xref: /openbsd/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision f551e2ec)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		placement->num_busy_placement = 0;
106 		return;
107 	}
108 
109 	/* Object isn't an AMDGPU object so ignore */
110 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 		placement->placement = &placements;
112 		placement->busy_placement = &placements;
113 		placement->num_placement = 1;
114 		placement->num_busy_placement = 1;
115 		return;
116 	}
117 
118 	abo = ttm_to_amdgpu_bo(bo);
119 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 	}
124 
125 	switch (bo->resource->mem_type) {
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 	case AMDGPU_PL_DOORBELL:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned int window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned int offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct amdgpu_job *job;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 
201 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 		return -EINVAL;
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 
212 	/*
213 	 * If start begins at an offset inside the page, then adjust the size
214 	 * and addr accordingly
215 	 */
216 	offset = mm_cur->start & ~LINUX_PAGE_MASK;
217 
218 	num_pages = PFN_UP(*size + offset);
219 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220 
221 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222 
223 	*addr = adev->gmc.gart_start;
224 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 		AMDGPU_GPU_PAGE_SIZE;
226 	*addr += offset;
227 
228 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230 
231 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 				     AMDGPU_FENCE_OWNER_UNDEFINED,
233 				     num_dw * 4 + num_bytes,
234 				     AMDGPU_IB_POOL_DELAYED, &job);
235 	if (r)
236 		return r;
237 
238 	src_addr = num_dw * 4;
239 	src_addr += job->ibs[0].gpu_addr;
240 
241 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 				dst_addr, num_bytes, false);
245 
246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 	WARN_ON(job->ibs[0].length_dw > num_dw);
248 
249 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 	if (tmz)
251 		flags |= AMDGPU_PTE_TMZ;
252 
253 	cpu_addr = &job->ibs[0].ptr[num_dw];
254 
255 	if (mem->mem_type == TTM_PL_TT) {
256 		dma_addr_t *dma_addr;
257 
258 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 					flags, cpu_addr);
269 			dma_address += PAGE_SIZE;
270 		}
271 	}
272 
273 	dma_fence_put(amdgpu_job_submit(job));
274 	return 0;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 	struct amdgpu_res_cursor src_mm, dst_mm;
301 	struct dma_fence *fence = NULL;
302 	int r = 0;
303 
304 	if (!adev->mman.buffer_funcs_enabled) {
305 		DRM_ERROR("Trying to move memory with ring turned off.\n");
306 		return -EINVAL;
307 	}
308 
309 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311 
312 	mutex_lock(&adev->mman.gtt_window_lock);
313 	while (src_mm.remaining) {
314 		uint64_t from, to, cur_size;
315 		struct dma_fence *next;
316 
317 		/* Never copy more than 256MiB at once to avoid a timeout */
318 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319 
320 		/* Map src to window 0 and dst to window 1. */
321 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 					  0, ring, tmz, &cur_size, &from);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 					  1, ring, tmz, &cur_size, &to);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 				       resv, &next, false, true, tmz);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /**
412  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413  * @adev: amdgpu device
414  * @res: the resource to check
415  *
416  * Returns: true if the full resource is CPU visible, false otherwise.
417  */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 			    struct ttm_resource *res)
420 {
421 	struct amdgpu_res_cursor cursor;
422 
423 	if (!res)
424 		return false;
425 
426 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428 		return true;
429 
430 	if (res->mem_type != TTM_PL_VRAM)
431 		return false;
432 
433 	amdgpu_res_first(res, 0, res->size, &cursor);
434 	while (cursor.remaining) {
435 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
436 			return false;
437 		amdgpu_res_next(&cursor, cursor.size);
438 	}
439 
440 	return true;
441 }
442 
443 /*
444  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445  *
446  * Called by amdgpu_bo_move()
447  */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 				struct ttm_resource *mem)
450 {
451 	if (!amdgpu_res_cpu_visible(adev, mem))
452 		return false;
453 
454 	/* ttm_resource_ioremap only supports contiguous memory */
455 	if (mem->mem_type == TTM_PL_VRAM &&
456 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 		return false;
458 
459 	return true;
460 }
461 
462 /*
463  * amdgpu_bo_move - Move a buffer object to a new memory location
464  *
465  * Called by ttm_bo_handle_move_mem()
466  */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 			  struct ttm_operation_ctx *ctx,
469 			  struct ttm_resource *new_mem,
470 			  struct ttm_place *hop)
471 {
472 	struct amdgpu_device *adev;
473 	struct amdgpu_bo *abo;
474 	struct ttm_resource *old_mem = bo->resource;
475 	int r;
476 
477 	if (new_mem->mem_type == TTM_PL_TT ||
478 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 		if (r)
481 			return r;
482 	}
483 
484 	abo = ttm_to_amdgpu_bo(bo);
485 	adev = amdgpu_ttm_adev(bo->bdev);
486 
487 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 			 bo->ttm == NULL)) {
489 		amdgpu_bo_move_notify(bo, evict, new_mem);
490 		ttm_bo_move_null(bo, new_mem);
491 		return 0;
492 	}
493 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
494 	    (new_mem->mem_type == TTM_PL_TT ||
495 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
496 		amdgpu_bo_move_notify(bo, evict, new_mem);
497 		ttm_bo_move_null(bo, new_mem);
498 		return 0;
499 	}
500 	if ((old_mem->mem_type == TTM_PL_TT ||
501 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
502 	    new_mem->mem_type == TTM_PL_SYSTEM) {
503 		r = ttm_bo_wait_ctx(bo, ctx);
504 		if (r)
505 			return r;
506 
507 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
508 		amdgpu_bo_move_notify(bo, evict, new_mem);
509 		ttm_resource_free(bo, &bo->resource);
510 		ttm_bo_assign_mem(bo, new_mem);
511 		return 0;
512 	}
513 
514 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
515 	    old_mem->mem_type == AMDGPU_PL_GWS ||
516 	    old_mem->mem_type == AMDGPU_PL_OA ||
517 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
518 	    new_mem->mem_type == AMDGPU_PL_GDS ||
519 	    new_mem->mem_type == AMDGPU_PL_GWS ||
520 	    new_mem->mem_type == AMDGPU_PL_OA ||
521 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
522 		/* Nothing to save here */
523 		amdgpu_bo_move_notify(bo, evict, new_mem);
524 		ttm_bo_move_null(bo, new_mem);
525 		return 0;
526 	}
527 
528 	if (bo->type == ttm_bo_type_device &&
529 	    new_mem->mem_type == TTM_PL_VRAM &&
530 	    old_mem->mem_type != TTM_PL_VRAM) {
531 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
532 		 * accesses the BO after it's moved.
533 		 */
534 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
535 	}
536 
537 	if (adev->mman.buffer_funcs_enabled &&
538 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
539 	      new_mem->mem_type == TTM_PL_VRAM) ||
540 	     (old_mem->mem_type == TTM_PL_VRAM &&
541 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
542 		hop->fpfn = 0;
543 		hop->lpfn = 0;
544 		hop->mem_type = TTM_PL_TT;
545 		hop->flags = TTM_PL_FLAG_TEMPORARY;
546 		return -EMULTIHOP;
547 	}
548 
549 	amdgpu_bo_move_notify(bo, evict, new_mem);
550 	if (adev->mman.buffer_funcs_enabled)
551 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
552 	else
553 		r = -ENODEV;
554 
555 	if (r) {
556 		/* Check that all memory is CPU accessible */
557 		if (!amdgpu_res_copyable(adev, old_mem) ||
558 		    !amdgpu_res_copyable(adev, new_mem)) {
559 			pr_err("Move buffer fallback to memcpy unavailable\n");
560 			return r;
561 		}
562 
563 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
564 		if (r)
565 			return r;
566 	}
567 
568 	/* update statistics after the move */
569 	if (evict)
570 		atomic64_inc(&adev->num_evictions);
571 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
572 	return 0;
573 }
574 
575 /*
576  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
577  *
578  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
579  */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
581 				     struct ttm_resource *mem)
582 {
583 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
584 
585 	switch (mem->mem_type) {
586 	case TTM_PL_SYSTEM:
587 		/* system memory */
588 		return 0;
589 	case TTM_PL_TT:
590 	case AMDGPU_PL_PREEMPT:
591 		break;
592 	case TTM_PL_VRAM:
593 		mem->bus.offset = mem->start << PAGE_SHIFT;
594 
595 		if (adev->mman.aper_base_kaddr &&
596 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
597 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
598 					mem->bus.offset;
599 
600 		mem->bus.offset += adev->gmc.aper_base;
601 		mem->bus.is_iomem = true;
602 		break;
603 	case AMDGPU_PL_DOORBELL:
604 		mem->bus.offset = mem->start << PAGE_SHIFT;
605 		mem->bus.offset += adev->doorbell.base;
606 		mem->bus.is_iomem = true;
607 		mem->bus.caching = ttm_uncached;
608 		break;
609 	default:
610 		return -EINVAL;
611 	}
612 	return 0;
613 }
614 
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616 					   unsigned long page_offset)
617 {
618 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619 	struct amdgpu_res_cursor cursor;
620 
621 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
622 			 &cursor);
623 
624 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
625 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
626 
627 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
628 }
629 
630 /**
631  * amdgpu_ttm_domain_start - Returns GPU start address
632  * @adev: amdgpu device object
633  * @type: type of the memory
634  *
635  * Returns:
636  * GPU start address of a memory domain
637  */
638 
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
640 {
641 	switch (type) {
642 	case TTM_PL_TT:
643 		return adev->gmc.gart_start;
644 	case TTM_PL_VRAM:
645 		return adev->gmc.vram_start;
646 	}
647 
648 	return 0;
649 }
650 
651 /*
652  * TTM backend functions.
653  */
654 struct amdgpu_ttm_tt {
655 	struct ttm_tt	ttm;
656 	struct drm_gem_object	*gobj;
657 	u64			offset;
658 	uint64_t		userptr;
659 	struct task_struct	*usertask;
660 	uint32_t		userflags;
661 	bool			bound;
662 	int32_t			pool_id;
663 };
664 
665 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
666 
667 #ifdef CONFIG_DRM_AMDGPU_USERPTR
668 /*
669  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
670  * memory and start HMM tracking CPU page table update
671  *
672  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
673  * once afterwards to stop HMM tracking
674  */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct vm_page ** pages,struct hmm_range ** range)675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages,
676 				 struct hmm_range **range)
677 {
678 	struct ttm_tt *ttm = bo->tbo.ttm;
679 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
680 	unsigned long start = gtt->userptr;
681 	struct vm_area_struct *vma;
682 	struct mm_struct *mm;
683 	bool readonly;
684 	int r = 0;
685 
686 	/* Make sure get_user_pages_done() can cleanup gracefully */
687 	*range = NULL;
688 
689 	mm = bo->notifier.mm;
690 	if (unlikely(!mm)) {
691 		DRM_DEBUG_DRIVER("BO is not registered?\n");
692 		return -EFAULT;
693 	}
694 
695 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
696 		return -ESRCH;
697 
698 	mmap_read_lock(mm);
699 	vma = vma_lookup(mm, start);
700 	if (unlikely(!vma)) {
701 		r = -EFAULT;
702 		goto out_unlock;
703 	}
704 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705 		vma->vm_file)) {
706 		r = -EPERM;
707 		goto out_unlock;
708 	}
709 
710 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
711 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
712 				       readonly, NULL, pages, range);
713 out_unlock:
714 	mmap_read_unlock(mm);
715 	if (r)
716 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
717 
718 	mmput(mm);
719 
720 	return r;
721 }
722 
723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
724  */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
726 				      struct hmm_range *range)
727 {
728 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
729 
730 	if (gtt && gtt->userptr && range)
731 		amdgpu_hmm_range_get_pages_done(range);
732 }
733 
734 /*
735  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
736  * Check if the pages backing this ttm range have been invalidated
737  *
738  * Returns: true if pages are still valid
739  */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
741 				       struct hmm_range *range)
742 {
743 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
744 
745 	if (!gtt || !gtt->userptr || !range)
746 		return false;
747 
748 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
749 		gtt->userptr, ttm->num_pages);
750 
751 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
752 
753 	return !amdgpu_hmm_range_get_pages_done(range);
754 }
755 #endif
756 
757 /*
758  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
759  *
760  * Called by amdgpu_cs_list_validate(). This creates the page list
761  * that backs user memory and will ultimately be mapped into the device
762  * address space.
763  */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct vm_page ** pages)764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
765 {
766 	unsigned long i;
767 
768 	for (i = 0; i < ttm->num_pages; ++i)
769 		ttm->pages[i] = pages ? pages[i] : NULL;
770 }
771 
772 /*
773  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
774  *
775  * Called by amdgpu_ttm_backend_bind()
776  **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
778 				     struct ttm_tt *ttm)
779 {
780 	STUB();
781 	return -ENOSYS;
782 #ifdef notyet
783 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
784 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
785 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
786 	enum dma_data_direction direction = write ?
787 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
788 	int r;
789 
790 	/* Allocate an SG array and squash pages into it */
791 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
792 				      (u64)ttm->num_pages << PAGE_SHIFT,
793 				      GFP_KERNEL);
794 	if (r)
795 		goto release_sg;
796 
797 	/* Map SG to device */
798 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
799 	if (r)
800 		goto release_sg;
801 
802 	/* convert SG to linear array of pages and dma addresses */
803 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
804 				       ttm->num_pages);
805 
806 	return 0;
807 
808 release_sg:
809 	kfree(ttm->sg);
810 	ttm->sg = NULL;
811 	return r;
812 #endif
813 }
814 
815 /*
816  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
817  */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)818 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
819 					struct ttm_tt *ttm)
820 {
821 	STUB();
822 #ifdef notyet
823 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
824 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
825 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
826 	enum dma_data_direction direction = write ?
827 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
828 
829 	/* double check that we don't free the table twice */
830 	if (!ttm->sg || !ttm->sg->sgl)
831 		return;
832 
833 	/* unmap the pages mapped to the device */
834 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
835 	sg_free_table(ttm->sg);
836 #endif
837 }
838 
839 /*
840  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
841  * MQDn+CtrlStackn where n is the number of XCCs per partition.
842  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
843  * and uses memory type default, UC. The rest of pages_per_xcc are
844  * Ctrl stack and modify their memory type to NC.
845  */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)846 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
847 				struct ttm_tt *ttm, uint64_t flags)
848 {
849 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
850 	uint64_t total_pages = ttm->num_pages;
851 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
852 	uint64_t page_idx, pages_per_xcc;
853 	int i;
854 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
855 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
856 
857 	pages_per_xcc = total_pages;
858 	do_div(pages_per_xcc, num_xcc);
859 
860 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
861 		/* MQD page: use default flags */
862 		amdgpu_gart_bind(adev,
863 				gtt->offset + (page_idx << PAGE_SHIFT),
864 				1, &gtt->ttm.dma_address[page_idx], flags);
865 		/*
866 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
867 		 * the second page of the BO onward.
868 		 */
869 		amdgpu_gart_bind(adev,
870 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
871 				pages_per_xcc - 1,
872 				&gtt->ttm.dma_address[page_idx + 1],
873 				ctrl_flags);
874 	}
875 }
876 
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)877 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
878 				 struct ttm_buffer_object *tbo,
879 				 uint64_t flags)
880 {
881 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
882 	struct ttm_tt *ttm = tbo->ttm;
883 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
884 
885 	if (amdgpu_bo_encrypted(abo))
886 		flags |= AMDGPU_PTE_TMZ;
887 
888 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
889 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
890 	} else {
891 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
892 				 gtt->ttm.dma_address, flags);
893 	}
894 	gtt->bound = true;
895 }
896 
897 /*
898  * amdgpu_ttm_backend_bind - Bind GTT memory
899  *
900  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
901  * This handles binding GTT memory to the device address space.
902  */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)903 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
904 				   struct ttm_tt *ttm,
905 				   struct ttm_resource *bo_mem)
906 {
907 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
908 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
909 	uint64_t flags;
910 	int r;
911 
912 	if (!bo_mem)
913 		return -EINVAL;
914 
915 	if (gtt->bound)
916 		return 0;
917 
918 	if (gtt->userptr) {
919 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
920 		if (r) {
921 			DRM_ERROR("failed to pin userptr\n");
922 			return r;
923 		}
924 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
925 		if (!ttm->sg) {
926 			struct dma_buf_attachment *attach;
927 			struct sg_table *sgt;
928 
929 			attach = gtt->gobj->import_attach;
930 #ifdef notyet
931 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
932 			if (IS_ERR(sgt))
933 				return PTR_ERR(sgt);
934 #else
935 			STUB();
936 			return -ENOSYS;
937 #endif
938 
939 			ttm->sg = sgt;
940 		}
941 
942 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
943 					       ttm->num_pages);
944 	}
945 
946 	if (!ttm->num_pages) {
947 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
948 		     ttm->num_pages, bo_mem, ttm);
949 	}
950 
951 	if (bo_mem->mem_type != TTM_PL_TT ||
952 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
953 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
954 		return 0;
955 	}
956 
957 	/* compute PTE flags relevant to this BO memory */
958 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
959 
960 	/* bind pages into GART page tables */
961 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
962 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
963 			 gtt->ttm.dma_address, flags);
964 	gtt->bound = true;
965 	return 0;
966 }
967 
968 /*
969  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
970  * through AGP or GART aperture.
971  *
972  * If bo is accessible through AGP aperture, then use AGP aperture
973  * to access bo; otherwise allocate logical space in GART aperture
974  * and map bo to GART aperture.
975  */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)976 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
977 {
978 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
979 	struct ttm_operation_ctx ctx = { false, false };
980 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
981 	struct ttm_placement placement;
982 	struct ttm_place placements;
983 	struct ttm_resource *tmp;
984 	uint64_t addr, flags;
985 	int r;
986 
987 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
988 		return 0;
989 
990 	addr = amdgpu_gmc_agp_addr(bo);
991 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
992 		bo->resource->start = addr >> PAGE_SHIFT;
993 		return 0;
994 	}
995 
996 	/* allocate GART space */
997 	placement.num_placement = 1;
998 	placement.placement = &placements;
999 	placement.num_busy_placement = 1;
1000 	placement.busy_placement = &placements;
1001 	placements.fpfn = 0;
1002 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1003 	placements.mem_type = TTM_PL_TT;
1004 	placements.flags = bo->resource->placement;
1005 
1006 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1007 	if (unlikely(r))
1008 		return r;
1009 
1010 	/* compute PTE flags for this buffer object */
1011 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1012 
1013 	/* Bind pages */
1014 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1015 	amdgpu_ttm_gart_bind(adev, bo, flags);
1016 	amdgpu_gart_invalidate_tlb(adev);
1017 	ttm_resource_free(bo, &bo->resource);
1018 	ttm_bo_assign_mem(bo, tmp);
1019 
1020 	return 0;
1021 }
1022 
1023 /*
1024  * amdgpu_ttm_recover_gart - Rebind GTT pages
1025  *
1026  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1027  * rebind GTT pages during a GPU reset.
1028  */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1029 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1030 {
1031 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1032 	uint64_t flags;
1033 
1034 	if (!tbo->ttm)
1035 		return;
1036 
1037 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1038 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1039 }
1040 
1041 /*
1042  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1043  *
1044  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1045  * ttm_tt_destroy().
1046  */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1047 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1048 				      struct ttm_tt *ttm)
1049 {
1050 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1051 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1052 
1053 	/* if the pages have userptr pinning then clear that first */
1054 	if (gtt->userptr) {
1055 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1056 	} else if (ttm->sg && gtt->gobj->import_attach) {
1057 		struct dma_buf_attachment *attach;
1058 
1059 		attach = gtt->gobj->import_attach;
1060 #ifdef notyet
1061 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1062 #else
1063 		STUB();
1064 #endif
1065 		ttm->sg = NULL;
1066 	}
1067 
1068 	if (!gtt->bound)
1069 		return;
1070 
1071 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1072 		return;
1073 
1074 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1075 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1076 	gtt->bound = false;
1077 }
1078 
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1079 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1080 				       struct ttm_tt *ttm)
1081 {
1082 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1083 
1084 #ifdef notyet
1085 	if (gtt->usertask)
1086 		put_task_struct(gtt->usertask);
1087 #endif
1088 
1089 	ttm_tt_fini(&gtt->ttm);
1090 	kfree(gtt);
1091 }
1092 
1093 /**
1094  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1095  *
1096  * @bo: The buffer object to create a GTT ttm_tt object around
1097  * @page_flags: Page flags to be added to the ttm_tt object
1098  *
1099  * Called by ttm_tt_create().
1100  */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1101 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1102 					   uint32_t page_flags)
1103 {
1104 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1105 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1106 	struct amdgpu_ttm_tt *gtt;
1107 	enum ttm_caching caching;
1108 
1109 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1110 	if (!gtt)
1111 		return NULL;
1112 
1113 	gtt->gobj = &bo->base;
1114 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1115 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1116 	else
1117 		gtt->pool_id = abo->xcp_id;
1118 
1119 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1120 		caching = ttm_write_combined;
1121 	else
1122 		caching = ttm_cached;
1123 
1124 	/* allocate space for the uninitialized page entries */
1125 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1126 		kfree(gtt);
1127 		return NULL;
1128 	}
1129 	return &gtt->ttm;
1130 }
1131 
1132 /*
1133  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1134  *
1135  * Map the pages of a ttm_tt object to an address space visible
1136  * to the underlying device.
1137  */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1138 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1139 				  struct ttm_tt *ttm,
1140 				  struct ttm_operation_ctx *ctx)
1141 {
1142 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1143 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1144 	struct ttm_pool *pool;
1145 	pgoff_t i;
1146 	int ret;
1147 
1148 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1149 	if (gtt->userptr) {
1150 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1151 		if (!ttm->sg)
1152 			return -ENOMEM;
1153 		return 0;
1154 	}
1155 
1156 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1157 		return 0;
1158 
1159 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1160 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1161 	else
1162 		pool = &adev->mman.bdev.pool;
1163 	ret = ttm_pool_alloc(pool, ttm, ctx);
1164 	if (ret)
1165 		return ret;
1166 
1167 #ifdef notyet
1168 	for (i = 0; i < ttm->num_pages; ++i)
1169 		ttm->pages[i]->mapping = bdev->dev_mapping;
1170 #endif
1171 
1172 	return 0;
1173 }
1174 
1175 /*
1176  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1177  *
1178  * Unmaps pages of a ttm_tt object from the device address space and
1179  * unpopulates the page array backing it.
1180  */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1181 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1182 				     struct ttm_tt *ttm)
1183 {
1184 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1185 	struct amdgpu_device *adev;
1186 	struct ttm_pool *pool;
1187 	pgoff_t i;
1188 	struct vm_page *page;
1189 
1190 	amdgpu_ttm_backend_unbind(bdev, ttm);
1191 
1192 	if (gtt->userptr) {
1193 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1194 		kfree(ttm->sg);
1195 		ttm->sg = NULL;
1196 		return;
1197 	}
1198 
1199 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1200 		return;
1201 
1202 	for (i = 0; i < ttm->num_pages; ++i) {
1203 		page = ttm->pages[i];
1204 		if (unlikely(page == NULL))
1205 			continue;
1206 		pmap_page_protect(page, PROT_NONE);
1207 	}
1208 
1209 	adev = amdgpu_ttm_adev(bdev);
1210 
1211 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1212 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1213 	else
1214 		pool = &adev->mman.bdev.pool;
1215 
1216 	return ttm_pool_free(pool, ttm);
1217 }
1218 
1219 /**
1220  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1221  * task
1222  *
1223  * @tbo: The ttm_buffer_object that contains the userptr
1224  * @user_addr:  The returned value
1225  */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1226 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1227 			      uint64_t *user_addr)
1228 {
1229 	struct amdgpu_ttm_tt *gtt;
1230 
1231 	if (!tbo->ttm)
1232 		return -EINVAL;
1233 
1234 	gtt = (void *)tbo->ttm;
1235 	*user_addr = gtt->userptr;
1236 	return 0;
1237 }
1238 
1239 /**
1240  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1241  * task
1242  *
1243  * @bo: The ttm_buffer_object to bind this userptr to
1244  * @addr:  The address in the current tasks VM space to use
1245  * @flags: Requirements of userptr object.
1246  *
1247  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1248  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1249  * initialize GPU VM for a KFD process.
1250  */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1251 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1252 			      uint64_t addr, uint32_t flags)
1253 {
1254 	struct amdgpu_ttm_tt *gtt;
1255 
1256 	if (!bo->ttm) {
1257 		/* TODO: We want a separate TTM object type for userptrs */
1258 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1259 		if (bo->ttm == NULL)
1260 			return -ENOMEM;
1261 	}
1262 
1263 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1264 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1265 
1266 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1267 	gtt->userptr = addr;
1268 	gtt->userflags = flags;
1269 
1270 #ifdef notyet
1271 	if (gtt->usertask)
1272 		put_task_struct(gtt->usertask);
1273 	gtt->usertask = current->group_leader;
1274 	get_task_struct(gtt->usertask);
1275 #endif
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1282  */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1283 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1284 {
1285 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1286 
1287 	if (gtt == NULL)
1288 		return NULL;
1289 
1290 	if (gtt->usertask == NULL)
1291 		return NULL;
1292 
1293 #ifdef notyet
1294 	return gtt->usertask->mm;
1295 #else
1296 	STUB();
1297 	return NULL;
1298 #endif
1299 }
1300 
1301 /*
1302  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1303  * address range for the current task.
1304  *
1305  */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1306 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1307 				  unsigned long end, unsigned long *userptr)
1308 {
1309 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1310 	unsigned long size;
1311 
1312 	if (gtt == NULL || !gtt->userptr)
1313 		return false;
1314 
1315 	/* Return false if no part of the ttm_tt object lies within
1316 	 * the range
1317 	 */
1318 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1319 	if (gtt->userptr > end || gtt->userptr + size <= start)
1320 		return false;
1321 
1322 	if (userptr)
1323 		*userptr = gtt->userptr;
1324 	return true;
1325 }
1326 
1327 /*
1328  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1329  */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1330 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1331 {
1332 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333 
1334 	if (gtt == NULL || !gtt->userptr)
1335 		return false;
1336 
1337 	return true;
1338 }
1339 
1340 /*
1341  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1342  */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1343 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1344 {
1345 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1346 
1347 	if (gtt == NULL)
1348 		return false;
1349 
1350 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1351 }
1352 
1353 /**
1354  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1355  *
1356  * @ttm: The ttm_tt object to compute the flags for
1357  * @mem: The memory registry backing this ttm_tt object
1358  *
1359  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1360  */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1361 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1362 {
1363 	uint64_t flags = 0;
1364 
1365 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1366 		flags |= AMDGPU_PTE_VALID;
1367 
1368 	if (mem && (mem->mem_type == TTM_PL_TT ||
1369 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1370 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1371 		flags |= AMDGPU_PTE_SYSTEM;
1372 
1373 		if (ttm->caching == ttm_cached)
1374 			flags |= AMDGPU_PTE_SNOOPED;
1375 	}
1376 
1377 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1378 			mem->bus.caching == ttm_cached)
1379 		flags |= AMDGPU_PTE_SNOOPED;
1380 
1381 	return flags;
1382 }
1383 
1384 /**
1385  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1386  *
1387  * @adev: amdgpu_device pointer
1388  * @ttm: The ttm_tt object to compute the flags for
1389  * @mem: The memory registry backing this ttm_tt object
1390  *
1391  * Figure out the flags to use for a VM PTE (Page Table Entry).
1392  */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1393 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1394 				 struct ttm_resource *mem)
1395 {
1396 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1397 
1398 	flags |= adev->gart.gart_pte_flags;
1399 	flags |= AMDGPU_PTE_READABLE;
1400 
1401 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1402 		flags |= AMDGPU_PTE_WRITEABLE;
1403 
1404 	return flags;
1405 }
1406 
1407 /*
1408  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1409  * object.
1410  *
1411  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1412  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1413  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1414  * used to clean out a memory space.
1415  */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1416 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1417 					    const struct ttm_place *place)
1418 {
1419 	struct dma_resv_iter resv_cursor;
1420 	struct dma_fence *f;
1421 
1422 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1423 		return ttm_bo_eviction_valuable(bo, place);
1424 
1425 	/* Swapout? */
1426 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1427 		return true;
1428 
1429 	if (bo->type == ttm_bo_type_kernel &&
1430 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1431 		return false;
1432 
1433 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1434 	 * If true, then return false as any KFD process needs all its BOs to
1435 	 * be resident to run successfully
1436 	 */
1437 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1438 				DMA_RESV_USAGE_BOOKKEEP, f) {
1439 #ifdef notyet
1440 		if (amdkfd_fence_check_mm(f, current->mm))
1441 			return false;
1442 #endif
1443 	}
1444 
1445 	/* Preemptible BOs don't own system resources managed by the
1446 	 * driver (pages, VRAM, GART space). They point to resources
1447 	 * owned by someone else (e.g. pageable memory in user mode
1448 	 * or a DMABuf). They are used in a preemptible context so we
1449 	 * can guarantee no deadlocks and good QoS in case of MMU
1450 	 * notifiers or DMABuf move notifiers from the resource owner.
1451 	 */
1452 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1453 		return false;
1454 
1455 	if (bo->resource->mem_type == TTM_PL_TT &&
1456 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1457 		return false;
1458 
1459 	return ttm_bo_eviction_valuable(bo, place);
1460 }
1461 
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1462 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1463 				      void *buf, size_t size, bool write)
1464 {
1465 	STUB();
1466 #ifdef notyet
1467 	while (size) {
1468 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1469 		uint64_t bytes = 4 - (pos & 0x3);
1470 		uint32_t shift = (pos & 0x3) * 8;
1471 		uint32_t mask = 0xffffffff << shift;
1472 		uint32_t value = 0;
1473 
1474 		if (size < bytes) {
1475 			mask &= 0xffffffff >> (bytes - size) * 8;
1476 			bytes = size;
1477 		}
1478 
1479 		if (mask != 0xffffffff) {
1480 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1481 			if (write) {
1482 				value &= ~mask;
1483 				value |= (*(uint32_t *)buf << shift) & mask;
1484 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1485 			} else {
1486 				value = (value & mask) >> shift;
1487 				memcpy(buf, &value, bytes);
1488 			}
1489 		} else {
1490 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1491 		}
1492 
1493 		pos += bytes;
1494 		buf += bytes;
1495 		size -= bytes;
1496 	}
1497 #endif
1498 }
1499 
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1500 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1501 					unsigned long offset, void *buf,
1502 					int len, int write)
1503 {
1504 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1505 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1506 	struct amdgpu_res_cursor src_mm;
1507 	struct amdgpu_job *job;
1508 	struct dma_fence *fence;
1509 	uint64_t src_addr, dst_addr;
1510 	unsigned int num_dw;
1511 	int r, idx;
1512 
1513 	if (len != PAGE_SIZE)
1514 		return -EINVAL;
1515 
1516 	if (!adev->mman.sdma_access_ptr)
1517 		return -EACCES;
1518 
1519 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1520 		return -ENODEV;
1521 
1522 	if (write)
1523 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1524 
1525 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1526 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1527 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1528 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1529 				     &job);
1530 	if (r)
1531 		goto out;
1532 
1533 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1534 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1535 		src_mm.start;
1536 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1537 	if (write)
1538 		swap(src_addr, dst_addr);
1539 
1540 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1541 				PAGE_SIZE, false);
1542 
1543 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1544 	WARN_ON(job->ibs[0].length_dw > num_dw);
1545 
1546 	fence = amdgpu_job_submit(job);
1547 
1548 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1549 		r = -ETIMEDOUT;
1550 	dma_fence_put(fence);
1551 
1552 	if (!(r || write))
1553 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1554 out:
1555 	drm_dev_exit(idx);
1556 	return r;
1557 }
1558 
1559 /**
1560  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1561  *
1562  * @bo:  The buffer object to read/write
1563  * @offset:  Offset into buffer object
1564  * @buf:  Secondary buffer to write/read from
1565  * @len: Length in bytes of access
1566  * @write:  true if writing
1567  *
1568  * This is used to access VRAM that backs a buffer object via MMIO
1569  * access for debugging purposes.
1570  */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1571 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1572 				    unsigned long offset, void *buf, int len,
1573 				    int write)
1574 {
1575 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1576 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1577 	struct amdgpu_res_cursor cursor;
1578 	int ret = 0;
1579 
1580 	if (bo->resource->mem_type != TTM_PL_VRAM)
1581 		return -EIO;
1582 
1583 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1584 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1585 		return len;
1586 
1587 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1588 	while (cursor.remaining) {
1589 		size_t count, size = cursor.size;
1590 		loff_t pos = cursor.start;
1591 
1592 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1593 		size -= count;
1594 		if (size) {
1595 			/* using MM to access rest vram and handle un-aligned address */
1596 			pos += count;
1597 			buf += count;
1598 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1599 		}
1600 
1601 		ret += cursor.size;
1602 		buf += cursor.size;
1603 		amdgpu_res_next(&cursor, cursor.size);
1604 	}
1605 
1606 	return ret;
1607 }
1608 
1609 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1610 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1611 {
1612 	amdgpu_bo_move_notify(bo, false, NULL);
1613 }
1614 
1615 static struct ttm_device_funcs amdgpu_bo_driver = {
1616 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1617 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1618 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1619 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1620 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1621 	.evict_flags = &amdgpu_evict_flags,
1622 	.move = &amdgpu_bo_move,
1623 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1624 	.release_notify = &amdgpu_bo_release_notify,
1625 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1626 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1627 	.access_memory = &amdgpu_ttm_access_memory,
1628 };
1629 
1630 /*
1631  * Firmware Reservation functions
1632  */
1633 /**
1634  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1635  *
1636  * @adev: amdgpu_device pointer
1637  *
1638  * free fw reserved vram if it has been reserved.
1639  */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1640 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1641 {
1642 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1643 		NULL, &adev->mman.fw_vram_usage_va);
1644 }
1645 
1646 /*
1647  * Driver Reservation functions
1648  */
1649 /**
1650  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1651  *
1652  * @adev: amdgpu_device pointer
1653  *
1654  * free drv reserved vram if it has been reserved.
1655  */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1656 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1657 {
1658 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1659 						  NULL,
1660 						  &adev->mman.drv_vram_usage_va);
1661 }
1662 
1663 /**
1664  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1665  *
1666  * @adev: amdgpu_device pointer
1667  *
1668  * create bo vram reservation from fw.
1669  */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1670 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1671 {
1672 	uint64_t vram_size = adev->gmc.visible_vram_size;
1673 
1674 	adev->mman.fw_vram_usage_va = NULL;
1675 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1676 
1677 	if (adev->mman.fw_vram_usage_size == 0 ||
1678 	    adev->mman.fw_vram_usage_size > vram_size)
1679 		return 0;
1680 
1681 	return amdgpu_bo_create_kernel_at(adev,
1682 					  adev->mman.fw_vram_usage_start_offset,
1683 					  adev->mman.fw_vram_usage_size,
1684 					  &adev->mman.fw_vram_usage_reserved_bo,
1685 					  &adev->mman.fw_vram_usage_va);
1686 }
1687 
1688 /**
1689  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1690  *
1691  * @adev: amdgpu_device pointer
1692  *
1693  * create bo vram reservation from drv.
1694  */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1695 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1696 {
1697 	u64 vram_size = adev->gmc.visible_vram_size;
1698 
1699 	adev->mman.drv_vram_usage_va = NULL;
1700 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1701 
1702 	if (adev->mman.drv_vram_usage_size == 0 ||
1703 	    adev->mman.drv_vram_usage_size > vram_size)
1704 		return 0;
1705 
1706 	return amdgpu_bo_create_kernel_at(adev,
1707 					  adev->mman.drv_vram_usage_start_offset,
1708 					  adev->mman.drv_vram_usage_size,
1709 					  &adev->mman.drv_vram_usage_reserved_bo,
1710 					  &adev->mman.drv_vram_usage_va);
1711 }
1712 
1713 /*
1714  * Memoy training reservation functions
1715  */
1716 
1717 /**
1718  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1719  *
1720  * @adev: amdgpu_device pointer
1721  *
1722  * free memory training reserved vram if it has been reserved.
1723  */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1724 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1725 {
1726 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1727 
1728 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1729 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1730 	ctx->c2p_bo = NULL;
1731 
1732 	return 0;
1733 }
1734 
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1735 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1736 						uint32_t reserve_size)
1737 {
1738 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1739 
1740 	memset(ctx, 0, sizeof(*ctx));
1741 
1742 	ctx->c2p_train_data_offset =
1743 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1744 	ctx->p2c_train_data_offset =
1745 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1746 	ctx->train_data_size =
1747 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1748 
1749 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1750 			ctx->train_data_size,
1751 			ctx->p2c_train_data_offset,
1752 			ctx->c2p_train_data_offset);
1753 }
1754 
1755 /*
1756  * reserve TMR memory at the top of VRAM which holds
1757  * IP Discovery data and is protected by PSP.
1758  */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1759 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1760 {
1761 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1762 	bool mem_train_support = false;
1763 	uint32_t reserve_size = 0;
1764 	int ret;
1765 
1766 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1767 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1768 			mem_train_support = true;
1769 		else
1770 			DRM_DEBUG("memory training does not support!\n");
1771 	}
1772 
1773 	/*
1774 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1775 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1776 	 *
1777 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1778 	 * discovery data and G6 memory training data respectively
1779 	 */
1780 	if (adev->bios)
1781 		reserve_size =
1782 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1783 
1784 	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1785 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1786 	else if (!reserve_size)
1787 		reserve_size = DISCOVERY_TMR_OFFSET;
1788 
1789 	if (mem_train_support) {
1790 		/* reserve vram for mem train according to TMR location */
1791 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1792 		ret = amdgpu_bo_create_kernel_at(adev,
1793 						 ctx->c2p_train_data_offset,
1794 						 ctx->train_data_size,
1795 						 &ctx->c2p_bo,
1796 						 NULL);
1797 		if (ret) {
1798 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1799 			amdgpu_ttm_training_reserve_vram_fini(adev);
1800 			return ret;
1801 		}
1802 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1803 	}
1804 
1805 	if (!adev->gmc.is_app_apu) {
1806 		ret = amdgpu_bo_create_kernel_at(
1807 			adev, adev->gmc.real_vram_size - reserve_size,
1808 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1809 		if (ret) {
1810 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1811 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1812 					      NULL, NULL);
1813 			return ret;
1814 		}
1815 	} else {
1816 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1817 	}
1818 
1819 	return 0;
1820 }
1821 
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1822 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1823 {
1824 	int i;
1825 
1826 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1827 		return 0;
1828 
1829 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1830 				       sizeof(*adev->mman.ttm_pools),
1831 				       GFP_KERNEL);
1832 	if (!adev->mman.ttm_pools)
1833 		return -ENOMEM;
1834 
1835 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1836 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1837 			      adev->gmc.mem_partitions[i].numa.node,
1838 			      false, false);
1839 	}
1840 	return 0;
1841 }
1842 
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1843 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1844 {
1845 	int i;
1846 
1847 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1848 		return;
1849 
1850 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1851 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1852 
1853 	kfree(adev->mman.ttm_pools);
1854 	adev->mman.ttm_pools = NULL;
1855 }
1856 
1857 /*
1858  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1859  * gtt/vram related fields.
1860  *
1861  * This initializes all of the memory space pools that the TTM layer
1862  * will need such as the GTT space (system memory mapped to the device),
1863  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1864  * can be mapped per VMID.
1865  */
amdgpu_ttm_init(struct amdgpu_device * adev)1866 int amdgpu_ttm_init(struct amdgpu_device *adev)
1867 {
1868 	uint64_t gtt_size;
1869 	int r;
1870 
1871 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
1872 
1873 	/* No others user of address space so set it to 0 */
1874 #ifdef notyet
1875 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1876 			       adev_to_drm(adev)->anon_inode->i_mapping,
1877 			       adev_to_drm(adev)->vma_offset_manager,
1878 			       adev->need_swiotlb,
1879 			       dma_addressing_limited(adev->dev));
1880 #else
1881 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1882 			       /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1883 			       adev_to_drm(adev)->vma_offset_manager,
1884 			       adev->need_swiotlb,
1885 			       dma_addressing_limited(adev->dev));
1886 #endif
1887 	if (r) {
1888 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1889 		return r;
1890 	}
1891 
1892 	r = amdgpu_ttm_pools_init(adev);
1893 	if (r) {
1894 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1895 		return r;
1896 	}
1897 	adev->mman.bdev.iot = adev->iot;
1898 	adev->mman.bdev.memt = adev->memt;
1899 	adev->mman.bdev.dmat = adev->dmat;
1900 	adev->mman.initialized = true;
1901 
1902 	/* Initialize VRAM pool with all of VRAM divided into pages */
1903 	r = amdgpu_vram_mgr_init(adev);
1904 	if (r) {
1905 		DRM_ERROR("Failed initializing VRAM heap.\n");
1906 		return r;
1907 	}
1908 
1909 	/* Change the size here instead of the init above so only lpfn is affected */
1910 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1911 #if defined(CONFIG_64BIT) && defined(__linux__)
1912 #ifdef CONFIG_X86
1913 	if (adev->gmc.xgmi.connected_to_cpu)
1914 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1915 				adev->gmc.visible_vram_size);
1916 
1917 	else if (adev->gmc.is_app_apu)
1918 		DRM_DEBUG_DRIVER(
1919 			"No need to ioremap when real vram size is 0\n");
1920 	else
1921 #endif
1922 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1923 				adev->gmc.visible_vram_size);
1924 #else
1925 	if (bus_space_map(adev->memt, adev->gmc.aper_base,
1926 	    adev->gmc.visible_vram_size,
1927 	    BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1928 	    &adev->mman.aper_bsh)) {
1929 		adev->mman.aper_base_kaddr = NULL;
1930 	} else {
1931 		adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1932 		    adev->mman.aper_bsh);
1933 	}
1934 #endif
1935 
1936 	/*
1937 	 *The reserved vram for firmware must be pinned to the specified
1938 	 *place on the VRAM, so reserve it early.
1939 	 */
1940 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1941 	if (r)
1942 		return r;
1943 
1944 	/*
1945 	 *The reserved vram for driver must be pinned to the specified
1946 	 *place on the VRAM, so reserve it early.
1947 	 */
1948 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1949 	if (r)
1950 		return r;
1951 
1952 	/*
1953 	 * only NAVI10 and onwards ASIC support for IP discovery.
1954 	 * If IP discovery enabled, a block of memory should be
1955 	 * reserved for IP discovey.
1956 	 */
1957 	if (adev->mman.discovery_bin) {
1958 		r = amdgpu_ttm_reserve_tmr(adev);
1959 		if (r)
1960 			return r;
1961 	}
1962 
1963 	/* allocate memory as required for VGA
1964 	 * This is used for VGA emulation and pre-OS scanout buffers to
1965 	 * avoid display artifacts while transitioning between pre-OS
1966 	 * and driver.
1967 	 */
1968 	if (!adev->gmc.is_app_apu) {
1969 		r = amdgpu_bo_create_kernel_at(adev, 0,
1970 					       adev->mman.stolen_vga_size,
1971 					       &adev->mman.stolen_vga_memory,
1972 					       NULL);
1973 		if (r)
1974 			return r;
1975 
1976 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1977 					       adev->mman.stolen_extended_size,
1978 					       &adev->mman.stolen_extended_memory,
1979 					       NULL);
1980 
1981 		if (r)
1982 			return r;
1983 
1984 		r = amdgpu_bo_create_kernel_at(adev,
1985 					       adev->mman.stolen_reserved_offset,
1986 					       adev->mman.stolen_reserved_size,
1987 					       &adev->mman.stolen_reserved_memory,
1988 					       NULL);
1989 		if (r)
1990 			return r;
1991 	} else {
1992 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1993 	}
1994 
1995 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1996 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1997 
1998 	/* Compute GTT size, either based on TTM limit
1999 	 * or whatever the user passed on module init.
2000 	 */
2001 	if (amdgpu_gtt_size == -1)
2002 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
2003 	else
2004 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2005 
2006 	/* Initialize GTT memory pool */
2007 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
2008 	if (r) {
2009 		DRM_ERROR("Failed initializing GTT heap.\n");
2010 		return r;
2011 	}
2012 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2013 		 (unsigned int)(gtt_size / (1024 * 1024)));
2014 
2015 	/* Initiailize doorbell pool on PCI BAR */
2016 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2017 	if (r) {
2018 		DRM_ERROR("Failed initializing doorbell heap.\n");
2019 		return r;
2020 	}
2021 
2022 	/* Create a boorbell page for kernel usages */
2023 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
2024 	if (r) {
2025 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
2026 		return r;
2027 	}
2028 
2029 	/* Initialize preemptible memory pool */
2030 	r = amdgpu_preempt_mgr_init(adev);
2031 	if (r) {
2032 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
2033 		return r;
2034 	}
2035 
2036 	/* Initialize various on-chip memory pools */
2037 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2038 	if (r) {
2039 		DRM_ERROR("Failed initializing GDS heap.\n");
2040 		return r;
2041 	}
2042 
2043 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2044 	if (r) {
2045 		DRM_ERROR("Failed initializing gws heap.\n");
2046 		return r;
2047 	}
2048 
2049 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2050 	if (r) {
2051 		DRM_ERROR("Failed initializing oa heap.\n");
2052 		return r;
2053 	}
2054 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2055 				AMDGPU_GEM_DOMAIN_GTT,
2056 				&adev->mman.sdma_access_bo, NULL,
2057 				&adev->mman.sdma_access_ptr))
2058 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2059 
2060 	return 0;
2061 }
2062 
2063 /*
2064  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2065  */
amdgpu_ttm_fini(struct amdgpu_device * adev)2066 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2067 {
2068 	int idx;
2069 
2070 	if (!adev->mman.initialized)
2071 		return;
2072 
2073 	amdgpu_ttm_pools_fini(adev);
2074 
2075 	amdgpu_ttm_training_reserve_vram_fini(adev);
2076 	/* return the stolen vga memory back to VRAM */
2077 	if (!adev->gmc.is_app_apu) {
2078 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2079 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2080 		/* return the FW reserved memory back to VRAM */
2081 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2082 				      NULL);
2083 		if (adev->mman.stolen_reserved_size)
2084 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2085 					      NULL, NULL);
2086 	}
2087 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2088 					&adev->mman.sdma_access_ptr);
2089 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2090 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2091 
2092 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2093 
2094 #ifdef __linux__
2095 		if (adev->mman.aper_base_kaddr)
2096 			iounmap(adev->mman.aper_base_kaddr);
2097 #else
2098 		if (adev->mman.aper_base_kaddr)
2099 			bus_space_unmap(adev->memt, adev->mman.aper_bsh,
2100 			    adev->gmc.visible_vram_size);
2101 #endif
2102 		adev->mman.aper_base_kaddr = NULL;
2103 
2104 		drm_dev_exit(idx);
2105 	}
2106 
2107 	amdgpu_vram_mgr_fini(adev);
2108 	amdgpu_gtt_mgr_fini(adev);
2109 	amdgpu_preempt_mgr_fini(adev);
2110 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2111 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2112 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2113 	ttm_device_fini(&adev->mman.bdev);
2114 	adev->mman.initialized = false;
2115 	DRM_INFO("amdgpu: ttm finalized\n");
2116 }
2117 
2118 /**
2119  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2120  *
2121  * @adev: amdgpu_device pointer
2122  * @enable: true when we can use buffer functions.
2123  *
2124  * Enable/disable use of buffer functions during suspend/resume. This should
2125  * only be called at bootup or when userspace isn't running.
2126  */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2127 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2128 {
2129 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2130 	uint64_t size;
2131 	int r;
2132 
2133 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2134 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2135 		return;
2136 
2137 	if (enable) {
2138 		struct amdgpu_ring *ring;
2139 		struct drm_gpu_scheduler *sched;
2140 
2141 		ring = adev->mman.buffer_funcs_ring;
2142 		sched = &ring->sched;
2143 		r = drm_sched_entity_init(&adev->mman.high_pr,
2144 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2145 					  1, NULL);
2146 		if (r) {
2147 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2148 				  r);
2149 			return;
2150 		}
2151 
2152 		r = drm_sched_entity_init(&adev->mman.low_pr,
2153 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2154 					  1, NULL);
2155 		if (r) {
2156 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2157 				  r);
2158 			goto error_free_entity;
2159 		}
2160 	} else {
2161 		drm_sched_entity_destroy(&adev->mman.high_pr);
2162 		drm_sched_entity_destroy(&adev->mman.low_pr);
2163 		dma_fence_put(man->move);
2164 		man->move = NULL;
2165 	}
2166 
2167 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2168 	if (enable)
2169 		size = adev->gmc.real_vram_size;
2170 	else
2171 		size = adev->gmc.visible_vram_size;
2172 	man->size = size;
2173 	adev->mman.buffer_funcs_enabled = enable;
2174 
2175 	return;
2176 
2177 error_free_entity:
2178 	drm_sched_entity_destroy(&adev->mman.high_pr);
2179 }
2180 
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2181 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2182 				  bool direct_submit,
2183 				  unsigned int num_dw,
2184 				  struct dma_resv *resv,
2185 				  bool vm_needs_flush,
2186 				  struct amdgpu_job **job,
2187 				  bool delayed)
2188 {
2189 	enum amdgpu_ib_pool_type pool = direct_submit ?
2190 		AMDGPU_IB_POOL_DIRECT :
2191 		AMDGPU_IB_POOL_DELAYED;
2192 	int r;
2193 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2194 						    &adev->mman.high_pr;
2195 	r = amdgpu_job_alloc_with_ib(adev, entity,
2196 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2197 				     num_dw * 4, pool, job);
2198 	if (r)
2199 		return r;
2200 
2201 	if (vm_needs_flush) {
2202 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2203 							adev->gmc.pdb0_bo :
2204 							adev->gart.bo);
2205 		(*job)->vm_needs_flush = true;
2206 	}
2207 	if (!resv)
2208 		return 0;
2209 
2210 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2211 						   DMA_RESV_USAGE_BOOKKEEP);
2212 }
2213 
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)2214 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2215 		       uint64_t dst_offset, uint32_t byte_count,
2216 		       struct dma_resv *resv,
2217 		       struct dma_fence **fence, bool direct_submit,
2218 		       bool vm_needs_flush, bool tmz)
2219 {
2220 	struct amdgpu_device *adev = ring->adev;
2221 	unsigned int num_loops, num_dw;
2222 	struct amdgpu_job *job;
2223 	uint32_t max_bytes;
2224 	unsigned int i;
2225 	int r;
2226 
2227 	if (!direct_submit && !ring->sched.ready) {
2228 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2229 		return -EINVAL;
2230 	}
2231 
2232 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2233 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2234 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2235 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2236 				   resv, vm_needs_flush, &job, false);
2237 	if (r)
2238 		return r;
2239 
2240 	for (i = 0; i < num_loops; i++) {
2241 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2242 
2243 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2244 					dst_offset, cur_size_in_bytes, tmz);
2245 
2246 		src_offset += cur_size_in_bytes;
2247 		dst_offset += cur_size_in_bytes;
2248 		byte_count -= cur_size_in_bytes;
2249 	}
2250 
2251 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2252 	WARN_ON(job->ibs[0].length_dw > num_dw);
2253 	if (direct_submit)
2254 		r = amdgpu_job_submit_direct(job, ring, fence);
2255 	else
2256 		*fence = amdgpu_job_submit(job);
2257 	if (r)
2258 		goto error_free;
2259 
2260 	return r;
2261 
2262 error_free:
2263 	amdgpu_job_free(job);
2264 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2265 	return r;
2266 }
2267 
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2268 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2269 			       uint64_t dst_addr, uint32_t byte_count,
2270 			       struct dma_resv *resv,
2271 			       struct dma_fence **fence,
2272 			       bool vm_needs_flush, bool delayed)
2273 {
2274 	struct amdgpu_device *adev = ring->adev;
2275 	unsigned int num_loops, num_dw;
2276 	struct amdgpu_job *job;
2277 	uint32_t max_bytes;
2278 	unsigned int i;
2279 	int r;
2280 
2281 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2282 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2283 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2284 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2285 				   &job, delayed);
2286 	if (r)
2287 		return r;
2288 
2289 	for (i = 0; i < num_loops; i++) {
2290 		uint32_t cur_size = min(byte_count, max_bytes);
2291 
2292 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2293 					cur_size);
2294 
2295 		dst_addr += cur_size;
2296 		byte_count -= cur_size;
2297 	}
2298 
2299 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2300 	WARN_ON(job->ibs[0].length_dw > num_dw);
2301 	*fence = amdgpu_job_submit(job);
2302 	return 0;
2303 }
2304 
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2305 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2306 			uint32_t src_data,
2307 			struct dma_resv *resv,
2308 			struct dma_fence **f,
2309 			bool delayed)
2310 {
2311 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2312 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2313 	struct dma_fence *fence = NULL;
2314 	struct amdgpu_res_cursor dst;
2315 	int r;
2316 
2317 	if (!adev->mman.buffer_funcs_enabled) {
2318 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2319 		return -EINVAL;
2320 	}
2321 
2322 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2323 
2324 	mutex_lock(&adev->mman.gtt_window_lock);
2325 	while (dst.remaining) {
2326 		struct dma_fence *next;
2327 		uint64_t cur_size, to;
2328 
2329 		/* Never fill more than 256MiB at once to avoid timeouts */
2330 		cur_size = min(dst.size, 256ULL << 20);
2331 
2332 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2333 					  1, ring, false, &cur_size, &to);
2334 		if (r)
2335 			goto error;
2336 
2337 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2338 					&next, true, delayed);
2339 		if (r)
2340 			goto error;
2341 
2342 		dma_fence_put(fence);
2343 		fence = next;
2344 
2345 		amdgpu_res_next(&dst, cur_size);
2346 	}
2347 error:
2348 	mutex_unlock(&adev->mman.gtt_window_lock);
2349 	if (f)
2350 		*f = dma_fence_get(fence);
2351 	dma_fence_put(fence);
2352 	return r;
2353 }
2354 
2355 /**
2356  * amdgpu_ttm_evict_resources - evict memory buffers
2357  * @adev: amdgpu device object
2358  * @mem_type: evicted BO's memory type
2359  *
2360  * Evicts all @mem_type buffers on the lru list of the memory type.
2361  *
2362  * Returns:
2363  * 0 for success or a negative error code on failure.
2364  */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2365 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2366 {
2367 	struct ttm_resource_manager *man;
2368 
2369 	switch (mem_type) {
2370 	case TTM_PL_VRAM:
2371 	case TTM_PL_TT:
2372 	case AMDGPU_PL_GWS:
2373 	case AMDGPU_PL_GDS:
2374 	case AMDGPU_PL_OA:
2375 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2376 		break;
2377 	default:
2378 		DRM_ERROR("Trying to evict invalid memory type\n");
2379 		return -EINVAL;
2380 	}
2381 
2382 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2383 }
2384 
2385 #if defined(CONFIG_DEBUG_FS)
2386 
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2387 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2388 {
2389 	struct amdgpu_device *adev = m->private;
2390 
2391 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2392 }
2393 
2394 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2395 
2396 /*
2397  * amdgpu_ttm_vram_read - Linear read access to VRAM
2398  *
2399  * Accesses VRAM via MMIO for debugging purposes.
2400  */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2401 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2402 				    size_t size, loff_t *pos)
2403 {
2404 	struct amdgpu_device *adev = file_inode(f)->i_private;
2405 	ssize_t result = 0;
2406 
2407 	if (size & 0x3 || *pos & 0x3)
2408 		return -EINVAL;
2409 
2410 	if (*pos >= adev->gmc.mc_vram_size)
2411 		return -ENXIO;
2412 
2413 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2414 	while (size) {
2415 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2416 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2417 
2418 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2419 		if (copy_to_user(buf, value, bytes))
2420 			return -EFAULT;
2421 
2422 		result += bytes;
2423 		buf += bytes;
2424 		*pos += bytes;
2425 		size -= bytes;
2426 	}
2427 
2428 	return result;
2429 }
2430 
2431 /*
2432  * amdgpu_ttm_vram_write - Linear write access to VRAM
2433  *
2434  * Accesses VRAM via MMIO for debugging purposes.
2435  */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2436 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2437 				    size_t size, loff_t *pos)
2438 {
2439 	struct amdgpu_device *adev = file_inode(f)->i_private;
2440 	ssize_t result = 0;
2441 	int r;
2442 
2443 	if (size & 0x3 || *pos & 0x3)
2444 		return -EINVAL;
2445 
2446 	if (*pos >= adev->gmc.mc_vram_size)
2447 		return -ENXIO;
2448 
2449 	while (size) {
2450 		uint32_t value;
2451 
2452 		if (*pos >= adev->gmc.mc_vram_size)
2453 			return result;
2454 
2455 		r = get_user(value, (uint32_t *)buf);
2456 		if (r)
2457 			return r;
2458 
2459 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2460 
2461 		result += 4;
2462 		buf += 4;
2463 		*pos += 4;
2464 		size -= 4;
2465 	}
2466 
2467 	return result;
2468 }
2469 
2470 static const struct file_operations amdgpu_ttm_vram_fops = {
2471 	.owner = THIS_MODULE,
2472 	.read = amdgpu_ttm_vram_read,
2473 	.write = amdgpu_ttm_vram_write,
2474 	.llseek = default_llseek,
2475 };
2476 
2477 /*
2478  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2479  *
2480  * This function is used to read memory that has been mapped to the
2481  * GPU and the known addresses are not physical addresses but instead
2482  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2483  */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2484 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2485 				 size_t size, loff_t *pos)
2486 {
2487 	struct amdgpu_device *adev = file_inode(f)->i_private;
2488 	struct iommu_domain *dom;
2489 	ssize_t result = 0;
2490 	int r;
2491 
2492 	/* retrieve the IOMMU domain if any for this device */
2493 	dom = iommu_get_domain_for_dev(adev->dev);
2494 
2495 	while (size) {
2496 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2497 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2498 		size_t bytes = PAGE_SIZE - off;
2499 		unsigned long pfn;
2500 		struct vm_page *p;
2501 		void *ptr;
2502 
2503 		bytes = min(bytes, size);
2504 
2505 		/* Translate the bus address to a physical address.  If
2506 		 * the domain is NULL it means there is no IOMMU active
2507 		 * and the address translation is the identity
2508 		 */
2509 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2510 
2511 		pfn = addr >> PAGE_SHIFT;
2512 		if (!pfn_valid(pfn))
2513 			return -EPERM;
2514 
2515 		p = pfn_to_page(pfn);
2516 #ifdef notyet
2517 		if (p->mapping != adev->mman.bdev.dev_mapping)
2518 			return -EPERM;
2519 #else
2520 		STUB();
2521 #endif
2522 
2523 		ptr = kmap_local_page(p);
2524 		r = copy_to_user(buf, ptr + off, bytes);
2525 		kunmap_local(ptr);
2526 		if (r)
2527 			return -EFAULT;
2528 
2529 		size -= bytes;
2530 		*pos += bytes;
2531 		result += bytes;
2532 	}
2533 
2534 	return result;
2535 }
2536 
2537 /*
2538  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2539  *
2540  * This function is used to write memory that has been mapped to the
2541  * GPU and the known addresses are not physical addresses but instead
2542  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2543  */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2544 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2545 				 size_t size, loff_t *pos)
2546 {
2547 	struct amdgpu_device *adev = file_inode(f)->i_private;
2548 	struct iommu_domain *dom;
2549 	ssize_t result = 0;
2550 	int r;
2551 
2552 	dom = iommu_get_domain_for_dev(adev->dev);
2553 
2554 	while (size) {
2555 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2556 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2557 		size_t bytes = PAGE_SIZE - off;
2558 		unsigned long pfn;
2559 		struct vm_page *p;
2560 		void *ptr;
2561 
2562 		bytes = min(bytes, size);
2563 
2564 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2565 
2566 		pfn = addr >> PAGE_SHIFT;
2567 		if (!pfn_valid(pfn))
2568 			return -EPERM;
2569 
2570 		p = pfn_to_page(pfn);
2571 #ifdef notyet
2572 		if (p->mapping != adev->mman.bdev.dev_mapping)
2573 			return -EPERM;
2574 #else
2575 		STUB();
2576 #endif
2577 
2578 		ptr = kmap_local_page(p);
2579 		r = copy_from_user(ptr + off, buf, bytes);
2580 		kunmap_local(ptr);
2581 		if (r)
2582 			return -EFAULT;
2583 
2584 		size -= bytes;
2585 		*pos += bytes;
2586 		result += bytes;
2587 	}
2588 
2589 	return result;
2590 }
2591 
2592 static const struct file_operations amdgpu_ttm_iomem_fops = {
2593 	.owner = THIS_MODULE,
2594 	.read = amdgpu_iomem_read,
2595 	.write = amdgpu_iomem_write,
2596 	.llseek = default_llseek
2597 };
2598 
2599 #endif
2600 
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2601 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2602 {
2603 #if defined(CONFIG_DEBUG_FS)
2604 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2605 	struct dentry *root = minor->debugfs_root;
2606 
2607 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2608 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2609 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2610 			    &amdgpu_ttm_iomem_fops);
2611 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2612 			    &amdgpu_ttm_page_pool_fops);
2613 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2614 							     TTM_PL_VRAM),
2615 					    root, "amdgpu_vram_mm");
2616 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2617 							     TTM_PL_TT),
2618 					    root, "amdgpu_gtt_mm");
2619 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2620 							     AMDGPU_PL_GDS),
2621 					    root, "amdgpu_gds_mm");
2622 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2623 							     AMDGPU_PL_GWS),
2624 					    root, "amdgpu_gws_mm");
2625 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2626 							     AMDGPU_PL_OA),
2627 					    root, "amdgpu_oa_mm");
2628 
2629 #endif
2630 }
2631