xref: /netbsd/sys/uvm/uvm_amap.c (revision ee88722e)
1 /*	$NetBSD: uvm_amap.c,v 1.128 2023/06/19 08:23:35 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * uvm_amap.c: amap operations
30  */
31 
32 /*
33  * this file contains functions that perform operations on amaps.  see
34  * uvm_amap.h for a brief explanation of the role of amaps in uvm.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: uvm_amap.c,v 1.128 2023/06/19 08:23:35 msaitoh Exp $");
39 
40 #include "opt_uvmhist.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/pool.h>
47 #include <sys/atomic.h>
48 
49 #include <uvm/uvm.h>
50 #include <uvm/uvm_swap.h>
51 
52 /*
53  * cache for allocation of vm_map structures.  note that in order to
54  * avoid an endless loop, the amap cache's allocator cannot allocate
55  * memory from an amap (it currently goes through the kernel uobj, so
56  * we are ok).
57  */
58 static struct pool_cache uvm_amap_cache;
59 static kmutex_t amap_list_lock __cacheline_aligned;
60 static LIST_HEAD(, vm_amap) amap_list;
61 
62 /*
63  * local functions
64  */
65 
66 static int
amap_roundup_slots(int slots)67 amap_roundup_slots(int slots)
68 {
69 
70 	return kmem_roundup_size(slots * sizeof(int)) / sizeof(int);
71 }
72 
73 #ifdef UVM_AMAP_PPREF
74 /*
75  * what is ppref?   ppref is an _optional_ amap feature which is used
76  * to keep track of reference counts on a per-page basis.  it is enabled
77  * when UVM_AMAP_PPREF is defined.
78  *
79  * when enabled, an array of ints is allocated for the pprefs.  this
80  * array is allocated only when a partial reference is added to the
81  * map (either by unmapping part of the amap, or gaining a reference
82  * to only a part of an amap).  if the allocation of the array fails
83  * (KM_NOSLEEP), then we set the array pointer to PPREF_NONE to indicate
84  * that we tried to do ppref's but couldn't alloc the array so just
85  * give up (after all, this is an optional feature!).
86  *
87  * the array is divided into page sized "chunks."   for chunks of length 1,
88  * the chunk reference count plus one is stored in that chunk's slot.
89  * for chunks of length > 1 the first slot contains (the reference count
90  * plus one) * -1.    [the negative value indicates that the length is
91  * greater than one.]   the second slot of the chunk contains the length
92  * of the chunk.   here is an example:
93  *
94  * actual REFS:  2  2  2  2  3  1  1  0  0  0  4  4  0  1  1  1
95  *       ppref: -3  4  x  x  4 -2  2 -1  3  x -5  2  1 -2  3  x
96  *              <----------><-><----><-------><----><-><------->
97  * (x = don't care)
98  *
99  * this allows us to allow one int to contain the ref count for the whole
100  * chunk.    note that the "plus one" part is needed because a reference
101  * count of zero is neither positive or negative (need a way to tell
102  * if we've got one zero or a bunch of them).
103  *
104  * here are some in-line functions to help us.
105  */
106 
107 /*
108  * pp_getreflen: get the reference and length for a specific offset
109  *
110  * => ppref's amap must be locked
111  */
112 static inline void
pp_getreflen(int * ppref,int offset,int * refp,int * lenp)113 pp_getreflen(int *ppref, int offset, int *refp, int *lenp)
114 {
115 
116 	if (ppref[offset] > 0) {		/* chunk size must be 1 */
117 		*refp = ppref[offset] - 1;	/* don't forget to adjust */
118 		*lenp = 1;
119 	} else {
120 		*refp = (ppref[offset] * -1) - 1;
121 		*lenp = ppref[offset+1];
122 	}
123 }
124 
125 /*
126  * pp_setreflen: set the reference and length for a specific offset
127  *
128  * => ppref's amap must be locked
129  */
130 static inline void
pp_setreflen(int * ppref,int offset,int ref,int len)131 pp_setreflen(int *ppref, int offset, int ref, int len)
132 {
133 	if (len == 0)
134 		return;
135 	if (len == 1) {
136 		ppref[offset] = ref + 1;
137 	} else {
138 		ppref[offset] = (ref + 1) * -1;
139 		ppref[offset+1] = len;
140 	}
141 }
142 #endif /* UVM_AMAP_PPREF */
143 
144 /*
145  * amap_alloc1: allocate an amap, but do not initialise the overlay.
146  *
147  * => Note: lock is not set.
148  */
149 static struct vm_amap *
amap_alloc1(int slots,int padslots,int flags)150 amap_alloc1(int slots, int padslots, int flags)
151 {
152 	const bool nowait = (flags & UVM_FLAG_NOWAIT) != 0;
153 	const km_flag_t kmflags = nowait ? KM_NOSLEEP : KM_SLEEP;
154 	struct vm_amap *amap;
155 	krwlock_t *newlock, *oldlock;
156 	int totalslots;
157 
158 	amap = pool_cache_get(&uvm_amap_cache, nowait ? PR_NOWAIT : PR_WAITOK);
159 	if (amap == NULL) {
160 		return NULL;
161 	}
162 	KASSERT(amap->am_lock != NULL);
163 	KASSERT(amap->am_nused == 0);
164 
165 	/* Try to privatize the lock if currently shared. */
166 	if (rw_obj_refcnt(amap->am_lock) > 1) {
167 		newlock = rw_obj_tryalloc();
168 		if (newlock != NULL) {
169 		    	oldlock = amap->am_lock;
170 		    	mutex_enter(&amap_list_lock);
171 		    	amap->am_lock = newlock;
172 		    	mutex_exit(&amap_list_lock);
173 		    	rw_obj_free(oldlock);
174 		}
175 	}
176 
177 	totalslots = amap_roundup_slots(slots + padslots);
178 	amap->am_ref = 1;
179 	amap->am_flags = 0;
180 #ifdef UVM_AMAP_PPREF
181 	amap->am_ppref = NULL;
182 #endif
183 	amap->am_maxslot = totalslots;
184 	amap->am_nslot = slots;
185 
186 	/*
187 	 * Note: since allocations are likely big, we expect to reduce the
188 	 * memory fragmentation by allocating them in separate blocks.
189 	 */
190 	amap->am_slots = kmem_alloc(totalslots * sizeof(int), kmflags);
191 	if (amap->am_slots == NULL)
192 		goto fail1;
193 
194 	amap->am_bckptr = kmem_alloc(totalslots * sizeof(int), kmflags);
195 	if (amap->am_bckptr == NULL)
196 		goto fail2;
197 
198 	amap->am_anon = kmem_alloc(totalslots * sizeof(struct vm_anon *),
199 	    kmflags);
200 	if (amap->am_anon == NULL)
201 		goto fail3;
202 
203 	return amap;
204 
205 fail3:
206 	kmem_free(amap->am_bckptr, totalslots * sizeof(int));
207 fail2:
208 	kmem_free(amap->am_slots, totalslots * sizeof(int));
209 fail1:
210 	pool_cache_put(&uvm_amap_cache, amap);
211 
212 	/*
213 	 * XXX hack to tell the pagedaemon how many pages we need,
214 	 * since we can need more than it would normally free.
215 	 */
216 	if (nowait) {
217 		extern u_int uvm_extrapages;
218 		atomic_add_int(&uvm_extrapages,
219 		    ((sizeof(int) * 2 + sizeof(struct vm_anon *)) *
220 		    totalslots) >> PAGE_SHIFT);
221 	}
222 	return NULL;
223 }
224 
225 /*
226  * amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM
227  *
228  * => caller should ensure sz is a multiple of PAGE_SIZE
229  * => reference count to new amap is set to one
230  * => new amap is returned unlocked
231  */
232 
233 struct vm_amap *
amap_alloc(vaddr_t sz,vaddr_t padsz,int waitf)234 amap_alloc(vaddr_t sz, vaddr_t padsz, int waitf)
235 {
236 	struct vm_amap *amap;
237 	int slots, padslots;
238 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
239 
240 	AMAP_B2SLOT(slots, sz);
241 	AMAP_B2SLOT(padslots, padsz);
242 
243 	amap = amap_alloc1(slots, padslots, waitf);
244 	if (amap) {
245 		memset(amap->am_anon, 0,
246 		    amap->am_maxslot * sizeof(struct vm_anon *));
247 	}
248 
249 	UVMHIST_LOG(maphist,"<- done, amap = %#jx, sz=%jd", (uintptr_t)amap,
250 	    sz, 0, 0);
251 	return(amap);
252 }
253 
254 /*
255  * amap_ctor: pool_cache constructor for new amaps
256  *
257  * => carefully synchronize with amap_swap_off()
258  */
259 static int
amap_ctor(void * arg,void * obj,int flags)260 amap_ctor(void *arg, void *obj, int flags)
261 {
262 	struct vm_amap *amap = obj;
263 
264 	if ((flags & PR_NOWAIT) != 0) {
265 		amap->am_lock = rw_obj_tryalloc();
266 		if (amap->am_lock == NULL) {
267 			return ENOMEM;
268 		}
269 	} else {
270 		amap->am_lock = rw_obj_alloc();
271 	}
272 	amap->am_nused = 0;
273 	amap->am_flags = 0;
274 
275 	mutex_enter(&amap_list_lock);
276 	LIST_INSERT_HEAD(&amap_list, amap, am_list);
277 	mutex_exit(&amap_list_lock);
278 	return 0;
279 }
280 
281 /*
282  * amap_ctor: pool_cache destructor for amaps
283  *
284  * => carefully synchronize with amap_swap_off()
285  */
286 static void
amap_dtor(void * arg,void * obj)287 amap_dtor(void *arg, void *obj)
288 {
289 	struct vm_amap *amap = obj;
290 
291 	KASSERT(amap->am_nused == 0);
292 
293 	mutex_enter(&amap_list_lock);
294 	LIST_REMOVE(amap, am_list);
295 	mutex_exit(&amap_list_lock);
296 	rw_obj_free(amap->am_lock);
297 }
298 
299 /*
300  * uvm_amap_init: initialize the amap system.
301  */
302 void
uvm_amap_init(void)303 uvm_amap_init(void)
304 {
305 
306 	mutex_init(&amap_list_lock, MUTEX_DEFAULT, IPL_NONE);
307 
308 	pool_cache_bootstrap(&uvm_amap_cache, sizeof(struct vm_amap), 0, 0,
309 	    PR_LARGECACHE, "amappl", NULL, IPL_NONE, amap_ctor, amap_dtor,
310 	    NULL);
311 }
312 
313 /*
314  * amap_free: free an amap
315  *
316  * => the amap must be unlocked
317  * => the amap should have a zero reference count and be empty
318  */
319 void
amap_free(struct vm_amap * amap)320 amap_free(struct vm_amap *amap)
321 {
322 	int slots;
323 
324 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
325 
326 	KASSERT(amap->am_ref == 0);
327 	KASSERT(amap->am_nused == 0);
328 	KASSERT((amap->am_flags & AMAP_SWAPOFF) == 0);
329 	slots = amap->am_maxslot;
330 	kmem_free(amap->am_slots, slots * sizeof(*amap->am_slots));
331 	kmem_free(amap->am_bckptr, slots * sizeof(*amap->am_bckptr));
332 	kmem_free(amap->am_anon, slots * sizeof(*amap->am_anon));
333 #ifdef UVM_AMAP_PPREF
334 	if (amap->am_ppref && amap->am_ppref != PPREF_NONE)
335 		kmem_free(amap->am_ppref, slots * sizeof(*amap->am_ppref));
336 #endif
337 	pool_cache_put(&uvm_amap_cache, amap);
338 	UVMHIST_LOG(maphist,"<- done, freed amap = %#jx", (uintptr_t)amap,
339 	    0, 0, 0);
340 }
341 
342 /*
343  * amap_extend: extend the size of an amap (if needed)
344  *
345  * => called from uvm_map when we want to extend an amap to cover
346  *    a new mapping (rather than allocate a new one)
347  * => amap should be unlocked (we will lock it)
348  * => to safely extend an amap it should have a reference count of
349  *    one (thus it can't be shared)
350  */
351 int
amap_extend(struct vm_map_entry * entry,vsize_t addsize,int flags)352 amap_extend(struct vm_map_entry *entry, vsize_t addsize, int flags)
353 {
354 	struct vm_amap *amap = entry->aref.ar_amap;
355 	int slotoff = entry->aref.ar_pageoff;
356 	int slotmapped, slotadd, slotneed, slotadded, slotalloc;
357 	int slotadj, slotarea, slotendoff;
358 	int oldnslots;
359 #ifdef UVM_AMAP_PPREF
360 	int *newppref, *oldppref;
361 #endif
362 	int i, *newsl, *newbck, *oldsl, *oldbck;
363 	struct vm_anon **newover, **oldover;
364 	const km_flag_t kmflags =
365 	    (flags & AMAP_EXTEND_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
366 
367 	UVMHIST_FUNC(__func__);
368 	UVMHIST_CALLARGS(maphist, "  (entry=%#jx, addsize=%#jx, flags=%#jx)",
369 	    (uintptr_t)entry, addsize, flags, 0);
370 
371 	/*
372 	 * first, determine how many slots we need in the amap.  don't
373 	 * forget that ar_pageoff could be non-zero: this means that
374 	 * there are some unused slots before us in the amap.
375 	 */
376 
377 	amap_lock(amap, RW_WRITER);
378 	KASSERT(amap_refs(amap) == 1); /* amap can't be shared */
379 	AMAP_B2SLOT(slotmapped, entry->end - entry->start); /* slots mapped */
380 	AMAP_B2SLOT(slotadd, addsize);			/* slots to add */
381 	if (flags & AMAP_EXTEND_FORWARDS) {
382 		slotneed = slotoff + slotmapped + slotadd;
383 		slotadj = 0;
384 		slotarea = 0;
385 	} else {
386 		slotneed = slotadd + slotmapped;
387 		slotadj = slotadd - slotoff;
388 		slotarea = amap->am_maxslot - slotmapped;
389 	}
390 
391 	/*
392 	 * Because this amap only has 1 ref, we know that there is
393 	 * only one vm_map_entry pointing to it, and the one entry is
394 	 * using slots between slotoff and slotoff + slotmapped.  If
395 	 * we have been using ppref then we know that only slots in
396 	 * the one map entry's range can have anons, since ppref
397 	 * allowed us to free any anons outside that range as other map
398 	 * entries which used this amap were removed. But without ppref,
399 	 * we couldn't know which slots were still needed by other map
400 	 * entries, so we couldn't free any anons as we removed map
401 	 * entries, and so any slot from 0 to am_nslot can have an
402 	 * anon.  But now that we know there is only one map entry
403 	 * left and we know its range, we can free up any anons
404 	 * outside that range.  This is necessary because the rest of
405 	 * this function assumes that there are no anons in the amap
406 	 * outside of the one map entry's range.
407 	 */
408 
409 	slotendoff = slotoff + slotmapped;
410 	if (amap->am_ppref == PPREF_NONE) {
411 		amap_wiperange(amap, 0, slotoff);
412 		amap_wiperange(amap, slotendoff, amap->am_nslot - slotendoff);
413 	}
414 	for (i = 0; i < slotoff; i++) {
415 		KASSERT(amap->am_anon[i] == NULL);
416 	}
417 	for (i = slotendoff; i < amap->am_nslot - slotendoff; i++) {
418 		KASSERT(amap->am_anon[i] == NULL);
419 	}
420 
421 	/*
422 	 * case 1: we already have enough slots in the map and thus
423 	 * only need to bump the reference counts on the slots we are
424 	 * adding.
425 	 */
426 
427 	if (flags & AMAP_EXTEND_FORWARDS) {
428 		if (amap->am_nslot >= slotneed) {
429 #ifdef UVM_AMAP_PPREF
430 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
431 				amap_pp_adjref(amap, slotoff + slotmapped,
432 				    slotadd, 1);
433 			}
434 #endif
435 			amap_unlock(amap);
436 			UVMHIST_LOG(maphist,
437 			    "<- done (case 1f), amap = %#jx, sltneed=%jd",
438 			    (uintptr_t)amap, slotneed, 0, 0);
439 			return 0;
440 		}
441 	} else {
442 		if (slotadj <= 0) {
443 			slotoff -= slotadd;
444 			entry->aref.ar_pageoff = slotoff;
445 #ifdef UVM_AMAP_PPREF
446 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
447 				amap_pp_adjref(amap, slotoff, slotadd, 1);
448 			}
449 #endif
450 			amap_unlock(amap);
451 			UVMHIST_LOG(maphist,
452 			    "<- done (case 1b), amap = %#jx, sltneed=%jd",
453 			    (uintptr_t)amap, slotneed, 0, 0);
454 			return 0;
455 		}
456 	}
457 
458 	/*
459 	 * case 2: we pre-allocated slots for use and we just need to
460 	 * bump nslot up to take account for these slots.
461 	 */
462 
463 	if (amap->am_maxslot >= slotneed) {
464 		if (flags & AMAP_EXTEND_FORWARDS) {
465 #ifdef UVM_AMAP_PPREF
466 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
467 				if ((slotoff + slotmapped) < amap->am_nslot)
468 					amap_pp_adjref(amap,
469 					    slotoff + slotmapped,
470 					    (amap->am_nslot -
471 					    (slotoff + slotmapped)), 1);
472 				pp_setreflen(amap->am_ppref, amap->am_nslot, 1,
473 				    slotneed - amap->am_nslot);
474 			}
475 #endif
476 			amap->am_nslot = slotneed;
477 			amap_unlock(amap);
478 
479 			/*
480 			 * no need to zero am_anon since that was done at
481 			 * alloc time and we never shrink an allocation.
482 			 */
483 
484 			UVMHIST_LOG(maphist,"<- done (case 2f), amap = %#jx, "
485 			    "slotneed=%jd", (uintptr_t)amap, slotneed, 0, 0);
486 			return 0;
487 		} else {
488 #ifdef UVM_AMAP_PPREF
489 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
490 				/*
491 				 * Slide up the ref counts on the pages that
492 				 * are actually in use.
493 				 */
494 				memmove(amap->am_ppref + slotarea,
495 				    amap->am_ppref + slotoff,
496 				    slotmapped * sizeof(int));
497 				/*
498 				 * Mark the (adjusted) gap at the front as
499 				 * referenced/not referenced.
500 				 */
501 				pp_setreflen(amap->am_ppref,
502 				    0, 0, slotarea - slotadd);
503 				pp_setreflen(amap->am_ppref,
504 				    slotarea - slotadd, 1, slotadd);
505 			}
506 #endif
507 
508 			/*
509 			 * Slide the anon pointers up and clear out
510 			 * the space we just made.
511 			 */
512 			memmove(amap->am_anon + slotarea,
513 			    amap->am_anon + slotoff,
514 			    slotmapped * sizeof(struct vm_anon*));
515 			memset(amap->am_anon + slotoff, 0,
516 			    (slotarea - slotoff) * sizeof(struct vm_anon *));
517 
518 			/*
519 			 * Slide the backpointers up, but don't bother
520 			 * wiping out the old slots.
521 			 */
522 			memmove(amap->am_bckptr + slotarea,
523 			    amap->am_bckptr + slotoff,
524 			    slotmapped * sizeof(int));
525 
526 			/*
527 			 * Adjust all the useful active slot numbers.
528 			 */
529 			for (i = 0; i < amap->am_nused; i++)
530 				amap->am_slots[i] += (slotarea - slotoff);
531 
532 			/*
533 			 * We just filled all the empty space in the
534 			 * front of the amap by activating a few new
535 			 * slots.
536 			 */
537 			amap->am_nslot = amap->am_maxslot;
538 			entry->aref.ar_pageoff = slotarea - slotadd;
539 			amap_unlock(amap);
540 
541 			UVMHIST_LOG(maphist,"<- done (case 2b), amap = %#jx, "
542 			    "slotneed=%jd", (uintptr_t)amap, slotneed, 0, 0);
543 			return 0;
544 		}
545 	}
546 
547 	/*
548 	 * Case 3: we need to allocate a new amap and copy all the amap
549 	 * data over from old amap to the new one.  Drop the lock before
550 	 * performing allocation.
551 	 *
552 	 * Note: since allocations are likely big, we expect to reduce the
553 	 * memory fragmentation by allocating them in separate blocks.
554 	 */
555 
556 	amap_unlock(amap);
557 
558 	if (slotneed >= UVM_AMAP_LARGE) {
559 		return E2BIG;
560 	}
561 
562 	slotalloc = amap_roundup_slots(slotneed);
563 #ifdef UVM_AMAP_PPREF
564 	newppref = NULL;
565 	if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
566 		/* Will be handled later if fails. */
567 		newppref = kmem_alloc(slotalloc * sizeof(*newppref), kmflags);
568 	}
569 #endif
570 	newsl = kmem_alloc(slotalloc * sizeof(*newsl), kmflags);
571 	newbck = kmem_alloc(slotalloc * sizeof(*newbck), kmflags);
572 	newover = kmem_alloc(slotalloc * sizeof(*newover), kmflags);
573 	if (newsl == NULL || newbck == NULL || newover == NULL) {
574 #ifdef UVM_AMAP_PPREF
575 		if (newppref != NULL) {
576 			kmem_free(newppref, slotalloc * sizeof(*newppref));
577 		}
578 #endif
579 		if (newsl != NULL) {
580 			kmem_free(newsl, slotalloc * sizeof(*newsl));
581 		}
582 		if (newbck != NULL) {
583 			kmem_free(newbck, slotalloc * sizeof(*newbck));
584 		}
585 		if (newover != NULL) {
586 			kmem_free(newover, slotalloc * sizeof(*newover));
587 		}
588 		return ENOMEM;
589 	}
590 	amap_lock(amap, RW_WRITER);
591 	KASSERT(amap->am_maxslot < slotneed);
592 
593 	/*
594 	 * Copy everything over to new allocated areas.
595 	 */
596 
597 	slotadded = slotalloc - amap->am_nslot;
598 	if (!(flags & AMAP_EXTEND_FORWARDS))
599 		slotarea = slotalloc - slotmapped;
600 
601 	/* do am_slots */
602 	oldsl = amap->am_slots;
603 	if (flags & AMAP_EXTEND_FORWARDS)
604 		memcpy(newsl, oldsl, sizeof(int) * amap->am_nused);
605 	else
606 		for (i = 0; i < amap->am_nused; i++)
607 			newsl[i] = oldsl[i] + slotarea - slotoff;
608 	amap->am_slots = newsl;
609 
610 	/* do am_anon */
611 	oldover = amap->am_anon;
612 	if (flags & AMAP_EXTEND_FORWARDS) {
613 		memcpy(newover, oldover,
614 		    sizeof(struct vm_anon *) * amap->am_nslot);
615 		memset(newover + amap->am_nslot, 0,
616 		    sizeof(struct vm_anon *) * slotadded);
617 	} else {
618 		memcpy(newover + slotarea, oldover + slotoff,
619 		    sizeof(struct vm_anon *) * slotmapped);
620 		memset(newover, 0,
621 		    sizeof(struct vm_anon *) * slotarea);
622 	}
623 	amap->am_anon = newover;
624 
625 	/* do am_bckptr */
626 	oldbck = amap->am_bckptr;
627 	if (flags & AMAP_EXTEND_FORWARDS)
628 		memcpy(newbck, oldbck, sizeof(int) * amap->am_nslot);
629 	else
630 		memcpy(newbck + slotarea, oldbck + slotoff,
631 		    sizeof(int) * slotmapped);
632 	amap->am_bckptr = newbck;
633 
634 #ifdef UVM_AMAP_PPREF
635 	/* do ppref */
636 	oldppref = amap->am_ppref;
637 	if (newppref) {
638 		if (flags & AMAP_EXTEND_FORWARDS) {
639 			memcpy(newppref, oldppref,
640 			    sizeof(int) * amap->am_nslot);
641 			memset(newppref + amap->am_nslot, 0,
642 			    sizeof(int) * slotadded);
643 		} else {
644 			memcpy(newppref + slotarea, oldppref + slotoff,
645 			    sizeof(int) * slotmapped);
646 		}
647 		amap->am_ppref = newppref;
648 		if ((flags & AMAP_EXTEND_FORWARDS) &&
649 		    (slotoff + slotmapped) < amap->am_nslot)
650 			amap_pp_adjref(amap, slotoff + slotmapped,
651 			    (amap->am_nslot - (slotoff + slotmapped)), 1);
652 		if (flags & AMAP_EXTEND_FORWARDS)
653 			pp_setreflen(newppref, amap->am_nslot, 1,
654 			    slotneed - amap->am_nslot);
655 		else {
656 			pp_setreflen(newppref, 0, 0,
657 			    slotalloc - slotneed);
658 			pp_setreflen(newppref, slotalloc - slotneed, 1,
659 			    slotneed - slotmapped);
660 		}
661 	} else {
662 		if (amap->am_ppref)
663 			amap->am_ppref = PPREF_NONE;
664 	}
665 #endif
666 
667 	/* update master values */
668 	if (flags & AMAP_EXTEND_FORWARDS)
669 		amap->am_nslot = slotneed;
670 	else {
671 		entry->aref.ar_pageoff = slotarea - slotadd;
672 		amap->am_nslot = slotalloc;
673 	}
674 	oldnslots = amap->am_maxslot;
675 	amap->am_maxslot = slotalloc;
676 	amap_unlock(amap);
677 
678 	kmem_free(oldsl, oldnslots * sizeof(*oldsl));
679 	kmem_free(oldbck, oldnslots * sizeof(*oldbck));
680 	kmem_free(oldover, oldnslots * sizeof(*oldover));
681 #ifdef UVM_AMAP_PPREF
682 	if (oldppref && oldppref != PPREF_NONE)
683 		kmem_free(oldppref, oldnslots * sizeof(*oldppref));
684 #endif
685 	UVMHIST_LOG(maphist,"<- done (case 3), amap = %#jx, slotneed=%jd",
686 	    (uintptr_t)amap, slotneed, 0, 0);
687 	return 0;
688 }
689 
690 /*
691  * amap_share_protect: change protection of anons in a shared amap
692  *
693  * for shared amaps, given the current data structure layout, it is
694  * not possible for us to directly locate all maps referencing the
695  * shared anon (to change the protection).  in order to protect data
696  * in shared maps we use pmap_page_protect().  [this is useful for IPC
697  * mechanisms like map entry passing that may want to write-protect
698  * all mappings of a shared amap.]  we traverse am_anon or am_slots
699  * depending on the current state of the amap.
700  *
701  * => entry's map and amap must be locked by the caller
702  */
703 void
amap_share_protect(struct vm_map_entry * entry,vm_prot_t prot)704 amap_share_protect(struct vm_map_entry *entry, vm_prot_t prot)
705 {
706 	struct vm_amap *amap = entry->aref.ar_amap;
707 	u_int slots, lcv, slot, stop;
708 	struct vm_anon *anon;
709 
710 	KASSERT(rw_write_held(amap->am_lock));
711 
712 	AMAP_B2SLOT(slots, (entry->end - entry->start));
713 	stop = entry->aref.ar_pageoff + slots;
714 
715 	if (slots < amap->am_nused) {
716 		/*
717 		 * Cheaper to traverse am_anon.
718 		 */
719 		for (lcv = entry->aref.ar_pageoff ; lcv < stop ; lcv++) {
720 			anon = amap->am_anon[lcv];
721 			if (anon == NULL) {
722 				continue;
723 			}
724 			if (anon->an_page) {
725 				pmap_page_protect(anon->an_page, prot);
726 			}
727 		}
728 		return;
729 	}
730 
731 	/*
732 	 * Cheaper to traverse am_slots.
733 	 */
734 	for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
735 		slot = amap->am_slots[lcv];
736 		if (slot < entry->aref.ar_pageoff || slot >= stop) {
737 			continue;
738 		}
739 		anon = amap->am_anon[slot];
740 		if (anon->an_page) {
741 			pmap_page_protect(anon->an_page, prot);
742 		}
743 	}
744 }
745 
746 /*
747  * amap_wipeout: wipeout all anon's in an amap; then free the amap!
748  *
749  * => Called from amap_unref(), when reference count drops to zero.
750  * => amap must be locked.
751  */
752 
753 void
amap_wipeout(struct vm_amap * amap)754 amap_wipeout(struct vm_amap *amap)
755 {
756 	u_int lcv;
757 
758 	UVMHIST_FUNC(__func__);
759 	UVMHIST_CALLARGS(maphist,"(amap=%#jx)", (uintptr_t)amap, 0,0,0);
760 
761 	KASSERT(rw_write_held(amap->am_lock));
762 	KASSERT(amap->am_ref == 0);
763 
764 	if (__predict_false(amap->am_flags & AMAP_SWAPOFF)) {
765 		/*
766 		 * Note: amap_swap_off() will call us again.
767 		 */
768 		amap_unlock(amap);
769 		return;
770 	}
771 
772 	for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
773 		struct vm_anon *anon;
774 		u_int slot;
775 
776 		slot = amap->am_slots[lcv];
777 		anon = amap->am_anon[slot];
778 		KASSERT(anon != NULL);
779 		KASSERT(anon->an_ref != 0);
780 
781 		KASSERT(anon->an_lock == amap->am_lock);
782 		UVMHIST_LOG(maphist,"  processing anon %#jx, ref=%jd",
783 		    (uintptr_t)anon, anon->an_ref, 0, 0);
784 
785 		/*
786 		 * Drop the reference.
787 		 */
788 
789 		if (__predict_true(--anon->an_ref == 0)) {
790 			uvm_anfree(anon);
791 		}
792 		if (__predict_false((lcv & 31) == 31)) {
793 			preempt_point();
794 		}
795 	}
796 
797 	/*
798 	 * Finally, destroy the amap.
799 	 */
800 
801 	amap->am_nused = 0;
802 	amap_unlock(amap);
803 	amap_free(amap);
804 	UVMHIST_LOG(maphist,"<- done!", 0,0,0,0);
805 }
806 
807 /*
808  * amap_copy: ensure that a map entry's "needs_copy" flag is false
809  *	by copying the amap if necessary.
810  *
811  * => an entry with a null amap pointer will get a new (blank) one.
812  * => the map that the map entry belongs to must be locked by caller.
813  * => the amap currently attached to "entry" (if any) must be unlocked.
814  * => if canchunk is true, then we may clip the entry into a chunk
815  * => "startva" and "endva" are used only if canchunk is true.  they are
816  *     used to limit chunking (e.g. if you have a large space that you
817  *     know you are going to need to allocate amaps for, there is no point
818  *     in allowing that to be chunked)
819  */
820 
821 void
amap_copy(struct vm_map * map,struct vm_map_entry * entry,int flags,vaddr_t startva,vaddr_t endva)822 amap_copy(struct vm_map *map, struct vm_map_entry *entry, int flags,
823     vaddr_t startva, vaddr_t endva)
824 {
825 	const int waitf = (flags & AMAP_COPY_NOWAIT) ? UVM_FLAG_NOWAIT : 0;
826 	struct vm_amap *amap, *srcamap;
827 	u_int slots, lcv;
828 	krwlock_t *oldlock;
829 	vsize_t len;
830 
831 	UVMHIST_FUNC(__func__);
832 	UVMHIST_CALLARGS(maphist, "  (map=%#jx, entry=%#jx, flags=%#jx)",
833 	    (uintptr_t)map, (uintptr_t)entry, flags, -2);
834 
835 	KASSERT(map != kernel_map);	/* we use nointr pool */
836 
837 	srcamap = entry->aref.ar_amap;
838 	len = entry->end - entry->start;
839 
840 	/*
841 	 * Is there an amap to copy?  If not, create one.
842 	 */
843 
844 	if (srcamap == NULL) {
845 		const bool canchunk = (flags & AMAP_COPY_NOCHUNK) == 0;
846 
847 		/*
848 		 * Check to see if we have a large amap that we can
849 		 * chunk.  We align startva/endva to chunk-sized
850 		 * boundaries and then clip to them.
851 		 */
852 
853 		if (canchunk && atop(len) >= UVM_AMAP_LARGE) {
854 			vsize_t chunksize;
855 
856 			/* Convert slots to bytes. */
857 			chunksize = UVM_AMAP_CHUNK << PAGE_SHIFT;
858 			startva = (startva / chunksize) * chunksize;
859 			endva = roundup(endva, chunksize);
860 			UVMHIST_LOG(maphist,
861 			    "  chunk amap ==> clip %#jx->%#jx to %#jx->%#jx",
862 			    entry->start, entry->end, startva, endva);
863 			UVM_MAP_CLIP_START(map, entry, startva);
864 
865 			/* Watch out for endva wrap-around! */
866 			if (endva >= startva) {
867 				UVM_MAP_CLIP_END(map, entry, endva);
868 			}
869 		}
870 
871 		if ((flags & AMAP_COPY_NOMERGE) == 0 &&
872 		    uvm_mapent_trymerge(map, entry, UVM_MERGE_COPYING)) {
873 			return;
874 		}
875 
876 		UVMHIST_LOG(maphist, "<- done [creating new amap %#jx->%#jx]",
877 		    entry->start, entry->end, 0, 0);
878 
879 		/*
880 		 * Allocate an initialised amap and install it.
881 		 * Note: we must update the length after clipping.
882 		 */
883 		len = entry->end - entry->start;
884 		entry->aref.ar_pageoff = 0;
885 		entry->aref.ar_amap = amap_alloc(len, 0, waitf);
886 		if (entry->aref.ar_amap != NULL) {
887 			entry->etype &= ~UVM_ET_NEEDSCOPY;
888 		}
889 		return;
890 	}
891 
892 	/*
893 	 * First check and see if we are the only map entry referencing
894 	 * he amap we currently have.  If so, then just take it over instead
895 	 * of copying it.  Note that we are reading am_ref without lock held
896 	 * as the value can only be one if we have the only reference
897 	 * to the amap (via our locked map).  If the value is greater than
898 	 * one, then allocate amap and re-check the value.
899 	 */
900 
901 	if (srcamap->am_ref == 1) {
902 		entry->etype &= ~UVM_ET_NEEDSCOPY;
903 		UVMHIST_LOG(maphist, "<- done [ref cnt = 1, took it over]",
904 		    0, 0, 0, 0);
905 		return;
906 	}
907 
908 	UVMHIST_LOG(maphist,"  amap=%#jx, ref=%jd, must copy it",
909 	    (uintptr_t)srcamap, srcamap->am_ref, 0, 0);
910 
911 	/*
912 	 * Allocate a new amap (note: not initialised, etc).
913 	 */
914 
915 	AMAP_B2SLOT(slots, len);
916 	amap = amap_alloc1(slots, 0, waitf);
917 	if (amap == NULL) {
918 		UVMHIST_LOG(maphist, "  amap_alloc1 failed", 0,0,0,0);
919 		return;
920 	}
921 
922 	/*
923 	 * Make the new amap share the source amap's lock, and then lock
924 	 * both.  We must do this before we set am_nused != 0, otherwise
925 	 * amap_swap_off() can become interested in the amap.
926 	 */
927 
928 	oldlock = amap->am_lock;
929 	mutex_enter(&amap_list_lock);
930 	amap->am_lock = srcamap->am_lock;
931 	mutex_exit(&amap_list_lock);
932 	rw_obj_hold(amap->am_lock);
933 	rw_obj_free(oldlock);
934 
935 	amap_lock(srcamap, RW_WRITER);
936 
937 	/*
938 	 * Re-check the reference count with the lock held.  If it has
939 	 * dropped to one - we can take over the existing map.
940 	 */
941 
942 	if (srcamap->am_ref == 1) {
943 		/* Just take over the existing amap. */
944 		entry->etype &= ~UVM_ET_NEEDSCOPY;
945 		amap_unlock(srcamap);
946 		/* Destroy the new (unused) amap. */
947 		amap->am_ref--;
948 		amap_free(amap);
949 		return;
950 	}
951 
952 	/*
953 	 * Copy the slots.  Zero the padded part.
954 	 */
955 
956 	UVMHIST_LOG(maphist, "  copying amap now",0, 0, 0, 0);
957 	for (lcv = 0 ; lcv < slots; lcv++) {
958 		amap->am_anon[lcv] =
959 		    srcamap->am_anon[entry->aref.ar_pageoff + lcv];
960 		if (amap->am_anon[lcv] == NULL)
961 			continue;
962 		KASSERT(amap->am_anon[lcv]->an_lock == srcamap->am_lock);
963 		KASSERT(amap->am_anon[lcv]->an_ref > 0);
964 		KASSERT(amap->am_nused < amap->am_maxslot);
965 		amap->am_anon[lcv]->an_ref++;
966 		amap->am_bckptr[lcv] = amap->am_nused;
967 		amap->am_slots[amap->am_nused] = lcv;
968 		amap->am_nused++;
969 	}
970 	memset(&amap->am_anon[lcv], 0,
971 	    (amap->am_maxslot - lcv) * sizeof(struct vm_anon *));
972 
973 	/*
974 	 * Drop our reference to the old amap (srcamap) and unlock.
975 	 * Since the reference count on srcamap is greater than one,
976 	 * (we checked above), it cannot drop to zero while it is locked.
977 	 */
978 
979 	srcamap->am_ref--;
980 	KASSERT(srcamap->am_ref > 0);
981 
982 	if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0) {
983 		srcamap->am_flags &= ~AMAP_SHARED;
984 	}
985 #ifdef UVM_AMAP_PPREF
986 	if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) {
987 		amap_pp_adjref(srcamap, entry->aref.ar_pageoff,
988 		    len >> PAGE_SHIFT, -1);
989 	}
990 #endif
991 
992 	amap_unlock(srcamap);
993 
994 	/*
995 	 * Install new amap.
996 	 */
997 
998 	entry->aref.ar_pageoff = 0;
999 	entry->aref.ar_amap = amap;
1000 	entry->etype &= ~UVM_ET_NEEDSCOPY;
1001 	UVMHIST_LOG(maphist, "<- done",0, 0, 0, 0);
1002 }
1003 
1004 /*
1005  * amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2)
1006  *
1007  *	called during fork(2) when the parent process has a wired map
1008  *	entry.   in that case we want to avoid write-protecting pages
1009  *	in the parent's map (e.g. like what you'd do for a COW page)
1010  *	so we resolve the COW here.
1011  *
1012  * => assume parent's entry was wired, thus all pages are resident.
1013  * => assume pages that are loaned out (loan_count) are already mapped
1014  *	read-only in all maps, and thus no need for us to worry about them
1015  * => assume both parent and child vm_map's are locked
1016  * => caller passes child's map/entry in to us
1017  * => if we run out of memory we will unlock the amap and sleep _with_ the
1018  *	parent and child vm_map's locked(!).    we have to do this since
1019  *	we are in the middle of a fork(2) and we can't let the parent
1020  *	map change until we are done copying all the map entrys.
1021  * => XXXCDC: out of memory should cause fork to fail, but there is
1022  *	currently no easy way to do this (needs fix)
1023  */
1024 
1025 void
amap_cow_now(struct vm_map * map,struct vm_map_entry * entry)1026 amap_cow_now(struct vm_map *map, struct vm_map_entry *entry)
1027 {
1028 	struct vm_amap *amap = entry->aref.ar_amap;
1029 	struct vm_anon *anon, *nanon;
1030 	struct vm_page *pg, *npg;
1031 	u_int lcv, slot;
1032 
1033 	/*
1034 	 * note that if we unlock the amap then we must ReStart the "lcv" for
1035 	 * loop because some other process could reorder the anon's in the
1036 	 * am_anon[] array on us while the lock is dropped.
1037 	 */
1038 
1039 ReStart:
1040 	amap_lock(amap, RW_WRITER);
1041 	for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
1042 		slot = amap->am_slots[lcv];
1043 		anon = amap->am_anon[slot];
1044 		KASSERT(anon->an_lock == amap->am_lock);
1045 
1046 		/*
1047 		 * If anon has only one reference - we must have already
1048 		 * copied it.  This can happen if we needed to sleep waiting
1049 		 * for memory in a previous run through this loop.  The new
1050 		 * page might even have been paged out, since is not wired.
1051 		 */
1052 
1053 		if (anon->an_ref == 1) {
1054 			KASSERT(anon->an_page != NULL || anon->an_swslot != 0);
1055 			continue;
1056 		}
1057 
1058 		/*
1059 		 * The old page must be resident since the parent is wired.
1060 		 */
1061 
1062 		pg = anon->an_page;
1063 		KASSERT(pg != NULL);
1064 		KASSERT(pg->wire_count > 0);
1065 
1066 		/*
1067 		 * If the page is loaned then it must already be mapped
1068 		 * read-only and we don't need to copy it.
1069 		 */
1070 
1071 		if (pg->loan_count != 0) {
1072 			continue;
1073 		}
1074 		KASSERT(pg->uanon == anon);
1075 		KASSERT(pg->uobject == NULL);
1076 
1077 		/*
1078 		 * If the page is busy, then we have to unlock, wait for
1079 		 * it and then restart.
1080 		 */
1081 
1082 		if (pg->flags & PG_BUSY) {
1083 			uvm_pagewait(pg, amap->am_lock, "cownow");
1084 			goto ReStart;
1085 		}
1086 
1087 		/*
1088 		 * Perform a copy-on-write.
1089 		 * First - get a new anon and a page.
1090 		 */
1091 
1092 		nanon = uvm_analloc();
1093 		if (nanon) {
1094 			nanon->an_lock = amap->am_lock;
1095 			npg = uvm_pagealloc(NULL, 0, nanon, 0);
1096 		} else {
1097 			npg = NULL;
1098 		}
1099 		if (nanon == NULL || npg == NULL) {
1100 			amap_unlock(amap);
1101 			if (nanon) {
1102 				nanon->an_lock = NULL;
1103 				nanon->an_ref--;
1104 				KASSERT(nanon->an_ref == 0);
1105 				uvm_anfree(nanon);
1106 			}
1107 			uvm_wait("cownowpage");
1108 			goto ReStart;
1109 		}
1110 
1111 		/*
1112 		 * Copy the data and replace anon with the new one.
1113 		 * Also, setup its lock (share the with amap's lock).
1114 		 */
1115 
1116 		uvm_pagecopy(pg, npg);
1117 		anon->an_ref--;
1118 		KASSERT(anon->an_ref > 0);
1119 		amap->am_anon[slot] = nanon;
1120 
1121 		/*
1122 		 * Drop PG_BUSY on new page.  Since its owner was write
1123 		 * locked all this time - it cannot be PG_RELEASED or
1124 		 * waited on.
1125 		 */
1126 		uvm_pagelock(npg);
1127 		uvm_pageactivate(npg);
1128 		uvm_pageunlock(npg);
1129 		npg->flags &= ~(PG_BUSY|PG_FAKE);
1130 		UVM_PAGE_OWN(npg, NULL);
1131 	}
1132 	amap_unlock(amap);
1133 }
1134 
1135 /*
1136  * amap_splitref: split a single reference into two separate references
1137  *
1138  * => called from uvm_map's clip routines
1139  * => origref's map should be locked
1140  * => origref->ar_amap should be unlocked (we will lock)
1141  */
1142 void
amap_splitref(struct vm_aref * origref,struct vm_aref * splitref,vaddr_t offset)1143 amap_splitref(struct vm_aref *origref, struct vm_aref *splitref, vaddr_t offset)
1144 {
1145 	struct vm_amap *amap = origref->ar_amap;
1146 	u_int leftslots;
1147 
1148 	KASSERT(splitref->ar_amap == origref->ar_amap);
1149 	AMAP_B2SLOT(leftslots, offset);
1150 	KASSERT(leftslots != 0);
1151 
1152 	amap_lock(amap, RW_WRITER);
1153 	KASSERT(amap->am_nslot - origref->ar_pageoff - leftslots > 0);
1154 
1155 #ifdef UVM_AMAP_PPREF
1156 	/* Establish ppref before we add a duplicate reference to the amap. */
1157 	if (amap->am_ppref == NULL) {
1158 		amap_pp_establish(amap, origref->ar_pageoff);
1159 	}
1160 #endif
1161 	/* Note: not a share reference. */
1162 	amap->am_ref++;
1163 	splitref->ar_pageoff = origref->ar_pageoff + leftslots;
1164 	amap_unlock(amap);
1165 }
1166 
1167 #ifdef UVM_AMAP_PPREF
1168 
1169 /*
1170  * amap_pp_establish: add a ppref array to an amap, if possible.
1171  *
1172  * => amap should be locked by caller.
1173  */
1174 void
amap_pp_establish(struct vm_amap * amap,vaddr_t offset)1175 amap_pp_establish(struct vm_amap *amap, vaddr_t offset)
1176 {
1177 	const size_t sz = amap->am_maxslot * sizeof(*amap->am_ppref);
1178 
1179 	KASSERT(rw_write_held(amap->am_lock));
1180 
1181 	amap->am_ppref = kmem_zalloc(sz, KM_NOSLEEP);
1182 	if (amap->am_ppref == NULL) {
1183 		/* Failure - just do not use ppref. */
1184 		amap->am_ppref = PPREF_NONE;
1185 		return;
1186 	}
1187 	pp_setreflen(amap->am_ppref, 0, 0, offset);
1188 	pp_setreflen(amap->am_ppref, offset, amap->am_ref,
1189 	    amap->am_nslot - offset);
1190 }
1191 
1192 /*
1193  * amap_pp_adjref: adjust reference count to a part of an amap using the
1194  * per-page reference count array.
1195  *
1196  * => caller must check that ppref != PPREF_NONE before calling.
1197  * => map and amap must be locked.
1198  */
1199 void
amap_pp_adjref(struct vm_amap * amap,int curslot,vsize_t slotlen,int adjval)1200 amap_pp_adjref(struct vm_amap *amap, int curslot, vsize_t slotlen, int adjval)
1201 {
1202 	int stopslot, *ppref, lcv, prevlcv;
1203 	int ref, len, prevref, prevlen;
1204 
1205 	KASSERT(rw_write_held(amap->am_lock));
1206 
1207 	stopslot = curslot + slotlen;
1208 	ppref = amap->am_ppref;
1209 	prevlcv = 0;
1210 
1211 	/*
1212 	 * Advance to the correct place in the array, fragment if needed.
1213 	 */
1214 
1215 	for (lcv = 0 ; lcv < curslot ; lcv += len) {
1216 		pp_getreflen(ppref, lcv, &ref, &len);
1217 		if (lcv + len > curslot) {     /* goes past start? */
1218 			pp_setreflen(ppref, lcv, ref, curslot - lcv);
1219 			pp_setreflen(ppref, curslot, ref, len - (curslot -lcv));
1220 			len = curslot - lcv;   /* new length of entry @ lcv */
1221 		}
1222 		prevlcv = lcv;
1223 	}
1224 	if (lcv == 0) {
1225 		/*
1226 		 * Ensure that the "prevref == ref" test below always
1227 		 * fails, since we are starting from the beginning of
1228 		 * the ppref array; that is, there is no previous chunk.
1229 		 */
1230 		prevref = -1;
1231 		prevlen = 0;
1232 	} else {
1233 		pp_getreflen(ppref, prevlcv, &prevref, &prevlen);
1234 	}
1235 
1236 	/*
1237 	 * Now adjust reference counts in range.  Merge the first
1238 	 * changed entry with the last unchanged entry if possible.
1239 	 */
1240 	KASSERT(lcv == curslot);
1241 	for (/* lcv already set */; lcv < stopslot ; lcv += len) {
1242 		pp_getreflen(ppref, lcv, &ref, &len);
1243 		if (lcv + len > stopslot) {     /* goes past end? */
1244 			pp_setreflen(ppref, lcv, ref, stopslot - lcv);
1245 			pp_setreflen(ppref, stopslot, ref,
1246 			    len - (stopslot - lcv));
1247 			len = stopslot - lcv;
1248 		}
1249 		ref += adjval;
1250 		KASSERT(ref >= 0);
1251 		KASSERT(ref <= amap->am_ref);
1252 		if (lcv == prevlcv + prevlen && ref == prevref) {
1253 			pp_setreflen(ppref, prevlcv, ref, prevlen + len);
1254 		} else {
1255 			pp_setreflen(ppref, lcv, ref, len);
1256 		}
1257 		if (ref == 0) {
1258 			amap_wiperange(amap, lcv, len);
1259 		}
1260 	}
1261 }
1262 
1263 /*
1264  * amap_wiperange: wipe out a range of an amap.
1265  * Note: different from amap_wipeout because the amap is kept intact.
1266  *
1267  * => Both map and amap must be locked by caller.
1268  */
1269 void
amap_wiperange(struct vm_amap * amap,int slotoff,int slots)1270 amap_wiperange(struct vm_amap *amap, int slotoff, int slots)
1271 {
1272 	u_int lcv, stop, slotend;
1273 	bool byanon;
1274 
1275 	KASSERT(rw_write_held(amap->am_lock));
1276 
1277 	/*
1278 	 * We can either traverse the amap by am_anon or by am_slots.
1279 	 * Determine which way is less expensive.
1280 	 */
1281 
1282 	if (slots < amap->am_nused) {
1283 		byanon = true;
1284 		lcv = slotoff;
1285 		stop = slotoff + slots;
1286 		slotend = 0;
1287 	} else {
1288 		byanon = false;
1289 		lcv = 0;
1290 		stop = amap->am_nused;
1291 		slotend = slotoff + slots;
1292 	}
1293 
1294 	while (lcv < stop) {
1295 		struct vm_anon *anon;
1296 		u_int curslot, ptr, last;
1297 
1298 		if (byanon) {
1299 			curslot = lcv++;	/* lcv advances here */
1300 			if (amap->am_anon[curslot] == NULL)
1301 				continue;
1302 		} else {
1303 			curslot = amap->am_slots[lcv];
1304 			if (curslot < slotoff || curslot >= slotend) {
1305 				lcv++;		/* lcv advances here */
1306 				continue;
1307 			}
1308 			stop--;	/* drop stop, since anon will be removed */
1309 		}
1310 		anon = amap->am_anon[curslot];
1311 		KASSERT(anon->an_lock == amap->am_lock);
1312 
1313 		/*
1314 		 * Remove anon from the amap.
1315 		 */
1316 
1317 		amap->am_anon[curslot] = NULL;
1318 		ptr = amap->am_bckptr[curslot];
1319 		last = amap->am_nused - 1;
1320 		if (ptr != last) {
1321 			amap->am_slots[ptr] = amap->am_slots[last];
1322 			amap->am_bckptr[amap->am_slots[ptr]] = ptr;
1323 		}
1324 		amap->am_nused--;
1325 
1326 		/*
1327 		 * Drop its reference count.
1328 		 */
1329 
1330 		KASSERT(anon->an_lock == amap->am_lock);
1331 		if (--anon->an_ref == 0) {
1332 			uvm_anfree(anon);
1333 		}
1334 	}
1335 }
1336 
1337 #endif
1338 
1339 #if defined(VMSWAP)
1340 
1341 /*
1342  * amap_swap_off: pagein anonymous pages in amaps and drop swap slots.
1343  *
1344  * => called with swap_syscall_lock held.
1345  * => note that we don't always traverse all anons.
1346  *    eg. amaps being wiped out, released anons.
1347  * => return true if failed.
1348  */
1349 
1350 bool
amap_swap_off(int startslot,int endslot)1351 amap_swap_off(int startslot, int endslot)
1352 {
1353 	struct vm_amap *am;
1354 	struct vm_amap *am_next;
1355 	struct vm_amap marker_prev;
1356 	struct vm_amap marker_next;
1357 	bool rv = false;
1358 
1359 #if defined(DIAGNOSTIC)
1360 	memset(&marker_prev, 0, sizeof(marker_prev));
1361 	memset(&marker_next, 0, sizeof(marker_next));
1362 #endif /* defined(DIAGNOSTIC) */
1363 
1364 	mutex_enter(&amap_list_lock);
1365 	for (am = LIST_FIRST(&amap_list); am != NULL && !rv; am = am_next) {
1366 		int i;
1367 
1368 		LIST_INSERT_BEFORE(am, &marker_prev, am_list);
1369 		LIST_INSERT_AFTER(am, &marker_next, am_list);
1370 
1371 		/* amap_list_lock prevents the lock pointer from changing. */
1372 		if (!amap_lock_try(am, RW_WRITER)) {
1373 			(void)kpause("amapswpo", false, 1, &amap_list_lock);
1374 			am_next = LIST_NEXT(&marker_prev, am_list);
1375 			if (am_next == &marker_next) {
1376 				am_next = LIST_NEXT(am_next, am_list);
1377 			} else {
1378 				KASSERT(LIST_NEXT(am_next, am_list) ==
1379 				    &marker_next);
1380 			}
1381 			LIST_REMOVE(&marker_prev, am_list);
1382 			LIST_REMOVE(&marker_next, am_list);
1383 			continue;
1384 		}
1385 
1386 		mutex_exit(&amap_list_lock);
1387 
1388 		/* If am_nused == 0, the amap could be free - careful. */
1389 		for (i = 0; i < am->am_nused; i++) {
1390 			int slot;
1391 			int swslot;
1392 			struct vm_anon *anon;
1393 
1394 			slot = am->am_slots[i];
1395 			anon = am->am_anon[slot];
1396 			KASSERT(anon->an_lock == am->am_lock);
1397 
1398 			swslot = anon->an_swslot;
1399 			if (swslot < startslot || endslot <= swslot) {
1400 				continue;
1401 			}
1402 
1403 			am->am_flags |= AMAP_SWAPOFF;
1404 
1405 			rv = uvm_anon_pagein(am, anon);
1406 			amap_lock(am, RW_WRITER);
1407 
1408 			am->am_flags &= ~AMAP_SWAPOFF;
1409 			if (amap_refs(am) == 0) {
1410 				amap_wipeout(am);
1411 				am = NULL;
1412 				break;
1413 			}
1414 			if (rv) {
1415 				break;
1416 			}
1417 			i = 0;
1418 		}
1419 
1420 		if (am) {
1421 			amap_unlock(am);
1422 		}
1423 
1424 		mutex_enter(&amap_list_lock);
1425 		KASSERT(LIST_NEXT(&marker_prev, am_list) == &marker_next ||
1426 		    LIST_NEXT(LIST_NEXT(&marker_prev, am_list), am_list) ==
1427 		    &marker_next);
1428 		am_next = LIST_NEXT(&marker_next, am_list);
1429 		LIST_REMOVE(&marker_prev, am_list);
1430 		LIST_REMOVE(&marker_next, am_list);
1431 	}
1432 	mutex_exit(&amap_list_lock);
1433 
1434 	return rv;
1435 }
1436 
1437 #endif /* defined(VMSWAP) */
1438 
1439 /*
1440  * amap_lookup: look up a page in an amap.
1441  *
1442  * => amap should be locked by caller.
1443  */
1444 struct vm_anon *
amap_lookup(struct vm_aref * aref,vaddr_t offset)1445 amap_lookup(struct vm_aref *aref, vaddr_t offset)
1446 {
1447 	struct vm_amap *amap = aref->ar_amap;
1448 	struct vm_anon *an;
1449 	u_int slot;
1450 
1451 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1452 	KASSERT(rw_lock_held(amap->am_lock));
1453 
1454 	AMAP_B2SLOT(slot, offset);
1455 	slot += aref->ar_pageoff;
1456 	an = amap->am_anon[slot];
1457 
1458 	UVMHIST_LOG(maphist,
1459 	    "<- done (amap=%#jx, offset=%#jx, result=%#jx)",
1460 	    (uintptr_t)amap, offset, (uintptr_t)an, 0);
1461 
1462 	KASSERT(slot < amap->am_nslot);
1463 	KASSERT(an == NULL || an->an_ref != 0);
1464 	KASSERT(an == NULL || an->an_lock == amap->am_lock);
1465 	return an;
1466 }
1467 
1468 /*
1469  * amap_lookups: look up a range of pages in an amap.
1470  *
1471  * => amap should be locked by caller.
1472  */
1473 void
amap_lookups(struct vm_aref * aref,vaddr_t offset,struct vm_anon ** anons,int npages)1474 amap_lookups(struct vm_aref *aref, vaddr_t offset, struct vm_anon **anons,
1475     int npages)
1476 {
1477 	struct vm_amap *amap = aref->ar_amap;
1478 	u_int slot;
1479 
1480 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1481 	KASSERT(rw_lock_held(amap->am_lock));
1482 
1483 	AMAP_B2SLOT(slot, offset);
1484 	slot += aref->ar_pageoff;
1485 
1486 	UVMHIST_LOG(maphist, "  slot=%u, npages=%d, nslot=%d",
1487 	    slot, npages, amap->am_nslot, 0);
1488 
1489 	KASSERT((slot + (npages - 1)) < amap->am_nslot);
1490 	memcpy(anons, &amap->am_anon[slot], npages * sizeof(struct vm_anon *));
1491 
1492 #if defined(DIAGNOSTIC)
1493 	for (int i = 0; i < npages; i++) {
1494 		struct vm_anon * const an = anons[i];
1495 		if (an == NULL) {
1496 			continue;
1497 		}
1498 		KASSERT(an->an_ref != 0);
1499 		KASSERT(an->an_lock == amap->am_lock);
1500 	}
1501 #endif
1502 	UVMHIST_LOG(maphist, "<- done", 0, 0, 0, 0);
1503 }
1504 
1505 /*
1506  * amap_add: add (or replace) a page to an amap.
1507  *
1508  * => amap should be locked by caller.
1509  * => anon must have the lock associated with this amap.
1510  */
1511 void
amap_add(struct vm_aref * aref,vaddr_t offset,struct vm_anon * anon,bool replace)1512 amap_add(struct vm_aref *aref, vaddr_t offset, struct vm_anon *anon,
1513     bool replace)
1514 {
1515 	struct vm_amap *amap = aref->ar_amap;
1516 	u_int slot;
1517 
1518 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1519 	KASSERT(rw_write_held(amap->am_lock));
1520 	KASSERT(anon->an_lock == amap->am_lock);
1521 
1522 	AMAP_B2SLOT(slot, offset);
1523 	slot += aref->ar_pageoff;
1524 	KASSERT(slot < amap->am_nslot);
1525 
1526 	if (replace) {
1527 		struct vm_anon *oanon = amap->am_anon[slot];
1528 
1529 		KASSERT(oanon != NULL);
1530 		if (oanon->an_page && (amap->am_flags & AMAP_SHARED) != 0) {
1531 			pmap_page_protect(oanon->an_page, VM_PROT_NONE);
1532 			/*
1533 			 * XXX: suppose page is supposed to be wired somewhere?
1534 			 */
1535 		}
1536 	} else {
1537 		KASSERT(amap->am_anon[slot] == NULL);
1538 		KASSERT(amap->am_nused < amap->am_maxslot);
1539 		amap->am_bckptr[slot] = amap->am_nused;
1540 		amap->am_slots[amap->am_nused] = slot;
1541 		amap->am_nused++;
1542 	}
1543 	amap->am_anon[slot] = anon;
1544 	UVMHIST_LOG(maphist,
1545 	    "<- done (amap=%#jx, offset=%#x, anon=%#jx, rep=%d)",
1546 	    (uintptr_t)amap, offset, (uintptr_t)anon, replace);
1547 }
1548 
1549 /*
1550  * amap_unadd: remove a page from an amap.
1551  *
1552  * => amap should be locked by caller.
1553  */
1554 void
amap_unadd(struct vm_aref * aref,vaddr_t offset)1555 amap_unadd(struct vm_aref *aref, vaddr_t offset)
1556 {
1557 	struct vm_amap *amap = aref->ar_amap;
1558 	u_int slot, ptr, last;
1559 
1560 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1561 	KASSERT(rw_write_held(amap->am_lock));
1562 
1563 	AMAP_B2SLOT(slot, offset);
1564 	slot += aref->ar_pageoff;
1565 	KASSERT(slot < amap->am_nslot);
1566 	KASSERT(amap->am_anon[slot] != NULL);
1567 	KASSERT(amap->am_anon[slot]->an_lock == amap->am_lock);
1568 
1569 	amap->am_anon[slot] = NULL;
1570 	ptr = amap->am_bckptr[slot];
1571 
1572 	last = amap->am_nused - 1;
1573 	if (ptr != last) {
1574 		/* Move the last entry to keep the slots contiguous. */
1575 		amap->am_slots[ptr] = amap->am_slots[last];
1576 		amap->am_bckptr[amap->am_slots[ptr]] = ptr;
1577 	}
1578 	amap->am_nused--;
1579 	UVMHIST_LOG(maphist, "<- done (amap=%#jx, slot=%#jx)",
1580 	    (uintptr_t)amap, slot,0, 0);
1581 }
1582 
1583 /*
1584  * amap_adjref_anons: adjust the reference count(s) on amap and its anons.
1585  */
1586 static void
amap_adjref_anons(struct vm_amap * amap,vaddr_t offset,vsize_t len,int refv,bool all)1587 amap_adjref_anons(struct vm_amap *amap, vaddr_t offset, vsize_t len,
1588     int refv, bool all)
1589 {
1590 
1591 #ifdef UVM_AMAP_PPREF
1592 	KASSERT(rw_write_held(amap->am_lock));
1593 
1594 	/*
1595 	 * We must establish the ppref array before changing am_ref
1596 	 * so that the ppref values match the current amap refcount.
1597 	 */
1598 
1599 	if (amap->am_ppref == NULL) {
1600 		amap_pp_establish(amap, offset);
1601 	}
1602 #endif
1603 
1604 	amap->am_ref += refv;
1605 
1606 #ifdef UVM_AMAP_PPREF
1607 	if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
1608 		amap_pp_adjref(amap, offset, len, refv);
1609 	}
1610 #endif
1611 	amap_unlock(amap);
1612 }
1613 
1614 /*
1615  * amap_ref: gain a reference to an amap.
1616  *
1617  * => amap must not be locked (we will lock).
1618  * => "offset" and "len" are in units of pages.
1619  * => Called at fork time to gain the child's reference.
1620  */
1621 void
amap_ref(struct vm_amap * amap,vaddr_t offset,vsize_t len,int flags)1622 amap_ref(struct vm_amap *amap, vaddr_t offset, vsize_t len, int flags)
1623 {
1624 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1625 
1626 	amap_lock(amap, RW_WRITER);
1627 	if (flags & AMAP_SHARED) {
1628 		amap->am_flags |= AMAP_SHARED;
1629 	}
1630 	amap_adjref_anons(amap, offset, len, 1, (flags & AMAP_REFALL) != 0);
1631 
1632 	UVMHIST_LOG(maphist,"<- done!  amap=%#jx", (uintptr_t)amap, 0, 0, 0);
1633 }
1634 
1635 /*
1636  * amap_unref: remove a reference to an amap.
1637  *
1638  * => All pmap-level references to this amap must be already removed.
1639  * => Called from uvm_unmap_detach(); entry is already removed from the map.
1640  * => We will lock amap, so it must be unlocked.
1641  */
1642 void
amap_unref(struct vm_amap * amap,vaddr_t offset,vsize_t len,bool all)1643 amap_unref(struct vm_amap *amap, vaddr_t offset, vsize_t len, bool all)
1644 {
1645 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1646 
1647 	amap_lock(amap, RW_WRITER);
1648 
1649 	UVMHIST_LOG(maphist,"  amap=%#jx  refs=%d, nused=%d",
1650 	    (uintptr_t)amap, amap->am_ref, amap->am_nused, 0);
1651 	KASSERT(amap->am_ref > 0);
1652 
1653 	if (amap->am_ref == 1) {
1654 
1655 		/*
1656 		 * If the last reference - wipeout and destroy the amap.
1657 		 */
1658 		amap->am_ref--;
1659 		amap_wipeout(amap);
1660 		UVMHIST_LOG(maphist,"<- done (was last ref)!", 0, 0, 0, 0);
1661 		return;
1662 	}
1663 
1664 	/*
1665 	 * Otherwise, drop the reference count(s) on anons.
1666 	 */
1667 
1668 	if (amap->am_ref == 2 && (amap->am_flags & AMAP_SHARED) != 0) {
1669 		amap->am_flags &= ~AMAP_SHARED;
1670 	}
1671 	amap_adjref_anons(amap, offset, len, -1, all);
1672 
1673 	UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1674 }
1675