1 /*
2 * Copyright 2016 Chris Torek <torek@ixsystems.com>
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted providing that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
16 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
18 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
22 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
23 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24 * POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <assert.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <sys/types.h>
32 #include <sys/acl.h>
33 #include <sys/stat.h>
34
35 #include "lib9p.h"
36 #include "lib9p_impl.h"
37 #include "genacl.h"
38 #include "fid.h"
39 #include "log.h"
40
41 typedef int econvertfn(acl_entry_t, struct l9p_ace *);
42
43 #ifndef __APPLE__
44 static struct l9p_acl *l9p_new_acl(uint32_t acetype, uint32_t aceasize);
45 static struct l9p_acl *l9p_growacl(struct l9p_acl *acl, uint32_t aceasize);
46 static int l9p_count_aces(acl_t sysacl);
47 static struct l9p_acl *l9p_sysacl_to_acl(int, acl_t, econvertfn *);
48 #endif
49 static bool l9p_ingroup(gid_t tid, gid_t gid, gid_t *gids, size_t ngids);
50 static int l9p_check_aces(int32_t mask, struct l9p_acl *acl, struct stat *st,
51 uid_t uid, gid_t gid, gid_t *gids, size_t ngids);
52
53 void
l9p_acl_free(struct l9p_acl * acl)54 l9p_acl_free(struct l9p_acl *acl)
55 {
56
57 free(acl);
58 }
59
60 /*
61 * Is the given group ID tid (test-id) any of the gid's in agids?
62 */
63 static bool
l9p_ingroup(gid_t tid,gid_t gid,gid_t * gids,size_t ngids)64 l9p_ingroup(gid_t tid, gid_t gid, gid_t *gids, size_t ngids)
65 {
66 size_t i;
67
68 if (tid == gid)
69 return (true);
70 for (i = 0; i < ngids; i++)
71 if (tid == gids[i])
72 return (true);
73 return (false);
74 }
75
76 /* #define ACE_DEBUG */
77
78 /*
79 * Note that NFSv4 tests are done on a "first match" basis.
80 * That is, we check each ACE sequentially until we run out
81 * of ACEs, or find something explicitly denied (DENIED!),
82 * or have cleared out all our attempt-something bits. Once
83 * we come across an ALLOW entry for the bits we're trying,
84 * we clear those from the bits we're still looking for, in
85 * the order they appear.
86 *
87 * The result is either "definitely allowed" (we cleared
88 * all the bits), "definitely denied" (we hit a deny with
89 * some or all of the bits), or "unspecified". We
90 * represent these three states as +1 (positive = yes = allow),
91 * -1 (negative = no = denied), or 0 (no strong answer).
92 *
93 * For our caller's convenience, if we are called with a
94 * mask of 0, we return 0 (no answer).
95 */
96 static int
l9p_check_aces(int32_t mask,struct l9p_acl * acl,struct stat * st,uid_t uid,gid_t gid,gid_t * gids,size_t ngids)97 l9p_check_aces(int32_t mask, struct l9p_acl *acl, struct stat *st,
98 uid_t uid, gid_t gid, gid_t *gids, size_t ngids)
99 {
100 uint32_t i;
101 struct l9p_ace *ace;
102 #ifdef ACE_DEBUG
103 const char *acetype, *allowdeny;
104 bool show_tid;
105 #endif
106 bool match;
107 uid_t tid;
108
109 if (mask == 0)
110 return (0);
111
112 for (i = 0; mask != 0 && i < acl->acl_nace; i++) {
113 ace = &acl->acl_aces[i];
114 switch (ace->ace_type) {
115 case L9P_ACET_ACCESS_ALLOWED:
116 case L9P_ACET_ACCESS_DENIED:
117 break;
118 default:
119 /* audit, alarm - ignore */
120 continue;
121 }
122 #ifdef ACE_DEBUG
123 show_tid = false;
124 #endif
125 if (ace->ace_flags & L9P_ACEF_OWNER) {
126 #ifdef ACE_DEBUG
127 acetype = "OWNER@";
128 #endif
129 match = st->st_uid == uid;
130 } else if (ace->ace_flags & L9P_ACEF_GROUP) {
131 #ifdef ACE_DEBUG
132 acetype = "GROUP@";
133 #endif
134 match = l9p_ingroup(st->st_gid, gid, gids, ngids);
135 } else if (ace->ace_flags & L9P_ACEF_EVERYONE) {
136 #ifdef ACE_DEBUG
137 acetype = "EVERYONE@";
138 #endif
139 match = true;
140 } else {
141 if (ace->ace_idsize != sizeof(tid))
142 continue;
143 #ifdef ACE_DEBUG
144 show_tid = true;
145 #endif
146 memcpy(&tid, &ace->ace_idbytes, sizeof(tid));
147 if (ace->ace_flags & L9P_ACEF_IDENTIFIER_GROUP) {
148 #ifdef ACE_DEBUG
149 acetype = "group";
150 #endif
151 match = l9p_ingroup(tid, gid, gids, ngids);
152 } else {
153 #ifdef ACE_DEBUG
154 acetype = "user";
155 #endif
156 match = tid == uid;
157 }
158 }
159 /*
160 * If this ACE applies to us, check remaining bits.
161 * If any of those bits also apply, check the type:
162 * DENY means "stop now", ALLOW means allow these bits
163 * and keep checking.
164 */
165 #ifdef ACE_DEBUG
166 allowdeny = ace->ace_type == L9P_ACET_ACCESS_DENIED ?
167 "deny" : "allow";
168 #endif
169 if (match && (ace->ace_mask & (uint32_t)mask) != 0) {
170 #ifdef ACE_DEBUG
171 if (show_tid)
172 L9P_LOG(L9P_DEBUG,
173 "ACE: %s %s %d: mask 0x%x ace_mask 0x%x",
174 allowdeny, acetype, (int)tid,
175 (u_int)mask, (u_int)ace->ace_mask);
176 else
177 L9P_LOG(L9P_DEBUG,
178 "ACE: %s %s: mask 0x%x ace_mask 0x%x",
179 allowdeny, acetype,
180 (u_int)mask, (u_int)ace->ace_mask);
181 #endif
182 if (ace->ace_type == L9P_ACET_ACCESS_DENIED)
183 return (-1);
184 mask &= ~ace->ace_mask;
185 #ifdef ACE_DEBUG
186 L9P_LOG(L9P_DEBUG, "clear 0x%x: now mask=0x%x",
187 (u_int)ace->ace_mask, (u_int)mask);
188 #endif
189 } else {
190 #ifdef ACE_DEBUG
191 if (show_tid)
192 L9P_LOG(L9P_DEBUG,
193 "ACE: SKIP %s %s %d: "
194 "match %d mask 0x%x ace_mask 0x%x",
195 allowdeny, acetype, (int)tid,
196 (int)match, (u_int)mask,
197 (u_int)ace->ace_mask);
198 else
199 L9P_LOG(L9P_DEBUG,
200 "ACE: SKIP %s %s: "
201 "match %d mask 0x%x ace_mask 0x%x",
202 allowdeny, acetype,
203 (int)match, (u_int)mask,
204 (u_int)ace->ace_mask);
205 #endif
206 }
207 }
208
209 /* Return 1 if access definitely granted. */
210 #ifdef ACE_DEBUG
211 L9P_LOG(L9P_DEBUG, "ACE: end of ACEs, mask now 0x%x: %s",
212 mask, mask ? "no-definitive-answer" : "ALLOW");
213 #endif
214 return (mask == 0 ? 1 : 0);
215 }
216
217 /*
218 * Test against ACLs.
219 *
220 * The return value is normally 0 (access allowed) or EPERM
221 * (access denied), so it could just be a boolean....
222 *
223 * For "make new dir in dir" and "remove dir in dir", you must
224 * set the mask to test the directory permissions (not ADD_FILE but
225 * ADD_SUBDIRECTORY, and DELETE_CHILD). For "make new file in dir"
226 * you must set the opmask to test file ADD_FILE.
227 *
228 * The L9P_ACE_DELETE flag means "can delete this thing"; it's not
229 * clear whether it should override the parent directory's ACL if
230 * any. In our case it does not, but a caller may try
231 * L9P_ACE_DELETE_CHILD (separately, on its own) and then a
232 * (second, separate) L9P_ACE_DELETE, to make the permissions work
233 * as "or" instead of "and".
234 *
235 * Pass a NULL parent/pstat if they are not applicable, e.g.,
236 * for doing operations on an existing file, such as reading or
237 * writing data or attributes. Pass in a null child/cstat if
238 * that's not applicable, such as creating a new file/dir.
239 *
240 * NB: it's probably wise to allow the owner of any file to update
241 * the ACLs of that file, but we leave that test to the caller.
242 */
l9p_acl_check_access(int32_t opmask,struct l9p_acl_check_args * args)243 int l9p_acl_check_access(int32_t opmask, struct l9p_acl_check_args *args)
244 {
245 struct l9p_acl *parent, *child;
246 struct stat *pstat, *cstat;
247 int32_t pop, cop;
248 size_t ngids;
249 uid_t uid;
250 gid_t gid, *gids;
251 int panswer, canswer;
252
253 assert(opmask != 0);
254 parent = args->aca_parent;
255 pstat = args->aca_pstat;
256 child = args->aca_child;
257 cstat = args->aca_cstat;
258 uid = args->aca_uid;
259 gid = args->aca_gid;
260 gids = args->aca_groups;
261 ngids = args->aca_ngroups;
262
263 #ifdef ACE_DEBUG
264 L9P_LOG(L9P_DEBUG,
265 "l9p_acl_check_access: opmask=0x%x uid=%ld gid=%ld ngids=%zd",
266 (u_int)opmask, (long)uid, (long)gid, ngids);
267 #endif
268 /*
269 * If caller said "superuser semantics", check that first.
270 * Note that we apply them regardless of ACLs.
271 */
272 if (uid == 0 && args->aca_superuser)
273 return (0);
274
275 /*
276 * If told to ignore ACLs and use only stat-based permissions,
277 * discard any non-NULL ACL pointers.
278 *
279 * This will need some fancying up when we support POSIX ACLs.
280 */
281 if ((args->aca_aclmode & L9P_ACM_NFS_ACL) == 0)
282 parent = child = NULL;
283
284 assert(parent == NULL || parent->acl_acetype == L9P_ACLTYPE_NFSv4);
285 assert(parent == NULL || pstat != NULL);
286 assert(child == NULL || child->acl_acetype == L9P_ACLTYPE_NFSv4);
287 assert(child == NULL || cstat != NULL);
288 assert(pstat != NULL || cstat != NULL);
289
290 /*
291 * If the operation is UNLINK we should have either both ACLs
292 * or no ACLs, but we won't require that here.
293 *
294 * If a parent ACL is supplied, it's a directory by definition.
295 * Make sure we're allowed to do this there, whatever this is.
296 * If a child ACL is supplied, check it too. Note that the
297 * DELETE permission only applies in the child though, not
298 * in the parent, and the DELETE_CHILD only applies in the
299 * parent.
300 */
301 pop = cop = opmask;
302 if (parent != NULL || pstat != NULL) {
303 /*
304 * Remove child-only bits from parent op and
305 * parent-only bits from child op.
306 *
307 * L9P_ACE_DELETE is child-only.
308 *
309 * L9P_ACE_DELETE_CHILD is parent-only, and three data
310 * access bits overlap with three directory access bits.
311 * We should have child==NULL && cstat==NULL, so the
312 * three data bits should be redundant, but it's
313 * both trivial and safest to remove them anyway.
314 */
315 pop &= ~L9P_ACE_DELETE;
316 cop &= ~(L9P_ACE_DELETE_CHILD | L9P_ACE_LIST_DIRECTORY |
317 L9P_ACE_ADD_FILE | L9P_ACE_ADD_SUBDIRECTORY);
318 } else {
319 /*
320 * Remove child-only bits from parent op. We need
321 * not bother since we just found we have no parent
322 * and no pstat, and hence won't actually *use* pop.
323 *
324 * pop &= ~(L9P_ACE_READ_DATA | L9P_ACE_WRITE_DATA |
325 * L9P_ACE_APPEND_DATA);
326 */
327 }
328 panswer = 0;
329 canswer = 0;
330 if (parent != NULL)
331 panswer = l9p_check_aces(pop, parent, pstat,
332 uid, gid, gids, ngids);
333 if (child != NULL)
334 canswer = l9p_check_aces(cop, child, cstat,
335 uid, gid, gids, ngids);
336
337 if (panswer || canswer) {
338 /*
339 * Got a definitive answer from parent and/or
340 * child ACLs. We're not quite done yet though.
341 */
342 if (opmask == L9P_ACOP_UNLINK) {
343 /*
344 * For UNLINK, we can get an allow from child
345 * and deny from parent, or vice versa. It's
346 * not 100% clear how to handle the two-answer
347 * case. ZFS says that if either says "allow",
348 * we allow, and if both definitely say "deny",
349 * we deny. This makes sense, so we do that
350 * here for all cases, even "strict".
351 */
352 if (panswer > 0 || canswer > 0)
353 return (0);
354 if (panswer < 0 && canswer < 0)
355 return (EPERM);
356 /* non-definitive answer from one! move on */
357 } else {
358 /*
359 * Have at least one definitive answer, and
360 * should have only one; obey whichever
361 * one it is.
362 */
363 if (panswer)
364 return (panswer < 0 ? EPERM : 0);
365 return (canswer < 0 ? EPERM : 0);
366 }
367 }
368
369 /*
370 * No definitive answer from ACLs alone. Check for ZFS style
371 * permissions checking and an "UNLINK" operation under ACLs.
372 * If so, find write-and-execute permission on parent.
373 * Note that WRITE overlaps with ADD_FILE -- that's ZFS's
374 * way of saying "allow write to dir" -- but EXECUTE is
375 * separate from LIST_DIRECTORY, so that's at least a little
376 * bit cleaner.
377 *
378 * Note also that only a definitive yes (both bits are
379 * explicitly allowed) results in granting unlink, and
380 * a definitive no (at least one bit explicitly denied)
381 * results in EPERM. Only "no answer" moves on.
382 */
383 if ((args->aca_aclmode & L9P_ACM_ZFS_ACL) &&
384 opmask == L9P_ACOP_UNLINK && parent != NULL) {
385 panswer = l9p_check_aces(L9P_ACE_ADD_FILE | L9P_ACE_EXECUTE,
386 parent, pstat, uid, gid, gids, ngids);
387 if (panswer)
388 return (panswer < 0 ? EPERM : 0);
389 }
390
391 /*
392 * No definitive answer from ACLs.
393 *
394 * Try POSIX style rwx permissions if allowed. This should
395 * be rare, occurring mainly when caller supplied no ACLs
396 * or set the mode to suppress them.
397 *
398 * The stat to check is the parent's if we don't have a child
399 * (i.e., this is a dir op), or if the DELETE_CHILD bit is set
400 * (i.e., this is an unlink or similar). Otherwise it's the
401 * child's.
402 */
403 if (args->aca_aclmode & L9P_ACM_STAT_MODE) {
404 struct stat *st;
405 int rwx, bits;
406
407 rwx = l9p_ace_mask_to_rwx(opmask);
408 if ((st = cstat) == NULL || (opmask & L9P_ACE_DELETE_CHILD))
409 st = pstat;
410 if (uid == st->st_uid)
411 bits = (st->st_mode >> 6) & 7;
412 else if (l9p_ingroup(st->st_gid, gid, gids, ngids))
413 bits = (st->st_mode >> 3) & 7;
414 else
415 bits = st->st_mode & 7;
416 /*
417 * If all the desired bits are set, we're OK.
418 */
419 if ((rwx & bits) == rwx)
420 return (0);
421 }
422
423 /* all methods have failed, return EPERM */
424 return (EPERM);
425 }
426
427 /*
428 * Collapse fancy ACL operation mask down to simple Unix bits.
429 *
430 * Directory operations don't map that well. However, listing
431 * a directory really does require read permission, and adding
432 * or deleting files really does require write permission, so
433 * this is probably sufficient.
434 */
435 int
l9p_ace_mask_to_rwx(int32_t opmask)436 l9p_ace_mask_to_rwx(int32_t opmask)
437 {
438 int rwx = 0;
439
440 if (opmask &
441 (L9P_ACE_READ_DATA | L9P_ACE_READ_NAMED_ATTRS |
442 L9P_ACE_READ_ATTRIBUTES | L9P_ACE_READ_ACL))
443 rwx |= 4;
444 if (opmask &
445 (L9P_ACE_WRITE_DATA | L9P_ACE_APPEND_DATA |
446 L9P_ACE_ADD_FILE | L9P_ACE_ADD_SUBDIRECTORY |
447 L9P_ACE_DELETE | L9P_ACE_DELETE_CHILD |
448 L9P_ACE_WRITE_NAMED_ATTRS | L9P_ACE_WRITE_ATTRIBUTES |
449 L9P_ACE_WRITE_ACL))
450 rwx |= 2;
451 if (opmask & L9P_ACE_EXECUTE)
452 rwx |= 1;
453 return (rwx);
454 }
455
456 #ifndef __APPLE__
457 /*
458 * Allocate new ACL holder and ACEs.
459 */
460 static struct l9p_acl *
l9p_new_acl(uint32_t acetype,uint32_t aceasize)461 l9p_new_acl(uint32_t acetype, uint32_t aceasize)
462 {
463 struct l9p_acl *ret;
464 size_t asize, size;
465
466 asize = aceasize * sizeof(struct l9p_ace);
467 size = sizeof(struct l9p_acl) + asize;
468 ret = malloc(size);
469 if (ret != NULL) {
470 ret->acl_acetype = acetype;
471 ret->acl_nace = 0;
472 ret->acl_aceasize = aceasize;
473 }
474 return (ret);
475 }
476
477 /*
478 * Expand ACL to accomodate more entries.
479 *
480 * Currently won't shrink, only grow, so it's a fast no-op until
481 * we hit the allocated size. After that, it's best to grow in
482 * big chunks, or this will be O(n**2).
483 */
484 static struct l9p_acl *
l9p_growacl(struct l9p_acl * acl,uint32_t aceasize)485 l9p_growacl(struct l9p_acl *acl, uint32_t aceasize)
486 {
487 struct l9p_acl *tmp;
488 size_t asize, size;
489
490 if (acl->acl_aceasize < aceasize) {
491 asize = aceasize * sizeof(struct l9p_ace);
492 size = sizeof(struct l9p_acl) + asize;
493 tmp = realloc(acl, size);
494 if (tmp == NULL)
495 free(acl);
496 acl = tmp;
497 }
498 return (acl);
499 }
500
501 /*
502 * Annoyingly, there's no POSIX-standard way to count the number
503 * of ACEs in a system ACL other than to walk through them all.
504 * This is silly, but at least 2n is still O(n), and the walk is
505 * short. (If the system ACL mysteriously grows, we'll handle
506 * that OK via growacl(), too.)
507 */
508 static int
l9p_count_aces(acl_t sysacl)509 l9p_count_aces(acl_t sysacl)
510 {
511 acl_entry_t entry;
512 uint32_t n;
513 int id;
514
515 id = ACL_FIRST_ENTRY;
516 for (n = 0; acl_get_entry(sysacl, id, &entry) == 1; n++)
517 id = ACL_NEXT_ENTRY;
518
519 return ((int)n);
520 }
521
522 /*
523 * Create ACL with ACEs from the given acl_t. We use the given
524 * convert function on each ACE.
525 */
526 static struct l9p_acl *
l9p_sysacl_to_acl(int acetype,acl_t sysacl,econvertfn * convert)527 l9p_sysacl_to_acl(int acetype, acl_t sysacl, econvertfn *convert)
528 {
529 struct l9p_acl *acl;
530 acl_entry_t entry;
531 uint32_t n;
532 int error, id;
533
534 acl = l9p_new_acl((uint32_t)acetype, (uint32_t)l9p_count_aces(sysacl));
535 if (acl == NULL)
536 return (NULL);
537 id = ACL_FIRST_ENTRY;
538 for (n = 0;;) {
539 if (acl_get_entry(sysacl, id, &entry) != 1)
540 break;
541 acl = l9p_growacl(acl, n + 1);
542 if (acl == NULL)
543 return (NULL);
544 error = (*convert)(entry, &acl->acl_aces[n]);
545 id = ACL_NEXT_ENTRY;
546 if (error == 0)
547 n++;
548 }
549 acl->acl_nace = n;
550 return (acl);
551 }
552 #endif
553
554 #if defined(HAVE_POSIX_ACLS) && 0 /* not yet */
555 struct l9p_acl *
l9p_posix_acl_to_acl(acl_t sysacl)556 l9p_posix_acl_to_acl(acl_t sysacl)
557 {
558 }
559 #endif
560
561 #if defined(HAVE_FREEBSD_ACLS)
562 static int
l9p_frombsdnfs4(acl_entry_t sysace,struct l9p_ace * ace)563 l9p_frombsdnfs4(acl_entry_t sysace, struct l9p_ace *ace)
564 {
565 acl_tag_t tag; /* e.g., USER_OBJ, GROUP, etc */
566 acl_entry_type_t entry_type; /* e.g., allow/deny */
567 acl_permset_t absdperm;
568 acl_flagset_t absdflag;
569 acl_perm_t bsdperm; /* e.g., READ_DATA */
570 acl_flag_t bsdflag; /* e.g., FILE_INHERIT_ACE */
571 uint32_t flags, mask;
572 int error;
573 uid_t uid, *aid;
574
575 error = acl_get_tag_type(sysace, &tag);
576 if (error == 0)
577 error = acl_get_entry_type_np(sysace, &entry_type);
578 if (error == 0)
579 error = acl_get_flagset_np(sysace, &absdflag);
580 if (error == 0)
581 error = acl_get_permset(sysace, &absdperm);
582 if (error)
583 return (error);
584
585 flags = 0;
586 uid = 0;
587 aid = NULL;
588
589 /* move user/group/everyone + id-is-group-id into flags */
590 switch (tag) {
591 case ACL_USER_OBJ:
592 flags |= L9P_ACEF_OWNER;
593 break;
594 case ACL_GROUP_OBJ:
595 flags |= L9P_ACEF_GROUP;
596 break;
597 case ACL_EVERYONE:
598 flags |= L9P_ACEF_EVERYONE;
599 break;
600 case ACL_GROUP:
601 flags |= L9P_ACEF_IDENTIFIER_GROUP;
602 /* FALLTHROUGH */
603 case ACL_USER:
604 aid = acl_get_qualifier(sysace); /* ugh, this malloc()s */
605 if (aid == NULL)
606 return (ENOMEM);
607 uid = *(uid_t *)aid;
608 free(aid);
609 aid = &uid;
610 break;
611 default:
612 return (EINVAL); /* can't happen */
613 }
614
615 switch (entry_type) {
616
617 case ACL_ENTRY_TYPE_ALLOW:
618 ace->ace_type = L9P_ACET_ACCESS_ALLOWED;
619 break;
620
621 case ACL_ENTRY_TYPE_DENY:
622 ace->ace_type = L9P_ACET_ACCESS_DENIED;
623 break;
624
625 case ACL_ENTRY_TYPE_AUDIT:
626 ace->ace_type = L9P_ACET_SYSTEM_AUDIT;
627 break;
628
629 case ACL_ENTRY_TYPE_ALARM:
630 ace->ace_type = L9P_ACET_SYSTEM_ALARM;
631 break;
632
633 default:
634 return (EINVAL); /* can't happen */
635 }
636
637 /* transform remaining BSD flags to internal NFS-y form */
638 bsdflag = *absdflag;
639 if (bsdflag & ACL_ENTRY_FILE_INHERIT)
640 flags |= L9P_ACEF_FILE_INHERIT_ACE;
641 if (bsdflag & ACL_ENTRY_DIRECTORY_INHERIT)
642 flags |= L9P_ACEF_DIRECTORY_INHERIT_ACE;
643 if (bsdflag & ACL_ENTRY_NO_PROPAGATE_INHERIT)
644 flags |= L9P_ACEF_NO_PROPAGATE_INHERIT_ACE;
645 if (bsdflag & ACL_ENTRY_INHERIT_ONLY)
646 flags |= L9P_ACEF_INHERIT_ONLY_ACE;
647 if (bsdflag & ACL_ENTRY_SUCCESSFUL_ACCESS)
648 flags |= L9P_ACEF_SUCCESSFUL_ACCESS_ACE_FLAG;
649 if (bsdflag & ACL_ENTRY_FAILED_ACCESS)
650 flags |= L9P_ACEF_FAILED_ACCESS_ACE_FLAG;
651 ace->ace_flags = flags;
652
653 /*
654 * Transform BSD permissions to ace_mask. Note that directory
655 * vs file bits are the same in both sets, so we don't need
656 * to worry about that, at least.
657 *
658 * There seem to be no BSD equivalents for WRITE_RETENTION
659 * and WRITE_RETENTION_HOLD.
660 */
661 mask = 0;
662 bsdperm = *absdperm;
663 if (bsdperm & ACL_READ_DATA)
664 mask |= L9P_ACE_READ_DATA;
665 if (bsdperm & ACL_WRITE_DATA)
666 mask |= L9P_ACE_WRITE_DATA;
667 if (bsdperm & ACL_APPEND_DATA)
668 mask |= L9P_ACE_APPEND_DATA;
669 if (bsdperm & ACL_READ_NAMED_ATTRS)
670 mask |= L9P_ACE_READ_NAMED_ATTRS;
671 if (bsdperm & ACL_WRITE_NAMED_ATTRS)
672 mask |= L9P_ACE_WRITE_NAMED_ATTRS;
673 if (bsdperm & ACL_EXECUTE)
674 mask |= L9P_ACE_EXECUTE;
675 if (bsdperm & ACL_DELETE_CHILD)
676 mask |= L9P_ACE_DELETE_CHILD;
677 if (bsdperm & ACL_READ_ATTRIBUTES)
678 mask |= L9P_ACE_READ_ATTRIBUTES;
679 if (bsdperm & ACL_WRITE_ATTRIBUTES)
680 mask |= L9P_ACE_WRITE_ATTRIBUTES;
681 /* L9P_ACE_WRITE_RETENTION */
682 /* L9P_ACE_WRITE_RETENTION_HOLD */
683 /* 0x00800 */
684 if (bsdperm & ACL_DELETE)
685 mask |= L9P_ACE_DELETE;
686 if (bsdperm & ACL_READ_ACL)
687 mask |= L9P_ACE_READ_ACL;
688 if (bsdperm & ACL_WRITE_ACL)
689 mask |= L9P_ACE_WRITE_ACL;
690 if (bsdperm & ACL_WRITE_OWNER)
691 mask |= L9P_ACE_WRITE_OWNER;
692 if (bsdperm & ACL_SYNCHRONIZE)
693 mask |= L9P_ACE_SYNCHRONIZE;
694 ace->ace_mask = mask;
695
696 /* fill in variable-size user or group ID bytes */
697 if (aid == NULL)
698 ace->ace_idsize = 0;
699 else {
700 ace->ace_idsize = sizeof(uid);
701 memcpy(&ace->ace_idbytes[0], aid, sizeof(uid));
702 }
703
704 return (0);
705 }
706
707 struct l9p_acl *
l9p_freebsd_nfsv4acl_to_acl(acl_t sysacl)708 l9p_freebsd_nfsv4acl_to_acl(acl_t sysacl)
709 {
710
711 return (l9p_sysacl_to_acl(L9P_ACLTYPE_NFSv4, sysacl, l9p_frombsdnfs4));
712 }
713 #endif
714
715 #if defined(HAVE_DARWIN_ACLS) && 0 /* not yet */
716 struct l9p_acl *
l9p_darwin_nfsv4acl_to_acl(acl_t sysacl)717 l9p_darwin_nfsv4acl_to_acl(acl_t sysacl)
718 {
719 }
720 #endif
721