xref: /openbsd/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision 349a600b)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		placement->num_busy_placement = 0;
106 		return;
107 	}
108 
109 	/* Object isn't an AMDGPU object so ignore */
110 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 		placement->placement = &placements;
112 		placement->busy_placement = &placements;
113 		placement->num_placement = 1;
114 		placement->num_busy_placement = 1;
115 		return;
116 	}
117 
118 	abo = ttm_to_amdgpu_bo(bo);
119 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 	}
124 
125 	switch (bo->resource->mem_type) {
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 	case AMDGPU_PL_DOORBELL:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned int window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned int offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct amdgpu_job *job;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 
201 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 		return -EINVAL;
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 
212 	/*
213 	 * If start begins at an offset inside the page, then adjust the size
214 	 * and addr accordingly
215 	 */
216 	offset = mm_cur->start & ~LINUX_PAGE_MASK;
217 
218 	num_pages = PFN_UP(*size + offset);
219 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220 
221 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222 
223 	*addr = adev->gmc.gart_start;
224 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 		AMDGPU_GPU_PAGE_SIZE;
226 	*addr += offset;
227 
228 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230 
231 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 				     AMDGPU_FENCE_OWNER_UNDEFINED,
233 				     num_dw * 4 + num_bytes,
234 				     AMDGPU_IB_POOL_DELAYED, &job);
235 	if (r)
236 		return r;
237 
238 	src_addr = num_dw * 4;
239 	src_addr += job->ibs[0].gpu_addr;
240 
241 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 				dst_addr, num_bytes, false);
245 
246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 	WARN_ON(job->ibs[0].length_dw > num_dw);
248 
249 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 	if (tmz)
251 		flags |= AMDGPU_PTE_TMZ;
252 
253 	cpu_addr = &job->ibs[0].ptr[num_dw];
254 
255 	if (mem->mem_type == TTM_PL_TT) {
256 		dma_addr_t *dma_addr;
257 
258 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 					flags, cpu_addr);
269 			dma_address += PAGE_SIZE;
270 		}
271 	}
272 
273 	dma_fence_put(amdgpu_job_submit(job));
274 	return 0;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 	struct amdgpu_res_cursor src_mm, dst_mm;
301 	struct dma_fence *fence = NULL;
302 	int r = 0;
303 
304 	if (!adev->mman.buffer_funcs_enabled) {
305 		DRM_ERROR("Trying to move memory with ring turned off.\n");
306 		return -EINVAL;
307 	}
308 
309 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311 
312 	mutex_lock(&adev->mman.gtt_window_lock);
313 	while (src_mm.remaining) {
314 		uint64_t from, to, cur_size;
315 		struct dma_fence *next;
316 
317 		/* Never copy more than 256MiB at once to avoid a timeout */
318 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319 
320 		/* Map src to window 0 and dst to window 1. */
321 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 					  0, ring, tmz, &cur_size, &from);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 					  1, ring, tmz, &cur_size, &to);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 				       resv, &next, false, true, tmz);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /**
412  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413  * @adev: amdgpu device
414  * @res: the resource to check
415  *
416  * Returns: true if the full resource is CPU visible, false otherwise.
417  */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 			    struct ttm_resource *res)
420 {
421 	struct amdgpu_res_cursor cursor;
422 
423 	if (!res)
424 		return false;
425 
426 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428 		return true;
429 
430 	if (res->mem_type != TTM_PL_VRAM)
431 		return false;
432 
433 	amdgpu_res_first(res, 0, res->size, &cursor);
434 	while (cursor.remaining) {
435 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
436 			return false;
437 		amdgpu_res_next(&cursor, cursor.size);
438 	}
439 
440 	return true;
441 }
442 
443 /*
444  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445  *
446  * Called by amdgpu_bo_move()
447  */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 				struct ttm_resource *mem)
450 {
451 	if (!amdgpu_res_cpu_visible(adev, mem))
452 		return false;
453 
454 	/* ttm_resource_ioremap only supports contiguous memory */
455 	if (mem->mem_type == TTM_PL_VRAM &&
456 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 		return false;
458 
459 	return true;
460 }
461 
462 /*
463  * amdgpu_bo_move - Move a buffer object to a new memory location
464  *
465  * Called by ttm_bo_handle_move_mem()
466  */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 			  struct ttm_operation_ctx *ctx,
469 			  struct ttm_resource *new_mem,
470 			  struct ttm_place *hop)
471 {
472 	struct amdgpu_device *adev;
473 	struct amdgpu_bo *abo;
474 	struct ttm_resource *old_mem = bo->resource;
475 	int r;
476 
477 	if (new_mem->mem_type == TTM_PL_TT ||
478 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 		if (r)
481 			return r;
482 	}
483 
484 	abo = ttm_to_amdgpu_bo(bo);
485 	adev = amdgpu_ttm_adev(bo->bdev);
486 
487 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 			 bo->ttm == NULL)) {
489 		amdgpu_bo_move_notify(bo, evict, new_mem);
490 		ttm_bo_move_null(bo, new_mem);
491 		return 0;
492 	}
493 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
494 	    (new_mem->mem_type == TTM_PL_TT ||
495 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
496 		amdgpu_bo_move_notify(bo, evict, new_mem);
497 		ttm_bo_move_null(bo, new_mem);
498 		return 0;
499 	}
500 	if ((old_mem->mem_type == TTM_PL_TT ||
501 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
502 	    new_mem->mem_type == TTM_PL_SYSTEM) {
503 		r = ttm_bo_wait_ctx(bo, ctx);
504 		if (r)
505 			return r;
506 
507 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
508 		amdgpu_bo_move_notify(bo, evict, new_mem);
509 		ttm_resource_free(bo, &bo->resource);
510 		ttm_bo_assign_mem(bo, new_mem);
511 		return 0;
512 	}
513 
514 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
515 	    old_mem->mem_type == AMDGPU_PL_GWS ||
516 	    old_mem->mem_type == AMDGPU_PL_OA ||
517 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
518 	    new_mem->mem_type == AMDGPU_PL_GDS ||
519 	    new_mem->mem_type == AMDGPU_PL_GWS ||
520 	    new_mem->mem_type == AMDGPU_PL_OA ||
521 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
522 		/* Nothing to save here */
523 		amdgpu_bo_move_notify(bo, evict, new_mem);
524 		ttm_bo_move_null(bo, new_mem);
525 		return 0;
526 	}
527 
528 	if (bo->type == ttm_bo_type_device &&
529 	    new_mem->mem_type == TTM_PL_VRAM &&
530 	    old_mem->mem_type != TTM_PL_VRAM) {
531 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
532 		 * accesses the BO after it's moved.
533 		 */
534 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
535 	}
536 
537 	if (adev->mman.buffer_funcs_enabled &&
538 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
539 	      new_mem->mem_type == TTM_PL_VRAM) ||
540 	     (old_mem->mem_type == TTM_PL_VRAM &&
541 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
542 		hop->fpfn = 0;
543 		hop->lpfn = 0;
544 		hop->mem_type = TTM_PL_TT;
545 		hop->flags = TTM_PL_FLAG_TEMPORARY;
546 		return -EMULTIHOP;
547 	}
548 
549 	amdgpu_bo_move_notify(bo, evict, new_mem);
550 	if (adev->mman.buffer_funcs_enabled)
551 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
552 	else
553 		r = -ENODEV;
554 
555 	if (r) {
556 		/* Check that all memory is CPU accessible */
557 		if (!amdgpu_res_copyable(adev, old_mem) ||
558 		    !amdgpu_res_copyable(adev, new_mem)) {
559 			pr_err("Move buffer fallback to memcpy unavailable\n");
560 			return r;
561 		}
562 
563 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
564 		if (r)
565 			return r;
566 	}
567 
568 	/* update statistics after the move */
569 	if (evict)
570 		atomic64_inc(&adev->num_evictions);
571 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
572 	return 0;
573 }
574 
575 /*
576  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
577  *
578  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
579  */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
581 				     struct ttm_resource *mem)
582 {
583 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
584 
585 	switch (mem->mem_type) {
586 	case TTM_PL_SYSTEM:
587 		/* system memory */
588 		return 0;
589 	case TTM_PL_TT:
590 	case AMDGPU_PL_PREEMPT:
591 		break;
592 	case TTM_PL_VRAM:
593 		mem->bus.offset = mem->start << PAGE_SHIFT;
594 
595 		if (adev->mman.aper_base_kaddr &&
596 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
597 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
598 					mem->bus.offset;
599 
600 		mem->bus.offset += adev->gmc.aper_base;
601 		mem->bus.is_iomem = true;
602 		break;
603 	case AMDGPU_PL_DOORBELL:
604 		mem->bus.offset = mem->start << PAGE_SHIFT;
605 		mem->bus.offset += adev->doorbell.base;
606 		mem->bus.is_iomem = true;
607 		mem->bus.caching = ttm_uncached;
608 		break;
609 	default:
610 		return -EINVAL;
611 	}
612 	return 0;
613 }
614 
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616 					   unsigned long page_offset)
617 {
618 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619 	struct amdgpu_res_cursor cursor;
620 
621 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
622 			 &cursor);
623 
624 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
625 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
626 
627 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
628 }
629 
630 /**
631  * amdgpu_ttm_domain_start - Returns GPU start address
632  * @adev: amdgpu device object
633  * @type: type of the memory
634  *
635  * Returns:
636  * GPU start address of a memory domain
637  */
638 
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
640 {
641 	switch (type) {
642 	case TTM_PL_TT:
643 		return adev->gmc.gart_start;
644 	case TTM_PL_VRAM:
645 		return adev->gmc.vram_start;
646 	}
647 
648 	return 0;
649 }
650 
651 /*
652  * TTM backend functions.
653  */
654 struct amdgpu_ttm_tt {
655 	struct ttm_tt	ttm;
656 	struct drm_gem_object	*gobj;
657 	u64			offset;
658 	uint64_t		userptr;
659 	struct task_struct	*usertask;
660 	uint32_t		userflags;
661 	bool			bound;
662 	int32_t			pool_id;
663 };
664 
665 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
666 
667 #ifdef CONFIG_DRM_AMDGPU_USERPTR
668 /*
669  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
670  * memory and start HMM tracking CPU page table update
671  *
672  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
673  * once afterwards to stop HMM tracking
674  */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct vm_page ** pages,struct hmm_range ** range)675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages,
676 				 struct hmm_range **range)
677 {
678 	struct ttm_tt *ttm = bo->tbo.ttm;
679 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
680 	unsigned long start = gtt->userptr;
681 	struct vm_area_struct *vma;
682 	struct mm_struct *mm;
683 	bool readonly;
684 	int r = 0;
685 
686 	/* Make sure get_user_pages_done() can cleanup gracefully */
687 	*range = NULL;
688 
689 	mm = bo->notifier.mm;
690 	if (unlikely(!mm)) {
691 		DRM_DEBUG_DRIVER("BO is not registered?\n");
692 		return -EFAULT;
693 	}
694 
695 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
696 		return -ESRCH;
697 
698 	mmap_read_lock(mm);
699 	vma = vma_lookup(mm, start);
700 	if (unlikely(!vma)) {
701 		r = -EFAULT;
702 		goto out_unlock;
703 	}
704 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705 		vma->vm_file)) {
706 		r = -EPERM;
707 		goto out_unlock;
708 	}
709 
710 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
711 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
712 				       readonly, NULL, pages, range);
713 out_unlock:
714 	mmap_read_unlock(mm);
715 	if (r)
716 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
717 
718 	mmput(mm);
719 
720 	return r;
721 }
722 
723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
724  */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
726 				      struct hmm_range *range)
727 {
728 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
729 
730 	if (gtt && gtt->userptr && range)
731 		amdgpu_hmm_range_get_pages_done(range);
732 }
733 
734 /*
735  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
736  * Check if the pages backing this ttm range have been invalidated
737  *
738  * Returns: true if pages are still valid
739  */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
741 				       struct hmm_range *range)
742 {
743 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
744 
745 	if (!gtt || !gtt->userptr || !range)
746 		return false;
747 
748 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
749 		gtt->userptr, ttm->num_pages);
750 
751 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
752 
753 	return !amdgpu_hmm_range_get_pages_done(range);
754 }
755 #endif
756 
757 /*
758  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
759  *
760  * Called by amdgpu_cs_list_validate(). This creates the page list
761  * that backs user memory and will ultimately be mapped into the device
762  * address space.
763  */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct vm_page ** pages)764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
765 {
766 	unsigned long i;
767 
768 	for (i = 0; i < ttm->num_pages; ++i)
769 		ttm->pages[i] = pages ? pages[i] : NULL;
770 }
771 
772 /*
773  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
774  *
775  * Called by amdgpu_ttm_backend_bind()
776  **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
778 				     struct ttm_tt *ttm)
779 {
780 	STUB();
781 	return -ENOSYS;
782 #ifdef notyet
783 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
784 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
785 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
786 	enum dma_data_direction direction = write ?
787 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
788 	int r;
789 
790 	/* Allocate an SG array and squash pages into it */
791 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
792 				      (u64)ttm->num_pages << PAGE_SHIFT,
793 				      GFP_KERNEL);
794 	if (r)
795 		goto release_sg;
796 
797 	/* Map SG to device */
798 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
799 	if (r)
800 		goto release_sg_table;
801 
802 	/* convert SG to linear array of pages and dma addresses */
803 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
804 				       ttm->num_pages);
805 
806 	return 0;
807 
808 release_sg_table:
809 	sg_free_table(ttm->sg);
810 release_sg:
811 	kfree(ttm->sg);
812 	ttm->sg = NULL;
813 	return r;
814 #endif
815 }
816 
817 /*
818  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
819  */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)820 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
821 					struct ttm_tt *ttm)
822 {
823 	STUB();
824 #ifdef notyet
825 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
826 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
827 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
828 	enum dma_data_direction direction = write ?
829 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
830 
831 	/* double check that we don't free the table twice */
832 	if (!ttm->sg || !ttm->sg->sgl)
833 		return;
834 
835 	/* unmap the pages mapped to the device */
836 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
837 	sg_free_table(ttm->sg);
838 #endif
839 }
840 
841 /*
842  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
843  * MQDn+CtrlStackn where n is the number of XCCs per partition.
844  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
845  * and uses memory type default, UC. The rest of pages_per_xcc are
846  * Ctrl stack and modify their memory type to NC.
847  */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)848 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
849 				struct ttm_tt *ttm, uint64_t flags)
850 {
851 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
852 	uint64_t total_pages = ttm->num_pages;
853 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
854 	uint64_t page_idx, pages_per_xcc;
855 	int i;
856 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
857 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
858 
859 	pages_per_xcc = total_pages;
860 	do_div(pages_per_xcc, num_xcc);
861 
862 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
863 		/* MQD page: use default flags */
864 		amdgpu_gart_bind(adev,
865 				gtt->offset + (page_idx << PAGE_SHIFT),
866 				1, &gtt->ttm.dma_address[page_idx], flags);
867 		/*
868 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
869 		 * the second page of the BO onward.
870 		 */
871 		amdgpu_gart_bind(adev,
872 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
873 				pages_per_xcc - 1,
874 				&gtt->ttm.dma_address[page_idx + 1],
875 				ctrl_flags);
876 	}
877 }
878 
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)879 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
880 				 struct ttm_buffer_object *tbo,
881 				 uint64_t flags)
882 {
883 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
884 	struct ttm_tt *ttm = tbo->ttm;
885 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886 
887 	if (amdgpu_bo_encrypted(abo))
888 		flags |= AMDGPU_PTE_TMZ;
889 
890 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
891 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
892 	} else {
893 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
894 				 gtt->ttm.dma_address, flags);
895 	}
896 	gtt->bound = true;
897 }
898 
899 /*
900  * amdgpu_ttm_backend_bind - Bind GTT memory
901  *
902  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
903  * This handles binding GTT memory to the device address space.
904  */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)905 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
906 				   struct ttm_tt *ttm,
907 				   struct ttm_resource *bo_mem)
908 {
909 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
910 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
911 	uint64_t flags;
912 	int r;
913 
914 	if (!bo_mem)
915 		return -EINVAL;
916 
917 	if (gtt->bound)
918 		return 0;
919 
920 	if (gtt->userptr) {
921 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
922 		if (r) {
923 			DRM_ERROR("failed to pin userptr\n");
924 			return r;
925 		}
926 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
927 		if (!ttm->sg) {
928 			struct dma_buf_attachment *attach;
929 			struct sg_table *sgt;
930 
931 			attach = gtt->gobj->import_attach;
932 #ifdef notyet
933 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
934 			if (IS_ERR(sgt))
935 				return PTR_ERR(sgt);
936 #else
937 			STUB();
938 			return -ENOSYS;
939 #endif
940 
941 			ttm->sg = sgt;
942 		}
943 
944 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
945 					       ttm->num_pages);
946 	}
947 
948 	if (!ttm->num_pages) {
949 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
950 		     ttm->num_pages, bo_mem, ttm);
951 	}
952 
953 	if (bo_mem->mem_type != TTM_PL_TT ||
954 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
955 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
956 		return 0;
957 	}
958 
959 	/* compute PTE flags relevant to this BO memory */
960 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
961 
962 	/* bind pages into GART page tables */
963 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
964 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
965 			 gtt->ttm.dma_address, flags);
966 	gtt->bound = true;
967 	return 0;
968 }
969 
970 /*
971  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
972  * through AGP or GART aperture.
973  *
974  * If bo is accessible through AGP aperture, then use AGP aperture
975  * to access bo; otherwise allocate logical space in GART aperture
976  * and map bo to GART aperture.
977  */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)978 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
979 {
980 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
981 	struct ttm_operation_ctx ctx = { false, false };
982 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
983 	struct ttm_placement placement;
984 	struct ttm_place placements;
985 	struct ttm_resource *tmp;
986 	uint64_t addr, flags;
987 	int r;
988 
989 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
990 		return 0;
991 
992 	addr = amdgpu_gmc_agp_addr(bo);
993 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
994 		bo->resource->start = addr >> PAGE_SHIFT;
995 		return 0;
996 	}
997 
998 	/* allocate GART space */
999 	placement.num_placement = 1;
1000 	placement.placement = &placements;
1001 	placement.num_busy_placement = 1;
1002 	placement.busy_placement = &placements;
1003 	placements.fpfn = 0;
1004 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1005 	placements.mem_type = TTM_PL_TT;
1006 	placements.flags = bo->resource->placement;
1007 
1008 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1009 	if (unlikely(r))
1010 		return r;
1011 
1012 	/* compute PTE flags for this buffer object */
1013 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1014 
1015 	/* Bind pages */
1016 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1017 	amdgpu_ttm_gart_bind(adev, bo, flags);
1018 	amdgpu_gart_invalidate_tlb(adev);
1019 	ttm_resource_free(bo, &bo->resource);
1020 	ttm_bo_assign_mem(bo, tmp);
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * amdgpu_ttm_recover_gart - Rebind GTT pages
1027  *
1028  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1029  * rebind GTT pages during a GPU reset.
1030  */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1031 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1032 {
1033 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1034 	uint64_t flags;
1035 
1036 	if (!tbo->ttm)
1037 		return;
1038 
1039 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1040 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1041 }
1042 
1043 /*
1044  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1045  *
1046  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1047  * ttm_tt_destroy().
1048  */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1049 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1050 				      struct ttm_tt *ttm)
1051 {
1052 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1053 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1054 
1055 	/* if the pages have userptr pinning then clear that first */
1056 	if (gtt->userptr) {
1057 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1058 	} else if (ttm->sg && gtt->gobj->import_attach) {
1059 		struct dma_buf_attachment *attach;
1060 
1061 		attach = gtt->gobj->import_attach;
1062 #ifdef notyet
1063 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1064 #else
1065 		STUB();
1066 #endif
1067 		ttm->sg = NULL;
1068 	}
1069 
1070 	if (!gtt->bound)
1071 		return;
1072 
1073 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1074 		return;
1075 
1076 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1077 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1078 	gtt->bound = false;
1079 }
1080 
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1081 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1082 				       struct ttm_tt *ttm)
1083 {
1084 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1085 
1086 #ifdef notyet
1087 	if (gtt->usertask)
1088 		put_task_struct(gtt->usertask);
1089 #endif
1090 
1091 	ttm_tt_fini(&gtt->ttm);
1092 	kfree(gtt);
1093 }
1094 
1095 /**
1096  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1097  *
1098  * @bo: The buffer object to create a GTT ttm_tt object around
1099  * @page_flags: Page flags to be added to the ttm_tt object
1100  *
1101  * Called by ttm_tt_create().
1102  */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1103 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1104 					   uint32_t page_flags)
1105 {
1106 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1107 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1108 	struct amdgpu_ttm_tt *gtt;
1109 	enum ttm_caching caching;
1110 
1111 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1112 	if (!gtt)
1113 		return NULL;
1114 
1115 	gtt->gobj = &bo->base;
1116 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1117 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1118 	else
1119 		gtt->pool_id = abo->xcp_id;
1120 
1121 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1122 		caching = ttm_write_combined;
1123 	else
1124 		caching = ttm_cached;
1125 
1126 	/* allocate space for the uninitialized page entries */
1127 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1128 		kfree(gtt);
1129 		return NULL;
1130 	}
1131 	return &gtt->ttm;
1132 }
1133 
1134 /*
1135  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1136  *
1137  * Map the pages of a ttm_tt object to an address space visible
1138  * to the underlying device.
1139  */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1140 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1141 				  struct ttm_tt *ttm,
1142 				  struct ttm_operation_ctx *ctx)
1143 {
1144 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1145 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1146 	struct ttm_pool *pool;
1147 	pgoff_t i;
1148 	int ret;
1149 
1150 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1151 	if (gtt->userptr) {
1152 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1153 		if (!ttm->sg)
1154 			return -ENOMEM;
1155 		return 0;
1156 	}
1157 
1158 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1159 		return 0;
1160 
1161 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1162 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1163 	else
1164 		pool = &adev->mman.bdev.pool;
1165 	ret = ttm_pool_alloc(pool, ttm, ctx);
1166 	if (ret)
1167 		return ret;
1168 
1169 #ifdef notyet
1170 	for (i = 0; i < ttm->num_pages; ++i)
1171 		ttm->pages[i]->mapping = bdev->dev_mapping;
1172 #endif
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1179  *
1180  * Unmaps pages of a ttm_tt object from the device address space and
1181  * unpopulates the page array backing it.
1182  */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1183 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1184 				     struct ttm_tt *ttm)
1185 {
1186 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1187 	struct amdgpu_device *adev;
1188 	struct ttm_pool *pool;
1189 	pgoff_t i;
1190 	struct vm_page *page;
1191 
1192 	amdgpu_ttm_backend_unbind(bdev, ttm);
1193 
1194 	if (gtt->userptr) {
1195 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1196 		kfree(ttm->sg);
1197 		ttm->sg = NULL;
1198 		return;
1199 	}
1200 
1201 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1202 		return;
1203 
1204 	for (i = 0; i < ttm->num_pages; ++i) {
1205 		page = ttm->pages[i];
1206 		if (unlikely(page == NULL))
1207 			continue;
1208 		pmap_page_protect(page, PROT_NONE);
1209 	}
1210 
1211 	adev = amdgpu_ttm_adev(bdev);
1212 
1213 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1214 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1215 	else
1216 		pool = &adev->mman.bdev.pool;
1217 
1218 	return ttm_pool_free(pool, ttm);
1219 }
1220 
1221 /**
1222  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1223  * task
1224  *
1225  * @tbo: The ttm_buffer_object that contains the userptr
1226  * @user_addr:  The returned value
1227  */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1228 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1229 			      uint64_t *user_addr)
1230 {
1231 	struct amdgpu_ttm_tt *gtt;
1232 
1233 	if (!tbo->ttm)
1234 		return -EINVAL;
1235 
1236 	gtt = (void *)tbo->ttm;
1237 	*user_addr = gtt->userptr;
1238 	return 0;
1239 }
1240 
1241 /**
1242  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1243  * task
1244  *
1245  * @bo: The ttm_buffer_object to bind this userptr to
1246  * @addr:  The address in the current tasks VM space to use
1247  * @flags: Requirements of userptr object.
1248  *
1249  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1250  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1251  * initialize GPU VM for a KFD process.
1252  */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1253 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1254 			      uint64_t addr, uint32_t flags)
1255 {
1256 	struct amdgpu_ttm_tt *gtt;
1257 
1258 	if (!bo->ttm) {
1259 		/* TODO: We want a separate TTM object type for userptrs */
1260 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1261 		if (bo->ttm == NULL)
1262 			return -ENOMEM;
1263 	}
1264 
1265 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1266 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1267 
1268 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1269 	gtt->userptr = addr;
1270 	gtt->userflags = flags;
1271 
1272 #ifdef notyet
1273 	if (gtt->usertask)
1274 		put_task_struct(gtt->usertask);
1275 	gtt->usertask = current->group_leader;
1276 	get_task_struct(gtt->usertask);
1277 #endif
1278 
1279 	return 0;
1280 }
1281 
1282 /*
1283  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1284  */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1285 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1286 {
1287 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1288 
1289 	if (gtt == NULL)
1290 		return NULL;
1291 
1292 	if (gtt->usertask == NULL)
1293 		return NULL;
1294 
1295 #ifdef notyet
1296 	return gtt->usertask->mm;
1297 #else
1298 	STUB();
1299 	return NULL;
1300 #endif
1301 }
1302 
1303 /*
1304  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1305  * address range for the current task.
1306  *
1307  */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1308 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1309 				  unsigned long end, unsigned long *userptr)
1310 {
1311 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1312 	unsigned long size;
1313 
1314 	if (gtt == NULL || !gtt->userptr)
1315 		return false;
1316 
1317 	/* Return false if no part of the ttm_tt object lies within
1318 	 * the range
1319 	 */
1320 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1321 	if (gtt->userptr > end || gtt->userptr + size <= start)
1322 		return false;
1323 
1324 	if (userptr)
1325 		*userptr = gtt->userptr;
1326 	return true;
1327 }
1328 
1329 /*
1330  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1331  */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1332 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1333 {
1334 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1335 
1336 	if (gtt == NULL || !gtt->userptr)
1337 		return false;
1338 
1339 	return true;
1340 }
1341 
1342 /*
1343  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1344  */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1345 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1346 {
1347 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1348 
1349 	if (gtt == NULL)
1350 		return false;
1351 
1352 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1353 }
1354 
1355 /**
1356  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1357  *
1358  * @ttm: The ttm_tt object to compute the flags for
1359  * @mem: The memory registry backing this ttm_tt object
1360  *
1361  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1362  */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1363 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1364 {
1365 	uint64_t flags = 0;
1366 
1367 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1368 		flags |= AMDGPU_PTE_VALID;
1369 
1370 	if (mem && (mem->mem_type == TTM_PL_TT ||
1371 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1372 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1373 		flags |= AMDGPU_PTE_SYSTEM;
1374 
1375 		if (ttm->caching == ttm_cached)
1376 			flags |= AMDGPU_PTE_SNOOPED;
1377 	}
1378 
1379 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1380 			mem->bus.caching == ttm_cached)
1381 		flags |= AMDGPU_PTE_SNOOPED;
1382 
1383 	return flags;
1384 }
1385 
1386 /**
1387  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1388  *
1389  * @adev: amdgpu_device pointer
1390  * @ttm: The ttm_tt object to compute the flags for
1391  * @mem: The memory registry backing this ttm_tt object
1392  *
1393  * Figure out the flags to use for a VM PTE (Page Table Entry).
1394  */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1395 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1396 				 struct ttm_resource *mem)
1397 {
1398 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1399 
1400 	flags |= adev->gart.gart_pte_flags;
1401 	flags |= AMDGPU_PTE_READABLE;
1402 
1403 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1404 		flags |= AMDGPU_PTE_WRITEABLE;
1405 
1406 	return flags;
1407 }
1408 
1409 /*
1410  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1411  * object.
1412  *
1413  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1414  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1415  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1416  * used to clean out a memory space.
1417  */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1418 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1419 					    const struct ttm_place *place)
1420 {
1421 	struct dma_resv_iter resv_cursor;
1422 	struct dma_fence *f;
1423 
1424 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1425 		return ttm_bo_eviction_valuable(bo, place);
1426 
1427 	/* Swapout? */
1428 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1429 		return true;
1430 
1431 	if (bo->type == ttm_bo_type_kernel &&
1432 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1433 		return false;
1434 
1435 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1436 	 * If true, then return false as any KFD process needs all its BOs to
1437 	 * be resident to run successfully
1438 	 */
1439 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1440 				DMA_RESV_USAGE_BOOKKEEP, f) {
1441 #ifdef notyet
1442 		if (amdkfd_fence_check_mm(f, current->mm))
1443 			return false;
1444 #endif
1445 	}
1446 
1447 	/* Preemptible BOs don't own system resources managed by the
1448 	 * driver (pages, VRAM, GART space). They point to resources
1449 	 * owned by someone else (e.g. pageable memory in user mode
1450 	 * or a DMABuf). They are used in a preemptible context so we
1451 	 * can guarantee no deadlocks and good QoS in case of MMU
1452 	 * notifiers or DMABuf move notifiers from the resource owner.
1453 	 */
1454 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1455 		return false;
1456 
1457 	if (bo->resource->mem_type == TTM_PL_TT &&
1458 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1459 		return false;
1460 
1461 	return ttm_bo_eviction_valuable(bo, place);
1462 }
1463 
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1464 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1465 				      void *buf, size_t size, bool write)
1466 {
1467 	STUB();
1468 #ifdef notyet
1469 	while (size) {
1470 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1471 		uint64_t bytes = 4 - (pos & 0x3);
1472 		uint32_t shift = (pos & 0x3) * 8;
1473 		uint32_t mask = 0xffffffff << shift;
1474 		uint32_t value = 0;
1475 
1476 		if (size < bytes) {
1477 			mask &= 0xffffffff >> (bytes - size) * 8;
1478 			bytes = size;
1479 		}
1480 
1481 		if (mask != 0xffffffff) {
1482 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1483 			if (write) {
1484 				value &= ~mask;
1485 				value |= (*(uint32_t *)buf << shift) & mask;
1486 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1487 			} else {
1488 				value = (value & mask) >> shift;
1489 				memcpy(buf, &value, bytes);
1490 			}
1491 		} else {
1492 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1493 		}
1494 
1495 		pos += bytes;
1496 		buf += bytes;
1497 		size -= bytes;
1498 	}
1499 #endif
1500 }
1501 
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1502 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1503 					unsigned long offset, void *buf,
1504 					int len, int write)
1505 {
1506 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1507 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1508 	struct amdgpu_res_cursor src_mm;
1509 	struct amdgpu_job *job;
1510 	struct dma_fence *fence;
1511 	uint64_t src_addr, dst_addr;
1512 	unsigned int num_dw;
1513 	int r, idx;
1514 
1515 	if (len != PAGE_SIZE)
1516 		return -EINVAL;
1517 
1518 	if (!adev->mman.sdma_access_ptr)
1519 		return -EACCES;
1520 
1521 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1522 		return -ENODEV;
1523 
1524 	if (write)
1525 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1526 
1527 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1528 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1529 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1530 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1531 				     &job);
1532 	if (r)
1533 		goto out;
1534 
1535 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1536 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1537 		src_mm.start;
1538 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1539 	if (write)
1540 		swap(src_addr, dst_addr);
1541 
1542 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1543 				PAGE_SIZE, false);
1544 
1545 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1546 	WARN_ON(job->ibs[0].length_dw > num_dw);
1547 
1548 	fence = amdgpu_job_submit(job);
1549 
1550 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1551 		r = -ETIMEDOUT;
1552 	dma_fence_put(fence);
1553 
1554 	if (!(r || write))
1555 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1556 out:
1557 	drm_dev_exit(idx);
1558 	return r;
1559 }
1560 
1561 /**
1562  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1563  *
1564  * @bo:  The buffer object to read/write
1565  * @offset:  Offset into buffer object
1566  * @buf:  Secondary buffer to write/read from
1567  * @len: Length in bytes of access
1568  * @write:  true if writing
1569  *
1570  * This is used to access VRAM that backs a buffer object via MMIO
1571  * access for debugging purposes.
1572  */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1573 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1574 				    unsigned long offset, void *buf, int len,
1575 				    int write)
1576 {
1577 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1578 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1579 	struct amdgpu_res_cursor cursor;
1580 	int ret = 0;
1581 
1582 	if (bo->resource->mem_type != TTM_PL_VRAM)
1583 		return -EIO;
1584 
1585 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1586 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1587 		return len;
1588 
1589 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1590 	while (cursor.remaining) {
1591 		size_t count, size = cursor.size;
1592 		loff_t pos = cursor.start;
1593 
1594 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1595 		size -= count;
1596 		if (size) {
1597 			/* using MM to access rest vram and handle un-aligned address */
1598 			pos += count;
1599 			buf += count;
1600 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1601 		}
1602 
1603 		ret += cursor.size;
1604 		buf += cursor.size;
1605 		amdgpu_res_next(&cursor, cursor.size);
1606 	}
1607 
1608 	return ret;
1609 }
1610 
1611 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1612 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1613 {
1614 	amdgpu_bo_move_notify(bo, false, NULL);
1615 }
1616 
1617 static struct ttm_device_funcs amdgpu_bo_driver = {
1618 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1619 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1620 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1621 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1622 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1623 	.evict_flags = &amdgpu_evict_flags,
1624 	.move = &amdgpu_bo_move,
1625 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1626 	.release_notify = &amdgpu_bo_release_notify,
1627 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1628 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1629 	.access_memory = &amdgpu_ttm_access_memory,
1630 };
1631 
1632 /*
1633  * Firmware Reservation functions
1634  */
1635 /**
1636  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1637  *
1638  * @adev: amdgpu_device pointer
1639  *
1640  * free fw reserved vram if it has been reserved.
1641  */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1642 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1643 {
1644 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1645 		NULL, &adev->mman.fw_vram_usage_va);
1646 }
1647 
1648 /*
1649  * Driver Reservation functions
1650  */
1651 /**
1652  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1653  *
1654  * @adev: amdgpu_device pointer
1655  *
1656  * free drv reserved vram if it has been reserved.
1657  */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1658 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1659 {
1660 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1661 						  NULL,
1662 						  &adev->mman.drv_vram_usage_va);
1663 }
1664 
1665 /**
1666  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1667  *
1668  * @adev: amdgpu_device pointer
1669  *
1670  * create bo vram reservation from fw.
1671  */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1672 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1673 {
1674 	uint64_t vram_size = adev->gmc.visible_vram_size;
1675 
1676 	adev->mman.fw_vram_usage_va = NULL;
1677 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1678 
1679 	if (adev->mman.fw_vram_usage_size == 0 ||
1680 	    adev->mman.fw_vram_usage_size > vram_size)
1681 		return 0;
1682 
1683 	return amdgpu_bo_create_kernel_at(adev,
1684 					  adev->mman.fw_vram_usage_start_offset,
1685 					  adev->mman.fw_vram_usage_size,
1686 					  &adev->mman.fw_vram_usage_reserved_bo,
1687 					  &adev->mman.fw_vram_usage_va);
1688 }
1689 
1690 /**
1691  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1692  *
1693  * @adev: amdgpu_device pointer
1694  *
1695  * create bo vram reservation from drv.
1696  */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1697 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1698 {
1699 	u64 vram_size = adev->gmc.visible_vram_size;
1700 
1701 	adev->mman.drv_vram_usage_va = NULL;
1702 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1703 
1704 	if (adev->mman.drv_vram_usage_size == 0 ||
1705 	    adev->mman.drv_vram_usage_size > vram_size)
1706 		return 0;
1707 
1708 	return amdgpu_bo_create_kernel_at(adev,
1709 					  adev->mman.drv_vram_usage_start_offset,
1710 					  adev->mman.drv_vram_usage_size,
1711 					  &adev->mman.drv_vram_usage_reserved_bo,
1712 					  &adev->mman.drv_vram_usage_va);
1713 }
1714 
1715 /*
1716  * Memoy training reservation functions
1717  */
1718 
1719 /**
1720  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1721  *
1722  * @adev: amdgpu_device pointer
1723  *
1724  * free memory training reserved vram if it has been reserved.
1725  */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1726 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1727 {
1728 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1729 
1730 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1731 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1732 	ctx->c2p_bo = NULL;
1733 
1734 	return 0;
1735 }
1736 
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1737 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1738 						uint32_t reserve_size)
1739 {
1740 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1741 
1742 	memset(ctx, 0, sizeof(*ctx));
1743 
1744 	ctx->c2p_train_data_offset =
1745 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1746 	ctx->p2c_train_data_offset =
1747 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1748 	ctx->train_data_size =
1749 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1750 
1751 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1752 			ctx->train_data_size,
1753 			ctx->p2c_train_data_offset,
1754 			ctx->c2p_train_data_offset);
1755 }
1756 
1757 /*
1758  * reserve TMR memory at the top of VRAM which holds
1759  * IP Discovery data and is protected by PSP.
1760  */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1761 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1762 {
1763 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1764 	bool mem_train_support = false;
1765 	uint32_t reserve_size = 0;
1766 	int ret;
1767 
1768 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1769 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1770 			mem_train_support = true;
1771 		else
1772 			DRM_DEBUG("memory training does not support!\n");
1773 	}
1774 
1775 	/*
1776 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1777 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1778 	 *
1779 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1780 	 * discovery data and G6 memory training data respectively
1781 	 */
1782 	if (adev->bios)
1783 		reserve_size =
1784 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1785 
1786 	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1787 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1788 	else if (!reserve_size)
1789 		reserve_size = DISCOVERY_TMR_OFFSET;
1790 
1791 	if (mem_train_support) {
1792 		/* reserve vram for mem train according to TMR location */
1793 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1794 		ret = amdgpu_bo_create_kernel_at(adev,
1795 						 ctx->c2p_train_data_offset,
1796 						 ctx->train_data_size,
1797 						 &ctx->c2p_bo,
1798 						 NULL);
1799 		if (ret) {
1800 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1801 			amdgpu_ttm_training_reserve_vram_fini(adev);
1802 			return ret;
1803 		}
1804 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1805 	}
1806 
1807 	if (!adev->gmc.is_app_apu) {
1808 		ret = amdgpu_bo_create_kernel_at(
1809 			adev, adev->gmc.real_vram_size - reserve_size,
1810 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1811 		if (ret) {
1812 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1813 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1814 					      NULL, NULL);
1815 			return ret;
1816 		}
1817 	} else {
1818 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1819 	}
1820 
1821 	return 0;
1822 }
1823 
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1824 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1825 {
1826 	int i;
1827 
1828 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1829 		return 0;
1830 
1831 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1832 				       sizeof(*adev->mman.ttm_pools),
1833 				       GFP_KERNEL);
1834 	if (!adev->mman.ttm_pools)
1835 		return -ENOMEM;
1836 
1837 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1838 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1839 			      adev->gmc.mem_partitions[i].numa.node,
1840 			      false, false);
1841 	}
1842 	return 0;
1843 }
1844 
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1845 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1846 {
1847 	int i;
1848 
1849 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1850 		return;
1851 
1852 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1853 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1854 
1855 	kfree(adev->mman.ttm_pools);
1856 	adev->mman.ttm_pools = NULL;
1857 }
1858 
1859 /*
1860  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1861  * gtt/vram related fields.
1862  *
1863  * This initializes all of the memory space pools that the TTM layer
1864  * will need such as the GTT space (system memory mapped to the device),
1865  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1866  * can be mapped per VMID.
1867  */
amdgpu_ttm_init(struct amdgpu_device * adev)1868 int amdgpu_ttm_init(struct amdgpu_device *adev)
1869 {
1870 	uint64_t gtt_size;
1871 	int r;
1872 
1873 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
1874 
1875 	dma_set_max_seg_size(adev->dev, UINT_MAX);
1876 	/* No others user of address space so set it to 0 */
1877 #ifdef notyet
1878 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1879 			       adev_to_drm(adev)->anon_inode->i_mapping,
1880 			       adev_to_drm(adev)->vma_offset_manager,
1881 			       adev->need_swiotlb,
1882 			       dma_addressing_limited(adev->dev));
1883 #else
1884 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1885 			       /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1886 			       adev_to_drm(adev)->vma_offset_manager,
1887 			       adev->need_swiotlb,
1888 			       dma_addressing_limited(adev->dev));
1889 #endif
1890 	if (r) {
1891 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1892 		return r;
1893 	}
1894 
1895 	r = amdgpu_ttm_pools_init(adev);
1896 	if (r) {
1897 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1898 		return r;
1899 	}
1900 	adev->mman.bdev.iot = adev->iot;
1901 	adev->mman.bdev.memt = adev->memt;
1902 	adev->mman.bdev.dmat = adev->dmat;
1903 	adev->mman.initialized = true;
1904 
1905 	/* Initialize VRAM pool with all of VRAM divided into pages */
1906 	r = amdgpu_vram_mgr_init(adev);
1907 	if (r) {
1908 		DRM_ERROR("Failed initializing VRAM heap.\n");
1909 		return r;
1910 	}
1911 
1912 	/* Change the size here instead of the init above so only lpfn is affected */
1913 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1914 #if defined(CONFIG_64BIT) && defined(__linux__)
1915 #ifdef CONFIG_X86
1916 	if (adev->gmc.xgmi.connected_to_cpu)
1917 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1918 				adev->gmc.visible_vram_size);
1919 
1920 	else if (adev->gmc.is_app_apu)
1921 		DRM_DEBUG_DRIVER(
1922 			"No need to ioremap when real vram size is 0\n");
1923 	else
1924 #endif
1925 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1926 				adev->gmc.visible_vram_size);
1927 #else
1928 	if (bus_space_map(adev->memt, adev->gmc.aper_base,
1929 	    adev->gmc.visible_vram_size,
1930 	    BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1931 	    &adev->mman.aper_bsh)) {
1932 		adev->mman.aper_base_kaddr = NULL;
1933 	} else {
1934 		adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1935 		    adev->mman.aper_bsh);
1936 	}
1937 #endif
1938 
1939 	/*
1940 	 *The reserved vram for firmware must be pinned to the specified
1941 	 *place on the VRAM, so reserve it early.
1942 	 */
1943 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1944 	if (r)
1945 		return r;
1946 
1947 	/*
1948 	 *The reserved vram for driver must be pinned to the specified
1949 	 *place on the VRAM, so reserve it early.
1950 	 */
1951 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1952 	if (r)
1953 		return r;
1954 
1955 	/*
1956 	 * only NAVI10 and onwards ASIC support for IP discovery.
1957 	 * If IP discovery enabled, a block of memory should be
1958 	 * reserved for IP discovey.
1959 	 */
1960 	if (adev->mman.discovery_bin) {
1961 		r = amdgpu_ttm_reserve_tmr(adev);
1962 		if (r)
1963 			return r;
1964 	}
1965 
1966 	/* allocate memory as required for VGA
1967 	 * This is used for VGA emulation and pre-OS scanout buffers to
1968 	 * avoid display artifacts while transitioning between pre-OS
1969 	 * and driver.
1970 	 */
1971 	if (!adev->gmc.is_app_apu) {
1972 		r = amdgpu_bo_create_kernel_at(adev, 0,
1973 					       adev->mman.stolen_vga_size,
1974 					       &adev->mman.stolen_vga_memory,
1975 					       NULL);
1976 		if (r)
1977 			return r;
1978 
1979 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1980 					       adev->mman.stolen_extended_size,
1981 					       &adev->mman.stolen_extended_memory,
1982 					       NULL);
1983 
1984 		if (r)
1985 			return r;
1986 
1987 		r = amdgpu_bo_create_kernel_at(adev,
1988 					       adev->mman.stolen_reserved_offset,
1989 					       adev->mman.stolen_reserved_size,
1990 					       &adev->mman.stolen_reserved_memory,
1991 					       NULL);
1992 		if (r)
1993 			return r;
1994 	} else {
1995 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1996 	}
1997 
1998 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1999 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
2000 
2001 	/* Compute GTT size, either based on TTM limit
2002 	 * or whatever the user passed on module init.
2003 	 */
2004 	if (amdgpu_gtt_size == -1)
2005 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
2006 	else
2007 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2008 
2009 	/* Initialize GTT memory pool */
2010 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
2011 	if (r) {
2012 		DRM_ERROR("Failed initializing GTT heap.\n");
2013 		return r;
2014 	}
2015 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2016 		 (unsigned int)(gtt_size / (1024 * 1024)));
2017 
2018 	/* Initiailize doorbell pool on PCI BAR */
2019 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2020 	if (r) {
2021 		DRM_ERROR("Failed initializing doorbell heap.\n");
2022 		return r;
2023 	}
2024 
2025 	/* Create a boorbell page for kernel usages */
2026 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
2027 	if (r) {
2028 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
2029 		return r;
2030 	}
2031 
2032 	/* Initialize preemptible memory pool */
2033 	r = amdgpu_preempt_mgr_init(adev);
2034 	if (r) {
2035 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
2036 		return r;
2037 	}
2038 
2039 	/* Initialize various on-chip memory pools */
2040 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2041 	if (r) {
2042 		DRM_ERROR("Failed initializing GDS heap.\n");
2043 		return r;
2044 	}
2045 
2046 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2047 	if (r) {
2048 		DRM_ERROR("Failed initializing gws heap.\n");
2049 		return r;
2050 	}
2051 
2052 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2053 	if (r) {
2054 		DRM_ERROR("Failed initializing oa heap.\n");
2055 		return r;
2056 	}
2057 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2058 				AMDGPU_GEM_DOMAIN_GTT,
2059 				&adev->mman.sdma_access_bo, NULL,
2060 				&adev->mman.sdma_access_ptr))
2061 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2062 
2063 	return 0;
2064 }
2065 
2066 /*
2067  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2068  */
amdgpu_ttm_fini(struct amdgpu_device * adev)2069 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2070 {
2071 	int idx;
2072 
2073 	if (!adev->mman.initialized)
2074 		return;
2075 
2076 	amdgpu_ttm_pools_fini(adev);
2077 
2078 	amdgpu_ttm_training_reserve_vram_fini(adev);
2079 	/* return the stolen vga memory back to VRAM */
2080 	if (!adev->gmc.is_app_apu) {
2081 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2082 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2083 		/* return the FW reserved memory back to VRAM */
2084 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2085 				      NULL);
2086 		if (adev->mman.stolen_reserved_size)
2087 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2088 					      NULL, NULL);
2089 	}
2090 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2091 					&adev->mman.sdma_access_ptr);
2092 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2093 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2094 
2095 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2096 
2097 #ifdef __linux__
2098 		if (adev->mman.aper_base_kaddr)
2099 			iounmap(adev->mman.aper_base_kaddr);
2100 #else
2101 		if (adev->mman.aper_base_kaddr)
2102 			bus_space_unmap(adev->memt, adev->mman.aper_bsh,
2103 			    adev->gmc.visible_vram_size);
2104 #endif
2105 		adev->mman.aper_base_kaddr = NULL;
2106 
2107 		drm_dev_exit(idx);
2108 	}
2109 
2110 	amdgpu_vram_mgr_fini(adev);
2111 	amdgpu_gtt_mgr_fini(adev);
2112 	amdgpu_preempt_mgr_fini(adev);
2113 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2114 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2115 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2116 	ttm_device_fini(&adev->mman.bdev);
2117 	adev->mman.initialized = false;
2118 	DRM_INFO("amdgpu: ttm finalized\n");
2119 }
2120 
2121 /**
2122  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2123  *
2124  * @adev: amdgpu_device pointer
2125  * @enable: true when we can use buffer functions.
2126  *
2127  * Enable/disable use of buffer functions during suspend/resume. This should
2128  * only be called at bootup or when userspace isn't running.
2129  */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2130 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2131 {
2132 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2133 	uint64_t size;
2134 	int r;
2135 
2136 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2137 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2138 		return;
2139 
2140 	if (enable) {
2141 		struct amdgpu_ring *ring;
2142 		struct drm_gpu_scheduler *sched;
2143 
2144 		ring = adev->mman.buffer_funcs_ring;
2145 		sched = &ring->sched;
2146 		r = drm_sched_entity_init(&adev->mman.high_pr,
2147 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2148 					  1, NULL);
2149 		if (r) {
2150 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2151 				  r);
2152 			return;
2153 		}
2154 
2155 		r = drm_sched_entity_init(&adev->mman.low_pr,
2156 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2157 					  1, NULL);
2158 		if (r) {
2159 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2160 				  r);
2161 			goto error_free_entity;
2162 		}
2163 	} else {
2164 		drm_sched_entity_destroy(&adev->mman.high_pr);
2165 		drm_sched_entity_destroy(&adev->mman.low_pr);
2166 		dma_fence_put(man->move);
2167 		man->move = NULL;
2168 	}
2169 
2170 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2171 	if (enable)
2172 		size = adev->gmc.real_vram_size;
2173 	else
2174 		size = adev->gmc.visible_vram_size;
2175 	man->size = size;
2176 	adev->mman.buffer_funcs_enabled = enable;
2177 
2178 	return;
2179 
2180 error_free_entity:
2181 	drm_sched_entity_destroy(&adev->mman.high_pr);
2182 }
2183 
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2184 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2185 				  bool direct_submit,
2186 				  unsigned int num_dw,
2187 				  struct dma_resv *resv,
2188 				  bool vm_needs_flush,
2189 				  struct amdgpu_job **job,
2190 				  bool delayed)
2191 {
2192 	enum amdgpu_ib_pool_type pool = direct_submit ?
2193 		AMDGPU_IB_POOL_DIRECT :
2194 		AMDGPU_IB_POOL_DELAYED;
2195 	int r;
2196 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2197 						    &adev->mman.high_pr;
2198 	r = amdgpu_job_alloc_with_ib(adev, entity,
2199 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2200 				     num_dw * 4, pool, job);
2201 	if (r)
2202 		return r;
2203 
2204 	if (vm_needs_flush) {
2205 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2206 							adev->gmc.pdb0_bo :
2207 							adev->gart.bo);
2208 		(*job)->vm_needs_flush = true;
2209 	}
2210 	if (!resv)
2211 		return 0;
2212 
2213 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2214 						   DMA_RESV_USAGE_BOOKKEEP);
2215 }
2216 
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)2217 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2218 		       uint64_t dst_offset, uint32_t byte_count,
2219 		       struct dma_resv *resv,
2220 		       struct dma_fence **fence, bool direct_submit,
2221 		       bool vm_needs_flush, bool tmz)
2222 {
2223 	struct amdgpu_device *adev = ring->adev;
2224 	unsigned int num_loops, num_dw;
2225 	struct amdgpu_job *job;
2226 	uint32_t max_bytes;
2227 	unsigned int i;
2228 	int r;
2229 
2230 	if (!direct_submit && !ring->sched.ready) {
2231 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2232 		return -EINVAL;
2233 	}
2234 
2235 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2236 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2237 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2238 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2239 				   resv, vm_needs_flush, &job, false);
2240 	if (r)
2241 		return r;
2242 
2243 	for (i = 0; i < num_loops; i++) {
2244 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2245 
2246 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2247 					dst_offset, cur_size_in_bytes, tmz);
2248 
2249 		src_offset += cur_size_in_bytes;
2250 		dst_offset += cur_size_in_bytes;
2251 		byte_count -= cur_size_in_bytes;
2252 	}
2253 
2254 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2255 	WARN_ON(job->ibs[0].length_dw > num_dw);
2256 	if (direct_submit)
2257 		r = amdgpu_job_submit_direct(job, ring, fence);
2258 	else
2259 		*fence = amdgpu_job_submit(job);
2260 	if (r)
2261 		goto error_free;
2262 
2263 	return r;
2264 
2265 error_free:
2266 	amdgpu_job_free(job);
2267 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2268 	return r;
2269 }
2270 
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2271 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2272 			       uint64_t dst_addr, uint32_t byte_count,
2273 			       struct dma_resv *resv,
2274 			       struct dma_fence **fence,
2275 			       bool vm_needs_flush, bool delayed)
2276 {
2277 	struct amdgpu_device *adev = ring->adev;
2278 	unsigned int num_loops, num_dw;
2279 	struct amdgpu_job *job;
2280 	uint32_t max_bytes;
2281 	unsigned int i;
2282 	int r;
2283 
2284 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2285 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2286 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2287 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2288 				   &job, delayed);
2289 	if (r)
2290 		return r;
2291 
2292 	for (i = 0; i < num_loops; i++) {
2293 		uint32_t cur_size = min(byte_count, max_bytes);
2294 
2295 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2296 					cur_size);
2297 
2298 		dst_addr += cur_size;
2299 		byte_count -= cur_size;
2300 	}
2301 
2302 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2303 	WARN_ON(job->ibs[0].length_dw > num_dw);
2304 	*fence = amdgpu_job_submit(job);
2305 	return 0;
2306 }
2307 
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2308 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2309 			uint32_t src_data,
2310 			struct dma_resv *resv,
2311 			struct dma_fence **f,
2312 			bool delayed)
2313 {
2314 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2315 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2316 	struct dma_fence *fence = NULL;
2317 	struct amdgpu_res_cursor dst;
2318 	int r;
2319 
2320 	if (!adev->mman.buffer_funcs_enabled) {
2321 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2322 		return -EINVAL;
2323 	}
2324 
2325 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2326 
2327 	mutex_lock(&adev->mman.gtt_window_lock);
2328 	while (dst.remaining) {
2329 		struct dma_fence *next;
2330 		uint64_t cur_size, to;
2331 
2332 		/* Never fill more than 256MiB at once to avoid timeouts */
2333 		cur_size = min(dst.size, 256ULL << 20);
2334 
2335 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2336 					  1, ring, false, &cur_size, &to);
2337 		if (r)
2338 			goto error;
2339 
2340 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2341 					&next, true, delayed);
2342 		if (r)
2343 			goto error;
2344 
2345 		dma_fence_put(fence);
2346 		fence = next;
2347 
2348 		amdgpu_res_next(&dst, cur_size);
2349 	}
2350 error:
2351 	mutex_unlock(&adev->mman.gtt_window_lock);
2352 	if (f)
2353 		*f = dma_fence_get(fence);
2354 	dma_fence_put(fence);
2355 	return r;
2356 }
2357 
2358 /**
2359  * amdgpu_ttm_evict_resources - evict memory buffers
2360  * @adev: amdgpu device object
2361  * @mem_type: evicted BO's memory type
2362  *
2363  * Evicts all @mem_type buffers on the lru list of the memory type.
2364  *
2365  * Returns:
2366  * 0 for success or a negative error code on failure.
2367  */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2368 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2369 {
2370 	struct ttm_resource_manager *man;
2371 
2372 	switch (mem_type) {
2373 	case TTM_PL_VRAM:
2374 	case TTM_PL_TT:
2375 	case AMDGPU_PL_GWS:
2376 	case AMDGPU_PL_GDS:
2377 	case AMDGPU_PL_OA:
2378 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2379 		break;
2380 	default:
2381 		DRM_ERROR("Trying to evict invalid memory type\n");
2382 		return -EINVAL;
2383 	}
2384 
2385 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2386 }
2387 
2388 #if defined(CONFIG_DEBUG_FS)
2389 
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2390 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2391 {
2392 	struct amdgpu_device *adev = m->private;
2393 
2394 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2395 }
2396 
2397 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2398 
2399 /*
2400  * amdgpu_ttm_vram_read - Linear read access to VRAM
2401  *
2402  * Accesses VRAM via MMIO for debugging purposes.
2403  */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2404 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2405 				    size_t size, loff_t *pos)
2406 {
2407 	struct amdgpu_device *adev = file_inode(f)->i_private;
2408 	ssize_t result = 0;
2409 
2410 	if (size & 0x3 || *pos & 0x3)
2411 		return -EINVAL;
2412 
2413 	if (*pos >= adev->gmc.mc_vram_size)
2414 		return -ENXIO;
2415 
2416 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2417 	while (size) {
2418 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2419 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2420 
2421 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2422 		if (copy_to_user(buf, value, bytes))
2423 			return -EFAULT;
2424 
2425 		result += bytes;
2426 		buf += bytes;
2427 		*pos += bytes;
2428 		size -= bytes;
2429 	}
2430 
2431 	return result;
2432 }
2433 
2434 /*
2435  * amdgpu_ttm_vram_write - Linear write access to VRAM
2436  *
2437  * Accesses VRAM via MMIO for debugging purposes.
2438  */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2439 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2440 				    size_t size, loff_t *pos)
2441 {
2442 	struct amdgpu_device *adev = file_inode(f)->i_private;
2443 	ssize_t result = 0;
2444 	int r;
2445 
2446 	if (size & 0x3 || *pos & 0x3)
2447 		return -EINVAL;
2448 
2449 	if (*pos >= adev->gmc.mc_vram_size)
2450 		return -ENXIO;
2451 
2452 	while (size) {
2453 		uint32_t value;
2454 
2455 		if (*pos >= adev->gmc.mc_vram_size)
2456 			return result;
2457 
2458 		r = get_user(value, (uint32_t *)buf);
2459 		if (r)
2460 			return r;
2461 
2462 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2463 
2464 		result += 4;
2465 		buf += 4;
2466 		*pos += 4;
2467 		size -= 4;
2468 	}
2469 
2470 	return result;
2471 }
2472 
2473 static const struct file_operations amdgpu_ttm_vram_fops = {
2474 	.owner = THIS_MODULE,
2475 	.read = amdgpu_ttm_vram_read,
2476 	.write = amdgpu_ttm_vram_write,
2477 	.llseek = default_llseek,
2478 };
2479 
2480 /*
2481  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2482  *
2483  * This function is used to read memory that has been mapped to the
2484  * GPU and the known addresses are not physical addresses but instead
2485  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2486  */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2487 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2488 				 size_t size, loff_t *pos)
2489 {
2490 	struct amdgpu_device *adev = file_inode(f)->i_private;
2491 	struct iommu_domain *dom;
2492 	ssize_t result = 0;
2493 	int r;
2494 
2495 	/* retrieve the IOMMU domain if any for this device */
2496 	dom = iommu_get_domain_for_dev(adev->dev);
2497 
2498 	while (size) {
2499 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2500 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2501 		size_t bytes = PAGE_SIZE - off;
2502 		unsigned long pfn;
2503 		struct vm_page *p;
2504 		void *ptr;
2505 
2506 		bytes = min(bytes, size);
2507 
2508 		/* Translate the bus address to a physical address.  If
2509 		 * the domain is NULL it means there is no IOMMU active
2510 		 * and the address translation is the identity
2511 		 */
2512 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2513 
2514 		pfn = addr >> PAGE_SHIFT;
2515 		if (!pfn_valid(pfn))
2516 			return -EPERM;
2517 
2518 		p = pfn_to_page(pfn);
2519 #ifdef notyet
2520 		if (p->mapping != adev->mman.bdev.dev_mapping)
2521 			return -EPERM;
2522 #else
2523 		STUB();
2524 #endif
2525 
2526 		ptr = kmap_local_page(p);
2527 		r = copy_to_user(buf, ptr + off, bytes);
2528 		kunmap_local(ptr);
2529 		if (r)
2530 			return -EFAULT;
2531 
2532 		size -= bytes;
2533 		*pos += bytes;
2534 		result += bytes;
2535 	}
2536 
2537 	return result;
2538 }
2539 
2540 /*
2541  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2542  *
2543  * This function is used to write memory that has been mapped to the
2544  * GPU and the known addresses are not physical addresses but instead
2545  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2546  */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2547 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2548 				 size_t size, loff_t *pos)
2549 {
2550 	struct amdgpu_device *adev = file_inode(f)->i_private;
2551 	struct iommu_domain *dom;
2552 	ssize_t result = 0;
2553 	int r;
2554 
2555 	dom = iommu_get_domain_for_dev(adev->dev);
2556 
2557 	while (size) {
2558 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2559 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2560 		size_t bytes = PAGE_SIZE - off;
2561 		unsigned long pfn;
2562 		struct vm_page *p;
2563 		void *ptr;
2564 
2565 		bytes = min(bytes, size);
2566 
2567 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2568 
2569 		pfn = addr >> PAGE_SHIFT;
2570 		if (!pfn_valid(pfn))
2571 			return -EPERM;
2572 
2573 		p = pfn_to_page(pfn);
2574 #ifdef notyet
2575 		if (p->mapping != adev->mman.bdev.dev_mapping)
2576 			return -EPERM;
2577 #else
2578 		STUB();
2579 #endif
2580 
2581 		ptr = kmap_local_page(p);
2582 		r = copy_from_user(ptr + off, buf, bytes);
2583 		kunmap_local(ptr);
2584 		if (r)
2585 			return -EFAULT;
2586 
2587 		size -= bytes;
2588 		*pos += bytes;
2589 		result += bytes;
2590 	}
2591 
2592 	return result;
2593 }
2594 
2595 static const struct file_operations amdgpu_ttm_iomem_fops = {
2596 	.owner = THIS_MODULE,
2597 	.read = amdgpu_iomem_read,
2598 	.write = amdgpu_iomem_write,
2599 	.llseek = default_llseek
2600 };
2601 
2602 #endif
2603 
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2604 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2605 {
2606 #if defined(CONFIG_DEBUG_FS)
2607 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2608 	struct dentry *root = minor->debugfs_root;
2609 
2610 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2611 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2612 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2613 			    &amdgpu_ttm_iomem_fops);
2614 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2615 			    &amdgpu_ttm_page_pool_fops);
2616 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2617 							     TTM_PL_VRAM),
2618 					    root, "amdgpu_vram_mm");
2619 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2620 							     TTM_PL_TT),
2621 					    root, "amdgpu_gtt_mm");
2622 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2623 							     AMDGPU_PL_GDS),
2624 					    root, "amdgpu_gds_mm");
2625 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2626 							     AMDGPU_PL_GWS),
2627 					    root, "amdgpu_gws_mm");
2628 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2629 							     AMDGPU_PL_OA),
2630 					    root, "amdgpu_oa_mm");
2631 
2632 #endif
2633 }
2634