1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <iterator>
43 #include <utility>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "phi-node-elimination"
48 
49 static cl::opt<bool>
50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51                      cl::Hidden, cl::desc("Disable critical edge splitting "
52                                           "during PHI elimination"));
53 
54 static cl::opt<bool>
55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56                       cl::Hidden, cl::desc("Split all critical edges during "
57                                            "PHI elimination"));
58 
59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
62 
63 namespace {
64 
65   class PHIElimination : public MachineFunctionPass {
66     MachineRegisterInfo *MRI = nullptr; // Machine register information
67     LiveVariables *LV = nullptr;
68     LiveIntervals *LIS = nullptr;
69 
70   public:
71     static char ID; // Pass identification, replacement for typeid
72 
PHIElimination()73     PHIElimination() : MachineFunctionPass(ID) {
74       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78     void getAnalysisUsage(AnalysisUsage &AU) const override;
79 
80   private:
81     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82     /// in predecessor basic blocks.
83     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
84 
85     void LowerPHINode(MachineBasicBlock &MBB,
86                       MachineBasicBlock::iterator LastPHIIt);
87 
88     /// analyzePHINodes - Gather information about the PHI nodes in
89     /// here. In particular, we want to map the number of uses of a virtual
90     /// register which is used in a PHI node. We map that to the BB the
91     /// vreg is coming from. This is used later to determine when the vreg
92     /// is killed in the BB.
93     void analyzePHINodes(const MachineFunction& MF);
94 
95     /// Split critical edges where necessary for good coalescer performance.
96     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
97                        MachineLoopInfo *MLI,
98                        std::vector<SparseBitVector<>> *LiveInSets);
99 
100     // These functions are temporary abstractions around LiveVariables and
101     // LiveIntervals, so they can go away when LiveVariables does.
102     bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
103     bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
104 
105     using BBVRegPair = std::pair<unsigned, Register>;
106     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107 
108     // Count the number of non-undef PHI uses of each register in each BB.
109     VRegPHIUse VRegPHIUseCount;
110 
111     // Defs of PHI sources which are implicit_def.
112     SmallPtrSet<MachineInstr*, 4> ImpDefs;
113 
114     // Map reusable lowered PHI node -> incoming join register.
115     using LoweredPHIMap =
116         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117     LoweredPHIMap LoweredPHIs;
118   };
119 
120 } // end anonymous namespace
121 
122 STATISTIC(NumLowered, "Number of phis lowered");
123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124 STATISTIC(NumReused, "Number of reused lowered phis");
125 
126 char PHIElimination::ID = 0;
127 
128 char& llvm::PHIEliminationID = PHIElimination::ID;
129 
130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131                       "Eliminate PHI nodes for register allocation",
132                       false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)133 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135                     "Eliminate PHI nodes for register allocation", false, false)
136 
137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138   AU.addUsedIfAvailable<LiveVariables>();
139   AU.addPreserved<LiveVariables>();
140   AU.addPreserved<SlotIndexes>();
141   AU.addPreserved<LiveIntervals>();
142   AU.addPreserved<MachineDominatorTree>();
143   AU.addPreserved<MachineLoopInfo>();
144   MachineFunctionPass::getAnalysisUsage(AU);
145 }
146 
runOnMachineFunction(MachineFunction & MF)147 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148   MRI = &MF.getRegInfo();
149   LV = getAnalysisIfAvailable<LiveVariables>();
150   LIS = getAnalysisIfAvailable<LiveIntervals>();
151 
152   bool Changed = false;
153 
154   // Split critical edges to help the coalescer.
155   if (!DisableEdgeSplitting && (LV || LIS)) {
156     // A set of live-in regs for each MBB which is used to update LV
157     // efficiently also with large functions.
158     std::vector<SparseBitVector<>> LiveInSets;
159     if (LV) {
160       LiveInSets.resize(MF.size());
161       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
162         // Set the bit for this register for each MBB where it is
163         // live-through or live-in (killed).
164         Register VirtReg = Register::index2VirtReg(Index);
165         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
166         if (!DefMI)
167           continue;
168         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
169         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
170         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
171         while (AliveBlockItr != EndItr) {
172           unsigned BlockNum = *(AliveBlockItr++);
173           LiveInSets[BlockNum].set(Index);
174         }
175         // The register is live into an MBB in which it is killed but not
176         // defined. See comment for VarInfo in LiveVariables.h.
177         MachineBasicBlock *DefMBB = DefMI->getParent();
178         if (VI.Kills.size() > 1 ||
179             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
180           for (auto *MI : VI.Kills)
181             LiveInSets[MI->getParent()->getNumber()].set(Index);
182       }
183     }
184 
185     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
186     for (auto &MBB : MF)
187       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
188   }
189 
190   // This pass takes the function out of SSA form.
191   MRI->leaveSSA();
192 
193   // Populate VRegPHIUseCount
194   analyzePHINodes(MF);
195 
196   // Eliminate PHI instructions by inserting copies into predecessor blocks.
197   for (auto &MBB : MF)
198     Changed |= EliminatePHINodes(MF, MBB);
199 
200   // Remove dead IMPLICIT_DEF instructions.
201   for (MachineInstr *DefMI : ImpDefs) {
202     Register DefReg = DefMI->getOperand(0).getReg();
203     if (MRI->use_nodbg_empty(DefReg)) {
204       if (LIS)
205         LIS->RemoveMachineInstrFromMaps(*DefMI);
206       DefMI->eraseFromParent();
207     }
208   }
209 
210   // Clean up the lowered PHI instructions.
211   for (auto &I : LoweredPHIs) {
212     if (LIS)
213       LIS->RemoveMachineInstrFromMaps(*I.first);
214     MF.deleteMachineInstr(I.first);
215   }
216 
217   // TODO: we should use the incremental DomTree updater here.
218   if (Changed)
219     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
220       MDT->getBase().recalculate(MF);
221 
222   LoweredPHIs.clear();
223   ImpDefs.clear();
224   VRegPHIUseCount.clear();
225 
226   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
227 
228   return Changed;
229 }
230 
231 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
232 /// predecessor basic blocks.
EliminatePHINodes(MachineFunction & MF,MachineBasicBlock & MBB)233 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
234                                        MachineBasicBlock &MBB) {
235   if (MBB.empty() || !MBB.front().isPHI())
236     return false;   // Quick exit for basic blocks without PHIs.
237 
238   // Get an iterator to the last PHI node.
239   MachineBasicBlock::iterator LastPHIIt =
240     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
241 
242   while (MBB.front().isPHI())
243     LowerPHINode(MBB, LastPHIIt);
244 
245   return true;
246 }
247 
248 /// Return true if all defs of VirtReg are implicit-defs.
249 /// This includes registers with no defs.
isImplicitlyDefined(unsigned VirtReg,const MachineRegisterInfo & MRI)250 static bool isImplicitlyDefined(unsigned VirtReg,
251                                 const MachineRegisterInfo &MRI) {
252   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
253     if (!DI.isImplicitDef())
254       return false;
255   return true;
256 }
257 
258 /// Return true if all sources of the phi node are implicit_def's, or undef's.
allPhiOperandsUndefined(const MachineInstr & MPhi,const MachineRegisterInfo & MRI)259 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
260                                     const MachineRegisterInfo &MRI) {
261   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
262     const MachineOperand &MO = MPhi.getOperand(I);
263     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
264       return false;
265   }
266   return true;
267 }
268 /// LowerPHINode - Lower the PHI node at the top of the specified block.
LowerPHINode(MachineBasicBlock & MBB,MachineBasicBlock::iterator LastPHIIt)269 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
270                                   MachineBasicBlock::iterator LastPHIIt) {
271   ++NumLowered;
272 
273   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
274 
275   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
276   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
277 
278   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
279   Register DestReg = MPhi->getOperand(0).getReg();
280   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
281   bool isDead = MPhi->getOperand(0).isDead();
282 
283   // Create a new register for the incoming PHI arguments.
284   MachineFunction &MF = *MBB.getParent();
285   unsigned IncomingReg = 0;
286   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
287 
288   // Insert a register to register copy at the top of the current block (but
289   // after any remaining phi nodes) which copies the new incoming register
290   // into the phi node destination.
291   MachineInstr *PHICopy = nullptr;
292   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
293   if (allPhiOperandsUndefined(*MPhi, *MRI))
294     // If all sources of a PHI node are implicit_def or undef uses, just emit an
295     // implicit_def instead of a copy.
296     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
297             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
298   else {
299     // Can we reuse an earlier PHI node? This only happens for critical edges,
300     // typically those created by tail duplication.
301     unsigned &entry = LoweredPHIs[MPhi];
302     if (entry) {
303       // An identical PHI node was already lowered. Reuse the incoming register.
304       IncomingReg = entry;
305       reusedIncoming = true;
306       ++NumReused;
307       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
308                         << *MPhi);
309     } else {
310       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
311       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
312     }
313     // Give the target possiblity to handle special cases fallthrough otherwise
314     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
315                                   IncomingReg, DestReg);
316   }
317 
318   if (MPhi->peekDebugInstrNum()) {
319     // If referred to by debug-info, store where this PHI was.
320     MachineFunction *MF = MBB.getParent();
321     unsigned ID = MPhi->peekDebugInstrNum();
322     auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
323     auto Res = MF->DebugPHIPositions.insert({ID, P});
324     assert(Res.second);
325     (void)Res;
326   }
327 
328   // Update live variable information if there is any.
329   if (LV) {
330     if (IncomingReg) {
331       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
332 
333       MachineInstr *OldKill = nullptr;
334       bool IsPHICopyAfterOldKill = false;
335 
336       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
337         // Calculate whether the PHICopy is after the OldKill.
338         // In general, the PHICopy is inserted as the first non-phi instruction
339         // by default, so it's before the OldKill. But some Target hooks for
340         // createPHIDestinationCopy() may modify the default insert position of
341         // PHICopy.
342         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
343              I != E; ++I) {
344           if (I == PHICopy)
345             break;
346 
347           if (I == OldKill) {
348             IsPHICopyAfterOldKill = true;
349             break;
350           }
351         }
352       }
353 
354       // When we are reusing the incoming register and it has been marked killed
355       // by OldKill, if the PHICopy is after the OldKill, we should remove the
356       // killed flag from OldKill.
357       if (IsPHICopyAfterOldKill) {
358         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
359         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
360         LLVM_DEBUG(MBB.dump());
361       }
362 
363       // Add information to LiveVariables to know that the first used incoming
364       // value or the resued incoming value whose PHICopy is after the OldKIll
365       // is killed. Note that because the value is defined in several places
366       // (once each for each incoming block), the "def" block and instruction
367       // fields for the VarInfo is not filled in.
368       if (!OldKill || IsPHICopyAfterOldKill)
369         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
370     }
371 
372     // Since we are going to be deleting the PHI node, if it is the last use of
373     // any registers, or if the value itself is dead, we need to move this
374     // information over to the new copy we just inserted.
375     LV->removeVirtualRegistersKilled(*MPhi);
376 
377     // If the result is dead, update LV.
378     if (isDead) {
379       LV->addVirtualRegisterDead(DestReg, *PHICopy);
380       LV->removeVirtualRegisterDead(DestReg, *MPhi);
381     }
382   }
383 
384   // Update LiveIntervals for the new copy or implicit def.
385   if (LIS) {
386     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
387 
388     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
389     if (IncomingReg) {
390       // Add the region from the beginning of MBB to the copy instruction to
391       // IncomingReg's live interval.
392       LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg);
393       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
394       if (!IncomingVNI)
395         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
396                                               LIS->getVNInfoAllocator());
397       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
398                                                   DestCopyIndex.getRegSlot(),
399                                                   IncomingVNI));
400     }
401 
402     LiveInterval &DestLI = LIS->getInterval(DestReg);
403     assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals.");
404 
405     SlotIndex NewStart = DestCopyIndex.getRegSlot();
406 
407     SmallVector<LiveRange *> ToUpdate({&DestLI});
408     for (auto &SR : DestLI.subranges())
409       ToUpdate.push_back(&SR);
410 
411     for (auto LR : ToUpdate) {
412       auto DestSegment = LR->find(MBBStartIndex);
413       assert(DestSegment != LR->end() &&
414              "PHI destination must be live in block");
415 
416       if (LR->endIndex().isDead()) {
417         // A dead PHI's live range begins and ends at the start of the MBB, but
418         // the lowered copy, which will still be dead, needs to begin and end at
419         // the copy instruction.
420         VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start);
421         assert(OrigDestVNI && "PHI destination should be live at block entry.");
422         LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot());
423         LR->createDeadDef(NewStart, LIS->getVNInfoAllocator());
424         LR->removeValNo(OrigDestVNI);
425         continue;
426       }
427 
428       // Destination copies are not inserted in the same order as the PHI nodes
429       // they replace. Hence the start of the live range may need to be adjusted
430       // to match the actual slot index of the copy.
431       if (DestSegment->start > NewStart) {
432         VNInfo *VNI = LR->getVNInfoAt(DestSegment->start);
433         assert(VNI && "value should be defined for known segment");
434         LR->addSegment(
435             LiveInterval::Segment(NewStart, DestSegment->start, VNI));
436       } else if (DestSegment->start < NewStart) {
437         assert(DestSegment->start >= MBBStartIndex);
438         assert(DestSegment->end >= DestCopyIndex.getRegSlot());
439         LR->removeSegment(DestSegment->start, NewStart);
440       }
441       VNInfo *DestVNI = LR->getVNInfoAt(NewStart);
442       assert(DestVNI && "PHI destination should be live at its definition.");
443       DestVNI->def = NewStart;
444     }
445   }
446 
447   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
448   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
449     if (!MPhi->getOperand(i).isUndef()) {
450       --VRegPHIUseCount[BBVRegPair(
451           MPhi->getOperand(i + 1).getMBB()->getNumber(),
452           MPhi->getOperand(i).getReg())];
453     }
454   }
455 
456   // Now loop over all of the incoming arguments, changing them to copy into the
457   // IncomingReg register in the corresponding predecessor basic block.
458   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
459   for (int i = NumSrcs - 1; i >= 0; --i) {
460     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
461     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
462     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
463       isImplicitlyDefined(SrcReg, *MRI);
464     assert(SrcReg.isVirtual() &&
465            "Machine PHI Operands must all be virtual registers!");
466 
467     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
468     // path the PHI.
469     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
470 
471     // Check to make sure we haven't already emitted the copy for this block.
472     // This can happen because PHI nodes may have multiple entries for the same
473     // basic block.
474     if (!MBBsInsertedInto.insert(&opBlock).second)
475       continue;  // If the copy has already been emitted, we're done.
476 
477     MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
478     if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
479       assert(SrcRegDef->getOperand(0).isReg() &&
480              SrcRegDef->getOperand(0).isDef() &&
481              "Expected operand 0 to be a reg def!");
482       // Now that the PHI's use has been removed (as the instruction was
483       // removed) there should be no other uses of the SrcReg.
484       assert(MRI->use_empty(SrcReg) &&
485              "Expected a single use from UnspillableTerminator");
486       SrcRegDef->getOperand(0).setReg(IncomingReg);
487 
488       // Update LiveVariables.
489       if (LV) {
490         LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
491         LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
492         IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
493         SrcVI.AliveBlocks.clear();
494       }
495 
496       continue;
497     }
498 
499     // Find a safe location to insert the copy, this may be the first terminator
500     // in the block (or end()).
501     MachineBasicBlock::iterator InsertPos =
502       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
503 
504     // Insert the copy.
505     MachineInstr *NewSrcInstr = nullptr;
506     if (!reusedIncoming && IncomingReg) {
507       if (SrcUndef) {
508         // The source register is undefined, so there is no need for a real
509         // COPY, but we still need to ensure joint dominance by defs.
510         // Insert an IMPLICIT_DEF instruction.
511         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
512                               TII->get(TargetOpcode::IMPLICIT_DEF),
513                               IncomingReg);
514 
515         // Clean up the old implicit-def, if there even was one.
516         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
517           if (DefMI->isImplicitDef())
518             ImpDefs.insert(DefMI);
519       } else {
520         // Delete the debug location, since the copy is inserted into a
521         // different basic block.
522         NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
523                                                SrcReg, SrcSubReg, IncomingReg);
524       }
525     }
526 
527     // We only need to update the LiveVariables kill of SrcReg if this was the
528     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
529     // out of the predecessor. We can also ignore undef sources.
530     if (LV && !SrcUndef &&
531         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
532         !LV->isLiveOut(SrcReg, opBlock)) {
533       // We want to be able to insert a kill of the register if this PHI (aka,
534       // the copy we just inserted) is the last use of the source value. Live
535       // variable analysis conservatively handles this by saying that the value
536       // is live until the end of the block the PHI entry lives in. If the value
537       // really is dead at the PHI copy, there will be no successor blocks which
538       // have the value live-in.
539 
540       // Okay, if we now know that the value is not live out of the block, we
541       // can add a kill marker in this block saying that it kills the incoming
542       // value!
543 
544       // In our final twist, we have to decide which instruction kills the
545       // register.  In most cases this is the copy, however, terminator
546       // instructions at the end of the block may also use the value. In this
547       // case, we should mark the last such terminator as being the killing
548       // block, not the copy.
549       MachineBasicBlock::iterator KillInst = opBlock.end();
550       for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
551            ++Term) {
552         if (Term->readsRegister(SrcReg))
553           KillInst = Term;
554       }
555 
556       if (KillInst == opBlock.end()) {
557         // No terminator uses the register.
558 
559         if (reusedIncoming || !IncomingReg) {
560           // We may have to rewind a bit if we didn't insert a copy this time.
561           KillInst = InsertPos;
562           while (KillInst != opBlock.begin()) {
563             --KillInst;
564             if (KillInst->isDebugInstr())
565               continue;
566             if (KillInst->readsRegister(SrcReg))
567               break;
568           }
569         } else {
570           // We just inserted this copy.
571           KillInst = NewSrcInstr;
572         }
573       }
574       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
575 
576       // Finally, mark it killed.
577       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
578 
579       // This vreg no longer lives all of the way through opBlock.
580       unsigned opBlockNum = opBlock.getNumber();
581       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
582     }
583 
584     if (LIS) {
585       if (NewSrcInstr) {
586         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
587         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
588       }
589 
590       if (!SrcUndef &&
591           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
592         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
593 
594         bool isLiveOut = false;
595         for (MachineBasicBlock *Succ : opBlock.successors()) {
596           SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
597           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
598 
599           // Definitions by other PHIs are not truly live-in for our purposes.
600           if (VNI && VNI->def != startIdx) {
601             isLiveOut = true;
602             break;
603           }
604         }
605 
606         if (!isLiveOut) {
607           MachineBasicBlock::iterator KillInst = opBlock.end();
608           for (MachineBasicBlock::iterator Term = InsertPos;
609                Term != opBlock.end(); ++Term) {
610             if (Term->readsRegister(SrcReg))
611               KillInst = Term;
612           }
613 
614           if (KillInst == opBlock.end()) {
615             // No terminator uses the register.
616 
617             if (reusedIncoming || !IncomingReg) {
618               // We may have to rewind a bit if we didn't just insert a copy.
619               KillInst = InsertPos;
620               while (KillInst != opBlock.begin()) {
621                 --KillInst;
622                 if (KillInst->isDebugInstr())
623                   continue;
624                 if (KillInst->readsRegister(SrcReg))
625                   break;
626               }
627             } else {
628               // We just inserted this copy.
629               KillInst = std::prev(InsertPos);
630             }
631           }
632           assert(KillInst->readsRegister(SrcReg) &&
633                  "Cannot find kill instruction");
634 
635           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
636           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
637                               LIS->getMBBEndIdx(&opBlock));
638           for (auto &SR : SrcLI.subranges()) {
639             SR.removeSegment(LastUseIndex.getRegSlot(),
640                              LIS->getMBBEndIdx(&opBlock));
641           }
642         }
643       }
644     }
645   }
646 
647   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
648   if (reusedIncoming || !IncomingReg) {
649     if (LIS)
650       LIS->RemoveMachineInstrFromMaps(*MPhi);
651     MF.deleteMachineInstr(MPhi);
652   }
653 }
654 
655 /// analyzePHINodes - Gather information about the PHI nodes in here. In
656 /// particular, we want to map the number of uses of a virtual register which is
657 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
658 /// used later to determine when the vreg is killed in the BB.
analyzePHINodes(const MachineFunction & MF)659 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
660   for (const auto &MBB : MF) {
661     for (const auto &BBI : MBB) {
662       if (!BBI.isPHI())
663         break;
664       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
665         if (!BBI.getOperand(i).isUndef()) {
666           ++VRegPHIUseCount[BBVRegPair(
667               BBI.getOperand(i + 1).getMBB()->getNumber(),
668               BBI.getOperand(i).getReg())];
669         }
670       }
671     }
672   }
673 }
674 
SplitPHIEdges(MachineFunction & MF,MachineBasicBlock & MBB,MachineLoopInfo * MLI,std::vector<SparseBitVector<>> * LiveInSets)675 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
676                                    MachineBasicBlock &MBB,
677                                    MachineLoopInfo *MLI,
678                                    std::vector<SparseBitVector<>> *LiveInSets) {
679   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
680     return false;   // Quick exit for basic blocks without PHIs.
681 
682   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
683   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
684 
685   bool Changed = false;
686   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
687        BBI != BBE && BBI->isPHI(); ++BBI) {
688     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
689       Register Reg = BBI->getOperand(i).getReg();
690       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
691       // Is there a critical edge from PreMBB to MBB?
692       if (PreMBB->succ_size() == 1)
693         continue;
694 
695       // Avoid splitting backedges of loops. It would introduce small
696       // out-of-line blocks into the loop which is very bad for code placement.
697       if (PreMBB == &MBB && !SplitAllCriticalEdges)
698         continue;
699       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
700       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
701         continue;
702 
703       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
704       // when the source register is live-out for some other reason than a phi
705       // use. That means the copy we will insert in PreMBB won't be a kill, and
706       // there is a risk it may not be coalesced away.
707       //
708       // If the copy would be a kill, there is no need to split the edge.
709       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
710       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
711         continue;
712       if (ShouldSplit) {
713         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
714                           << printMBBReference(*PreMBB) << " -> "
715                           << printMBBReference(MBB) << ": " << *BBI);
716       }
717 
718       // If Reg is not live-in to MBB, it means it must be live-in to some
719       // other PreMBB successor, and we can avoid the interference by splitting
720       // the edge.
721       //
722       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
723       // is likely to be left after coalescing. If we are looking at a loop
724       // exiting edge, split it so we won't insert code in the loop, otherwise
725       // don't bother.
726       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
727 
728       // Check for a loop exiting edge.
729       if (!ShouldSplit && CurLoop != PreLoop) {
730         LLVM_DEBUG({
731           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
732           if (PreLoop)
733             dbgs() << "PreLoop: " << *PreLoop;
734           if (CurLoop)
735             dbgs() << "CurLoop: " << *CurLoop;
736         });
737         // This edge could be entering a loop, exiting a loop, or it could be
738         // both: Jumping directly form one loop to the header of a sibling
739         // loop.
740         // Split unless this edge is entering CurLoop from an outer loop.
741         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
742       }
743       if (!ShouldSplit && !SplitAllCriticalEdges)
744         continue;
745       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
746         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
747         continue;
748       }
749       Changed = true;
750       ++NumCriticalEdgesSplit;
751     }
752   }
753   return Changed;
754 }
755 
isLiveIn(Register Reg,const MachineBasicBlock * MBB)756 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
757   assert((LV || LIS) &&
758          "isLiveIn() requires either LiveVariables or LiveIntervals");
759   if (LIS)
760     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
761   else
762     return LV->isLiveIn(Reg, *MBB);
763 }
764 
isLiveOutPastPHIs(Register Reg,const MachineBasicBlock * MBB)765 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
766                                        const MachineBasicBlock *MBB) {
767   assert((LV || LIS) &&
768          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
769   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
770   // so that a register used only in a PHI is not live out of the block. In
771   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
772   // in the predecessor basic block, so that a register used only in a PHI is live
773   // out of the block.
774   if (LIS) {
775     const LiveInterval &LI = LIS->getInterval(Reg);
776     for (const MachineBasicBlock *SI : MBB->successors())
777       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
778         return true;
779     return false;
780   } else {
781     return LV->isLiveOut(Reg, *MBB);
782   }
783 }
784