xref: /qemu/target/arm/tcg/mte_helper.c (revision 74781c08)
1 /*
2  * ARM v8.5-MemTag Operations
3  *
4  * Copyright (c) 2020 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/page-protection.h"
26 #include "exec/ram_addr.h"
27 #include "exec/cpu_ldst.h"
28 #include "exec/helper-proto.h"
29 #include "hw/core/tcg-cpu-ops.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 
33 
choose_nonexcluded_tag(int tag,int offset,uint16_t exclude)34 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
35 {
36     if (exclude == 0xffff) {
37         return 0;
38     }
39     if (offset == 0) {
40         while (exclude & (1 << tag)) {
41             tag = (tag + 1) & 15;
42         }
43     } else {
44         do {
45             do {
46                 tag = (tag + 1) & 15;
47             } while (exclude & (1 << tag));
48         } while (--offset > 0);
49     }
50     return tag;
51 }
52 
53 /**
54  * allocation_tag_mem_probe:
55  * @env: the cpu environment
56  * @ptr_mmu_idx: the addressing regime to use for the virtual address
57  * @ptr: the virtual address for which to look up tag memory
58  * @ptr_access: the access to use for the virtual address
59  * @ptr_size: the number of bytes in the normal memory access
60  * @tag_access: the access to use for the tag memory
61  * @probe: true to merely probe, never taking an exception
62  * @ra: the return address for exception handling
63  *
64  * Our tag memory is formatted as a sequence of little-endian nibbles.
65  * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
66  * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
67  * for the higher addr.
68  *
69  * Here, resolve the physical address from the virtual address, and return
70  * a pointer to the corresponding tag byte.
71  *
72  * If there is no tag storage corresponding to @ptr, return NULL.
73  *
74  * If the page is inaccessible for @ptr_access, or has a watchpoint, there are
75  * three options:
76  * (1) probe = true, ra = 0 : pure probe -- we return NULL if the page is not
77  *     accessible, and do not take watchpoint traps. The calling code must
78  *     handle those cases in the right priority compared to MTE traps.
79  * (2) probe = false, ra = 0 : probe, no fault expected -- the caller guarantees
80  *     that the page is going to be accessible. We will take watchpoint traps.
81  * (3) probe = false, ra != 0 : non-probe -- we will take both memory access
82  *     traps and watchpoint traps.
83  * (probe = true, ra != 0 is invalid and will assert.)
84  */
allocation_tag_mem_probe(CPUARMState * env,int ptr_mmu_idx,uint64_t ptr,MMUAccessType ptr_access,int ptr_size,MMUAccessType tag_access,bool probe,uintptr_t ra)85 static uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx,
86                                          uint64_t ptr, MMUAccessType ptr_access,
87                                          int ptr_size, MMUAccessType tag_access,
88                                          bool probe, uintptr_t ra)
89 {
90 #ifdef CONFIG_USER_ONLY
91     uint64_t clean_ptr = useronly_clean_ptr(ptr);
92     int flags = page_get_flags(clean_ptr);
93     uint8_t *tags;
94     uintptr_t index;
95 
96     assert(!(probe && ra));
97 
98     if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
99         cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
100                               !(flags & PAGE_VALID), ra);
101     }
102 
103     /* Require both MAP_ANON and PROT_MTE for the page. */
104     if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
105         return NULL;
106     }
107 
108     tags = page_get_target_data(clean_ptr);
109 
110     index = extract32(ptr, LOG2_TAG_GRANULE + 1,
111                       TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
112     return tags + index;
113 #else
114     CPUTLBEntryFull *full;
115     MemTxAttrs attrs;
116     int in_page, flags;
117     hwaddr ptr_paddr, tag_paddr, xlat;
118     MemoryRegion *mr;
119     ARMASIdx tag_asi;
120     AddressSpace *tag_as;
121     void *host;
122 
123     /*
124      * Probe the first byte of the virtual address.  This raises an
125      * exception for inaccessible pages, and resolves the virtual address
126      * into the softmmu tlb.
127      *
128      * When RA == 0, this is either a pure probe or a no-fault-expected probe.
129      * Indicate to probe_access_flags no-fault, then either return NULL
130      * for the pure probe, or assert that we received a valid page for the
131      * no-fault-expected probe.
132      */
133     flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
134                               ra == 0, &host, &full, ra);
135     if (probe && (flags & TLB_INVALID_MASK)) {
136         return NULL;
137     }
138     assert(!(flags & TLB_INVALID_MASK));
139 
140     /* If the virtual page MemAttr != Tagged, access unchecked. */
141     if (full->extra.arm.pte_attrs != 0xf0) {
142         return NULL;
143     }
144 
145     /*
146      * If not backed by host ram, there is no tag storage: access unchecked.
147      * This is probably a guest os bug though, so log it.
148      */
149     if (unlikely(flags & TLB_MMIO)) {
150         qemu_log_mask(LOG_GUEST_ERROR,
151                       "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
152                       "but is not backed by host ram\n", ptr);
153         return NULL;
154     }
155 
156     /*
157      * Remember these values across the second lookup below,
158      * which may invalidate this pointer via tlb resize.
159      */
160     ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
161     attrs = full->attrs;
162     full = NULL;
163 
164     /*
165      * The Normal memory access can extend to the next page.  E.g. a single
166      * 8-byte access to the last byte of a page will check only the last
167      * tag on the first page.
168      * Any page access exception has priority over tag check exception.
169      */
170     in_page = -(ptr | TARGET_PAGE_MASK);
171     if (unlikely(ptr_size > in_page)) {
172         flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
173                                    ptr_mmu_idx, ra == 0, &host, &full, ra);
174         assert(!(flags & TLB_INVALID_MASK));
175     }
176 
177     /* Any debug exception has priority over a tag check exception. */
178     if (!probe && unlikely(flags & TLB_WATCHPOINT)) {
179         int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
180         assert(ra != 0);
181         cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
182     }
183 
184     /* Convert to the physical address in tag space.  */
185     tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
186 
187     /* Look up the address in tag space. */
188     tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
189     tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
190     mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
191                                  tag_access == MMU_DATA_STORE, attrs);
192 
193     /*
194      * Note that @mr will never be NULL.  If there is nothing in the address
195      * space at @tag_paddr, the translation will return the unallocated memory
196      * region.  For our purposes, the result must be ram.
197      */
198     if (unlikely(!memory_region_is_ram(mr))) {
199         /* ??? Failure is a board configuration error. */
200         qemu_log_mask(LOG_UNIMP,
201                       "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
202                       "Normal Memory @ 0x%" HWADDR_PRIx "\n",
203                       tag_paddr, ptr_paddr);
204         return NULL;
205     }
206 
207     /*
208      * Ensure the tag memory is dirty on write, for migration.
209      * Tag memory can never contain code or display memory (vga).
210      */
211     if (tag_access == MMU_DATA_STORE) {
212         ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
213         cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
214     }
215 
216     return memory_region_get_ram_ptr(mr) + xlat;
217 #endif
218 }
219 
allocation_tag_mem(CPUARMState * env,int ptr_mmu_idx,uint64_t ptr,MMUAccessType ptr_access,int ptr_size,MMUAccessType tag_access,uintptr_t ra)220 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
221                                    uint64_t ptr, MMUAccessType ptr_access,
222                                    int ptr_size, MMUAccessType tag_access,
223                                    uintptr_t ra)
224 {
225     return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access,
226                                     ptr_size, tag_access, false, ra);
227 }
228 
HELPER(irg)229 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
230 {
231     uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
232     int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
233     int start = extract32(env->cp15.rgsr_el1, 0, 4);
234     int seed = extract32(env->cp15.rgsr_el1, 8, 16);
235     int offset, i, rtag;
236 
237     /*
238      * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
239      * deterministic algorithm.  Except that with RRND==1 the kernel is
240      * not required to have set RGSR_EL1.SEED != 0, which is required for
241      * the deterministic algorithm to function.  So we force a non-zero
242      * SEED for that case.
243      */
244     if (unlikely(seed == 0) && rrnd) {
245         do {
246             Error *err = NULL;
247             uint16_t two;
248 
249             if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
250                 /*
251                  * Failed, for unknown reasons in the crypto subsystem.
252                  * Best we can do is log the reason and use a constant seed.
253                  */
254                 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
255                               error_get_pretty(err));
256                 error_free(err);
257                 two = 1;
258             }
259             seed = two;
260         } while (seed == 0);
261     }
262 
263     /* RandomTag */
264     for (i = offset = 0; i < 4; ++i) {
265         /* NextRandomTagBit */
266         int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
267                    extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
268         seed = (top << 15) | (seed >> 1);
269         offset |= top << i;
270     }
271     rtag = choose_nonexcluded_tag(start, offset, exclude);
272     env->cp15.rgsr_el1 = rtag | (seed << 8);
273 
274     return address_with_allocation_tag(rn, rtag);
275 }
276 
HELPER(addsubg)277 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
278                          int32_t offset, uint32_t tag_offset)
279 {
280     int start_tag = allocation_tag_from_addr(ptr);
281     uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
282     int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
283 
284     return address_with_allocation_tag(ptr + offset, rtag);
285 }
286 
load_tag1(uint64_t ptr,uint8_t * mem)287 static int load_tag1(uint64_t ptr, uint8_t *mem)
288 {
289     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
290     return extract32(*mem, ofs, 4);
291 }
292 
HELPER(ldg)293 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
294 {
295     int mmu_idx = arm_env_mmu_index(env);
296     uint8_t *mem;
297     int rtag = 0;
298 
299     /* Trap if accessing an invalid page.  */
300     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
301                              MMU_DATA_LOAD, GETPC());
302 
303     /* Load if page supports tags. */
304     if (mem) {
305         rtag = load_tag1(ptr, mem);
306     }
307 
308     return address_with_allocation_tag(xt, rtag);
309 }
310 
check_tag_aligned(CPUARMState * env,uint64_t ptr,uintptr_t ra)311 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
312 {
313     if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
314         arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
315                                     arm_env_mmu_index(env), ra);
316         g_assert_not_reached();
317     }
318 }
319 
320 /* For use in a non-parallel context, store to the given nibble.  */
store_tag1(uint64_t ptr,uint8_t * mem,int tag)321 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
322 {
323     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
324     *mem = deposit32(*mem, ofs, 4, tag);
325 }
326 
327 /* For use in a parallel context, atomically store to the given nibble.  */
store_tag1_parallel(uint64_t ptr,uint8_t * mem,int tag)328 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
329 {
330     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
331     uint8_t old = qatomic_read(mem);
332 
333     while (1) {
334         uint8_t new = deposit32(old, ofs, 4, tag);
335         uint8_t cmp = qatomic_cmpxchg(mem, old, new);
336         if (likely(cmp == old)) {
337             return;
338         }
339         old = cmp;
340     }
341 }
342 
343 typedef void stg_store1(uint64_t, uint8_t *, int);
344 
do_stg(CPUARMState * env,uint64_t ptr,uint64_t xt,uintptr_t ra,stg_store1 store1)345 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
346                           uintptr_t ra, stg_store1 store1)
347 {
348     int mmu_idx = arm_env_mmu_index(env);
349     uint8_t *mem;
350 
351     check_tag_aligned(env, ptr, ra);
352 
353     /* Trap if accessing an invalid page.  */
354     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
355                              MMU_DATA_STORE, ra);
356 
357     /* Store if page supports tags. */
358     if (mem) {
359         store1(ptr, mem, allocation_tag_from_addr(xt));
360     }
361 }
362 
HELPER(stg)363 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
364 {
365     do_stg(env, ptr, xt, GETPC(), store_tag1);
366 }
367 
HELPER(stg_parallel)368 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
369 {
370     do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
371 }
372 
HELPER(stg_stub)373 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
374 {
375     int mmu_idx = arm_env_mmu_index(env);
376     uintptr_t ra = GETPC();
377 
378     check_tag_aligned(env, ptr, ra);
379     probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
380 }
381 
do_st2g(CPUARMState * env,uint64_t ptr,uint64_t xt,uintptr_t ra,stg_store1 store1)382 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
383                            uintptr_t ra, stg_store1 store1)
384 {
385     int mmu_idx = arm_env_mmu_index(env);
386     int tag = allocation_tag_from_addr(xt);
387     uint8_t *mem1, *mem2;
388 
389     check_tag_aligned(env, ptr, ra);
390 
391     /*
392      * Trap if accessing an invalid page(s).
393      * This takes priority over !allocation_tag_access_enabled.
394      */
395     if (ptr & TAG_GRANULE) {
396         /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
397         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
398                                   TAG_GRANULE, MMU_DATA_STORE, ra);
399         mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
400                                   MMU_DATA_STORE, TAG_GRANULE,
401                                   MMU_DATA_STORE, ra);
402 
403         /* Store if page(s) support tags. */
404         if (mem1) {
405             store1(TAG_GRANULE, mem1, tag);
406         }
407         if (mem2) {
408             store1(0, mem2, tag);
409         }
410     } else {
411         /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
412         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
413                                   2 * TAG_GRANULE, MMU_DATA_STORE, ra);
414         if (mem1) {
415             tag |= tag << 4;
416             qatomic_set(mem1, tag);
417         }
418     }
419 }
420 
HELPER(st2g)421 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
422 {
423     do_st2g(env, ptr, xt, GETPC(), store_tag1);
424 }
425 
HELPER(st2g_parallel)426 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
427 {
428     do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
429 }
430 
HELPER(st2g_stub)431 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
432 {
433     int mmu_idx = arm_env_mmu_index(env);
434     uintptr_t ra = GETPC();
435     int in_page = -(ptr | TARGET_PAGE_MASK);
436 
437     check_tag_aligned(env, ptr, ra);
438 
439     if (likely(in_page >= 2 * TAG_GRANULE)) {
440         probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
441     } else {
442         probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
443         probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
444     }
445 }
446 
HELPER(ldgm)447 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
448 {
449     int mmu_idx = arm_env_mmu_index(env);
450     uintptr_t ra = GETPC();
451     int gm_bs = env_archcpu(env)->gm_blocksize;
452     int gm_bs_bytes = 4 << gm_bs;
453     void *tag_mem;
454     uint64_t ret;
455     int shift;
456 
457     ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
458 
459     /* Trap if accessing an invalid page.  */
460     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
461                                  gm_bs_bytes, MMU_DATA_LOAD, ra);
462 
463     /* The tag is squashed to zero if the page does not support tags.  */
464     if (!tag_mem) {
465         return 0;
466     }
467 
468     /*
469      * The ordering of elements within the word corresponds to
470      * a little-endian operation.  Computation of shift comes from
471      *
472      *     index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>
473      *     data<index*4+3:index*4> = tag
474      *
475      * Because of the alignment of ptr above, BS=6 has shift=0.
476      * All memory operations are aligned.  Defer support for BS=2,
477      * requiring insertion or extraction of a nibble, until we
478      * support a cpu that requires it.
479      */
480     switch (gm_bs) {
481     case 3:
482         /* 32 bytes -> 2 tags -> 8 result bits */
483         ret = *(uint8_t *)tag_mem;
484         break;
485     case 4:
486         /* 64 bytes -> 4 tags -> 16 result bits */
487         ret = cpu_to_le16(*(uint16_t *)tag_mem);
488         break;
489     case 5:
490         /* 128 bytes -> 8 tags -> 32 result bits */
491         ret = cpu_to_le32(*(uint32_t *)tag_mem);
492         break;
493     case 6:
494         /* 256 bytes -> 16 tags -> 64 result bits */
495         return cpu_to_le64(*(uint64_t *)tag_mem);
496     default:
497         /*
498          * CPU configured with unsupported/invalid gm blocksize.
499          * This is detected early in arm_cpu_realizefn.
500          */
501         g_assert_not_reached();
502     }
503     shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
504     return ret << shift;
505 }
506 
HELPER(stgm)507 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
508 {
509     int mmu_idx = arm_env_mmu_index(env);
510     uintptr_t ra = GETPC();
511     int gm_bs = env_archcpu(env)->gm_blocksize;
512     int gm_bs_bytes = 4 << gm_bs;
513     void *tag_mem;
514     int shift;
515 
516     ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
517 
518     /* Trap if accessing an invalid page.  */
519     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
520                                  gm_bs_bytes, MMU_DATA_LOAD, ra);
521 
522     /*
523      * Tag store only happens if the page support tags,
524      * and if the OS has enabled access to the tags.
525      */
526     if (!tag_mem) {
527         return;
528     }
529 
530     /* See LDGM for comments on BS and on shift.  */
531     shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
532     val >>= shift;
533     switch (gm_bs) {
534     case 3:
535         /* 32 bytes -> 2 tags -> 8 result bits */
536         *(uint8_t *)tag_mem = val;
537         break;
538     case 4:
539         /* 64 bytes -> 4 tags -> 16 result bits */
540         *(uint16_t *)tag_mem = cpu_to_le16(val);
541         break;
542     case 5:
543         /* 128 bytes -> 8 tags -> 32 result bits */
544         *(uint32_t *)tag_mem = cpu_to_le32(val);
545         break;
546     case 6:
547         /* 256 bytes -> 16 tags -> 64 result bits */
548         *(uint64_t *)tag_mem = cpu_to_le64(val);
549         break;
550     default:
551         /* cpu configured with unsupported gm blocksize. */
552         g_assert_not_reached();
553     }
554 }
555 
HELPER(stzgm_tags)556 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
557 {
558     uintptr_t ra = GETPC();
559     int mmu_idx = arm_env_mmu_index(env);
560     int log2_dcz_bytes, log2_tag_bytes;
561     intptr_t dcz_bytes, tag_bytes;
562     uint8_t *mem;
563 
564     /*
565      * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
566      * i.e. 32 bytes, which is an unreasonably small dcz anyway,
567      * to make sure that we can access one complete tag byte here.
568      */
569     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
570     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
571     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
572     tag_bytes = (intptr_t)1 << log2_tag_bytes;
573     ptr &= -dcz_bytes;
574 
575     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
576                              MMU_DATA_STORE, ra);
577     if (mem) {
578         int tag_pair = (val & 0xf) * 0x11;
579         memset(mem, tag_pair, tag_bytes);
580     }
581 }
582 
mte_sync_check_fail(CPUARMState * env,uint32_t desc,uint64_t dirty_ptr,uintptr_t ra)583 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
584                                 uint64_t dirty_ptr, uintptr_t ra)
585 {
586     int is_write, syn;
587 
588     env->exception.vaddress = dirty_ptr;
589 
590     is_write = FIELD_EX32(desc, MTEDESC, WRITE);
591     syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
592                                 0x11);
593     raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
594     g_assert_not_reached();
595 }
596 
mte_async_check_fail(CPUARMState * env,uint64_t dirty_ptr,uintptr_t ra,ARMMMUIdx arm_mmu_idx,int el)597 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
598                                  uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
599 {
600     int select;
601 
602     if (regime_has_2_ranges(arm_mmu_idx)) {
603         select = extract64(dirty_ptr, 55, 1);
604     } else {
605         select = 0;
606     }
607     env->cp15.tfsr_el[el] |= 1 << select;
608 #ifdef CONFIG_USER_ONLY
609     /*
610      * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
611      * which then sends a SIGSEGV when the thread is next scheduled.
612      * This cpu will return to the main loop at the end of the TB,
613      * which is rather sooner than "normal".  But the alternative
614      * is waiting until the next syscall.
615      */
616     qemu_cpu_kick(env_cpu(env));
617 #endif
618 }
619 
620 /* Record a tag check failure.  */
mte_check_fail(CPUARMState * env,uint32_t desc,uint64_t dirty_ptr,uintptr_t ra)621 void mte_check_fail(CPUARMState *env, uint32_t desc,
622                     uint64_t dirty_ptr, uintptr_t ra)
623 {
624     int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
625     ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
626     int el, reg_el, tcf;
627     uint64_t sctlr;
628 
629     reg_el = regime_el(env, arm_mmu_idx);
630     sctlr = env->cp15.sctlr_el[reg_el];
631 
632     switch (arm_mmu_idx) {
633     case ARMMMUIdx_E10_0:
634     case ARMMMUIdx_E20_0:
635         el = 0;
636         tcf = extract64(sctlr, 38, 2);
637         break;
638     default:
639         el = reg_el;
640         tcf = extract64(sctlr, 40, 2);
641     }
642 
643     switch (tcf) {
644     case 1:
645         /* Tag check fail causes a synchronous exception. */
646         mte_sync_check_fail(env, desc, dirty_ptr, ra);
647         break;
648 
649     case 0:
650         /*
651          * Tag check fail does not affect the PE.
652          * We eliminate this case by not setting MTE_ACTIVE
653          * in tb_flags, so that we never make this runtime call.
654          */
655         g_assert_not_reached();
656 
657     case 2:
658         /* Tag check fail causes asynchronous flag set.  */
659         mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
660         break;
661 
662     case 3:
663         /*
664          * Tag check fail causes asynchronous flag set for stores, or
665          * a synchronous exception for loads.
666          */
667         if (FIELD_EX32(desc, MTEDESC, WRITE)) {
668             mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
669         } else {
670             mte_sync_check_fail(env, desc, dirty_ptr, ra);
671         }
672         break;
673     }
674 }
675 
676 /**
677  * checkN:
678  * @tag: tag memory to test
679  * @odd: true to begin testing at tags at odd nibble
680  * @cmp: the tag to compare against
681  * @count: number of tags to test
682  *
683  * Return the number of successful tests.
684  * Thus a return value < @count indicates a failure.
685  *
686  * A note about sizes: count is expected to be small.
687  *
688  * The most common use will be LDP/STP of two integer registers,
689  * which means 16 bytes of memory touching at most 2 tags, but
690  * often the access is aligned and thus just 1 tag.
691  *
692  * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
693  * touching at most 5 tags.  SVE LDR/STR (vector) with the default
694  * vector length is also 64 bytes; the maximum architectural length
695  * is 256 bytes touching at most 9 tags.
696  *
697  * The loop below uses 7 logical operations and 1 memory operation
698  * per tag pair.  An implementation that loads an aligned word and
699  * uses masking to ignore adjacent tags requires 18 logical operations
700  * and thus does not begin to pay off until 6 tags.
701  * Which, according to the survey above, is unlikely to be common.
702  */
checkN(uint8_t * mem,int odd,int cmp,int count)703 static int checkN(uint8_t *mem, int odd, int cmp, int count)
704 {
705     int n = 0, diff;
706 
707     /* Replicate the test tag and compare.  */
708     cmp *= 0x11;
709     diff = *mem++ ^ cmp;
710 
711     if (odd) {
712         goto start_odd;
713     }
714 
715     while (1) {
716         /* Test even tag. */
717         if (unlikely((diff) & 0x0f)) {
718             break;
719         }
720         if (++n == count) {
721             break;
722         }
723 
724     start_odd:
725         /* Test odd tag. */
726         if (unlikely((diff) & 0xf0)) {
727             break;
728         }
729         if (++n == count) {
730             break;
731         }
732 
733         diff = *mem++ ^ cmp;
734     }
735     return n;
736 }
737 
738 /**
739  * checkNrev:
740  * @tag: tag memory to test
741  * @odd: true to begin testing at tags at odd nibble
742  * @cmp: the tag to compare against
743  * @count: number of tags to test
744  *
745  * Return the number of successful tests.
746  * Thus a return value < @count indicates a failure.
747  *
748  * This is like checkN, but it runs backwards, checking the
749  * tags starting with @tag and then the tags preceding it.
750  * This is needed by the backwards-memory-copying operations.
751  */
checkNrev(uint8_t * mem,int odd,int cmp,int count)752 static int checkNrev(uint8_t *mem, int odd, int cmp, int count)
753 {
754     int n = 0, diff;
755 
756     /* Replicate the test tag and compare.  */
757     cmp *= 0x11;
758     diff = *mem-- ^ cmp;
759 
760     if (!odd) {
761         goto start_even;
762     }
763 
764     while (1) {
765         /* Test odd tag. */
766         if (unlikely((diff) & 0xf0)) {
767             break;
768         }
769         if (++n == count) {
770             break;
771         }
772 
773     start_even:
774         /* Test even tag. */
775         if (unlikely((diff) & 0x0f)) {
776             break;
777         }
778         if (++n == count) {
779             break;
780         }
781 
782         diff = *mem-- ^ cmp;
783     }
784     return n;
785 }
786 
787 /**
788  * mte_probe_int() - helper for mte_probe and mte_check
789  * @env: CPU environment
790  * @desc: MTEDESC descriptor
791  * @ptr: virtual address of the base of the access
792  * @fault: return virtual address of the first check failure
793  *
794  * Internal routine for both mte_probe and mte_check.
795  * Return zero on failure, filling in *fault.
796  * Return negative on trivial success for tbi disabled.
797  * Return positive on success with tbi enabled.
798  */
mte_probe_int(CPUARMState * env,uint32_t desc,uint64_t ptr,uintptr_t ra,uint64_t * fault)799 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
800                          uintptr_t ra, uint64_t *fault)
801 {
802     int mmu_idx, ptr_tag, bit55;
803     uint64_t ptr_last, prev_page, next_page;
804     uint64_t tag_first, tag_last;
805     uint32_t sizem1, tag_count, n, c;
806     uint8_t *mem1, *mem2;
807     MMUAccessType type;
808 
809     bit55 = extract64(ptr, 55, 1);
810     *fault = ptr;
811 
812     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
813     if (unlikely(!tbi_check(desc, bit55))) {
814         return -1;
815     }
816 
817     ptr_tag = allocation_tag_from_addr(ptr);
818 
819     if (tcma_check(desc, bit55, ptr_tag)) {
820         return 1;
821     }
822 
823     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
824     type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
825     sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
826 
827     /* Find the addr of the end of the access */
828     ptr_last = ptr + sizem1;
829 
830     /* Round the bounds to the tag granule, and compute the number of tags. */
831     tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
832     tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
833     tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
834 
835     /* Locate the page boundaries. */
836     prev_page = ptr & TARGET_PAGE_MASK;
837     next_page = prev_page + TARGET_PAGE_SIZE;
838 
839     if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
840         /* Memory access stays on one page. */
841         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
842                                   MMU_DATA_LOAD, ra);
843         if (!mem1) {
844             return 1;
845         }
846         /* Perform all of the comparisons. */
847         n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
848     } else {
849         /* Memory access crosses to next page. */
850         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
851                                   MMU_DATA_LOAD, ra);
852 
853         mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
854                                   ptr_last - next_page + 1,
855                                   MMU_DATA_LOAD, ra);
856 
857         /*
858          * Perform all of the comparisons.
859          * Note the possible but unlikely case of the operation spanning
860          * two pages that do not both have tagging enabled.
861          */
862         n = c = (next_page - tag_first) / TAG_GRANULE;
863         if (mem1) {
864             n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
865         }
866         if (n == c) {
867             if (!mem2) {
868                 return 1;
869             }
870             n += checkN(mem2, 0, ptr_tag, tag_count - c);
871         }
872     }
873 
874     if (likely(n == tag_count)) {
875         return 1;
876     }
877 
878     /*
879      * If we failed, we know which granule.  For the first granule, the
880      * failure address is @ptr, the first byte accessed.  Otherwise the
881      * failure address is the first byte of the nth granule.
882      */
883     if (n > 0) {
884         *fault = tag_first + n * TAG_GRANULE;
885     }
886     return 0;
887 }
888 
mte_check(CPUARMState * env,uint32_t desc,uint64_t ptr,uintptr_t ra)889 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
890 {
891     uint64_t fault;
892     int ret = mte_probe_int(env, desc, ptr, ra, &fault);
893 
894     if (unlikely(ret == 0)) {
895         mte_check_fail(env, desc, fault, ra);
896     } else if (ret < 0) {
897         return ptr;
898     }
899     return useronly_clean_ptr(ptr);
900 }
901 
HELPER(mte_check)902 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
903 {
904     /*
905      * R_XCHFJ: Alignment check not caused by memory type is priority 1,
906      * higher than any translation fault.  When MTE is disabled, tcg
907      * performs the alignment check during the code generated for the
908      * memory access.  With MTE enabled, we must check this here before
909      * raising any translation fault in allocation_tag_mem.
910      */
911     unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
912     if (unlikely(align)) {
913         align = (1u << align) - 1;
914         if (unlikely(ptr & align)) {
915             int idx = FIELD_EX32(desc, MTEDESC, MIDX);
916             bool w = FIELD_EX32(desc, MTEDESC, WRITE);
917             MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
918             arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
919         }
920     }
921 
922     return mte_check(env, desc, ptr, GETPC());
923 }
924 
925 /*
926  * No-fault version of mte_check, to be used by SVE for MemSingleNF.
927  * Returns false if the access is Checked and the check failed.  This
928  * is only intended to probe the tag -- the validity of the page must
929  * be checked beforehand.
930  */
mte_probe(CPUARMState * env,uint32_t desc,uint64_t ptr)931 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
932 {
933     uint64_t fault;
934     int ret = mte_probe_int(env, desc, ptr, 0, &fault);
935 
936     return ret != 0;
937 }
938 
939 /*
940  * Perform an MTE checked access for DC_ZVA.
941  */
HELPER(mte_check_zva)942 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
943 {
944     uintptr_t ra = GETPC();
945     int log2_dcz_bytes, log2_tag_bytes;
946     int mmu_idx, bit55;
947     intptr_t dcz_bytes, tag_bytes, i;
948     void *mem;
949     uint64_t ptr_tag, mem_tag, align_ptr;
950 
951     bit55 = extract64(ptr, 55, 1);
952 
953     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
954     if (unlikely(!tbi_check(desc, bit55))) {
955         return ptr;
956     }
957 
958     ptr_tag = allocation_tag_from_addr(ptr);
959 
960     if (tcma_check(desc, bit55, ptr_tag)) {
961         goto done;
962     }
963 
964     /*
965      * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
966      * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
967      * sure that we can access one complete tag byte here.
968      */
969     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
970     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
971     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
972     tag_bytes = (intptr_t)1 << log2_tag_bytes;
973     align_ptr = ptr & -dcz_bytes;
974 
975     /*
976      * Trap if accessing an invalid page.  DC_ZVA requires that we supply
977      * the original pointer for an invalid page.  But watchpoints require
978      * that we probe the actual space.  So do both.
979      */
980     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
981     (void) probe_write(env, ptr, 1, mmu_idx, ra);
982     mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
983                              dcz_bytes, MMU_DATA_LOAD, ra);
984     if (!mem) {
985         goto done;
986     }
987 
988     /*
989      * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
990      * it is quite easy to perform all of the comparisons at once without
991      * any extra masking.
992      *
993      * The most common zva block size is 64; some of the thunderx cpus use
994      * a block size of 128.  For user-only, aarch64_max_initfn will set the
995      * block size to 512.  Fill out the other cases for future-proofing.
996      *
997      * In order to be able to find the first miscompare later, we want the
998      * tag bytes to be in little-endian order.
999      */
1000     switch (log2_tag_bytes) {
1001     case 0: /* zva_blocksize 32 */
1002         mem_tag = *(uint8_t *)mem;
1003         ptr_tag *= 0x11u;
1004         break;
1005     case 1: /* zva_blocksize 64 */
1006         mem_tag = cpu_to_le16(*(uint16_t *)mem);
1007         ptr_tag *= 0x1111u;
1008         break;
1009     case 2: /* zva_blocksize 128 */
1010         mem_tag = cpu_to_le32(*(uint32_t *)mem);
1011         ptr_tag *= 0x11111111u;
1012         break;
1013     case 3: /* zva_blocksize 256 */
1014         mem_tag = cpu_to_le64(*(uint64_t *)mem);
1015         ptr_tag *= 0x1111111111111111ull;
1016         break;
1017 
1018     default: /* zva_blocksize 512, 1024, 2048 */
1019         ptr_tag *= 0x1111111111111111ull;
1020         i = 0;
1021         do {
1022             mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
1023             if (unlikely(mem_tag != ptr_tag)) {
1024                 goto fail;
1025             }
1026             i += 8;
1027             align_ptr += 16 * TAG_GRANULE;
1028         } while (i < tag_bytes);
1029         goto done;
1030     }
1031 
1032     if (likely(mem_tag == ptr_tag)) {
1033         goto done;
1034     }
1035 
1036  fail:
1037     /* Locate the first nibble that differs. */
1038     i = ctz64(mem_tag ^ ptr_tag) >> 4;
1039     mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
1040 
1041  done:
1042     return useronly_clean_ptr(ptr);
1043 }
1044 
mte_mops_probe(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1045 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1046                         uint32_t desc)
1047 {
1048     int mmu_idx, tag_count;
1049     uint64_t ptr_tag, tag_first, tag_last;
1050     void *mem;
1051     bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1052     uint32_t n;
1053 
1054     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1055     /* True probe; this will never fault */
1056     mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1057                                    w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1058                                    size, MMU_DATA_LOAD, true, 0);
1059     if (!mem) {
1060         return size;
1061     }
1062 
1063     /*
1064      * TODO: checkN() is not designed for checks of the size we expect
1065      * for FEAT_MOPS operations, so we should implement this differently.
1066      * Maybe we should do something like
1067      *   if (region start and size are aligned nicely) {
1068      *      do direct loads of 64 tag bits at a time;
1069      *   } else {
1070      *      call checkN()
1071      *   }
1072      */
1073     /* Round the bounds to the tag granule, and compute the number of tags. */
1074     ptr_tag = allocation_tag_from_addr(ptr);
1075     tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1076     tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE);
1077     tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1078     n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1079     if (likely(n == tag_count)) {
1080         return size;
1081     }
1082 
1083     /*
1084      * Failure; for the first granule, it's at @ptr. Otherwise
1085      * it's at the first byte of the nth granule. Calculate how
1086      * many bytes we can access without hitting that failure.
1087      */
1088     if (n == 0) {
1089         return 0;
1090     } else {
1091         return n * TAG_GRANULE - (ptr - tag_first);
1092     }
1093 }
1094 
mte_mops_probe_rev(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1095 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1096                             uint32_t desc)
1097 {
1098     int mmu_idx, tag_count;
1099     uint64_t ptr_tag, tag_first, tag_last;
1100     void *mem;
1101     bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1102     uint32_t n;
1103 
1104     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1105     /*
1106      * True probe; this will never fault. Note that our caller passes
1107      * us a pointer to the end of the region, but allocation_tag_mem_probe()
1108      * wants a pointer to the start. Because we know we don't span a page
1109      * boundary and that allocation_tag_mem_probe() doesn't otherwise care
1110      * about the size, pass in a size of 1 byte. This is simpler than
1111      * adjusting the ptr to point to the start of the region and then having
1112      * to adjust the returned 'mem' to get the end of the tag memory.
1113      */
1114     mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1115                                    w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1116                                    1, MMU_DATA_LOAD, true, 0);
1117     if (!mem) {
1118         return size;
1119     }
1120 
1121     /*
1122      * TODO: checkNrev() is not designed for checks of the size we expect
1123      * for FEAT_MOPS operations, so we should implement this differently.
1124      * Maybe we should do something like
1125      *   if (region start and size are aligned nicely) {
1126      *      do direct loads of 64 tag bits at a time;
1127      *   } else {
1128      *      call checkN()
1129      *   }
1130      */
1131     /* Round the bounds to the tag granule, and compute the number of tags. */
1132     ptr_tag = allocation_tag_from_addr(ptr);
1133     tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE);
1134     tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1135     tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1136     n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1137     if (likely(n == tag_count)) {
1138         return size;
1139     }
1140 
1141     /*
1142      * Failure; for the first granule, it's at @ptr. Otherwise
1143      * it's at the last byte of the nth granule. Calculate how
1144      * many bytes we can access without hitting that failure.
1145      */
1146     if (n == 0) {
1147         return 0;
1148     } else {
1149         return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last);
1150     }
1151 }
1152 
mte_mops_set_tags(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1153 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size,
1154                        uint32_t desc)
1155 {
1156     int mmu_idx, tag_count;
1157     uint64_t ptr_tag;
1158     void *mem;
1159 
1160     if (!desc) {
1161         /* Tags not actually enabled */
1162         return;
1163     }
1164 
1165     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1166     /* True probe: this will never fault */
1167     mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size,
1168                                    MMU_DATA_STORE, true, 0);
1169     if (!mem) {
1170         return;
1171     }
1172 
1173     /*
1174      * We know that ptr and size are both TAG_GRANULE aligned; store
1175      * the tag from the pointer value into the tag memory.
1176      */
1177     ptr_tag = allocation_tag_from_addr(ptr);
1178     tag_count = size / TAG_GRANULE;
1179     if (ptr & TAG_GRANULE) {
1180         /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */
1181         store_tag1_parallel(TAG_GRANULE, mem, ptr_tag);
1182         mem++;
1183         tag_count--;
1184     }
1185     memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2);
1186     if (tag_count & 1) {
1187         /* Final trailing unaligned nibble */
1188         mem += tag_count / 2;
1189         store_tag1_parallel(0, mem, ptr_tag);
1190     }
1191 }
1192