegions(size);
180 }
181 
setDot(Expr e,const Twine & loc,bool inSec)182 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
183   uint64_t val = e().getValue();
184   if (val < dot && inSec)
185     error(loc + ": unable to move location counter backward for: " +
186           state->outSec->name);
187 
188   // Update to location counter means update to section size.
189   if (inSec)
190     expandOutputSection(val - dot);
191 
192   dot = val;
193 }
194 
195 // Used for handling linker symbol assignments, for both finalizing
196 // their values and doing early declarations. Returns true if symbol
197 // should be defined from linker script.
shouldDefineSym(SymbolAssignment * cmd)198 static bool shouldDefineSym(SymbolAssignment *cmd) {
199   if (cmd->name == ".")
200     return false;
201 
202   if (!cmd->provide)
203     return true;
204 
205   // If a symbol was in PROVIDE(), we need to define it only
206   // when it is a referenced undefined symbol.
207   Symbol *b = symtab.find(cmd->name);
208   if (b && !b->isDefined() && !b->isCommon())
209     return true;
210   return false;
211 }
212 
213 // Called by processSymbolAssignments() to assign definitions to
214 // linker-script-defined symbols.
addSymbol(SymbolAssignment * cmd)215 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
216   if (!shouldDefineSym(cmd))
217     return;
218 
219   // Define a symbol.
220   ExprValue value = cmd->expression();
221   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
222   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
223 
224   // When this function is called, section addresses have not been
225   // fixed yet. So, we may or may not know the value of the RHS
226   // expression.
227   //
228   // For example, if an expression is `x = 42`, we know x is always 42.
229   // However, if an expression is `x = .`, there's no way to know its
230   // value at the moment.
231   //
232   // We want to set symbol values early if we can. This allows us to
233   // use symbols as variables in linker scripts. Doing so allows us to
234   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
235   uint64_t symValue = value.sec ? 0 : value.getValue();
236 
237   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type,
238                  symValue, 0, sec);
239 
240   Symbol *sym = symtab.insert(cmd->name);
241   sym->mergeProperties(newSym);
242   newSym.overwrite(*sym);
243   sym->isUsedInRegularObj = true;
244   cmd->sym = cast<Defined>(sym);
245 }
246 
247 // This function is called from LinkerScript::declareSymbols.
248 // It creates a placeholder symbol if needed.
declareSymbol(SymbolAssignment * cmd)249 static void declareSymbol(SymbolAssignment *cmd) {
250   if (!shouldDefineSym(cmd))
251     return;
252 
253   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
254   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
255                  nullptr);
256 
257   // We can't calculate final value right now.
258   Symbol *sym = symtab.insert(cmd->name);
259   sym->mergeProperties(newSym);
260   newSym.overwrite(*sym);
261 
262   cmd->sym = cast<Defined>(sym);
263   cmd->provide = false;
264   sym->isUsedInRegularObj = true;
265   sym->scriptDefined = true;
266 }
267 
268 using SymbolAssignmentMap =
269     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
270 
271 // Collect section/value pairs of linker-script-defined symbols. This is used to
272 // check whether symbol values converge.
273 static SymbolAssignmentMap
getSymbolAssignmentValues(ArrayRef<SectionCommand * > sectionCommands)274 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) {
275   SymbolAssignmentMap ret;
276   for (SectionCommand *cmd : sectionCommands) {
277     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
278       if (assign->sym) // sym is nullptr for dot.
279         ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
280                                                     assign->sym->value));
281       continue;
282     }
283     for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
284       if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
285         if (assign->sym)
286           ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
287                                                       assign->sym->value));
288   }
289   return ret;
290 }
291 
292 // Returns the lexicographical smallest (for determinism) Defined whose
293 // section/value has changed.
294 static const Defined *
getChangedSymbolAssignment(const SymbolAssignmentMap & oldValues)295 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
296   const Defined *changed = nullptr;
297   for (auto &it : oldValues) {
298     const Defined *sym = it.first;
299     if (std::make_pair(sym->section, sym->value) != it.second &&
300         (!changed || sym->getName() < changed->getName()))
301       changed = sym;
302   }
303   return changed;
304 }
305 
306 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
307 // specified output section to the designated place.
processInsertCommands()308 void LinkerScript::processInsertCommands() {
309   SmallVector<OutputDesc *, 0> moves;
310   for (const InsertCommand &cmd : insertCommands) {
311     for (StringRef name : cmd.names) {
312       // If base is empty, it may have been discarded by
313       // adjustOutputSections(). We do not handle such output sections.
314       auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) {
315         return isa<OutputDesc>(subCmd) &&
316                cast<OutputDesc>(subCmd)->osec.name == name;
317       });
318       if (from == sectionCommands.end())
319         continue;
320       moves.push_back(cast<OutputDesc>(*from));
321       sectionCommands.erase(from);
322     }
323 
324     auto insertPos =
325         llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) {
326           auto *to = dyn_cast<OutputDesc>(subCmd);
327           return to != nullptr && to->osec.name == cmd.where;
328         });
329     if (insertPos == sectionCommands.end()) {
330       error("unable to insert " + cmd.names[0] +
331             (cmd.isAfter ? " after " : " before ") + cmd.where);
332     } else {
333       if (cmd.isAfter)
334         ++insertPos;
335       sectionCommands.insert(insertPos, moves.begin(), moves.end());
336     }
337     moves.clear();
338   }
339 }
340 
341 // Symbols defined in script should not be inlined by LTO. At the same time
342 // we don't know their final values until late stages of link. Here we scan
343 // over symbol assignment commands and create placeholder symbols if needed.
declareSymbols()344 void LinkerScript::declareSymbols() {
345   assert(!state);
346   for (SectionCommand *cmd : sectionCommands) {
347     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
348       declareSymbol(assign);
349       continue;
350     }
351 
352     // If the output section directive has constraints,
353     // we can't say for sure if it is going to be included or not.
354     // Skip such sections for now. Improve the checks if we ever
355     // need symbols from that sections to be declared early.
356     const OutputSection &sec = cast<OutputDesc>(cmd)->osec;
357     if (sec.constraint != ConstraintKind::NoConstraint)
358       continue;
359     for (SectionCommand *cmd : sec.commands)
360       if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
361         declareSymbol(assign);
362   }
363 }
364 
365 // This function is called from assignAddresses, while we are
366 // fixing the output section addresses. This function is supposed
367 // to set the final value for a given symbol assignment.
assignSymbol(SymbolAssignment * cmd,bool inSec)368 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
369   if (cmd->name == ".") {
370     setDot(cmd->expression, cmd->location, inSec);
371     return;
372   }
373 
374   if (!cmd->sym)
375     return;
376 
377   ExprValue v = cmd->expression();
378   if (v.isAbsolute()) {
379     cmd->sym->section = nullptr;
380     cmd->sym->value = v.getValue();
381   } else {
382     cmd->sym->section = v.sec;
383     cmd->sym->value = v.getSectionOffset();
384   }
385   cmd->sym->type = v.type;
386 }
387 
getFilename(const InputFile * file)388 static inline StringRef getFilename(const InputFile *file) {
389   return file ? file->getNameForScript() : StringRef();
390 }
391 
matchesFile(const InputFile * file) const392 bool InputSectionDescription::matchesFile(const InputFile *file) const {
393   if (filePat.isTrivialMatchAll())
394     return true;
395 
396   if (!matchesFileCache || matchesFileCache->first != file)
397     matchesFileCache.emplace(file, filePat.match(getFilename(file)));
398 
399   return matchesFileCache->second;
400 }
401 
excludesFile(const InputFile * file) const402 bool SectionPattern::excludesFile(const InputFile *file) const {
403   if (excludedFilePat.empty())
404     return false;
405 
406   if (!excludesFileCache || excludesFileCache->first != file)
407     excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file)));
408 
409   return excludesFileCache->second;
410 }
411 
shouldKeep(InputSectionBase * s)412 bool LinkerScript::shouldKeep(InputSectionBase *s) {
413   for (InputSectionDescription *id : keptSections)
414     if (id->matchesFile(s->file))
415       for (SectionPattern &p : id->sectionPatterns)
416         if (p.sectionPat.match(s->name) &&
417             (s->flags & id->withFlags) == id->withFlags &&
418             (s->flags & id->withoutFlags) == 0)
419           return true;
420   return false;
421 }
422 
423 // A helper function for the SORT() command.
matchConstraints(ArrayRef<InputSectionBase * > sections,ConstraintKind kind)424 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
425                              ConstraintKind kind) {
426   if (kind == ConstraintKind::NoConstraint)
427     return true;
428 
429   bool isRW = llvm::any_of(
430       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
431 
432   return (isRW && kind == ConstraintKind::ReadWrite) ||
433          (!isRW && kind == ConstraintKind::ReadOnly);
434 }
435 
sortSections(MutableArrayRef<InputSectionBase * > vec,SortSectionPolicy k)436 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
437                          SortSectionPolicy k) {
438   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
439     // ">" is not a mistake. Sections with larger alignments are placed
440     // before sections with smaller alignments in order to reduce the
441     // amount of padding necessary. This is compatible with GNU.
442     return a->addralign > b->addralign;
443   };
444   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
445     return a->name < b->name;
446   };
447   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
448     return getPriority(a->name) < getPriority(b->name);
449   };
450 
451   switch (k) {
452   case SortSectionPolicy::Default:
453   case SortSectionPolicy::None:
454     return;
455   case SortSectionPolicy::Alignment:
456     return llvm::stable_sort(vec, alignmentComparator);
457   case SortSectionPolicy::Name:
458     return llvm::stable_sort(vec, nameComparator);
459   case SortSectionPolicy::Priority:
460     return llvm::stable_sort(vec, priorityComparator);
461   }
462 }
463 
464 // Sort sections as instructed by SORT-family commands and --sort-section
465 // option. Because SORT-family commands can be nested at most two depth
466 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
467 // line option is respected even if a SORT command is given, the exact
468 // behavior we have here is a bit complicated. Here are the rules.
469 //
470 // 1. If two SORT commands are given, --sort-section is ignored.
471 // 2. If one SORT command is given, and if it is not SORT_NONE,
472 //    --sort-section is handled as an inner SORT command.
473 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
474 // 4. If no SORT command is given, sort according to --sort-section.
sortInputSections(MutableArrayRef<InputSectionBase * > vec,SortSectionPolicy outer,SortSectionPolicy inner)475 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
476                               SortSectionPolicy outer,
477                               SortSectionPolicy inner) {
478   if (outer == SortSectionPolicy::None)
479     return;
480 
481   if (inner == SortSectionPolicy::Default)
482     sortSections(vec, config->sortSection);
483   else
484     sortSections(vec, inner);
485   sortSections(vec, outer);
486 }
487 
488 // Compute and remember which sections the InputSectionDescription matches.
489 SmallVector<InputSectionBase *, 0>
computeInputSections(const InputSectionDescription * cmd,ArrayRef<InputSectionBase * > sections)490 LinkerScript::computeInputSections(const InputSectionDescription *cmd,
491                                    ArrayRef<InputSectionBase *> sections) {
492   SmallVector<InputSectionBase *, 0> ret;
493   SmallVector<size_t, 0> indexes;
494   DenseSet<size_t> seen;
495   auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) {
496     llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin));
497     for (size_t i = begin; i != end; ++i)
498       ret[i] = sections[indexes[i]];
499     sortInputSections(
500         MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin),
501         config->sortSection, SortSectionPolicy::None);
502   };
503 
504   // Collects all sections that satisfy constraints of Cmd.
505   size_t sizeAfterPrevSort = 0;
506   for (const SectionPattern &pat : cmd->sectionPatterns) {
507     size_t sizeBeforeCurrPat = ret.size();
508 
509     for (size_t i = 0, e = sections.size(); i != e; ++i) {
510       // Skip if the section is dead or has been matched by a previous input
511       // section description or a previous pattern.
512       InputSectionBase *sec = sections[i];
513       if (!sec->isLive() || sec->parent || seen.contains(i))
514         continue;
515 
516       // For --emit-relocs we have to ignore entries like
517       //   .rela.dyn : { *(.rela.data) }
518       // which are common because they are in the default bfd script.
519       // We do not ignore SHT_REL[A] linker-synthesized sections here because
520       // want to support scripts that do custom layout for them.
521       if (isa<InputSection>(sec) &&
522           cast<InputSection>(sec)->getRelocatedSection())
523         continue;
524 
525       // Check the name early to improve performance in the common case.
526       if (!pat.sectionPat.match(sec->name))
527         continue;
528 
529       if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) ||
530           (sec->flags & cmd->withFlags) != cmd->withFlags ||
531           (sec->flags & cmd->withoutFlags) != 0)
532         continue;
533 
534       ret.push_back(sec);
535       indexes.push_back(i);
536       seen.insert(i);
537     }
538 
539     if (pat.sortOuter == SortSectionPolicy::Default)
540       continue;
541 
542     // Matched sections are ordered by radix sort with the keys being (SORT*,
543     // --sort-section, input order), where SORT* (if present) is most
544     // significant.
545     //
546     // Matched sections between the previous SORT* and this SORT* are sorted by
547     // (--sort-alignment, input order).
548     sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat);
549     // Matched sections by this SORT* pattern are sorted using all 3 keys.
550     // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we
551     // just sort by sortOuter and sortInner.
552     sortInputSections(
553         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat),
554         pat.sortOuter, pat.sortInner);
555     sizeAfterPrevSort = ret.size();
556   }
557   // Matched sections after the last SORT* are sorted by (--sort-alignment,
558   // input order).
559   sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size());
560   return ret;
561 }
562 
discard(InputSectionBase & s)563 void LinkerScript::discard(InputSectionBase &s) {
564   if (&s == in.shStrTab.get())
565     error("discarding " + s.name + " section is not allowed");
566 
567   s.markDead();
568   s.parent = nullptr;
569   for (InputSection *sec : s.dependentSections)
570     discard(*sec);
571 }
572 
discardSynthetic(OutputSection & outCmd)573 void LinkerScript::discardSynthetic(OutputSection &outCmd) {
574   for (Partition &part : partitions) {
575     if (!part.armExidx || !part.armExidx->isLive())
576       continue;
577     SmallVector<InputSectionBase *, 0> secs(
578         part.armExidx->exidxSections.begin(),
579         part.armExidx->exidxSections.end());
580     for (SectionCommand *cmd : outCmd.commands)
581       if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
582         for (InputSectionBase *s : computeInputSections(isd, secs))
583           discard(*s);
584   }
585 }
586 
587 SmallVector<InputSectionBase *, 0>
createInputSectionList(OutputSection & outCmd)588 LinkerScript::createInputSectionList(OutputSection &outCmd) {
589   SmallVector<InputSectionBase *, 0> ret;
590 
591   for (SectionCommand *cmd : outCmd.commands) {
592     if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
593       isd->sectionBases = computeInputSections(isd, ctx.inputSections);
594       for (InputSectionBase *s : isd->sectionBases)
595         s->parent = &outCmd;
596       ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end());
597     }
598   }
599   return ret;
600 }
601 
602 // Create output sections described by SECTIONS commands.
processSectionCommands()603 void LinkerScript::processSectionCommands() {
604   auto process = [this](OutputSection *osec) {
605     SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec);
606 
607     // The output section name `/DISCARD/' is special.
608     // Any input section assigned to it is discarded.
609     if (osec->name == "/DISCARD/") {
610       for (InputSectionBase *s : v)
611         discard(*s);
612       discardSynthetic(*osec);
613       osec->commands.clear();
614       return false;
615     }
616 
617     // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
618     // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
619     // sections satisfy a given constraint. If not, a directive is handled
620     // as if it wasn't present from the beginning.
621     //
622     // Because we'll iterate over SectionCommands many more times, the easy
623     // way to "make it as if it wasn't present" is to make it empty.
624     if (!matchConstraints(v, osec->constraint)) {
625       for (InputSectionBase *s : v)
626         s->parent = nullptr;
627       osec->commands.clear();
628       return false;
629     }
630 
631     // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
632     // is given, input sections are aligned to that value, whether the
633     // given value is larger or smaller than the original section alignment.
634     if (osec->subalignExpr) {
635       uint32_t subalign = osec->subalignExpr().getValue();
636       for (InputSectionBase *s : v)
637         s->addralign = subalign;
638     }
639 
640     // Set the partition field the same way OutputSection::recordSection()
641     // does. Partitions cannot be used with the SECTIONS command, so this is
642     // always 1.
643     osec->partition = 1;
644     return true;
645   };
646 
647   // Process OVERWRITE_SECTIONS first so that it can overwrite the main script
648   // or orphans.
649   DenseMap<CachedHashStringRef, OutputDesc *> map;
650   size_t i = 0;
651   for (OutputDesc *osd : overwriteSections) {
652     OutputSection *osec = &osd->osec;
653     if (process(osec) &&
654         !map.try_emplace(CachedHashStringRef(osec->name), osd).second)
655       warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name);
656   }
657   for (SectionCommand *&base : sectionCommands)
658     if (auto *osd = dyn_cast<OutputDesc>(base)) {
659       OutputSection *osec = &osd->osec;
660       if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) {
661         log(overwrite->osec.location + " overwrites " + osec->name);
662         overwrite->osec.sectionIndex = i++;
663         base = overwrite;
664       } else if (process(osec)) {
665         osec->sectionIndex = i++;
666       }
667     }
668 
669   // If an OVERWRITE_SECTIONS specified output section is not in
670   // sectionCommands, append it to the end. The section will be inserted by
671   // orphan placement.
672   for (OutputDesc *osd : overwriteSections)
673     if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX)
674       sectionCommands.push_back(osd);
675 }
676 
processSymbolAssignments()677 void LinkerScript::processSymbolAssignments() {
678   // Dot outside an output section still represents a relative address, whose
679   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
680   // that fills the void outside a section. It has an index of one, which is
681   // indistinguishable from any other regular section index.
682   aether = make<OutputSection>("", 0, SHF_ALLOC);
683   aether->sectionIndex = 1;
684 
685   // `st` captures the local AddressState and makes it accessible deliberately.
686   // This is needed as there are some cases where we cannot just thread the
687   // current state through to a lambda function created by the script parser.
688   AddressState st;
689   state = &st;
690   st.outSec = aether;
691 
692   for (SectionCommand *cmd : sectionCommands) {
693     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
694       addSymbol(assign);
695     else
696       for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
697         if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
698           addSymbol(assign);
699   }
700 
701   state = nullptr;
702 }
703 
findByName(ArrayRef<SectionCommand * > vec,StringRef name)704 static OutputSection *findByName(ArrayRef<SectionCommand *> vec,
705                                  StringRef name) {
706   for (SectionCommand *cmd : vec)
707     if (auto *osd = dyn_cast<OutputDesc>(cmd))
708       if (osd->osec.name == name)
709         return &osd->osec;
710   return nullptr;
711 }
712 
createSection(InputSectionBase * isec,StringRef outsecName)713 static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) {
714   OutputDesc *osd = script->createOutputSection(outsecName, "<internal>");
715   osd->osec.recordSection(isec);
716   return osd;
717 }
718 
addInputSec(StringMap<TinyPtrVector<OutputSection * >> & map,InputSectionBase * isec,StringRef outsecName)719 static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
720                                InputSectionBase *isec, StringRef outsecName) {
721   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
722   // option is given. A section with SHT_GROUP defines a "section group", and
723   // its members have SHF_GROUP attribute. Usually these flags have already been
724   // stripped by InputFiles.cpp as section groups are processed and uniquified.
725   // However, for the -r option, we want to pass through all section groups
726   // as-is because adding/removing members or merging them with other groups
727   // change their semantics.
728   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
729     return createSection(isec, outsecName);
730 
731   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
732   // relocation sections .rela.foo and .rela.bar for example. Most tools do
733   // not allow multiple REL[A] sections for output section. Hence we
734   // should combine these relocation sections into single output.
735   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
736   // other REL[A] sections created by linker itself.
737   if (!isa<SyntheticSection>(isec) &&
738       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
739     auto *sec = cast<InputSection>(isec);
740     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
741 
742     if (out->relocationSection) {
743       out->relocationSection->recordSection(sec);
744       return nullptr;
745     }
746 
747     OutputDesc *osd = createSection(isec, outsecName);
748     out->relocationSection = &osd->osec;
749     return osd;
750   }
751 
752   //  The ELF spec just says
753   // ----------------------------------------------------------------
754   // In the first phase, input sections that match in name, type and
755   // attribute flags should be concatenated into single sections.
756   // ----------------------------------------------------------------
757   //
758   // However, it is clear that at least some flags have to be ignored for
759   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
760   // ignored. We should not have two output .text sections just because one was
761   // in a group and another was not for example.
762   //
763   // It also seems that wording was a late addition and didn't get the
764   // necessary scrutiny.
765   //
766   // Merging sections with different flags is expected by some users. One
767   // reason is that if one file has
768   //
769   // int *const bar __attribute__((section(".foo"))) = (int *)0;
770   //
771   // gcc with -fPIC will produce a read only .foo section. But if another
772   // file has
773   //
774   // int zed;
775   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
776   //
777   // gcc with -fPIC will produce a read write section.
778   //
779   // Last but not least, when using linker script the merge rules are forced by
780   // the script. Unfortunately, linker scripts are name based. This means that
781   // expressions like *(.foo*) can refer to multiple input sections with
782   // different flags. We cannot put them in different output sections or we
783   // would produce wrong results for
784   //
785   // start = .; *(.foo.*) end = .; *(.bar)
786   //
787   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
788   // another. The problem is that there is no way to layout those output
789   // sections such that the .foo sections are the only thing between the start
790   // and end symbols.
791   //
792   // Given the above issues, we instead merge sections by name and error on
793   // incompatible types and flags.
794   TinyPtrVector<OutputSection *> &v = map[outsecName];
795   for (OutputSection *sec : v) {
796     if (sec->partition != isec->partition)
797       continue;
798 
799     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
800       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
801       // change their semantics, so we only merge them in -r links if they will
802       // end up being linked to the same output section. The casts are fine
803       // because everything in the map was created by the orphan placement code.
804       auto *firstIsec = cast<InputSectionBase>(
805           cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]);
806       OutputSection *firstIsecOut =
807           firstIsec->flags & SHF_LINK_ORDER
808               ? firstIsec->getLinkOrderDep()->getOutputSection()
809               : nullptr;
810       if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection())
811         continue;
812     }
813 
814     sec->recordSection(isec);
815     return nullptr;
816   }
817 
818   OutputDesc *osd = createSection(isec, outsecName);
819   v.push_back(&osd->osec);
820   return osd;
821 }
822 
823 // Add sections that didn't match any sections command.
addOrphanSections()824 void LinkerScript::addOrphanSections() {
825   StringMap<TinyPtrVector<OutputSection *>> map;
826   SmallVector<OutputDesc *, 0> v;
827 
828   auto add = [&](InputSectionBase *s) {
829     if (s->isLive() && !s->parent) {
830       orphanSections.push_back(s);
831 
832       StringRef name = getOutputSectionName(s);
833       if (config->unique) {
834         v.push_back(createSection(s, name));
835       } else if (OutputSection *sec = findByName(sectionCommands, name)) {
836         sec->recordSection(s);
837       } else {
838         if (OutputDesc *osd = addInputSec(map, s, name))
839           v.push_back(osd);
840         assert(isa<MergeInputSection>(s) ||
841                s->getOutputSection()->sectionIndex == UINT32_MAX);
842       }
843     }
844   };
845 
846   // For further --emit-reloc handling code we need target output section
847   // to be created before we create relocation output section, so we want
848   // to create target sections first. We do not want priority handling
849   // for synthetic sections because them are special.
850   size_t n = 0;
851   for (InputSectionBase *isec : ctx.inputSections) {
852     // Process InputSection and MergeInputSection.
853     if (LLVM_LIKELY(isa<InputSection>(isec)))
854       ctx.inputSections[n++] = isec;
855 
856     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
857     // sections because we need to know the parent's output section before we
858     // can select an output section for the SHF_LINK_ORDER section.
859     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
860       continue;
861 
862     if (auto *sec = dyn_cast<InputSection>(isec))
863       if (InputSectionBase *rel = sec->getRelocatedSection())
864         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
865           add(relIS);
866     add(isec);
867     if (config->relocatable)
868       for (InputSectionBase *depSec : isec->dependentSections)
869         if (depSec->flags & SHF_LINK_ORDER)
870           add(depSec);
871   }
872   // Keep just InputSection.
873   ctx.inputSections.resize(n);
874 
875   // If no SECTIONS command was given, we should insert sections commands
876   // before others, so that we can handle scripts which refers them,
877   // for example: "foo = ABSOLUTE(ADDR(.text)));".
878   // When SECTIONS command is present we just add all orphans to the end.
879   if (hasSectionsCommand)
880     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
881   else
882     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
883 }
884 
diagnoseOrphanHandling() const885 void LinkerScript::diagnoseOrphanHandling() const {
886   llvm::TimeTraceScope timeScope("Diagnose orphan sections");
887   if (config->orphanHandling == OrphanHandlingPolicy::Place)
888     return;
889   for (const InputSectionBase *sec : orphanSections) {
890     // Input SHT_REL[A] retained by --emit-relocs are ignored by
891     // computeInputSections(). Don't warn/error.
892     if (isa<InputSection>(sec) &&
893         cast<InputSection>(sec)->getRelocatedSection())
894       continue;
895 
896     StringRef name = getOutputSectionName(sec);
897     if (config->orphanHandling == OrphanHandlingPolicy::Error)
898       error(toString(sec) + " is being placed in '" + name + "'");
899     else
900       warn(toString(sec) + " is being placed in '" + name + "'");
901   }
902 }
903 
904 // This function searches for a memory region to place the given output
905 // section in. If found, a pointer to the appropriate memory region is
906 // returned in the first member of the pair. Otherwise, a nullptr is returned.
907 // The second member of the pair is a hint that should be passed to the
908 // subsequent call of this method.
909 std::pair<MemoryRegion *, MemoryRegion *>
findMemoryRegion(OutputSection * sec,MemoryRegion * hint)910 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) {
911   // Non-allocatable sections are not part of the process image.
912   if (!(sec->flags & SHF_ALLOC)) {
913     if (!sec->memoryRegionName.empty())
914       warn("ignoring memory region assignment for non-allocatable section '" +
915            sec->name + "'");
916     return {nullptr, nullptr};
917   }
918 
919   // If a memory region name was specified in the output section command,
920   // then try to find that region first.
921   if (!sec->memoryRegionName.empty()) {
922     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
923       return {m, m};
924     error("memory region '" + sec->memoryRegionName + "' not declared");
925     return {nullptr, nullptr};
926   }
927 
928   // If at least one memory region is defined, all sections must
929   // belong to some memory region. Otherwise, we don't need to do
930   // anything for memory regions.
931   if (memoryRegions.empty())
932     return {nullptr, nullptr};
933 
934   // An orphan section should continue the previous memory region.
935   if (sec->sectionIndex == UINT32_MAX && hint)
936     return {hint, hint};
937 
938   // See if a region can be found by matching section flags.
939   for (auto &pair : memoryRegions) {
940     MemoryRegion *m = pair.second;
941     if (m->compatibleWith(sec->flags))
942       return {m, nullptr};
943   }
944 
945   // Otherwise, no suitable region was found.
946   error("no memory region specified for section '" + sec->name + "'");
947   return {nullptr, nullptr};
948 }
949 
findFirstSection(PhdrEntry * load)950 static OutputSection *findFirstSection(PhdrEntry *load) {
951   for (OutputSection *sec : outputSections)
952     if (sec->ptLoad == load)
953       return sec;
954   return nullptr;
955 }
956 
957 // This function assigns offsets to input sections and an output section
958 // for a single sections command (e.g. ".text { *(.text); }").
assignOffsets(OutputSection * sec)959 void LinkerScript::assignOffsets(OutputSection *sec) {
960   const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS;
961   const bool sameMemRegion = state->memRegion == sec->memRegion;
962   const bool prevLMARegionIsDefault = state->lmaRegion == nullptr;
963   const uint64_t savedDot = dot;
964   state->memRegion = sec->memRegion;
965   state->lmaRegion = sec->lmaRegion;
966 
967   if (!(sec->flags & SHF_ALLOC)) {
968     // Non-SHF_ALLOC sections have zero addresses.
969     dot = 0;
970   } else if (isTbss) {
971     // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range
972     // starts from the end address of the previous tbss section.
973     if (state->tbssAddr == 0)
974       state->tbssAddr = dot;
975     else
976       dot = state->tbssAddr;
977   } else {
978     if (state->memRegion)
979       dot = state->memRegion->curPos;
980     if (sec->addrExpr)
981       setDot(sec->addrExpr, sec->location, false);
982 
983     // If the address of the section has been moved forward by an explicit
984     // expression so that it now starts past the current curPos of the enclosing
985     // region, we need to expand the current region to account for the space
986     // between the previous section, if any, and the start of this section.
987     if (state->memRegion && state->memRegion->curPos < dot)
988       expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos,
989                          sec->name);
990   }
991 
992   // This section was previously a call to switchTo(), but switchTo()
993   // was unrolled here.
994   // On OpenBSD, we had consistently moved the call to switchTo()
995   // below the next section.
996   state->outSec = sec;
997   if (sec->addrExpr && script->hasSectionsCommand) {
998     // The alignment is ignored.
999     sec->addr = dot;
1000   } else {
1001     // sec->alignment is the max of ALIGN and the maximum of input
1002     // section alignments.
1003     const uint64_t pos = dot;
1004     dot = alignToPowerOf2(dot, sec->addralign);
1005     sec->addr = dot;
1006     expandMemoryRegions(dot - pos);
1007   }
1008 
1009   // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT()
1010   // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA
1011   // region is the default, and the two sections are in the same memory region,
1012   // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
1013   // heuristics described in
1014   // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
1015   if (sec->lmaExpr) {
1016     state->lmaOffset = sec->lmaExpr().getValue() - dot;
1017   } else if (MemoryRegion *mr = sec->lmaRegion) {
1018     uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign);
1019     if (mr->curPos < lmaStart)
1020       expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name);
1021     state->lmaOffset = lmaStart - dot;
1022   } else if (!sameMemRegion || !prevLMARegionIsDefault) {
1023     state->lmaOffset = 0;
1024   }
1025 
1026   // On OpenBSD, the switchTo() call was here.
1027 
1028   // Propagate state->lmaOffset to the first "non-header" section.
1029   if (PhdrEntry *l = sec->ptLoad)
1030     if (sec == findFirstSection(l))
1031       l->lmaOffset = state->lmaOffset;
1032 
1033   // We can call this method multiple times during the creation of
1034   // thunks and want to start over calculation each time.
1035   sec->size = 0;
1036 
1037   // We visited SectionsCommands from processSectionCommands to
1038   // layout sections. Now, we visit SectionsCommands again to fix
1039   // section offsets.
1040   for (SectionCommand *cmd : sec->commands) {
1041     // This handles the assignments to symbol or to the dot.
1042     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1043       assign->addr = dot;
1044       assignSymbol(assign, true);
1045       assign->size = dot - assign->addr;
1046       continue;
1047     }
1048 
1049     // Handle BYTE(), SHORT(), LONG(), or QUAD().
1050     if (auto *data = dyn_cast<ByteCommand>(cmd)) {
1051       data->offset = dot - sec->addr;
1052       dot += data->size;
1053       expandOutputSection(data->size);
1054       continue;
1055     }
1056 
1057     // Handle a single input section description command.
1058     // It calculates and assigns the offsets for each section and also
1059     // updates the output section size.
1060     for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) {
1061       assert(isec->getParent() == sec);
1062       const uint64_t pos = dot;
1063       dot = alignToPowerOf2(dot, isec->addralign);
1064       isec->outSecOff = dot - sec->addr;
1065       dot += isec->getSize();
1066 
1067       // Update output section size after adding each section. This is so that
1068       // SIZEOF works correctly in the case below:
1069       // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
1070       expandOutputSection(dot - pos);
1071     }
1072   }
1073 
1074   // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections
1075   // as they are not part of the process image.
1076   if (!(sec->flags & SHF_ALLOC)) {
1077     dot = savedDot;
1078   } else if (isTbss) {
1079     // NOBITS TLS sections are similar. Additionally save the end address.
1080     state->tbssAddr = dot;
1081     dot = savedDot;
1082   }
1083 }
1084 
isDiscardable(const OutputSection & sec)1085 static bool isDiscardable(const OutputSection &sec) {
1086   if (sec.name == "/DISCARD/")
1087     return true;
1088 
1089   // We do not want to remove OutputSections with expressions that reference
1090   // symbols even if the OutputSection is empty. We want to ensure that the
1091   // expressions can be evaluated and report an error if they cannot.
1092   if (sec.expressionsUseSymbols)
1093     return false;
1094 
1095   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
1096   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
1097   // to maintain the integrity of the other Expression.
1098   if (sec.usedInExpression)
1099     return false;
1100 
1101   for (SectionCommand *cmd : sec.commands) {
1102     if (auto assign = dyn_cast<SymbolAssignment>(cmd))
1103       // Don't create empty output sections just for unreferenced PROVIDE
1104       // symbols.
1105       if (assign->name != "." && !assign->sym)
1106         continue;
1107 
1108     if (!isa<InputSectionDescription>(*cmd))
1109       return false;
1110   }
1111   return true;
1112 }
1113 
isDiscarded(const OutputSection * sec) const1114 bool LinkerScript::isDiscarded(const OutputSection *sec) const {
1115   return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) &&
1116          isDiscardable(*sec);
1117 }
1118 
maybePropagatePhdrs(OutputSection & sec,SmallVector<StringRef,0> & phdrs)1119 static void maybePropagatePhdrs(OutputSection &sec,
1120                                 SmallVector<StringRef, 0> &phdrs) {
1121   if (sec.phdrs.empty()) {
1122     // To match the bfd linker script behaviour, only propagate program
1123     // headers to sections that are allocated.
1124     if (sec.flags & SHF_ALLOC)
1125       sec.phdrs = phdrs;
1126   } else {
1127     phdrs = sec.phdrs;
1128   }
1129 }
1130 
adjustOutputSections()1131 void LinkerScript::adjustOutputSections() {
1132   // If the output section contains only symbol assignments, create a
1133   // corresponding output section. The issue is what to do with linker script
1134   // like ".foo : { symbol = 42; }". One option would be to convert it to
1135   // "symbol = 42;". That is, move the symbol out of the empty section
1136   // description. That seems to be what bfd does for this simple case. The
1137   // problem is that this is not completely general. bfd will give up and
1138   // create a dummy section too if there is a ". = . + 1" inside the section
1139   // for example.
1140   // Given that we want to create the section, we have to worry what impact
1141   // it will have on the link. For example, if we just create a section with
1142   // 0 for flags, it would change which PT_LOADs are created.
1143   // We could remember that particular section is dummy and ignore it in
1144   // other parts of the linker, but unfortunately there are quite a few places
1145   // that would need to change:
1146   //   * The program header creation.
1147   //   * The orphan section placement.
1148   //   * The address assignment.
1149   // The other option is to pick flags that minimize the impact the section
1150   // will have on the rest of the linker. That is why we copy the flags from
1151   // the previous sections. Only a few flags are needed to keep the impact low.
1152   uint64_t flags = SHF_ALLOC;
1153 
1154   SmallVector<StringRef, 0> defPhdrs;
1155   for (SectionCommand *&cmd : sectionCommands) {
1156     if (!isa<OutputDesc>(cmd))
1157       continue;
1158     auto *sec = &cast<OutputDesc>(cmd)->osec;
1159 
1160     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
1161     if (sec->alignExpr)
1162       sec->addralign =
1163           std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue());
1164 
1165     bool isEmpty = (getFirstInputSection(sec) == nullptr);
1166     bool discardable = isEmpty && isDiscardable(*sec);
1167     // If sec has at least one input section and not discarded, remember its
1168     // flags to be inherited by subsequent output sections. (sec may contain
1169     // just one empty synthetic section.)
1170     if (sec->hasInputSections && !discardable)
1171       flags = sec->flags;
1172 
1173     // We do not want to keep any special flags for output section
1174     // in case it is empty.
1175     if (isEmpty)
1176       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
1177                             SHF_WRITE | SHF_EXECINSTR);
1178 
1179     // The code below may remove empty output sections. We should save the
1180     // specified program headers (if exist) and propagate them to subsequent
1181     // sections which do not specify program headers.
1182     // An example of such a linker script is:
1183     // SECTIONS { .empty : { *(.empty) } :rw
1184     //            .foo : { *(.foo) } }
1185     // Note: at this point the order of output sections has not been finalized,
1186     // because orphans have not been inserted into their expected positions. We
1187     // will handle them in adjustSectionsAfterSorting().
1188     if (sec->sectionIndex != UINT32_MAX)
1189       maybePropagatePhdrs(*sec, defPhdrs);
1190 
1191     if (discardable) {
1192       sec->markDead();
1193       cmd = nullptr;
1194     }
1195   }
1196 
1197   // It is common practice to use very generic linker scripts. So for any
1198   // given run some of the output sections in the script will be empty.
1199   // We could create corresponding empty output sections, but that would
1200   // clutter the output.
1201   // We instead remove trivially empty sections. The bfd linker seems even
1202   // more aggressive at removing them.
1203   llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; });
1204 }
1205 
adjustSectionsAfterSorting()1206 void LinkerScript::adjustSectionsAfterSorting() {
1207   // Try and find an appropriate memory region to assign offsets in.
1208   MemoryRegion *hint = nullptr;
1209   for (SectionCommand *cmd : sectionCommands) {
1210     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1211       OutputSection *sec = &osd->osec;
1212       if (!sec->lmaRegionName.empty()) {
1213         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1214           sec->lmaRegion = m;
1215         else
1216           error("memory region '" + sec->lmaRegionName + "' not declared");
1217       }
1218       std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint);
1219     }
1220   }
1221 
1222   // If output section command doesn't specify any segments,
1223   // and we haven't previously assigned any section to segment,
1224   // then we simply assign section to the very first load segment.
1225   // Below is an example of such linker script:
1226   // PHDRS { seg PT_LOAD; }
1227   // SECTIONS { .aaa : { *(.aaa) } }
1228   SmallVector<StringRef, 0> defPhdrs;
1229   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1230     return cmd.type == PT_LOAD;
1231   });
1232   if (firstPtLoad != phdrsCommands.end())
1233     defPhdrs.push_back(firstPtLoad->name);
1234 
1235   // Walk the commands and propagate the program headers to commands that don't
1236   // explicitly specify them.
1237   for (SectionCommand *cmd : sectionCommands)
1238     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1239       maybePropagatePhdrs(osd->osec, defPhdrs);
1240 }
1241 
computeBase(uint64_t min,bool allocateHeaders)1242 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1243   // If there is no SECTIONS or if the linkerscript is explicit about program
1244   // headers, do our best to allocate them.
1245   if (!script->hasSectionsCommand || allocateHeaders)
1246     return 0;
1247   // Otherwise only allocate program headers if that would not add a page.
1248   return alignDown(min, config->maxPageSize);
1249 }
1250 
1251 // When the SECTIONS command is used, try to find an address for the file and
1252 // program headers output sections, which can be added to the first PT_LOAD
1253 // segment when program headers are created.
1254 //
1255 // We check if the headers fit below the first allocated section. If there isn't
1256 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1257 // and we'll also remove the PT_PHDR segment.
allocateHeaders(SmallVector<PhdrEntry *,0> & phdrs)1258 void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) {
1259   uint64_t min = std::numeric_limits<uint64_t>::max();
1260   for (OutputSection *sec : outputSections)
1261     if (sec->flags & SHF_ALLOC)
1262       min = std::min<uint64_t>(min, sec->addr);
1263 
1264   auto it = llvm::find_if(
1265       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1266   if (it == phdrs.end())
1267     return;
1268   PhdrEntry *firstPTLoad = *it;
1269 
1270   bool hasExplicitHeaders =
1271       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1272         return cmd.hasPhdrs || cmd.hasFilehdr;
1273       });
1274   bool paged = !config->omagic && !config->nmagic;
1275   uint64_t headerSize = getHeaderSize();
1276   if ((paged || hasExplicitHeaders) &&
1277       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1278     min = alignDown(min - headerSize, config->maxPageSize);
1279     Out::elfHeader->addr = min;
1280     Out::programHeaders->addr = min + Out::elfHeader->size;
1281     return;
1282   }
1283 
1284   // Error if we were explicitly asked to allocate headers.
1285   if (hasExplicitHeaders)
1286     error("could not allocate headers");
1287 
1288   Out::elfHeader->ptLoad = nullptr;
1289   Out::programHeaders->ptLoad = nullptr;
1290   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1291 
1292   llvm::erase_if(phdrs,
1293                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1294 }
1295 
AddressState()1296 LinkerScript::AddressState::AddressState() {
1297   for (auto &mri : script->memoryRegions) {
1298     MemoryRegion *mr = mri.second;
1299     mr->curPos = (mr->origin)().getValue();
1300   }
1301 }
1302 
1303 // Here we assign addresses as instructed by linker script SECTIONS
1304 // sub-commands. Doing that allows us to use final VA values, so here
1305 // we also handle rest commands like symbol assignments and ASSERTs.
1306 // Returns a symbol that has changed its section or value, or nullptr if no
1307 // symbol has changed.
assignAddresses()1308 const Defined *LinkerScript::assignAddresses() {
1309   if (script->hasSectionsCommand) {
1310     // With a linker script, assignment of addresses to headers is covered by
1311     // allocateHeaders().
1312     dot = config->imageBase.value_or(0);
1313   } else {
1314     // Assign addresses to headers right now.
1315     dot = target->getImageBase();
1316     Out::elfHeader->addr = dot;
1317     Out::programHeaders->addr = dot + Out::elfHeader->size;
1318     dot += getHeaderSize();
1319   }
1320 
1321   AddressState st;
1322   state = &st;
1323   errorOnMissingSection = true;
1324   st.outSec = aether;
1325 
1326   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1327   for (SectionCommand *cmd : sectionCommands) {
1328     if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1329       assign->addr = dot;
1330       assignSymbol(assign, false);
1331       assign->size = dot - assign->addr;
1332       continue;
1333     }
1334     assignOffsets(&cast<OutputDesc>(cmd)->osec);
1335   }
1336 
1337   state = nullptr;
1338   return getChangedSymbolAssignment(oldValues);
1339 }
1340 
1341 // Creates program headers as instructed by PHDRS linker script command.
createPhdrs()1342 SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() {
1343   SmallVector<PhdrEntry *, 0> ret;
1344 
1345   // Process PHDRS and FILEHDR keywords because they are not
1346   // real output sections and cannot be added in the following loop.
1347   for (const PhdrsCommand &cmd : phdrsCommands) {
1348     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R));
1349 
1350     if (cmd.hasFilehdr)
1351       phdr->add(Out::elfHeader);
1352     if (cmd.hasPhdrs)
1353       phdr->add(Out::programHeaders);
1354 
1355     if (cmd.lmaExpr) {
1356       phdr->p_paddr = cmd.lmaExpr().getValue();
1357       phdr->hasLMA = true;
1358     }
1359     ret.push_back(phdr);
1360   }
1361 
1362   // Add output sections to program headers.
1363   for (OutputSection *sec : outputSections) {
1364     // Assign headers specified by linker script
1365     for (size_t id : getPhdrIndices(sec)) {
1366       ret[id]->add(sec);
1367       if (!phdrsCommands[id].flags)
1368         ret[id]->p_flags |= sec->getPhdrFlags();
1369     }
1370   }
1371   return ret;
1372 }
1373 
1374 // Returns true if we should emit an .interp section.
1375 //
1376 // We usually do. But if PHDRS commands are given, and
1377 // no PT_INTERP is there, there's no place to emit an
1378 // .interp, so we don't do that in that case.
needsInterpSection()1379 bool LinkerScript::needsInterpSection() {
1380   if (phdrsCommands.empty())
1381     return true;
1382   for (PhdrsCommand &cmd : phdrsCommands)
1383     if (cmd.type == PT_INTERP)
1384       return true;
1385   return false;
1386 }
1387 
getSymbolValue(StringRef name,const Twine & loc)1388 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1389   if (name == ".") {
1390     if (state)
1391       return {state->outSec, false, dot - state->outSec->addr, loc};
1392     error(loc + ": unable to get location counter value");
1393     return 0;
1394   }
1395 
1396   if (Symbol *sym = symtab.find(name)) {
1397     if (auto *ds = dyn_cast<Defined>(sym)) {
1398       ExprValue v{ds->section, false, ds->value, loc};
1399       // Retain the original st_type, so that the alias will get the same
1400       // behavior in relocation processing. Any operation will reset st_type to
1401       // STT_NOTYPE.
1402       v.type = ds->type;
1403       return v;
1404     }
1405     if (isa<SharedSymbol>(sym))
1406       if (!errorOnMissingSection)
1407         return {nullptr, false, 0, loc};
1408   }
1409 
1410   error(loc + ": symbol not found: " + name);
1411   return 0;
1412 }
1413 
1414 // Returns the index of the segment named Name.
getPhdrIndex(ArrayRef<PhdrsCommand> vec,StringRef name)1415 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1416                                           StringRef name) {
1417   for (size_t i = 0; i < vec.size(); ++i)
1418     if (vec[i].name == name)
1419       return i;
1420   return std::nullopt;
1421 }
1422 
1423 // Returns indices of ELF headers containing specific section. Each index is a
1424 // zero based number of ELF header listed within PHDRS {} script block.
getPhdrIndices(OutputSection * cmd)1425 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1426   SmallVector<size_t, 0> ret;
1427 
1428   for (StringRef s : cmd->phdrs) {
1429     if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1430       ret.push_back(*idx);
1431     else if (s != "NONE")
1432       error(cmd->location + ": program header '" + s +
1433             "' is not listed in PHDRS");
1434   }
1435   return ret;
1436 }
1437