xref: /linux/include/linux/dma-map-ops.h (revision a6016aac)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * This header is for implementations of dma_map_ops and related code.
4  * It should not be included in drivers just using the DMA API.
5  */
6 #ifndef _LINUX_DMA_MAP_OPS_H
7 #define _LINUX_DMA_MAP_OPS_H
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/pgtable.h>
11 #include <linux/slab.h>
12 
13 struct cma;
14 struct iommu_ops;
15 
16 /*
17  * Values for struct dma_map_ops.flags:
18  *
19  * DMA_F_PCI_P2PDMA_SUPPORTED: Indicates the dma_map_ops implementation can
20  * handle PCI P2PDMA pages in the map_sg/unmap_sg operation.
21  * DMA_F_CAN_SKIP_SYNC: DMA sync operations can be skipped if the device is
22  * coherent and it's not an SWIOTLB buffer.
23  */
24 #define DMA_F_PCI_P2PDMA_SUPPORTED     (1 << 0)
25 #define DMA_F_CAN_SKIP_SYNC            (1 << 1)
26 
27 struct dma_map_ops {
28 	unsigned int flags;
29 
30 	void *(*alloc)(struct device *dev, size_t size,
31 			dma_addr_t *dma_handle, gfp_t gfp,
32 			unsigned long attrs);
33 	void (*free)(struct device *dev, size_t size, void *vaddr,
34 			dma_addr_t dma_handle, unsigned long attrs);
35 	struct page *(*alloc_pages_op)(struct device *dev, size_t size,
36 			dma_addr_t *dma_handle, enum dma_data_direction dir,
37 			gfp_t gfp);
38 	void (*free_pages)(struct device *dev, size_t size, struct page *vaddr,
39 			dma_addr_t dma_handle, enum dma_data_direction dir);
40 	struct sg_table *(*alloc_noncontiguous)(struct device *dev, size_t size,
41 			enum dma_data_direction dir, gfp_t gfp,
42 			unsigned long attrs);
43 	void (*free_noncontiguous)(struct device *dev, size_t size,
44 			struct sg_table *sgt, enum dma_data_direction dir);
45 	int (*mmap)(struct device *, struct vm_area_struct *,
46 			void *, dma_addr_t, size_t, unsigned long attrs);
47 
48 	int (*get_sgtable)(struct device *dev, struct sg_table *sgt,
49 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
50 			unsigned long attrs);
51 
52 	dma_addr_t (*map_page)(struct device *dev, struct page *page,
53 			unsigned long offset, size_t size,
54 			enum dma_data_direction dir, unsigned long attrs);
55 	void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
56 			size_t size, enum dma_data_direction dir,
57 			unsigned long attrs);
58 	/*
59 	 * map_sg should return a negative error code on error. See
60 	 * dma_map_sgtable() for a list of appropriate error codes
61 	 * and their meanings.
62 	 */
63 	int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents,
64 			enum dma_data_direction dir, unsigned long attrs);
65 	void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents,
66 			enum dma_data_direction dir, unsigned long attrs);
67 	dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
68 			size_t size, enum dma_data_direction dir,
69 			unsigned long attrs);
70 	void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
71 			size_t size, enum dma_data_direction dir,
72 			unsigned long attrs);
73 	void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle,
74 			size_t size, enum dma_data_direction dir);
75 	void (*sync_single_for_device)(struct device *dev,
76 			dma_addr_t dma_handle, size_t size,
77 			enum dma_data_direction dir);
78 	void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg,
79 			int nents, enum dma_data_direction dir);
80 	void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg,
81 			int nents, enum dma_data_direction dir);
82 	void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
83 			enum dma_data_direction direction);
84 	int (*dma_supported)(struct device *dev, u64 mask);
85 	u64 (*get_required_mask)(struct device *dev);
86 	size_t (*max_mapping_size)(struct device *dev);
87 	size_t (*opt_mapping_size)(void);
88 	unsigned long (*get_merge_boundary)(struct device *dev);
89 };
90 
91 #ifdef CONFIG_DMA_OPS
92 #include <asm/dma-mapping.h>
93 
get_dma_ops(struct device * dev)94 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
95 {
96 	if (dev->dma_ops)
97 		return dev->dma_ops;
98 	return get_arch_dma_ops();
99 }
100 
set_dma_ops(struct device * dev,const struct dma_map_ops * dma_ops)101 static inline void set_dma_ops(struct device *dev,
102 			       const struct dma_map_ops *dma_ops)
103 {
104 	dev->dma_ops = dma_ops;
105 }
106 #else /* CONFIG_DMA_OPS */
get_dma_ops(struct device * dev)107 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
108 {
109 	return NULL;
110 }
set_dma_ops(struct device * dev,const struct dma_map_ops * dma_ops)111 static inline void set_dma_ops(struct device *dev,
112 			       const struct dma_map_ops *dma_ops)
113 {
114 }
115 #endif /* CONFIG_DMA_OPS */
116 
117 #ifdef CONFIG_DMA_CMA
118 extern struct cma *dma_contiguous_default_area;
119 
dev_get_cma_area(struct device * dev)120 static inline struct cma *dev_get_cma_area(struct device *dev)
121 {
122 	if (dev && dev->cma_area)
123 		return dev->cma_area;
124 	return dma_contiguous_default_area;
125 }
126 
127 void dma_contiguous_reserve(phys_addr_t addr_limit);
128 int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base,
129 		phys_addr_t limit, struct cma **res_cma, bool fixed);
130 
131 struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
132 				       unsigned int order, bool no_warn);
133 bool dma_release_from_contiguous(struct device *dev, struct page *pages,
134 				 int count);
135 struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp);
136 void dma_free_contiguous(struct device *dev, struct page *page, size_t size);
137 
138 void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size);
139 #else /* CONFIG_DMA_CMA */
dev_get_cma_area(struct device * dev)140 static inline struct cma *dev_get_cma_area(struct device *dev)
141 {
142 	return NULL;
143 }
dma_contiguous_reserve(phys_addr_t limit)144 static inline void dma_contiguous_reserve(phys_addr_t limit)
145 {
146 }
dma_contiguous_reserve_area(phys_addr_t size,phys_addr_t base,phys_addr_t limit,struct cma ** res_cma,bool fixed)147 static inline int dma_contiguous_reserve_area(phys_addr_t size,
148 		phys_addr_t base, phys_addr_t limit, struct cma **res_cma,
149 		bool fixed)
150 {
151 	return -ENOSYS;
152 }
dma_alloc_from_contiguous(struct device * dev,size_t count,unsigned int order,bool no_warn)153 static inline struct page *dma_alloc_from_contiguous(struct device *dev,
154 		size_t count, unsigned int order, bool no_warn)
155 {
156 	return NULL;
157 }
dma_release_from_contiguous(struct device * dev,struct page * pages,int count)158 static inline bool dma_release_from_contiguous(struct device *dev,
159 		struct page *pages, int count)
160 {
161 	return false;
162 }
163 /* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */
dma_alloc_contiguous(struct device * dev,size_t size,gfp_t gfp)164 static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size,
165 		gfp_t gfp)
166 {
167 	return NULL;
168 }
dma_free_contiguous(struct device * dev,struct page * page,size_t size)169 static inline void dma_free_contiguous(struct device *dev, struct page *page,
170 		size_t size)
171 {
172 	__free_pages(page, get_order(size));
173 }
174 #endif /* CONFIG_DMA_CMA*/
175 
176 #ifdef CONFIG_DMA_DECLARE_COHERENT
177 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
178 		dma_addr_t device_addr, size_t size);
179 void dma_release_coherent_memory(struct device *dev);
180 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
181 		dma_addr_t *dma_handle, void **ret);
182 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
183 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
184 		void *cpu_addr, size_t size, int *ret);
185 #else
dma_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size)186 static inline int dma_declare_coherent_memory(struct device *dev,
187 		phys_addr_t phys_addr, dma_addr_t device_addr, size_t size)
188 {
189 	return -ENOSYS;
190 }
191 
192 #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
193 #define dma_release_from_dev_coherent(dev, order, vaddr) (0)
194 #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)
dma_release_coherent_memory(struct device * dev)195 static inline void dma_release_coherent_memory(struct device *dev) { }
196 #endif /* CONFIG_DMA_DECLARE_COHERENT */
197 
198 #ifdef CONFIG_DMA_GLOBAL_POOL
199 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
200 		dma_addr_t *dma_handle);
201 int dma_release_from_global_coherent(int order, void *vaddr);
202 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
203 		size_t size, int *ret);
204 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size);
205 #else
dma_alloc_from_global_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle)206 static inline void *dma_alloc_from_global_coherent(struct device *dev,
207 		ssize_t size, dma_addr_t *dma_handle)
208 {
209 	return NULL;
210 }
dma_release_from_global_coherent(int order,void * vaddr)211 static inline int dma_release_from_global_coherent(int order, void *vaddr)
212 {
213 	return 0;
214 }
dma_mmap_from_global_coherent(struct vm_area_struct * vma,void * cpu_addr,size_t size,int * ret)215 static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
216 		void *cpu_addr, size_t size, int *ret)
217 {
218 	return 0;
219 }
220 #endif /* CONFIG_DMA_GLOBAL_POOL */
221 
222 /*
223  * This is the actual return value from the ->alloc_noncontiguous method.
224  * The users of the DMA API should only care about the sg_table, but to make
225  * the DMA-API internal vmaping and freeing easier we stash away the page
226  * array as well (except for the fallback case).  This can go away any time,
227  * e.g. when a vmap-variant that takes a scatterlist comes along.
228  */
229 struct dma_sgt_handle {
230 	struct sg_table sgt;
231 	struct page **pages;
232 };
233 #define sgt_handle(sgt) \
234 	container_of((sgt), struct dma_sgt_handle, sgt)
235 
236 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
237 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
238 		unsigned long attrs);
239 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
240 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
241 		unsigned long attrs);
242 struct page *dma_common_alloc_pages(struct device *dev, size_t size,
243 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
244 void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr,
245 		dma_addr_t dma_handle, enum dma_data_direction dir);
246 
247 struct page **dma_common_find_pages(void *cpu_addr);
248 void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot,
249 		const void *caller);
250 void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot,
251 		const void *caller);
252 void dma_common_free_remap(void *cpu_addr, size_t size);
253 
254 struct page *dma_alloc_from_pool(struct device *dev, size_t size,
255 		void **cpu_addr, gfp_t flags,
256 		bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t));
257 bool dma_free_from_pool(struct device *dev, void *start, size_t size);
258 
259 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
260 		dma_addr_t dma_start, u64 size);
261 
262 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
263 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
264 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
265 extern bool dma_default_coherent;
dev_is_dma_coherent(struct device * dev)266 static inline bool dev_is_dma_coherent(struct device *dev)
267 {
268 	return dev->dma_coherent;
269 }
270 #else
271 #define dma_default_coherent true
272 
dev_is_dma_coherent(struct device * dev)273 static inline bool dev_is_dma_coherent(struct device *dev)
274 {
275 	return true;
276 }
277 #endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
278 
dma_reset_need_sync(struct device * dev)279 static inline void dma_reset_need_sync(struct device *dev)
280 {
281 #ifdef CONFIG_DMA_NEED_SYNC
282 	/* Reset it only once so that the function can be called on hotpath */
283 	if (unlikely(dev->dma_skip_sync))
284 		dev->dma_skip_sync = false;
285 #endif
286 }
287 
288 /*
289  * Check whether potential kmalloc() buffers are safe for non-coherent DMA.
290  */
dma_kmalloc_safe(struct device * dev,enum dma_data_direction dir)291 static inline bool dma_kmalloc_safe(struct device *dev,
292 				    enum dma_data_direction dir)
293 {
294 	/*
295 	 * If DMA bouncing of kmalloc() buffers is disabled, the kmalloc()
296 	 * caches have already been aligned to a DMA-safe size.
297 	 */
298 	if (!IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
299 		return true;
300 
301 	/*
302 	 * kmalloc() buffers are DMA-safe irrespective of size if the device
303 	 * is coherent or the direction is DMA_TO_DEVICE (non-desctructive
304 	 * cache maintenance and benign cache line evictions).
305 	 */
306 	if (dev_is_dma_coherent(dev) || dir == DMA_TO_DEVICE)
307 		return true;
308 
309 	return false;
310 }
311 
312 /*
313  * Check whether the given size, assuming it is for a kmalloc()'ed buffer, is
314  * sufficiently aligned for non-coherent DMA.
315  */
dma_kmalloc_size_aligned(size_t size)316 static inline bool dma_kmalloc_size_aligned(size_t size)
317 {
318 	/*
319 	 * Larger kmalloc() sizes are guaranteed to be aligned to
320 	 * ARCH_DMA_MINALIGN.
321 	 */
322 	if (size >= 2 * ARCH_DMA_MINALIGN ||
323 	    IS_ALIGNED(kmalloc_size_roundup(size), dma_get_cache_alignment()))
324 		return true;
325 
326 	return false;
327 }
328 
329 /*
330  * Check whether the given object size may have originated from a kmalloc()
331  * buffer with a slab alignment below the DMA-safe alignment and needs
332  * bouncing for non-coherent DMA. The pointer alignment is not considered and
333  * in-structure DMA-safe offsets are the responsibility of the caller. Such
334  * code should use the static ARCH_DMA_MINALIGN for compiler annotations.
335  *
336  * The heuristics can have false positives, bouncing unnecessarily, though the
337  * buffers would be small. False negatives are theoretically possible if, for
338  * example, multiple small kmalloc() buffers are coalesced into a larger
339  * buffer that passes the alignment check. There are no such known constructs
340  * in the kernel.
341  */
dma_kmalloc_needs_bounce(struct device * dev,size_t size,enum dma_data_direction dir)342 static inline bool dma_kmalloc_needs_bounce(struct device *dev, size_t size,
343 					    enum dma_data_direction dir)
344 {
345 	return !dma_kmalloc_safe(dev, dir) && !dma_kmalloc_size_aligned(size);
346 }
347 
348 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
349 		gfp_t gfp, unsigned long attrs);
350 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
351 		dma_addr_t dma_addr, unsigned long attrs);
352 
353 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
354 void arch_dma_set_mask(struct device *dev, u64 mask);
355 #else
356 #define arch_dma_set_mask(dev, mask)	do { } while (0)
357 #endif
358 
359 #ifdef CONFIG_MMU
360 /*
361  * Page protection so that devices that can't snoop CPU caches can use the
362  * memory coherently.  We default to pgprot_noncached which is usually used
363  * for ioremap as a safe bet, but architectures can override this with less
364  * strict semantics if possible.
365  */
366 #ifndef pgprot_dmacoherent
367 #define pgprot_dmacoherent(prot)	pgprot_noncached(prot)
368 #endif
369 
370 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs);
371 #else
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)372 static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot,
373 		unsigned long attrs)
374 {
375 	return prot;	/* no protection bits supported without page tables */
376 }
377 #endif /* CONFIG_MMU */
378 
379 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE
380 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
381 		enum dma_data_direction dir);
382 #else
arch_sync_dma_for_device(phys_addr_t paddr,size_t size,enum dma_data_direction dir)383 static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
384 		enum dma_data_direction dir)
385 {
386 }
387 #endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */
388 
389 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
390 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
391 		enum dma_data_direction dir);
392 #else
arch_sync_dma_for_cpu(phys_addr_t paddr,size_t size,enum dma_data_direction dir)393 static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
394 		enum dma_data_direction dir)
395 {
396 }
397 #endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */
398 
399 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL
400 void arch_sync_dma_for_cpu_all(void);
401 #else
arch_sync_dma_for_cpu_all(void)402 static inline void arch_sync_dma_for_cpu_all(void)
403 {
404 }
405 #endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */
406 
407 #ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT
408 void arch_dma_prep_coherent(struct page *page, size_t size);
409 #else
arch_dma_prep_coherent(struct page * page,size_t size)410 static inline void arch_dma_prep_coherent(struct page *page, size_t size)
411 {
412 }
413 #endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */
414 
415 #ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN
416 void arch_dma_mark_clean(phys_addr_t paddr, size_t size);
417 #else
arch_dma_mark_clean(phys_addr_t paddr,size_t size)418 static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
419 {
420 }
421 #endif /* ARCH_HAS_DMA_MARK_CLEAN */
422 
423 void *arch_dma_set_uncached(void *addr, size_t size);
424 void arch_dma_clear_uncached(void *addr, size_t size);
425 
426 #ifdef CONFIG_ARCH_HAS_DMA_MAP_DIRECT
427 bool arch_dma_map_page_direct(struct device *dev, phys_addr_t addr);
428 bool arch_dma_unmap_page_direct(struct device *dev, dma_addr_t dma_handle);
429 bool arch_dma_map_sg_direct(struct device *dev, struct scatterlist *sg,
430 		int nents);
431 bool arch_dma_unmap_sg_direct(struct device *dev, struct scatterlist *sg,
432 		int nents);
433 #else
434 #define arch_dma_map_page_direct(d, a)		(false)
435 #define arch_dma_unmap_page_direct(d, a)	(false)
436 #define arch_dma_map_sg_direct(d, s, n)		(false)
437 #define arch_dma_unmap_sg_direct(d, s, n)	(false)
438 #endif
439 
440 #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
441 void arch_setup_dma_ops(struct device *dev, bool coherent);
442 #else
arch_setup_dma_ops(struct device * dev,bool coherent)443 static inline void arch_setup_dma_ops(struct device *dev, bool coherent)
444 {
445 }
446 #endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */
447 
448 #ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS
449 void arch_teardown_dma_ops(struct device *dev);
450 #else
arch_teardown_dma_ops(struct device * dev)451 static inline void arch_teardown_dma_ops(struct device *dev)
452 {
453 }
454 #endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */
455 
456 #ifdef CONFIG_DMA_API_DEBUG
457 void dma_debug_add_bus(const struct bus_type *bus);
458 void debug_dma_dump_mappings(struct device *dev);
459 #else
dma_debug_add_bus(const struct bus_type * bus)460 static inline void dma_debug_add_bus(const struct bus_type *bus)
461 {
462 }
debug_dma_dump_mappings(struct device * dev)463 static inline void debug_dma_dump_mappings(struct device *dev)
464 {
465 }
466 #endif /* CONFIG_DMA_API_DEBUG */
467 
468 extern const struct dma_map_ops dma_dummy_ops;
469 
470 enum pci_p2pdma_map_type {
471 	/*
472 	 * PCI_P2PDMA_MAP_UNKNOWN: Used internally for indicating the mapping
473 	 * type hasn't been calculated yet. Functions that return this enum
474 	 * never return this value.
475 	 */
476 	PCI_P2PDMA_MAP_UNKNOWN = 0,
477 
478 	/*
479 	 * PCI_P2PDMA_MAP_NOT_SUPPORTED: Indicates the transaction will
480 	 * traverse the host bridge and the host bridge is not in the
481 	 * allowlist. DMA Mapping routines should return an error when
482 	 * this is returned.
483 	 */
484 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
485 
486 	/*
487 	 * PCI_P2PDMA_BUS_ADDR: Indicates that two devices can talk to
488 	 * each other directly through a PCI switch and the transaction will
489 	 * not traverse the host bridge. Such a mapping should program
490 	 * the DMA engine with PCI bus addresses.
491 	 */
492 	PCI_P2PDMA_MAP_BUS_ADDR,
493 
494 	/*
495 	 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: Indicates two devices can talk
496 	 * to each other, but the transaction traverses a host bridge on the
497 	 * allowlist. In this case, a normal mapping either with CPU physical
498 	 * addresses (in the case of dma-direct) or IOVA addresses (in the
499 	 * case of IOMMUs) should be used to program the DMA engine.
500 	 */
501 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
502 };
503 
504 struct pci_p2pdma_map_state {
505 	struct dev_pagemap *pgmap;
506 	int map;
507 	u64 bus_off;
508 };
509 
510 #ifdef CONFIG_PCI_P2PDMA
511 enum pci_p2pdma_map_type
512 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
513 		       struct scatterlist *sg);
514 #else /* CONFIG_PCI_P2PDMA */
515 static inline enum pci_p2pdma_map_type
pci_p2pdma_map_segment(struct pci_p2pdma_map_state * state,struct device * dev,struct scatterlist * sg)516 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
517 		       struct scatterlist *sg)
518 {
519 	return PCI_P2PDMA_MAP_NOT_SUPPORTED;
520 }
521 #endif /* CONFIG_PCI_P2PDMA */
522 
523 #endif /* _LINUX_DMA_MAP_OPS_H */
524