1 /*	$NetBSD: amdgpu_ttm.c,v 1.12 2022/07/29 12:43:15 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2009 Jerome Glisse.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * The above copyright notice and this permission notice (including the
24  * next paragraph) shall be included in all copies or substantial portions
25  * of the Software.
26  *
27  */
28 /*
29  * Authors:
30  *    Jerome Glisse <glisse@freedesktop.org>
31  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
32  *    Dave Airlie
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.12 2022/07/29 12:43:15 riastradh Exp $");
37 
38 #include <linux/dma-mapping.h>
39 #include <linux/iommu.h>
40 #include <linux/hmm.h>
41 #include <linux/pagemap.h>
42 #include <linux/sched/task.h>
43 #include <linux/sched/mm.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/swap.h>
47 #include <linux/swiotlb.h>
48 #include <linux/dma-buf.h>
49 #include <linux/sizes.h>
50 
51 #include <drm/ttm/ttm_bo_api.h>
52 #include <drm/ttm/ttm_bo_driver.h>
53 #include <drm/ttm/ttm_placement.h>
54 #include <drm/ttm/ttm_module.h>
55 #include <drm/ttm/ttm_page_alloc.h>
56 
57 #include <drm/drm_debugfs.h>
58 #include <drm/amdgpu_drm.h>
59 
60 #include "amdgpu.h"
61 #include "amdgpu_object.h"
62 #include "amdgpu_trace.h"
63 #include "amdgpu_amdkfd.h"
64 #include "amdgpu_sdma.h"
65 #include "amdgpu_ras.h"
66 #include "bif/bif_4_1_d.h"
67 
68 #include <linux/nbsd-namespace.h>
69 
70 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
71 			     struct ttm_mem_reg *mem, unsigned num_pages,
72 			     uint64_t offset, unsigned window,
73 			     struct amdgpu_ring *ring,
74 			     uint64_t *addr);
75 
76 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
77 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
78 
amdgpu_invalidate_caches(struct ttm_bo_device * bdev,uint32_t flags)79 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
80 {
81 	return 0;
82 }
83 
84 /**
85  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
86  * memory request.
87  *
88  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
89  * @type: The type of memory requested
90  * @man: The memory type manager for each domain
91  *
92  * This is called by ttm_bo_init_mm() when a buffer object is being
93  * initialized.
94  */
amdgpu_init_mem_type(struct ttm_bo_device * bdev,uint32_t type,struct ttm_mem_type_manager * man)95 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
96 				struct ttm_mem_type_manager *man)
97 {
98 	struct amdgpu_device *adev;
99 
100 	adev = amdgpu_ttm_adev(bdev);
101 
102 	switch (type) {
103 	case TTM_PL_SYSTEM:
104 		/* System memory */
105 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
106 		man->available_caching = TTM_PL_MASK_CACHING;
107 		man->default_caching = TTM_PL_FLAG_CACHED;
108 		break;
109 	case TTM_PL_TT:
110 		/* GTT memory  */
111 		man->func = &amdgpu_gtt_mgr_func;
112 		man->gpu_offset = adev->gmc.gart_start;
113 		man->available_caching = TTM_PL_MASK_CACHING;
114 		man->default_caching = TTM_PL_FLAG_CACHED;
115 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
116 		break;
117 	case TTM_PL_VRAM:
118 		/* "On-card" video ram */
119 		man->func = &amdgpu_vram_mgr_func;
120 		man->gpu_offset = adev->gmc.vram_start;
121 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
122 			     TTM_MEMTYPE_FLAG_MAPPABLE;
123 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
124 		man->default_caching = TTM_PL_FLAG_WC;
125 		break;
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 		/* On-chip GDS memory*/
130 		man->func = &ttm_bo_manager_func;
131 		man->gpu_offset = 0;
132 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
133 		man->available_caching = TTM_PL_FLAG_UNCACHED;
134 		man->default_caching = TTM_PL_FLAG_UNCACHED;
135 		break;
136 	default:
137 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
138 		return -EINVAL;
139 	}
140 	return 0;
141 }
142 
143 /**
144  * amdgpu_evict_flags - Compute placement flags
145  *
146  * @bo: The buffer object to evict
147  * @placement: Possible destination(s) for evicted BO
148  *
149  * Fill in placement data when ttm_bo_evict() is called
150  */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)151 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
152 				struct ttm_placement *placement)
153 {
154 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
155 	struct amdgpu_bo *abo;
156 	static const struct ttm_place placements = {
157 		.fpfn = 0,
158 		.lpfn = 0,
159 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
160 	};
161 
162 	/* Don't handle scatter gather BOs */
163 	if (bo->type == ttm_bo_type_sg) {
164 		placement->num_placement = 0;
165 		placement->num_busy_placement = 0;
166 		return;
167 	}
168 
169 	/* Object isn't an AMDGPU object so ignore */
170 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
171 		placement->placement = &placements;
172 		placement->busy_placement = &placements;
173 		placement->num_placement = 1;
174 		placement->num_busy_placement = 1;
175 		return;
176 	}
177 
178 	abo = ttm_to_amdgpu_bo(bo);
179 	switch (bo->mem.mem_type) {
180 	case AMDGPU_PL_GDS:
181 	case AMDGPU_PL_GWS:
182 	case AMDGPU_PL_OA:
183 		placement->num_placement = 0;
184 		placement->num_busy_placement = 0;
185 		return;
186 
187 	case TTM_PL_VRAM:
188 		if (!adev->mman.buffer_funcs_enabled) {
189 			/* Move to system memory */
190 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
191 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
192 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
193 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
194 
195 			/* Try evicting to the CPU inaccessible part of VRAM
196 			 * first, but only set GTT as busy placement, so this
197 			 * BO will be evicted to GTT rather than causing other
198 			 * BOs to be evicted from VRAM
199 			 */
200 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
201 							 AMDGPU_GEM_DOMAIN_GTT);
202 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
203 			abo->placements[0].lpfn = 0;
204 			abo->placement.busy_placement = &abo->placements[1];
205 			abo->placement.num_busy_placement = 1;
206 		} else {
207 			/* Move to GTT memory */
208 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
209 		}
210 		break;
211 	case TTM_PL_TT:
212 	default:
213 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
214 		break;
215 	}
216 	*placement = abo->placement;
217 }
218 
219 /**
220  * amdgpu_verify_access - Verify access for a mmap call
221  *
222  * @bo:	The buffer object to map
223  * @filp: The file pointer from the process performing the mmap
224  *
225  * This is called by ttm_bo_mmap() to verify whether a process
226  * has the right to mmap a BO to their process space.
227  */
amdgpu_verify_access(struct ttm_buffer_object * bo,struct file * filp)228 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
229 {
230 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
231 
232 	/*
233 	 * Don't verify access for KFD BOs. They don't have a GEM
234 	 * object associated with them.
235 	 */
236 	if (abo->kfd_bo)
237 		return 0;
238 
239 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
240 		return -EPERM;
241 #ifdef __NetBSD__
242 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
243 					  filp->f_data);
244 #else
245 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
246 					  filp->private_data);
247 #endif
248 }
249 
250 /**
251  * amdgpu_move_null - Register memory for a buffer object
252  *
253  * @bo: The bo to assign the memory to
254  * @new_mem: The memory to be assigned.
255  *
256  * Assign the memory from new_mem to the memory of the buffer object bo.
257  */
amdgpu_move_null(struct ttm_buffer_object * bo,struct ttm_mem_reg * new_mem)258 static void amdgpu_move_null(struct ttm_buffer_object *bo,
259 			     struct ttm_mem_reg *new_mem)
260 {
261 	struct ttm_mem_reg *old_mem = &bo->mem;
262 
263 	BUG_ON(old_mem->mm_node != NULL);
264 	*old_mem = *new_mem;
265 	new_mem->mm_node = NULL;
266 }
267 
268 /**
269  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
270  *
271  * @bo: The bo to assign the memory to.
272  * @mm_node: Memory manager node for drm allocator.
273  * @mem: The region where the bo resides.
274  *
275  */
amdgpu_mm_node_addr(struct ttm_buffer_object * bo,struct drm_mm_node * mm_node,struct ttm_mem_reg * mem)276 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
277 				    struct drm_mm_node *mm_node,
278 				    struct ttm_mem_reg *mem)
279 {
280 	uint64_t addr = 0;
281 
282 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
283 		addr = mm_node->start << PAGE_SHIFT;
284 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
285 	}
286 	return addr;
287 }
288 
289 /**
290  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
291  * @offset. It also modifies the offset to be within the drm_mm_node returned
292  *
293  * @mem: The region where the bo resides.
294  * @offset: The offset that drm_mm_node is used for finding.
295  *
296  */
amdgpu_find_mm_node(struct ttm_mem_reg * mem,unsigned long * offset)297 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
298 					       unsigned long *offset)
299 {
300 	struct drm_mm_node *mm_node = mem->mm_node;
301 
302 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
303 		*offset -= (mm_node->size << PAGE_SHIFT);
304 		++mm_node;
305 	}
306 	return mm_node;
307 }
308 
309 /**
310  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
311  *
312  * The function copies @size bytes from {src->mem + src->offset} to
313  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
314  * move and different for a BO to BO copy.
315  *
316  * @f: Returns the last fence if multiple jobs are submitted.
317  */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,struct amdgpu_copy_mem * src,struct amdgpu_copy_mem * dst,uint64_t size,struct dma_resv * resv,struct dma_fence ** f)318 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
319 			       struct amdgpu_copy_mem *src,
320 			       struct amdgpu_copy_mem *dst,
321 			       uint64_t size,
322 			       struct dma_resv *resv,
323 			       struct dma_fence **f)
324 {
325 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
326 	struct drm_mm_node *src_mm, *dst_mm;
327 	uint64_t src_node_start, dst_node_start, src_node_size,
328 		 dst_node_size, src_page_offset, dst_page_offset;
329 	struct dma_fence *fence = NULL;
330 	int r = 0;
331 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
332 					AMDGPU_GPU_PAGE_SIZE);
333 
334 	if (!adev->mman.buffer_funcs_enabled) {
335 		DRM_ERROR("Trying to move memory with ring turned off.\n");
336 		return -EINVAL;
337 	}
338 
339 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
340 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
341 					     src->offset;
342 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
343 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
344 
345 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
346 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
347 					     dst->offset;
348 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
349 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
350 
351 	mutex_lock(&adev->mman.gtt_window_lock);
352 
353 	while (size) {
354 		unsigned long cur_size;
355 		uint64_t from = src_node_start, to = dst_node_start;
356 		struct dma_fence *next;
357 
358 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
359 		 * begins at an offset, then adjust the size accordingly
360 		 */
361 		cur_size = min3(min(src_node_size, dst_node_size), size,
362 				GTT_MAX_BYTES);
363 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
364 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
365 			cur_size -= max(src_page_offset, dst_page_offset);
366 
367 		/* Map only what needs to be accessed. Map src to window 0 and
368 		 * dst to window 1
369 		 */
370 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
371 			r = amdgpu_map_buffer(src->bo, src->mem,
372 					PFN_UP(cur_size + src_page_offset),
373 					src_node_start, 0, ring,
374 					&from);
375 			if (r)
376 				goto error;
377 			/* Adjust the offset because amdgpu_map_buffer returns
378 			 * start of mapped page
379 			 */
380 			from += src_page_offset;
381 		}
382 
383 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
384 			r = amdgpu_map_buffer(dst->bo, dst->mem,
385 					PFN_UP(cur_size + dst_page_offset),
386 					dst_node_start, 1, ring,
387 					&to);
388 			if (r)
389 				goto error;
390 			to += dst_page_offset;
391 		}
392 
393 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
394 				       resv, &next, false, true);
395 		if (r)
396 			goto error;
397 
398 		dma_fence_put(fence);
399 		fence = next;
400 
401 		size -= cur_size;
402 		if (!size)
403 			break;
404 
405 		src_node_size -= cur_size;
406 		if (!src_node_size) {
407 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
408 							     src->mem);
409 			src_node_size = (src_mm->size << PAGE_SHIFT);
410 			src_page_offset = 0;
411 		} else {
412 			src_node_start += cur_size;
413 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
414 		}
415 		dst_node_size -= cur_size;
416 		if (!dst_node_size) {
417 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
418 							     dst->mem);
419 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
420 			dst_page_offset = 0;
421 		} else {
422 			dst_node_start += cur_size;
423 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
424 		}
425 	}
426 error:
427 	mutex_unlock(&adev->mman.gtt_window_lock);
428 	if (f)
429 		*f = dma_fence_get(fence);
430 	dma_fence_put(fence);
431 	return r;
432 }
433 
434 /**
435  * amdgpu_move_blit - Copy an entire buffer to another buffer
436  *
437  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
438  * help move buffers to and from VRAM.
439  */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,bool no_wait_gpu,struct ttm_mem_reg * new_mem,struct ttm_mem_reg * old_mem)440 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
441 			    bool evict, bool no_wait_gpu,
442 			    struct ttm_mem_reg *new_mem,
443 			    struct ttm_mem_reg *old_mem)
444 {
445 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
446 	struct amdgpu_copy_mem src, dst;
447 	struct dma_fence *fence = NULL;
448 	int r;
449 
450 	src.bo = bo;
451 	dst.bo = bo;
452 	src.mem = old_mem;
453 	dst.mem = new_mem;
454 	src.offset = 0;
455 	dst.offset = 0;
456 
457 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
458 				       new_mem->num_pages << PAGE_SHIFT,
459 				       bo->base.resv, &fence);
460 	if (r)
461 		goto error;
462 
463 	/* clear the space being freed */
464 	if (old_mem->mem_type == TTM_PL_VRAM &&
465 	    (ttm_to_amdgpu_bo(bo)->flags &
466 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
467 		struct dma_fence *wipe_fence = NULL;
468 
469 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
470 				       NULL, &wipe_fence);
471 		if (r) {
472 			goto error;
473 		} else if (wipe_fence) {
474 			dma_fence_put(fence);
475 			fence = wipe_fence;
476 		}
477 	}
478 
479 	/* Always block for VM page tables before committing the new location */
480 	if (bo->type == ttm_bo_type_kernel)
481 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
482 	else
483 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
484 	dma_fence_put(fence);
485 	return r;
486 
487 error:
488 	if (fence)
489 		dma_fence_wait(fence, false);
490 	dma_fence_put(fence);
491 	return r;
492 }
493 
494 /**
495  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
496  *
497  * Called by amdgpu_bo_move().
498  */
amdgpu_move_vram_ram(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)499 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
500 				struct ttm_operation_ctx *ctx,
501 				struct ttm_mem_reg *new_mem)
502 {
503 	struct ttm_mem_reg *old_mem = &bo->mem;
504 	struct ttm_mem_reg tmp_mem;
505 	struct ttm_place placements;
506 	struct ttm_placement placement;
507 	int r;
508 
509 	/* create space/pages for new_mem in GTT space */
510 	tmp_mem = *new_mem;
511 	tmp_mem.mm_node = NULL;
512 	placement.num_placement = 1;
513 	placement.placement = &placements;
514 	placement.num_busy_placement = 1;
515 	placement.busy_placement = &placements;
516 	placements.fpfn = 0;
517 	placements.lpfn = 0;
518 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
519 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
520 	if (unlikely(r)) {
521 		pr_err("Failed to find GTT space for blit from VRAM\n");
522 		return r;
523 	}
524 
525 	/* set caching flags */
526 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
527 	if (unlikely(r)) {
528 		goto out_cleanup;
529 	}
530 
531 	/* Bind the memory to the GTT space */
532 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
533 	if (unlikely(r)) {
534 		goto out_cleanup;
535 	}
536 
537 	/* blit VRAM to GTT */
538 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
539 	if (unlikely(r)) {
540 		goto out_cleanup;
541 	}
542 
543 	/* move BO (in tmp_mem) to new_mem */
544 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
545 out_cleanup:
546 	ttm_bo_mem_put(bo, &tmp_mem);
547 	return r;
548 }
549 
550 /**
551  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
552  *
553  * Called by amdgpu_bo_move().
554  */
amdgpu_move_ram_vram(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)555 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
556 				struct ttm_operation_ctx *ctx,
557 				struct ttm_mem_reg *new_mem)
558 {
559 	struct ttm_mem_reg *old_mem = &bo->mem;
560 	struct ttm_mem_reg tmp_mem;
561 	struct ttm_placement placement;
562 	struct ttm_place placements;
563 	int r;
564 
565 	/* make space in GTT for old_mem buffer */
566 	tmp_mem = *new_mem;
567 	tmp_mem.mm_node = NULL;
568 	placement.num_placement = 1;
569 	placement.placement = &placements;
570 	placement.num_busy_placement = 1;
571 	placement.busy_placement = &placements;
572 	placements.fpfn = 0;
573 	placements.lpfn = 0;
574 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
575 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
576 	if (unlikely(r)) {
577 		pr_err("Failed to find GTT space for blit to VRAM\n");
578 		return r;
579 	}
580 
581 	/* move/bind old memory to GTT space */
582 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
583 	if (unlikely(r)) {
584 		goto out_cleanup;
585 	}
586 
587 	/* copy to VRAM */
588 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
589 	if (unlikely(r)) {
590 		goto out_cleanup;
591 	}
592 out_cleanup:
593 	ttm_bo_mem_put(bo, &tmp_mem);
594 	return r;
595 }
596 
597 /**
598  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
599  *
600  * Called by amdgpu_bo_move()
601  */
amdgpu_mem_visible(struct amdgpu_device * adev,struct ttm_mem_reg * mem)602 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
603 			       struct ttm_mem_reg *mem)
604 {
605 	struct drm_mm_node *nodes = mem->mm_node;
606 
607 	if (mem->mem_type == TTM_PL_SYSTEM ||
608 	    mem->mem_type == TTM_PL_TT)
609 		return true;
610 	if (mem->mem_type != TTM_PL_VRAM)
611 		return false;
612 
613 	/* ttm_mem_reg_ioremap only supports contiguous memory */
614 	if (nodes->size != mem->num_pages)
615 		return false;
616 
617 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
618 		<= adev->gmc.visible_vram_size;
619 }
620 
621 /**
622  * amdgpu_bo_move - Move a buffer object to a new memory location
623  *
624  * Called by ttm_bo_handle_move_mem()
625  */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)626 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
627 			  struct ttm_operation_ctx *ctx,
628 			  struct ttm_mem_reg *new_mem)
629 {
630 	struct amdgpu_device *adev;
631 	struct amdgpu_bo *abo;
632 	struct ttm_mem_reg *old_mem = &bo->mem;
633 	int r;
634 
635 	/* Can't move a pinned BO */
636 	abo = ttm_to_amdgpu_bo(bo);
637 	if (WARN_ON_ONCE(abo->pin_count > 0))
638 		return -EINVAL;
639 
640 	adev = amdgpu_ttm_adev(bo->bdev);
641 
642 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
643 		amdgpu_move_null(bo, new_mem);
644 		return 0;
645 	}
646 	if ((old_mem->mem_type == TTM_PL_TT &&
647 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
648 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
649 	     new_mem->mem_type == TTM_PL_TT)) {
650 		/* bind is enough */
651 		amdgpu_move_null(bo, new_mem);
652 		return 0;
653 	}
654 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
655 	    old_mem->mem_type == AMDGPU_PL_GWS ||
656 	    old_mem->mem_type == AMDGPU_PL_OA ||
657 	    new_mem->mem_type == AMDGPU_PL_GDS ||
658 	    new_mem->mem_type == AMDGPU_PL_GWS ||
659 	    new_mem->mem_type == AMDGPU_PL_OA) {
660 		/* Nothing to save here */
661 		amdgpu_move_null(bo, new_mem);
662 		return 0;
663 	}
664 
665 	if (!adev->mman.buffer_funcs_enabled) {
666 		r = -ENODEV;
667 		goto memcpy;
668 	}
669 
670 	if (old_mem->mem_type == TTM_PL_VRAM &&
671 	    new_mem->mem_type == TTM_PL_SYSTEM) {
672 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
673 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
674 		   new_mem->mem_type == TTM_PL_VRAM) {
675 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
676 	} else {
677 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
678 				     new_mem, old_mem);
679 	}
680 
681 	if (r) {
682 memcpy:
683 		/* Check that all memory is CPU accessible */
684 		if (!amdgpu_mem_visible(adev, old_mem) ||
685 		    !amdgpu_mem_visible(adev, new_mem)) {
686 			pr_err("Move buffer fallback to memcpy unavailable\n");
687 			return r;
688 		}
689 
690 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
691 		if (r)
692 			return r;
693 	}
694 
695 	if (bo->type == ttm_bo_type_device &&
696 	    new_mem->mem_type == TTM_PL_VRAM &&
697 	    old_mem->mem_type != TTM_PL_VRAM) {
698 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
699 		 * accesses the BO after it's moved.
700 		 */
701 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
702 	}
703 
704 	/* update statistics */
705 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
706 	return 0;
707 }
708 
709 /**
710  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
711  *
712  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
713  */
amdgpu_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)714 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
715 {
716 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
717 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
718 	struct drm_mm_node *mm_node = mem->mm_node;
719 
720 	mem->bus.addr = NULL;
721 	mem->bus.offset = 0;
722 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
723 	mem->bus.base = 0;
724 	mem->bus.is_iomem = false;
725 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
726 		return -EINVAL;
727 	switch (mem->mem_type) {
728 	case TTM_PL_SYSTEM:
729 		/* system memory */
730 		return 0;
731 	case TTM_PL_TT:
732 		break;
733 	case TTM_PL_VRAM:
734 		mem->bus.offset = mem->start << PAGE_SHIFT;
735 		/* check if it's visible */
736 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
737 			return -EINVAL;
738 		/* Only physically contiguous buffers apply. In a contiguous
739 		 * buffer, size of the first mm_node would match the number of
740 		 * pages in ttm_mem_reg.
741 		 */
742 		if (adev->mman.aper_base_kaddr &&
743 		    (mm_node->size == mem->num_pages))
744 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
745 					mem->bus.offset;
746 
747 		mem->bus.base = adev->gmc.aper_base;
748 		mem->bus.is_iomem = true;
749 		break;
750 	default:
751 		return -EINVAL;
752 	}
753 	return 0;
754 }
755 
amdgpu_ttm_io_mem_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)756 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
757 {
758 }
759 
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)760 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
761 					   unsigned long page_offset)
762 {
763 	struct drm_mm_node *mm;
764 	unsigned long offset = (page_offset << PAGE_SHIFT);
765 
766 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
767 #ifdef __NetBSD__
768 	/*
769 	 * vm_prot and flags are encoded in the pmap cookie, but we
770 	 * then discard them; the caller will reapply them as
771 	 * appropriate before it gets to pmap_enter.
772 	 *
773 	 * XXX What if the flags determine not just extra bits in the
774 	 * cookie, but the address itself, in case different mapping
775 	 * types (like prefetchable) are exposed through different
776 	 * ranges instead of different page table entry bit?
777 	 */
778 	const paddr_t cookie = bus_space_mmap(bo->bdev->memt, bo->mem.bus.base,
779 	    (mm->start + page_offset) << PAGE_SHIFT, /*vm_prot*/0, /*flags*/0);
780 	return pmap_phys_address(cookie) >> PAGE_SHIFT;
781 #else
782 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
783 		(offset >> PAGE_SHIFT);
784 #endif
785 }
786 
787 /*
788  * TTM backend functions.
789  */
790 struct amdgpu_ttm_tt {
791 	struct ttm_dma_tt	ttm;
792 	struct drm_gem_object	*gobj;
793 	u64			offset;
794 	uint64_t		userptr;
795 #ifdef __NetBSD__
796 	struct proc		*usertask;
797 #else
798 	struct task_struct	*usertask;
799 #endif
800 	uint32_t		userflags;
801 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
802 	struct hmm_range	*range;
803 #endif
804 };
805 
806 #ifdef CONFIG_DRM_AMDGPU_USERPTR
807 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
808 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
809 	(1 << 0), /* HMM_PFN_VALID */
810 	(1 << 1), /* HMM_PFN_WRITE */
811 	0 /* HMM_PFN_DEVICE_PRIVATE */
812 };
813 
814 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
815 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
816 	0, /* HMM_PFN_NONE */
817 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
818 };
819 
820 /**
821  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
822  * memory and start HMM tracking CPU page table update
823  *
824  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
825  * once afterwards to stop HMM tracking
826  */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages)827 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
828 {
829 	struct ttm_tt *ttm = bo->tbo.ttm;
830 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
831 	unsigned long start = gtt->userptr;
832 	struct vm_area_struct *vma;
833 	struct hmm_range *range;
834 	unsigned long timeout;
835 	struct mm_struct *mm;
836 	unsigned long i;
837 	int r = 0;
838 
839 	mm = bo->notifier.mm;
840 	if (unlikely(!mm)) {
841 		DRM_DEBUG_DRIVER("BO is not registered?\n");
842 		return -EFAULT;
843 	}
844 
845 	/* Another get_user_pages is running at the same time?? */
846 	if (WARN_ON(gtt->range))
847 		return -EFAULT;
848 
849 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
850 		return -ESRCH;
851 
852 	range = kzalloc(sizeof(*range), GFP_KERNEL);
853 	if (unlikely(!range)) {
854 		r = -ENOMEM;
855 		goto out;
856 	}
857 	range->notifier = &bo->notifier;
858 	range->flags = hmm_range_flags;
859 	range->values = hmm_range_values;
860 	range->pfn_shift = PAGE_SHIFT;
861 	range->start = bo->notifier.interval_tree.start;
862 	range->end = bo->notifier.interval_tree.last + 1;
863 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
864 	if (!amdgpu_ttm_tt_is_readonly(ttm))
865 		range->default_flags |= range->flags[HMM_PFN_WRITE];
866 
867 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
868 				     GFP_KERNEL);
869 	if (unlikely(!range->pfns)) {
870 		r = -ENOMEM;
871 		goto out_free_ranges;
872 	}
873 
874 	down_read(&mm->mmap_sem);
875 	vma = find_vma(mm, start);
876 	if (unlikely(!vma || start < vma->vm_start)) {
877 		r = -EFAULT;
878 		goto out_unlock;
879 	}
880 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
881 		vma->vm_file)) {
882 		r = -EPERM;
883 		goto out_unlock;
884 	}
885 	up_read(&mm->mmap_sem);
886 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
887 
888 retry:
889 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
890 
891 	down_read(&mm->mmap_sem);
892 	r = hmm_range_fault(range, 0);
893 	up_read(&mm->mmap_sem);
894 	if (unlikely(r <= 0)) {
895 		/*
896 		 * FIXME: This timeout should encompass the retry from
897 		 * mmu_interval_read_retry() as well.
898 		 */
899 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
900 			goto retry;
901 		goto out_free_pfns;
902 	}
903 
904 	for (i = 0; i < ttm->num_pages; i++) {
905 		/* FIXME: The pages cannot be touched outside the notifier_lock */
906 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
907 		if (unlikely(!pages[i])) {
908 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
909 			       i, range->pfns[i]);
910 			r = -ENOMEM;
911 
912 			goto out_free_pfns;
913 		}
914 	}
915 
916 	gtt->range = range;
917 	mmput(mm);
918 
919 	return 0;
920 
921 out_unlock:
922 	up_read(&mm->mmap_sem);
923 out_free_pfns:
924 	kvfree(range->pfns);
925 out_free_ranges:
926 	kfree(range);
927 out:
928 	mmput(mm);
929 	return r;
930 }
931 
932 /**
933  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
934  * Check if the pages backing this ttm range have been invalidated
935  *
936  * Returns: true if pages are still valid
937  */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm)938 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
939 {
940 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
941 	bool r = false;
942 
943 	if (!gtt || !gtt->userptr)
944 		return false;
945 
946 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
947 		gtt->userptr, ttm->num_pages);
948 
949 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
950 		"No user pages to check\n");
951 
952 	if (gtt->range) {
953 		/*
954 		 * FIXME: Must always hold notifier_lock for this, and must
955 		 * not ignore the return code.
956 		 */
957 		r = mmu_interval_read_retry(gtt->range->notifier,
958 					 gtt->range->notifier_seq);
959 		kvfree(gtt->range->pfns);
960 		kfree(gtt->range);
961 		gtt->range = NULL;
962 	}
963 
964 	return !r;
965 }
966 #endif
967 
968 /**
969  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
970  *
971  * Called by amdgpu_cs_list_validate(). This creates the page list
972  * that backs user memory and will ultimately be mapped into the device
973  * address space.
974  */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)975 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
976 {
977 	unsigned long i;
978 
979 	for (i = 0; i < ttm->num_pages; ++i)
980 		ttm->pages[i] = pages ? pages[i] : NULL;
981 }
982 
983 /**
984  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
985  *
986  * Called by amdgpu_ttm_backend_bind()
987  **/
amdgpu_ttm_tt_pin_userptr(struct ttm_tt * ttm)988 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
989 {
990 #ifdef __NetBSD__		/* XXX amdgpu userptr */
991 	return -ENODEV;
992 #else
993 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
994 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
995 	unsigned nents;
996 	int r;
997 
998 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
999 	enum dma_data_direction direction = write ?
1000 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1001 
1002 	/* Allocate an SG array and squash pages into it */
1003 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1004 				      ttm->num_pages << PAGE_SHIFT,
1005 				      GFP_KERNEL);
1006 	if (r)
1007 		goto release_sg;
1008 
1009 	/* Map SG to device */
1010 	r = -ENOMEM;
1011 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1012 	if (nents != ttm->sg->nents)
1013 		goto release_sg;
1014 
1015 	/* convert SG to linear array of pages and dma addresses */
1016 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1017 					 gtt->ttm.dma_address, ttm->num_pages);
1018 
1019 	return 0;
1020 
1021 release_sg:
1022 	kfree(ttm->sg);
1023 	return r;
1024 #endif
1025 }
1026 
1027 /**
1028  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1029  */
amdgpu_ttm_tt_unpin_userptr(struct ttm_tt * ttm)1030 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1031 {
1032 #ifndef __NetBSD__		/* XXX amdgpu userptr */
1033 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1034 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1035 
1036 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1037 	enum dma_data_direction direction = write ?
1038 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1039 
1040 	/* double check that we don't free the table twice */
1041 	if (!ttm->sg->sgl)
1042 		return;
1043 
1044 	/* unmap the pages mapped to the device */
1045 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1046 
1047 	sg_free_table(ttm->sg);
1048 
1049 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1050 	if (gtt->range) {
1051 		unsigned long i;
1052 
1053 		for (i = 0; i < ttm->num_pages; i++) {
1054 			if (ttm->pages[i] !=
1055 				hmm_device_entry_to_page(gtt->range,
1056 					      gtt->range->pfns[i]))
1057 				break;
1058 		}
1059 
1060 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1061 	}
1062 #endif
1063 #endif
1064 }
1065 
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)1066 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1067 				struct ttm_buffer_object *tbo,
1068 				uint64_t flags)
1069 {
1070 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1071 	struct ttm_tt *ttm = tbo->ttm;
1072 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1073 	int r;
1074 
1075 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1076 		uint64_t page_idx = 1;
1077 
1078 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1079 				ttm->pages, gtt->ttm.dma_address, flags);
1080 		if (r)
1081 			goto gart_bind_fail;
1082 
1083 		/* Patch mtype of the second part BO */
1084 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1085 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1086 
1087 		r = amdgpu_gart_bind(adev,
1088 				gtt->offset + (page_idx << PAGE_SHIFT),
1089 				ttm->num_pages - page_idx,
1090 				&ttm->pages[page_idx],
1091 				&(gtt->ttm.dma_address[page_idx]), flags);
1092 	} else {
1093 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1094 				     ttm->pages, gtt->ttm.dma_address, flags);
1095 	}
1096 
1097 gart_bind_fail:
1098 	if (r)
1099 		DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
1100 			  ttm->num_pages, gtt->offset);
1101 
1102 	return r;
1103 }
1104 
1105 /**
1106  * amdgpu_ttm_backend_bind - Bind GTT memory
1107  *
1108  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1109  * This handles binding GTT memory to the device address space.
1110  */
amdgpu_ttm_backend_bind(struct ttm_tt * ttm,struct ttm_mem_reg * bo_mem)1111 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1112 				   struct ttm_mem_reg *bo_mem)
1113 {
1114 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1115 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1116 	uint64_t flags;
1117 	int r = 0;
1118 
1119 	if (gtt->userptr) {
1120 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1121 		if (r) {
1122 			DRM_ERROR("failed to pin userptr\n");
1123 			return r;
1124 		}
1125 	}
1126 	if (!ttm->num_pages) {
1127 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1128 		     ttm->num_pages, bo_mem, ttm);
1129 	}
1130 
1131 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1132 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1133 	    bo_mem->mem_type == AMDGPU_PL_OA)
1134 		return -EINVAL;
1135 
1136 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1137 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1138 		return 0;
1139 	}
1140 
1141 	/* compute PTE flags relevant to this BO memory */
1142 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1143 
1144 	/* bind pages into GART page tables */
1145 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1146 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1147 		ttm->pages, gtt->ttm.dma_address, flags);
1148 
1149 	if (r)
1150 		DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
1151 			  ttm->num_pages, gtt->offset);
1152 	return r;
1153 }
1154 
1155 /**
1156  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1157  */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)1158 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1159 {
1160 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1161 	struct ttm_operation_ctx ctx = { false, false };
1162 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1163 	struct ttm_mem_reg tmp;
1164 	struct ttm_placement placement;
1165 	struct ttm_place placements;
1166 	uint64_t addr, flags;
1167 	int r;
1168 
1169 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1170 		return 0;
1171 
1172 	addr = amdgpu_gmc_agp_addr(bo);
1173 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1174 		bo->mem.start = addr >> PAGE_SHIFT;
1175 	} else {
1176 
1177 		/* allocate GART space */
1178 		tmp = bo->mem;
1179 		tmp.mm_node = NULL;
1180 		placement.num_placement = 1;
1181 		placement.placement = &placements;
1182 		placement.num_busy_placement = 1;
1183 		placement.busy_placement = &placements;
1184 		placements.fpfn = 0;
1185 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1186 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1187 			TTM_PL_FLAG_TT;
1188 
1189 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1190 		if (unlikely(r))
1191 			return r;
1192 
1193 		/* compute PTE flags for this buffer object */
1194 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1195 
1196 		/* Bind pages */
1197 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1198 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1199 		if (unlikely(r)) {
1200 			ttm_bo_mem_put(bo, &tmp);
1201 			return r;
1202 		}
1203 
1204 		ttm_bo_mem_put(bo, &bo->mem);
1205 		bo->mem = tmp;
1206 	}
1207 
1208 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1209 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * amdgpu_ttm_recover_gart - Rebind GTT pages
1216  *
1217  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1218  * rebind GTT pages during a GPU reset.
1219  */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1220 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1221 {
1222 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1223 	uint64_t flags;
1224 	int r;
1225 
1226 	if (!tbo->ttm)
1227 		return 0;
1228 
1229 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1230 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1231 
1232 	return r;
1233 }
1234 
1235 /**
1236  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1237  *
1238  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1239  * ttm_tt_destroy().
1240  */
amdgpu_ttm_backend_unbind(struct ttm_tt * ttm)1241 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1242 {
1243 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1244 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245 	int r;
1246 
1247 	/* if the pages have userptr pinning then clear that first */
1248 	if (gtt->userptr)
1249 		amdgpu_ttm_tt_unpin_userptr(ttm);
1250 
1251 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1252 		return 0;
1253 
1254 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1255 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1256 	if (r)
1257 		DRM_ERROR("failed to unbind %lu pages at 0x%08"PRIX64"\n",
1258 			  gtt->ttm.ttm.num_pages, gtt->offset);
1259 	return r;
1260 }
1261 
amdgpu_ttm_backend_destroy(struct ttm_tt * ttm)1262 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1263 {
1264 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1265 
1266 #ifndef __NetBSD__		/* XXX amdgpu userptr */
1267 	if (gtt->usertask)
1268 		put_task_struct(gtt->usertask);
1269 #endif
1270 
1271 	ttm_dma_tt_fini(&gtt->ttm);
1272 	kfree(gtt);
1273 }
1274 
1275 static struct ttm_backend_func amdgpu_backend_func = {
1276 	.bind = &amdgpu_ttm_backend_bind,
1277 	.unbind = &amdgpu_ttm_backend_unbind,
1278 	.destroy = &amdgpu_ttm_backend_destroy,
1279 };
1280 
1281 /**
1282  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1283  *
1284  * @bo: The buffer object to create a GTT ttm_tt object around
1285  *
1286  * Called by ttm_tt_create().
1287  */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1288 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1289 					   uint32_t page_flags)
1290 {
1291 	struct amdgpu_ttm_tt *gtt;
1292 
1293 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1294 	if (gtt == NULL) {
1295 		return NULL;
1296 	}
1297 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1298 	gtt->gobj = &bo->base;
1299 
1300 	/* allocate space for the uninitialized page entries */
1301 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1302 		kfree(gtt);
1303 		return NULL;
1304 	}
1305 	return &gtt->ttm.ttm;
1306 }
1307 
1308 /**
1309  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1310  *
1311  * Map the pages of a ttm_tt object to an address space visible
1312  * to the underlying device.
1313  */
amdgpu_ttm_tt_populate(struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1314 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1315 			struct ttm_operation_ctx *ctx)
1316 {
1317 #ifndef __NetBSD__
1318 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1319 #endif
1320 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1321 
1322 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1323 	if (gtt && gtt->userptr) {
1324 #ifdef __NetBSD__
1325 		ttm->sg = NULL;
1326 #else
1327 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1328 		if (!ttm->sg)
1329 			return -ENOMEM;
1330 #endif
1331 
1332 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1333 		ttm->state = tt_unbound;
1334 		return 0;
1335 	}
1336 
1337 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1338 		if (!ttm->sg) {
1339 			struct dma_buf_attachment *attach;
1340 			struct sg_table *sgt;
1341 
1342 			attach = gtt->gobj->import_attach;
1343 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1344 			if (IS_ERR(sgt))
1345 				return PTR_ERR(sgt);
1346 
1347 			ttm->sg = sgt;
1348 		}
1349 
1350 #ifdef __NetBSD__
1351 		int r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
1352 		    gtt->ttm.dma_address, ttm->sg);
1353 		if (r)
1354 			return r;
1355 #else
1356 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1357 						 gtt->ttm.dma_address,
1358 						 ttm->num_pages);
1359 #endif
1360 		ttm->state = tt_unbound;
1361 		return 0;
1362 	}
1363 
1364 #ifdef __NetBSD__
1365 	/* XXX errno NetBSD->Linux */
1366 	return ttm_bus_dma_populate(&gtt->ttm);
1367 #else
1368 #ifdef CONFIG_SWIOTLB
1369 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1370 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1371 	}
1372 #endif
1373 
1374 	/* fall back to generic helper to populate the page array
1375 	 * and map them to the device */
1376 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1377 #endif
1378 }
1379 
1380 /**
1381  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1382  *
1383  * Unmaps pages of a ttm_tt object from the device address space and
1384  * unpopulates the page array backing it.
1385  */
amdgpu_ttm_tt_unpopulate(struct ttm_tt * ttm)1386 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1387 {
1388 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1389 #ifndef __NetBSD__
1390 	struct amdgpu_device *adev;
1391 #endif
1392 
1393 	if (gtt && gtt->userptr) {
1394 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1395 		kfree(ttm->sg);
1396 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1397 		return;
1398 	}
1399 
1400 	if (ttm->sg && gtt->gobj->import_attach) {
1401 		struct dma_buf_attachment *attach;
1402 
1403 		attach = gtt->gobj->import_attach;
1404 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1405 		ttm->sg = NULL;
1406 		return;
1407 	}
1408 
1409 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1410 		return;
1411 
1412 #ifdef __NetBSD__
1413 	ttm_bus_dma_unpopulate(&gtt->ttm);
1414 	return;
1415 #else
1416 	adev = amdgpu_ttm_adev(ttm->bdev);
1417 
1418 #ifdef CONFIG_SWIOTLB
1419 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1420 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1421 		return;
1422 	}
1423 #endif
1424 
1425 	/* fall back to generic helper to unmap and unpopulate array */
1426 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1427 #endif	/* __NetBSD__ */
1428 }
1429 
1430 #ifdef __NetBSD__
amdgpu_ttm_tt_swapout(struct ttm_tt * ttm)1431 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
1432 {
1433 	struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
1434 	    ttm.ttm);
1435 	struct ttm_dma_tt *ttm_dma = &gtt->ttm;
1436 
1437 	ttm_bus_dma_swapout(ttm_dma);
1438 }
1439 
1440 static const struct uvm_pagerops amdgpu_uvm_ops = {
1441 	.pgo_reference = &ttm_bo_uvm_reference,
1442 	.pgo_detach = &ttm_bo_uvm_detach,
1443 	.pgo_fault = &ttm_bo_uvm_fault,
1444 };
1445 #endif
1446 
1447 /**
1448  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1449  * task
1450  *
1451  * @ttm: The ttm_tt object to bind this userptr object to
1452  * @addr:  The address in the current tasks VM space to use
1453  * @flags: Requirements of userptr object.
1454  *
1455  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1456  * to current task
1457  */
amdgpu_ttm_tt_set_userptr(struct ttm_tt * ttm,uint64_t addr,uint32_t flags)1458 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1459 			      uint32_t flags)
1460 {
1461 #ifdef __NetBSD__		/* XXX amdgpu userptr */
1462 	return -ENODEV;
1463 #else
1464 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1465 
1466 	if (gtt == NULL)
1467 		return -EINVAL;
1468 
1469 	gtt->userptr = addr;
1470 	gtt->userflags = flags;
1471 
1472 	if (gtt->usertask)
1473 		put_task_struct(gtt->usertask);
1474 	gtt->usertask = current->group_leader;
1475 	get_task_struct(gtt->usertask);
1476 
1477 	return 0;
1478 #endif
1479 }
1480 
1481 /**
1482  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1483  */
1484 #ifdef __NetBSD__
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1485 struct vmspace *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1486 #else
1487 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1488 #endif
1489 {
1490 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1491 
1492 	if (gtt == NULL)
1493 		return NULL;
1494 
1495 	if (gtt->usertask == NULL)
1496 		return NULL;
1497 
1498 #ifdef __NetBSD__
1499 	return gtt->usertask->p_vmspace;
1500 #else
1501 	return gtt->usertask->mm;
1502 #endif
1503 }
1504 
1505 /**
1506  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1507  * address range for the current task.
1508  *
1509  */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end)1510 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1511 				  unsigned long end)
1512 {
1513 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1514 	unsigned long size;
1515 
1516 	if (gtt == NULL || !gtt->userptr)
1517 		return false;
1518 
1519 	/* Return false if no part of the ttm_tt object lies within
1520 	 * the range
1521 	 */
1522 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1523 	if (gtt->userptr > end || gtt->userptr + size <= start)
1524 		return false;
1525 
1526 	return true;
1527 }
1528 
1529 /**
1530  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1531  */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1532 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1533 {
1534 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1535 
1536 	if (gtt == NULL || !gtt->userptr)
1537 		return false;
1538 
1539 	return true;
1540 }
1541 
1542 /**
1543  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1544  */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1545 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1546 {
1547 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1548 
1549 	if (gtt == NULL)
1550 		return false;
1551 
1552 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1553 }
1554 
1555 /**
1556  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1557  *
1558  * @ttm: The ttm_tt object to compute the flags for
1559  * @mem: The memory registry backing this ttm_tt object
1560  *
1561  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1562  */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_mem_reg * mem)1563 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1564 {
1565 	uint64_t flags = 0;
1566 
1567 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1568 		flags |= AMDGPU_PTE_VALID;
1569 
1570 	if (mem && mem->mem_type == TTM_PL_TT) {
1571 		flags |= AMDGPU_PTE_SYSTEM;
1572 
1573 		if (ttm->caching_state == tt_cached)
1574 			flags |= AMDGPU_PTE_SNOOPED;
1575 	}
1576 
1577 	return flags;
1578 }
1579 
1580 /**
1581  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1582  *
1583  * @ttm: The ttm_tt object to compute the flags for
1584  * @mem: The memory registry backing this ttm_tt object
1585 
1586  * Figure out the flags to use for a VM PTE (Page Table Entry).
1587  */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_mem_reg * mem)1588 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1589 				 struct ttm_mem_reg *mem)
1590 {
1591 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1592 
1593 	flags |= adev->gart.gart_pte_flags;
1594 	flags |= AMDGPU_PTE_READABLE;
1595 
1596 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1597 		flags |= AMDGPU_PTE_WRITEABLE;
1598 
1599 	return flags;
1600 }
1601 
1602 /**
1603  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1604  * object.
1605  *
1606  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1607  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1608  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1609  * used to clean out a memory space.
1610  */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1611 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1612 					    const struct ttm_place *place)
1613 {
1614 	unsigned long num_pages = bo->mem.num_pages;
1615 	struct drm_mm_node *node = bo->mem.mm_node;
1616 	struct dma_resv_list *flist;
1617 	struct dma_fence *f;
1618 	int i;
1619 
1620 	if (bo->type == ttm_bo_type_kernel &&
1621 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1622 		return false;
1623 
1624 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1625 	 * If true, then return false as any KFD process needs all its BOs to
1626 	 * be resident to run successfully
1627 	 */
1628 #ifdef __NetBSD__		/* XXX amdgpu kfd */
1629 	__USE(flist);
1630 	__USE(f);
1631 	__USE(i);
1632 #else
1633 	flist = dma_resv_get_list(bo->base.resv);
1634 	if (flist) {
1635 		for (i = 0; i < flist->shared_count; ++i) {
1636 			f = rcu_dereference_protected(flist->shared[i],
1637 				dma_resv_held(bo->base.resv));
1638 			if (amdkfd_fence_check_mm(f, current->mm))
1639 				return false;
1640 		}
1641 	}
1642 #endif
1643 
1644 	switch (bo->mem.mem_type) {
1645 	case TTM_PL_TT:
1646 		return true;
1647 
1648 	case TTM_PL_VRAM:
1649 		/* Check each drm MM node individually */
1650 		while (num_pages) {
1651 			if (place->fpfn < (node->start + node->size) &&
1652 			    !(place->lpfn && place->lpfn <= node->start))
1653 				return true;
1654 
1655 			num_pages -= node->size;
1656 			++node;
1657 		}
1658 		return false;
1659 
1660 	default:
1661 		break;
1662 	}
1663 
1664 	return ttm_bo_eviction_valuable(bo, place);
1665 }
1666 
1667 /**
1668  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1669  *
1670  * @bo:  The buffer object to read/write
1671  * @offset:  Offset into buffer object
1672  * @buf:  Secondary buffer to write/read from
1673  * @len: Length in bytes of access
1674  * @write:  true if writing
1675  *
1676  * This is used to access VRAM that backs a buffer object via MMIO
1677  * access for debugging purposes.
1678  */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1679 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1680 				    unsigned long offset,
1681 				    void *buf, int len, int write)
1682 {
1683 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1684 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1685 	struct drm_mm_node *nodes;
1686 	uint32_t value = 0;
1687 	int ret = 0;
1688 	uint64_t pos;
1689 	unsigned long flags;
1690 
1691 	if (bo->mem.mem_type != TTM_PL_VRAM)
1692 		return -EIO;
1693 
1694 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1695 	pos = (nodes->start << PAGE_SHIFT) + offset;
1696 
1697 	while (len && pos < adev->gmc.mc_vram_size) {
1698 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1699 		uint32_t bytes = 4 - (pos & 3);
1700 		uint32_t shift = (pos & 3) * 8;
1701 		uint32_t mask = 0xffffffff << shift;
1702 
1703 		if (len < bytes) {
1704 			mask &= 0xffffffff >> (bytes - len) * 8;
1705 			bytes = len;
1706 		}
1707 
1708 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1709 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1710 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1711 		if (!write || mask != 0xffffffff)
1712 			value = RREG32_NO_KIQ(mmMM_DATA);
1713 		if (write) {
1714 			value &= ~mask;
1715 			value |= (*(uint32_t *)buf << shift) & mask;
1716 			WREG32_NO_KIQ(mmMM_DATA, value);
1717 		}
1718 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1719 		if (!write) {
1720 			value = (value & mask) >> shift;
1721 			memcpy(buf, &value, bytes);
1722 		}
1723 
1724 		ret += bytes;
1725 		buf = (uint8_t *)buf + bytes;
1726 		pos += bytes;
1727 		len -= bytes;
1728 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1729 			++nodes;
1730 			pos = (nodes->start << PAGE_SHIFT);
1731 		}
1732 	}
1733 
1734 	return ret;
1735 }
1736 
1737 static struct ttm_bo_driver amdgpu_bo_driver = {
1738 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1739 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1740 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1741 #ifdef __NetBSD__
1742 	.ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
1743 	.ttm_uvm_ops = &amdgpu_uvm_ops,
1744 #endif
1745 	.invalidate_caches = &amdgpu_invalidate_caches,
1746 	.init_mem_type = &amdgpu_init_mem_type,
1747 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1748 	.evict_flags = &amdgpu_evict_flags,
1749 	.move = &amdgpu_bo_move,
1750 	.verify_access = &amdgpu_verify_access,
1751 	.move_notify = &amdgpu_bo_move_notify,
1752 	.release_notify = &amdgpu_bo_release_notify,
1753 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1754 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1755 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1756 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1757 	.access_memory = &amdgpu_ttm_access_memory,
1758 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1759 };
1760 
1761 /*
1762  * Firmware Reservation functions
1763  */
1764 /**
1765  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1766  *
1767  * @adev: amdgpu_device pointer
1768  *
1769  * free fw reserved vram if it has been reserved.
1770  */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1771 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1772 {
1773 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1774 		NULL, &adev->fw_vram_usage.va);
1775 }
1776 
1777 /**
1778  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1779  *
1780  * @adev: amdgpu_device pointer
1781  *
1782  * create bo vram reservation from fw.
1783  */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1784 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1785 {
1786 	uint64_t vram_size = adev->gmc.visible_vram_size;
1787 
1788 	adev->fw_vram_usage.va = NULL;
1789 	adev->fw_vram_usage.reserved_bo = NULL;
1790 
1791 	if (adev->fw_vram_usage.size == 0 ||
1792 	    adev->fw_vram_usage.size > vram_size)
1793 		return 0;
1794 
1795 	return amdgpu_bo_create_kernel_at(adev,
1796 					  adev->fw_vram_usage.start_offset,
1797 					  adev->fw_vram_usage.size,
1798 					  AMDGPU_GEM_DOMAIN_VRAM,
1799 					  &adev->fw_vram_usage.reserved_bo,
1800 					  &adev->fw_vram_usage.va);
1801 }
1802 
1803 /*
1804  * Memoy training reservation functions
1805  */
1806 
1807 /**
1808  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1809  *
1810  * @adev: amdgpu_device pointer
1811  *
1812  * free memory training reserved vram if it has been reserved.
1813  */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1814 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1815 {
1816 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1817 
1818 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1819 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1820 	ctx->c2p_bo = NULL;
1821 
1822 	return 0;
1823 }
1824 
amdgpu_ttm_training_get_c2p_offset(u64 vram_size)1825 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1826 {
1827        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1828                vram_size -= SZ_1M;
1829 
1830        return ALIGN(vram_size, SZ_1M);
1831 }
1832 
1833 /**
1834  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1835  *
1836  * @adev: amdgpu_device pointer
1837  *
1838  * create bo vram reservation from memory training.
1839  */
amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device * adev)1840 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1841 {
1842 	int ret;
1843 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1844 
1845 	memset(ctx, 0, sizeof(*ctx));
1846 	if (!adev->fw_vram_usage.mem_train_support) {
1847 		DRM_DEBUG("memory training does not support!\n");
1848 		return 0;
1849 	}
1850 
1851 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1852 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1853 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1854 
1855 	DRM_DEBUG("train_data_size:%"PRIx64",p2c_train_data_offset:%"PRIx64",c2p_train_data_offset:%"PRIx64".\n",
1856 		  ctx->train_data_size,
1857 		  ctx->p2c_train_data_offset,
1858 		  ctx->c2p_train_data_offset);
1859 
1860 	ret = amdgpu_bo_create_kernel_at(adev,
1861 					 ctx->c2p_train_data_offset,
1862 					 ctx->train_data_size,
1863 					 AMDGPU_GEM_DOMAIN_VRAM,
1864 					 &ctx->c2p_bo,
1865 					 NULL);
1866 	if (ret) {
1867 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1868 		amdgpu_ttm_training_reserve_vram_fini(adev);
1869 		return ret;
1870 	}
1871 
1872 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1873 	return 0;
1874 }
1875 
1876 /**
1877  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1878  * gtt/vram related fields.
1879  *
1880  * This initializes all of the memory space pools that the TTM layer
1881  * will need such as the GTT space (system memory mapped to the device),
1882  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1883  * can be mapped per VMID.
1884  */
amdgpu_ttm_init(struct amdgpu_device * adev)1885 int amdgpu_ttm_init(struct amdgpu_device *adev)
1886 {
1887 	uint64_t gtt_size;
1888 	int r;
1889 	u64 vis_vram_limit;
1890 	void *stolen_vga_buf;
1891 
1892 	mutex_init(&adev->mman.gtt_window_lock);
1893 
1894 	/* No others user of address space so set it to 0 */
1895 	r = ttm_bo_device_init(&adev->mman.bdev,
1896 			       &amdgpu_bo_driver,
1897 #ifdef __NetBSD__
1898 			       adev->ddev->bst,
1899 			       adev->ddev->dmat,
1900 #else
1901 			       adev->ddev->anon_inode->i_mapping,
1902 #endif
1903 			       adev->ddev->vma_offset_manager,
1904 			       dma_addressing_limited(adev->dev));
1905 	if (r) {
1906 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1907 		return r;
1908 	}
1909 	adev->mman.initialized = true;
1910 
1911 	/* We opt to avoid OOM on system pages allocations */
1912 	adev->mman.bdev.no_retry = true;
1913 
1914 	/* Initialize VRAM pool with all of VRAM divided into pages */
1915 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1916 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1917 	if (r) {
1918 		DRM_ERROR("Failed initializing VRAM heap.\n");
1919 		return r;
1920 	}
1921 
1922 	/* Reduce size of CPU-visible VRAM if requested */
1923 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1924 	if (amdgpu_vis_vram_limit > 0 &&
1925 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1926 		adev->gmc.visible_vram_size = vis_vram_limit;
1927 
1928 	/* Change the size here instead of the init above so only lpfn is affected */
1929 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1930 #ifdef __NetBSD__
1931 #ifdef _LP64
1932 	if (bus_space_map(adev->gmc.aper_tag, adev->gmc.aper_base,
1933 		adev->gmc.visible_vram_size,
1934 		BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_PREFETCHABLE,
1935 		&adev->mman.aper_base_handle)) {
1936 		return -EIO;
1937 	}
1938 	adev->mman.aper_base_kaddr = bus_space_vaddr(adev->gmc.aper_tag,
1939 	    adev->mman.aper_base_handle);
1940 	KASSERT(adev->mman.aper_base_kaddr != NULL);
1941 #endif	/* _LP64 */
1942 #else	/* __NetBSD__ */
1943 #ifdef CONFIG_64BIT
1944 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1945 						adev->gmc.visible_vram_size);
1946 #endif
1947 #endif
1948 
1949 	/*
1950 	 *The reserved vram for firmware must be pinned to the specified
1951 	 *place on the VRAM, so reserve it early.
1952 	 */
1953 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1954 	if (r) {
1955 		return r;
1956 	}
1957 
1958 	/*
1959 	 *The reserved vram for memory training must be pinned to the specified
1960 	 *place on the VRAM, so reserve it early.
1961 	 */
1962 	r = amdgpu_ttm_training_reserve_vram_init(adev);
1963 	if (r)
1964 		return r;
1965 
1966 	/* allocate memory as required for VGA
1967 	 * This is used for VGA emulation and pre-OS scanout buffers to
1968 	 * avoid display artifacts while transitioning between pre-OS
1969 	 * and driver.  */
1970 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1971 				    AMDGPU_GEM_DOMAIN_VRAM,
1972 				    &adev->stolen_vga_memory,
1973 				    NULL, &stolen_vga_buf);
1974 	if (r)
1975 		return r;
1976 
1977 	/*
1978 	 * reserve one TMR (64K) memory at the top of VRAM which holds
1979 	 * IP Discovery data and is protected by PSP.
1980 	 */
1981 	r = amdgpu_bo_create_kernel_at(adev,
1982 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1983 				       DISCOVERY_TMR_SIZE,
1984 				       AMDGPU_GEM_DOMAIN_VRAM,
1985 				       &adev->discovery_memory,
1986 				       NULL);
1987 	if (r)
1988 		return r;
1989 
1990 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1991 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1992 
1993 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1994 	 * or whatever the user passed on module init */
1995 	if (amdgpu_gtt_size == -1) {
1996 		struct sysinfo si;
1997 
1998 		si_meminfo(&si);
1999 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
2000 			       adev->gmc.mc_vram_size),
2001 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
2002 	}
2003 	else
2004 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2005 
2006 	/* Initialize GTT memory pool */
2007 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
2008 	if (r) {
2009 		DRM_ERROR("Failed initializing GTT heap.\n");
2010 		return r;
2011 	}
2012 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2013 		 (unsigned)(gtt_size / (1024 * 1024)));
2014 
2015 	/* Initialize various on-chip memory pools */
2016 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2017 			   adev->gds.gds_size);
2018 	if (r) {
2019 		DRM_ERROR("Failed initializing GDS heap.\n");
2020 		return r;
2021 	}
2022 
2023 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2024 			   adev->gds.gws_size);
2025 	if (r) {
2026 		DRM_ERROR("Failed initializing gws heap.\n");
2027 		return r;
2028 	}
2029 
2030 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2031 			   adev->gds.oa_size);
2032 	if (r) {
2033 		DRM_ERROR("Failed initializing oa heap.\n");
2034 		return r;
2035 	}
2036 
2037 	/* Register debugfs entries for amdgpu_ttm */
2038 	r = amdgpu_ttm_debugfs_init(adev);
2039 	if (r) {
2040 		DRM_ERROR("Failed to init debugfs\n");
2041 		return r;
2042 	}
2043 	return 0;
2044 }
2045 
2046 /**
2047  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2048  */
amdgpu_ttm_late_init(struct amdgpu_device * adev)2049 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2050 {
2051 	void *stolen_vga_buf;
2052 	/* return the VGA stolen memory (if any) back to VRAM */
2053 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2054 }
2055 
2056 /**
2057  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2058  */
amdgpu_ttm_fini(struct amdgpu_device * adev)2059 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2060 {
2061 	if (!adev->mman.initialized)
2062 		return;
2063 
2064 	amdgpu_ttm_debugfs_fini(adev);
2065 	amdgpu_ttm_training_reserve_vram_fini(adev);
2066 	/* return the IP Discovery TMR memory back to VRAM */
2067 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2068 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2069 
2070 #ifdef __NetBSD__
2071 	if (adev->mman.aper_base_handle) {
2072 		bus_space_unmap(adev->gmc.aper_tag,
2073 		    adev->mman.aper_base_handle, adev->gmc.visible_vram_size);
2074 	}
2075 #else
2076 	if (adev->mman.aper_base_kaddr)
2077 		iounmap(adev->mman.aper_base_kaddr);
2078 #endif
2079 	adev->mman.aper_base_kaddr = NULL;
2080 
2081 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2082 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2083 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2084 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2085 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2086 	ttm_bo_device_release(&adev->mman.bdev);
2087 	adev->mman.initialized = false;
2088 	mutex_destroy(&adev->mman.gtt_window_lock);
2089 	DRM_INFO("amdgpu: ttm finalized\n");
2090 }
2091 
2092 /**
2093  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2094  *
2095  * @adev: amdgpu_device pointer
2096  * @enable: true when we can use buffer functions.
2097  *
2098  * Enable/disable use of buffer functions during suspend/resume. This should
2099  * only be called at bootup or when userspace isn't running.
2100  */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2101 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2102 {
2103 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2104 	uint64_t size;
2105 	int r;
2106 
2107 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2108 	    adev->mman.buffer_funcs_enabled == enable)
2109 		return;
2110 
2111 	if (enable) {
2112 		struct amdgpu_ring *ring;
2113 		struct drm_gpu_scheduler *sched;
2114 
2115 		ring = adev->mman.buffer_funcs_ring;
2116 		sched = &ring->sched;
2117 		r = drm_sched_entity_init(&adev->mman.entity,
2118 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2119 					  1, NULL);
2120 		if (r) {
2121 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2122 				  r);
2123 			return;
2124 		}
2125 	} else {
2126 		drm_sched_entity_destroy(&adev->mman.entity);
2127 		dma_fence_put(man->move);
2128 		man->move = NULL;
2129 	}
2130 
2131 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2132 	if (enable)
2133 		size = adev->gmc.real_vram_size;
2134 	else
2135 		size = adev->gmc.visible_vram_size;
2136 	man->size = size >> PAGE_SHIFT;
2137 	adev->mman.buffer_funcs_enabled = enable;
2138 }
2139 
2140 #ifdef __NetBSD__
2141 
2142 int
amdgpu_mmap_object(struct drm_device * dev,off_t offset,size_t size,vm_prot_t prot,struct uvm_object ** uobjp,voff_t * uoffsetp,struct file * file)2143 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
2144     vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
2145     struct file *file)
2146 {
2147 	struct amdgpu_device *adev = dev->dev_private;
2148 
2149 	KASSERT(0 == (offset & (PAGE_SIZE - 1)));
2150 
2151 	if (__predict_false(adev == NULL))	/* XXX How?? */
2152 		return -EINVAL;
2153 
2154 	return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
2155 	    uobjp, uoffsetp, file);
2156 }
2157 
2158 #else  /* __NetBSD__ */
2159 
amdgpu_mmap(struct file * filp,struct vm_area_struct * vma)2160 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2161 {
2162 	struct drm_file *file_priv = filp->private_data;
2163 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2164 
2165 	if (adev == NULL)
2166 		return -EINVAL;
2167 
2168 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2169 }
2170 
2171 #endif	/* __NetBSD__ */
amdgpu_map_buffer(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,unsigned num_pages,uint64_t offset,unsigned window,struct amdgpu_ring * ring,uint64_t * addr)2172 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2173 			     struct ttm_mem_reg *mem, unsigned num_pages,
2174 			     uint64_t offset, unsigned window,
2175 			     struct amdgpu_ring *ring,
2176 			     uint64_t *addr)
2177 {
2178 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2179 	struct amdgpu_device *adev = ring->adev;
2180 	struct ttm_tt *ttm = bo->ttm;
2181 	struct amdgpu_job *job;
2182 	unsigned num_dw, num_bytes;
2183 	dma_addr_t *dma_address;
2184 	struct dma_fence *fence;
2185 	uint64_t src_addr, dst_addr;
2186 	uint64_t flags;
2187 	int r;
2188 
2189 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2190 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2191 
2192 	*addr = adev->gmc.gart_start;
2193 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2194 		AMDGPU_GPU_PAGE_SIZE;
2195 
2196 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2197 	num_bytes = num_pages * 8;
2198 
2199 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2200 	if (r)
2201 		return r;
2202 
2203 	src_addr = num_dw * 4;
2204 	src_addr += job->ibs[0].gpu_addr;
2205 
2206 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2207 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2208 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2209 				dst_addr, num_bytes);
2210 
2211 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2212 	WARN_ON(job->ibs[0].length_dw > num_dw);
2213 
2214 #ifdef __NetBSD__
2215 	__USE(dma_address);
2216 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2217 	r = amdgpu_gart_map(adev, 0, num_pages, offset, gtt->ttm.dma_address,
2218 	    flags, &job->ibs[0].ptr[num_dw]);
2219 #else
2220 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2221 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2222 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2223 			    &job->ibs[0].ptr[num_dw]);
2224 #endif
2225 	if (r)
2226 		goto error_free;
2227 
2228 	r = amdgpu_job_submit(job, &adev->mman.entity,
2229 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2230 	if (r)
2231 		goto error_free;
2232 
2233 	dma_fence_put(fence);
2234 
2235 	return r;
2236 
2237 error_free:
2238 	amdgpu_job_free(job);
2239 	return r;
2240 }
2241 
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush)2242 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2243 		       uint64_t dst_offset, uint32_t byte_count,
2244 		       struct dma_resv *resv,
2245 		       struct dma_fence **fence, bool direct_submit,
2246 		       bool vm_needs_flush)
2247 {
2248 	struct amdgpu_device *adev = ring->adev;
2249 	struct amdgpu_job *job;
2250 
2251 	uint32_t max_bytes;
2252 	unsigned num_loops, num_dw;
2253 	unsigned i;
2254 	int r;
2255 
2256 	if (direct_submit && !ring->sched.ready) {
2257 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2258 		return -EINVAL;
2259 	}
2260 
2261 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2262 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2263 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2264 
2265 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2266 	if (r)
2267 		return r;
2268 
2269 	if (vm_needs_flush) {
2270 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2271 		job->vm_needs_flush = true;
2272 	}
2273 	if (resv) {
2274 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2275 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2276 				     false);
2277 		if (r) {
2278 			DRM_ERROR("sync failed (%d).\n", r);
2279 			goto error_free;
2280 		}
2281 	}
2282 
2283 	for (i = 0; i < num_loops; i++) {
2284 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2285 
2286 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2287 					dst_offset, cur_size_in_bytes);
2288 
2289 		src_offset += cur_size_in_bytes;
2290 		dst_offset += cur_size_in_bytes;
2291 		byte_count -= cur_size_in_bytes;
2292 	}
2293 
2294 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2295 	WARN_ON(job->ibs[0].length_dw > num_dw);
2296 	if (direct_submit)
2297 		r = amdgpu_job_submit_direct(job, ring, fence);
2298 	else
2299 		r = amdgpu_job_submit(job, &adev->mman.entity,
2300 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2301 	if (r)
2302 		goto error_free;
2303 
2304 	return r;
2305 
2306 error_free:
2307 	amdgpu_job_free(job);
2308 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2309 	return r;
2310 }
2311 
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** fence)2312 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2313 		       uint32_t src_data,
2314 		       struct dma_resv *resv,
2315 		       struct dma_fence **fence)
2316 {
2317 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2318 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2319 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2320 
2321 	struct drm_mm_node *mm_node;
2322 	unsigned long num_pages;
2323 	unsigned int num_loops, num_dw;
2324 
2325 	struct amdgpu_job *job;
2326 	int r;
2327 
2328 	if (!adev->mman.buffer_funcs_enabled) {
2329 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2334 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2335 		if (r)
2336 			return r;
2337 	}
2338 
2339 	num_pages = bo->tbo.num_pages;
2340 	mm_node = bo->tbo.mem.mm_node;
2341 	num_loops = 0;
2342 	while (num_pages) {
2343 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2344 
2345 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2346 		num_pages -= mm_node->size;
2347 		++mm_node;
2348 	}
2349 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2350 
2351 	/* for IB padding */
2352 	num_dw += 64;
2353 
2354 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2355 	if (r)
2356 		return r;
2357 
2358 	if (resv) {
2359 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2360 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2361 		if (r) {
2362 			DRM_ERROR("sync failed (%d).\n", r);
2363 			goto error_free;
2364 		}
2365 	}
2366 
2367 	num_pages = bo->tbo.num_pages;
2368 	mm_node = bo->tbo.mem.mm_node;
2369 
2370 	while (num_pages) {
2371 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2372 		uint64_t dst_addr;
2373 
2374 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2375 		while (byte_count) {
2376 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2377 							   max_bytes);
2378 
2379 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2380 						dst_addr, cur_size_in_bytes);
2381 
2382 			dst_addr += cur_size_in_bytes;
2383 			byte_count -= cur_size_in_bytes;
2384 		}
2385 
2386 		num_pages -= mm_node->size;
2387 		++mm_node;
2388 	}
2389 
2390 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2391 	WARN_ON(job->ibs[0].length_dw > num_dw);
2392 	r = amdgpu_job_submit(job, &adev->mman.entity,
2393 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2394 	if (r)
2395 		goto error_free;
2396 
2397 	return 0;
2398 
2399 error_free:
2400 	amdgpu_job_free(job);
2401 	return r;
2402 }
2403 
2404 #if defined(CONFIG_DEBUG_FS)
2405 
amdgpu_mm_dump_table(struct seq_file * m,void * data)2406 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2407 {
2408 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2409 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2410 	struct drm_device *dev = node->minor->dev;
2411 	struct amdgpu_device *adev = dev->dev_private;
2412 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2413 	struct drm_printer p = drm_seq_file_printer(m);
2414 
2415 	man->func->debug(man, &p);
2416 	return 0;
2417 }
2418 
2419 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2420 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2421 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2422 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2423 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2424 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2425 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2426 #ifdef CONFIG_SWIOTLB
2427 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2428 #endif
2429 };
2430 
2431 /**
2432  * amdgpu_ttm_vram_read - Linear read access to VRAM
2433  *
2434  * Accesses VRAM via MMIO for debugging purposes.
2435  */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2436 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2437 				    size_t size, loff_t *pos)
2438 {
2439 	struct amdgpu_device *adev = file_inode(f)->i_private;
2440 	ssize_t result = 0;
2441 	int r;
2442 
2443 	if (size & 0x3 || *pos & 0x3)
2444 		return -EINVAL;
2445 
2446 	if (*pos >= adev->gmc.mc_vram_size)
2447 		return -ENXIO;
2448 
2449 	while (size) {
2450 		unsigned long flags;
2451 		uint32_t value;
2452 
2453 		if (*pos >= adev->gmc.mc_vram_size)
2454 			return result;
2455 
2456 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2457 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2458 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2459 		value = RREG32_NO_KIQ(mmMM_DATA);
2460 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2461 
2462 		r = put_user(value, (uint32_t *)buf);
2463 		if (r)
2464 			return r;
2465 
2466 		result += 4;
2467 		buf += 4;
2468 		*pos += 4;
2469 		size -= 4;
2470 	}
2471 
2472 	return result;
2473 }
2474 
2475 /**
2476  * amdgpu_ttm_vram_write - Linear write access to VRAM
2477  *
2478  * Accesses VRAM via MMIO for debugging purposes.
2479  */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2480 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2481 				    size_t size, loff_t *pos)
2482 {
2483 	struct amdgpu_device *adev = file_inode(f)->i_private;
2484 	ssize_t result = 0;
2485 	int r;
2486 
2487 	if (size & 0x3 || *pos & 0x3)
2488 		return -EINVAL;
2489 
2490 	if (*pos >= adev->gmc.mc_vram_size)
2491 		return -ENXIO;
2492 
2493 	while (size) {
2494 		unsigned long flags;
2495 		uint32_t value;
2496 
2497 		if (*pos >= adev->gmc.mc_vram_size)
2498 			return result;
2499 
2500 		r = get_user(value, (uint32_t *)buf);
2501 		if (r)
2502 			return r;
2503 
2504 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2505 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2506 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2507 		WREG32_NO_KIQ(mmMM_DATA, value);
2508 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2509 
2510 		result += 4;
2511 		buf += 4;
2512 		*pos += 4;
2513 		size -= 4;
2514 	}
2515 
2516 	return result;
2517 }
2518 
2519 static const struct file_operations amdgpu_ttm_vram_fops = {
2520 	.owner = THIS_MODULE,
2521 	.read = amdgpu_ttm_vram_read,
2522 	.write = amdgpu_ttm_vram_write,
2523 	.llseek = default_llseek,
2524 };
2525 
2526 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2527 
2528 /**
2529  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2530  */
amdgpu_ttm_gtt_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2531 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2532 				   size_t size, loff_t *pos)
2533 {
2534 	struct amdgpu_device *adev = file_inode(f)->i_private;
2535 	ssize_t result = 0;
2536 	int r;
2537 
2538 	while (size) {
2539 		loff_t p = *pos / PAGE_SIZE;
2540 		unsigned off = *pos & ~PAGE_MASK;
2541 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2542 		struct page *page;
2543 		void *ptr;
2544 
2545 		if (p >= adev->gart.num_cpu_pages)
2546 			return result;
2547 
2548 		page = adev->gart.pages[p];
2549 		if (page) {
2550 			ptr = kmap(page);
2551 			ptr += off;
2552 
2553 			r = copy_to_user(buf, ptr, cur_size);
2554 			kunmap(adev->gart.pages[p]);
2555 		} else
2556 			r = clear_user(buf, cur_size);
2557 
2558 		if (r)
2559 			return -EFAULT;
2560 
2561 		result += cur_size;
2562 		buf += cur_size;
2563 		*pos += cur_size;
2564 		size -= cur_size;
2565 	}
2566 
2567 	return result;
2568 }
2569 
2570 static const struct file_operations amdgpu_ttm_gtt_fops = {
2571 	.owner = THIS_MODULE,
2572 	.read = amdgpu_ttm_gtt_read,
2573 	.llseek = default_llseek
2574 };
2575 
2576 #endif
2577 
2578 /**
2579  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2580  *
2581  * This function is used to read memory that has been mapped to the
2582  * GPU and the known addresses are not physical addresses but instead
2583  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2584  */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2585 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2586 				 size_t size, loff_t *pos)
2587 {
2588 	struct amdgpu_device *adev = file_inode(f)->i_private;
2589 	struct iommu_domain *dom;
2590 	ssize_t result = 0;
2591 	int r;
2592 
2593 	/* retrieve the IOMMU domain if any for this device */
2594 	dom = iommu_get_domain_for_dev(adev->dev);
2595 
2596 	while (size) {
2597 		phys_addr_t addr = *pos & PAGE_MASK;
2598 		loff_t off = *pos & ~PAGE_MASK;
2599 		size_t bytes = PAGE_SIZE - off;
2600 		unsigned long pfn;
2601 		struct page *p;
2602 		void *ptr;
2603 
2604 		bytes = bytes < size ? bytes : size;
2605 
2606 		/* Translate the bus address to a physical address.  If
2607 		 * the domain is NULL it means there is no IOMMU active
2608 		 * and the address translation is the identity
2609 		 */
2610 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2611 
2612 		pfn = addr >> PAGE_SHIFT;
2613 		if (!pfn_valid(pfn))
2614 			return -EPERM;
2615 
2616 		p = pfn_to_page(pfn);
2617 		if (p->mapping != adev->mman.bdev.dev_mapping)
2618 			return -EPERM;
2619 
2620 		ptr = kmap(p);
2621 		r = copy_to_user(buf, ptr + off, bytes);
2622 		kunmap(p);
2623 		if (r)
2624 			return -EFAULT;
2625 
2626 		size -= bytes;
2627 		*pos += bytes;
2628 		result += bytes;
2629 	}
2630 
2631 	return result;
2632 }
2633 
2634 /**
2635  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2636  *
2637  * This function is used to write memory that has been mapped to the
2638  * GPU and the known addresses are not physical addresses but instead
2639  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2640  */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2641 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2642 				 size_t size, loff_t *pos)
2643 {
2644 	struct amdgpu_device *adev = file_inode(f)->i_private;
2645 	struct iommu_domain *dom;
2646 	ssize_t result = 0;
2647 	int r;
2648 
2649 	dom = iommu_get_domain_for_dev(adev->dev);
2650 
2651 	while (size) {
2652 		phys_addr_t addr = *pos & PAGE_MASK;
2653 		loff_t off = *pos & ~PAGE_MASK;
2654 		size_t bytes = PAGE_SIZE - off;
2655 		unsigned long pfn;
2656 		struct page *p;
2657 		void *ptr;
2658 
2659 		bytes = bytes < size ? bytes : size;
2660 
2661 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2662 
2663 		pfn = addr >> PAGE_SHIFT;
2664 		if (!pfn_valid(pfn))
2665 			return -EPERM;
2666 
2667 		p = pfn_to_page(pfn);
2668 		if (p->mapping != adev->mman.bdev.dev_mapping)
2669 			return -EPERM;
2670 
2671 		ptr = kmap(p);
2672 		r = copy_from_user(ptr + off, buf, bytes);
2673 		kunmap(p);
2674 		if (r)
2675 			return -EFAULT;
2676 
2677 		size -= bytes;
2678 		*pos += bytes;
2679 		result += bytes;
2680 	}
2681 
2682 	return result;
2683 }
2684 
2685 static const struct file_operations amdgpu_ttm_iomem_fops = {
2686 	.owner = THIS_MODULE,
2687 	.read = amdgpu_iomem_read,
2688 	.write = amdgpu_iomem_write,
2689 	.llseek = default_llseek
2690 };
2691 
2692 static const struct {
2693 	char *name;
2694 	const struct file_operations *fops;
2695 	int domain;
2696 } ttm_debugfs_entries[] = {
2697 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2698 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2699 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2700 #endif
2701 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2702 };
2703 
2704 #endif
2705 
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2706 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2707 {
2708 #if defined(CONFIG_DEBUG_FS)
2709 	unsigned count;
2710 
2711 	struct drm_minor *minor = adev->ddev->primary;
2712 	struct dentry *ent, *root = minor->debugfs_root;
2713 
2714 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2715 		ent = debugfs_create_file(
2716 				ttm_debugfs_entries[count].name,
2717 				S_IFREG | S_IRUGO, root,
2718 				adev,
2719 				ttm_debugfs_entries[count].fops);
2720 		if (IS_ERR(ent))
2721 			return PTR_ERR(ent);
2722 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2723 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2724 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2725 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2726 		adev->mman.debugfs_entries[count] = ent;
2727 	}
2728 
2729 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2730 
2731 #ifdef CONFIG_SWIOTLB
2732 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2733 		--count;
2734 #endif
2735 
2736 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2737 #else
2738 	return 0;
2739 #endif
2740 }
2741 
amdgpu_ttm_debugfs_fini(struct amdgpu_device * adev)2742 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2743 {
2744 #if defined(CONFIG_DEBUG_FS)
2745 	unsigned i;
2746 
2747 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2748 		debugfs_remove(adev->mman.debugfs_entries[i]);
2749 #endif
2750 }
2751