1 /* $OpenBSD: an.c,v 1.80 2024/04/13 23:44:11 jsg Exp $ */
2 /* $NetBSD: an.c,v 1.34 2005/06/20 02:49:18 atatat Exp $ */
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $
35 */
36 /*
37 * Copyright (c) 2004, 2005 David Young. All rights reserved.
38 * Copyright (c) 2004, 2005 OJC Technologies. All rights reserved.
39 * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC. All
40 * rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the author nor the names of any co-contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL David Young AND CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
64 * THE POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
69 *
70 * Written by Bill Paul <wpaul@ctr.columbia.edu>
71 * Electrical Engineering Department
72 * Columbia University, New York City
73 */
74
75 /*
76 * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego
77 * IETF meeting.
78 */
79
80 #include "bpfilter.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/kernel.h>
87 #include <sys/ucred.h>
88 #include <sys/socket.h>
89 #include <sys/timeout.h>
90 #include <sys/device.h>
91 #include <sys/endian.h>
92 #include <sys/tree.h>
93
94 #include <machine/bus.h>
95
96 #include <net/if.h>
97 #include <net/if_llc.h>
98 #include <net/if_media.h>
99
100 #include <netinet/in.h>
101 #include <netinet/if_ether.h>
102
103 #include <net80211/ieee80211_radiotap.h>
104 #include <net80211/ieee80211_var.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <dev/ic/anreg.h>
111 #include <dev/ic/anvar.h>
112
113 struct cfdriver an_cd = {
114 NULL, "an", DV_IFNET
115 };
116
117 int an_reset(struct an_softc *);
118 void an_wait(struct an_softc *);
119 int an_init(struct ifnet *);
120 void an_stop(struct ifnet *, int);
121 void an_start(struct ifnet *);
122 void an_watchdog(struct ifnet *);
123 int an_ioctl(struct ifnet *, u_long, caddr_t);
124 int an_media_change(struct ifnet *);
125 void an_media_status(struct ifnet *, struct ifmediareq *);
126
127 int an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *);
128 int an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *);
129 int an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *);
130 int an_write_wepkey(struct an_softc *, int, struct an_wepkey *,
131 int);
132
133 void an_rxeof(struct an_softc *);
134 void an_txeof(struct an_softc *, u_int16_t);
135 void an_linkstat_intr(struct an_softc *);
136
137 int an_cmd(struct an_softc *, int, int);
138 int an_seek_bap(struct an_softc *, int, int);
139 int an_read_bap(struct an_softc *, int, int, void *, int, int);
140 int an_write_bap(struct an_softc *, int, int, void *, int);
141 int an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int);
142 int an_read_rid(struct an_softc *, int, void *, int *);
143 int an_write_rid(struct an_softc *, int, void *, int);
144
145 int an_alloc_nicmem(struct an_softc *, int, int *);
146
147 int an_newstate(struct ieee80211com *, enum ieee80211_state, int);
148
149 #ifdef AN_DEBUG
150 int an_debug = 0;
151
152 #define DPRINTF(X) if (an_debug) printf X
153 #define DPRINTF2(X) if (an_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #if BYTE_ORDER == BIG_ENDIAN
160 static __inline void
an_swap16(u_int16_t * p,int cnt)161 an_swap16(u_int16_t *p, int cnt)
162 {
163 for (; cnt--; p++)
164 *p = swap16(*p);
165 }
166 #define an_switch32(val) (val >> 16 | (val & 0xFFFF) << 16)
167 #else
168 #define an_swap16(p, cnt)
169 #define an_switch32(val) val
170 #endif
171
172 int
an_attach(struct an_softc * sc)173 an_attach(struct an_softc *sc)
174 {
175 struct ieee80211com *ic = &sc->sc_ic;
176 struct ifnet *ifp = &ic->ic_if;
177 int i;
178 struct an_rid_wepkey *akey;
179 int buflen, kid, rid;
180 int chan, chan_min, chan_max;
181
182 sc->sc_invalid = 0;
183
184 /* disable interrupts */
185 CSR_WRITE_2(sc, AN_INT_EN, 0);
186 CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff);
187
188 // an_wait(sc);
189 if (an_reset(sc) != 0) {
190 sc->sc_invalid = 1;
191 return 1;
192 }
193
194 /* Load factory config */
195 if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) {
196 printf("%s: failed to load config data\n",
197 sc->sc_dev.dv_xname);
198 return (EIO);
199 }
200
201 /* Read the current configuration */
202 buflen = sizeof(sc->sc_config);
203 if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) {
204 printf("%s: read config failed\n", sc->sc_dev.dv_xname);
205 return(EIO);
206 }
207
208 an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
209
210 /* Read the card capabilities */
211 buflen = sizeof(sc->sc_caps);
212 if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) {
213 printf("%s: read caps failed\n", sc->sc_dev.dv_xname);
214 return(EIO);
215 }
216
217 an_swap16((u_int16_t *)&sc->sc_caps.an_oemaddr, 3);
218 an_swap16((u_int16_t *)&sc->sc_caps.an_rates, 4);
219
220 /* Read WEP settings from persistent memory */
221 akey = &sc->sc_buf.sc_wepkey;
222 buflen = sizeof(struct an_rid_wepkey);
223 rid = AN_RID_WEP_VOLATILE; /* first persistent key */
224 while (an_read_rid(sc, rid, akey, &buflen) == 0) {
225 an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
226 an_swap16((u_int16_t *)&akey->an_key, 8);
227 kid = akey->an_key_index;
228 DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x "
229 "mac[0]=%02x keylen=%d\n",
230 rid, buflen, sizeof(*akey), kid,
231 akey->an_mac_addr[0], akey->an_key_len));
232 if (kid == 0xffff) {
233 sc->sc_tx_perskey = akey->an_mac_addr[0];
234 sc->sc_tx_key = -1;
235 break;
236 }
237 if (kid >= IEEE80211_WEP_NKID)
238 break;
239 sc->sc_perskeylen[kid] = akey->an_key_len;
240 sc->sc_wepkeys[kid].an_wep_keylen = -1;
241 rid = AN_RID_WEP_PERSISTENT; /* for next key */
242 buflen = sizeof(struct an_rid_wepkey);
243 }
244
245 IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
246 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
247
248 printf("%s: Firmware %x.%02x.%02x, Radio: ", ifp->if_xname,
249 sc->sc_caps.an_fwrev >> 8,
250 sc->sc_caps.an_fwrev & 0xff,
251 sc->sc_caps.an_fwsubrev);
252
253 if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_FH)
254 printf("802.11 FH");
255 else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_DS)
256 printf("802.11 DS");
257 else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_LM2000_DS)
258 printf("LM2000 DS");
259 else
260 printf("unknown (%x)", sc->sc_config.an_radiotype);
261
262 printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
263
264 ifp->if_softc = sc;
265 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
266 ifp->if_ioctl = an_ioctl;
267 ifp->if_start = an_start;
268 ifp->if_watchdog = an_watchdog;
269
270 ic->ic_phytype = IEEE80211_T_DS;
271 ic->ic_opmode = IEEE80211_M_STA;
272 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_MONITOR;
273 #ifndef IEEE80211_STA_ONLY
274 ic->ic_caps |= IEEE80211_C_IBSS;
275 #endif
276 ic->ic_state = IEEE80211_S_INIT;
277 IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
278
279 switch (sc->sc_caps.an_regdomain) {
280 default:
281 case AN_REGDOMAIN_USA:
282 case AN_REGDOMAIN_CANADA:
283 chan_min = 1; chan_max = 11; break;
284 case AN_REGDOMAIN_EUROPE:
285 case AN_REGDOMAIN_AUSTRALIA:
286 chan_min = 1; chan_max = 13; break;
287 case AN_REGDOMAIN_JAPAN:
288 chan_min = 14; chan_max = 14; break;
289 case AN_REGDOMAIN_SPAIN:
290 chan_min = 10; chan_max = 11; break;
291 case AN_REGDOMAIN_FRANCE:
292 chan_min = 10; chan_max = 13; break;
293 case AN_REGDOMAIN_JAPANWIDE:
294 chan_min = 1; chan_max = 14; break;
295 }
296
297 for (chan = chan_min; chan <= chan_max; chan++) {
298 ic->ic_channels[chan].ic_freq =
299 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
300 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
301 }
302 ic->ic_ibss_chan = &ic->ic_channels[chan_min];
303
304 /* Find supported rate */
305 for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) {
306 if (sc->sc_caps.an_rates[i] == 0)
307 continue;
308 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
309 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] =
310 sc->sc_caps.an_rates[i];
311 }
312
313 /*
314 * Call MI attach routine.
315 */
316 if_attach(ifp);
317 ieee80211_ifattach(ifp);
318
319 sc->sc_newstate = ic->ic_newstate;
320 ic->ic_newstate = an_newstate;
321
322 ieee80211_media_init(ifp, an_media_change, an_media_status);
323
324 #if NBPFILTER > 0
325 bzero(&sc->sc_rxtapu, sizeof(sc->sc_rxtapu));
326 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
327 sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT;
328
329 bzero(&sc->sc_txtapu, sizeof(sc->sc_txtapu));
330 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
331 sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT;
332
333 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
334 sizeof(struct ieee80211_frame) + 64);
335 #endif
336
337 sc->sc_attached = 1;
338
339 return(0);
340 }
341
342 void
an_rxeof(struct an_softc * sc)343 an_rxeof(struct an_softc *sc)
344 {
345 struct ieee80211com *ic = &sc->sc_ic;
346 struct ifnet *ifp = &ic->ic_if;
347 struct ieee80211_frame *wh;
348 struct ieee80211_rxinfo rxi;
349 struct ieee80211_node *ni;
350 struct an_rxframe frmhdr;
351 struct mbuf *m;
352 u_int16_t status;
353 int fid, gaplen, len, off;
354 uint8_t *gap;
355
356 fid = CSR_READ_2(sc, AN_RX_FID);
357
358 /* First read in the frame header */
359 if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr), sizeof(frmhdr)) != 0) {
360 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
361 ifp->if_ierrors++;
362 DPRINTF(("an_rxeof: read fid %x failed\n", fid));
363 return;
364 }
365 an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
366
367 status = frmhdr.an_rx_status;
368 if ((status & AN_STAT_ERRSTAT) != 0 &&
369 ic->ic_opmode != IEEE80211_M_MONITOR) {
370 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
371 ifp->if_ierrors++;
372 DPRINTF(("an_rxeof: fid %x status %x\n", fid, status));
373 return;
374 }
375
376 /* the payload length field includes a 16-bit "mystery field" */
377 len = frmhdr.an_rx_payload_len - sizeof(uint16_t);
378 off = ALIGN(sizeof(struct ieee80211_frame));
379
380 if (off + len > MCLBYTES) {
381 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
382 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
383 ifp->if_ierrors++;
384 DPRINTF(("an_rxeof: oversized packet %d\n", len));
385 return;
386 }
387 len = 0;
388 }
389
390 MGETHDR(m, M_DONTWAIT, MT_DATA);
391 if (m == NULL) {
392 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
393 ifp->if_ierrors++;
394 DPRINTF(("an_rxeof: MGET failed\n"));
395 return;
396 }
397 if (off + len + AN_GAPLEN_MAX > MHLEN) {
398 MCLGET(m, M_DONTWAIT);
399 if ((m->m_flags & M_EXT) == 0) {
400 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
401 m_freem(m);
402 ifp->if_ierrors++;
403 DPRINTF(("an_rxeof: MCLGET failed\n"));
404 return;
405 }
406 }
407 m->m_data += off - sizeof(struct ieee80211_frame);
408
409 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
410 gaplen = frmhdr.an_gaplen;
411 if (gaplen > AN_GAPLEN_MAX) {
412 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
413 m_freem(m);
414 ifp->if_ierrors++;
415 DPRINTF(("%s: gap too long\n", __func__));
416 return;
417 }
418 /*
419 * We don't need the 16-bit mystery field (payload length?),
420 * so read it into the region reserved for the 802.11 header.
421 *
422 * When Cisco Aironet 350 cards w/ firmware version 5 or
423 * greater operate with certain Cisco 350 APs,
424 * the "gap" is filled with the SNAP header. Read
425 * it in after the 802.11 header.
426 */
427 gap = m->m_data + sizeof(struct ieee80211_frame) -
428 sizeof(uint16_t);
429 an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t),
430 gaplen + sizeof(u_int16_t));
431 } else
432 gaplen = 0;
433
434 an_read_bap(sc, fid, -1,
435 m->m_data + sizeof(struct ieee80211_frame) + gaplen, len, len);
436 an_swap16((u_int16_t *)(m->m_data + sizeof(struct ieee80211_frame) + gaplen), (len+1)/2);
437 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen +
438 len;
439
440 memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame));
441 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
442
443 #if NBPFILTER > 0
444 if (sc->sc_drvbpf) {
445 struct mbuf mb;
446 struct an_rx_radiotap_header *tap = &sc->sc_rxtap;
447
448 tap->ar_rate = frmhdr.an_rx_rate;
449 tap->ar_antsignal = frmhdr.an_rx_signal_strength;
450 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
451 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
452
453
454 mb.m_data = (caddr_t)tap;
455 mb.m_len = sizeof(sc->sc_rxtapu);
456 mb.m_next = m;
457 mb.m_nextpkt = NULL;
458 mb.m_type = 0;
459 mb.m_flags = 0;
460 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
461 }
462 #endif /* NBPFILTER > 0 */
463
464 wh = mtod(m, struct ieee80211_frame *);
465 memset(&rxi, 0, sizeof(rxi));
466 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
467 /*
468 * WEP is decrypted by hardware. Clear WEP bit
469 * header for ieee80211_input().
470 */
471 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
472
473 rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
474 }
475
476 ni = ieee80211_find_rxnode(ic, wh);
477 rxi.rxi_rssi = frmhdr.an_rx_signal_strength;
478 rxi.rxi_tstamp = an_switch32(frmhdr.an_rx_time);
479 ieee80211_input(ifp, m, ni, &rxi);
480 ieee80211_release_node(ic, ni);
481 }
482
483 void
an_txeof(struct an_softc * sc,u_int16_t status)484 an_txeof(struct an_softc *sc, u_int16_t status)
485 {
486 struct ifnet *ifp = &sc->sc_ic.ic_if;
487 int cur, id;
488
489 sc->sc_tx_timer = 0;
490 ifq_clr_oactive(&ifp->if_snd);
491
492 id = CSR_READ_2(sc, AN_TX_CMP_FID);
493 CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC));
494
495 if (status & AN_EV_TX_EXC)
496 ifp->if_oerrors++;
497
498 cur = sc->sc_txcur;
499 if (sc->sc_txd[cur].d_fid == id) {
500 sc->sc_txd[cur].d_inuse = 0;
501 DPRINTF2(("an_txeof: sent %x/%d\n", id, cur));
502 AN_INC(cur, AN_TX_RING_CNT);
503 sc->sc_txcur = cur;
504 } else {
505 for (cur = 0; cur < AN_TX_RING_CNT; cur++) {
506 if (id == sc->sc_txd[cur].d_fid) {
507 sc->sc_txd[cur].d_inuse = 0;
508 break;
509 }
510 }
511 if (ifp->if_flags & IFF_DEBUG)
512 printf("%s: tx mismatch: "
513 "expected %x(%d), actual %x(%d)\n",
514 sc->sc_dev.dv_xname,
515 sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur,
516 id, cur);
517 }
518 }
519
520 int
an_intr(void * arg)521 an_intr(void *arg)
522 {
523 struct an_softc *sc = arg;
524 struct ifnet *ifp = &sc->sc_ic.ic_if;
525 int i;
526 u_int16_t status;
527
528 if (!sc->sc_enabled || sc->sc_invalid ||
529 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
530 (ifp->if_flags & IFF_RUNNING) == 0)
531 return 0;
532
533 if ((ifp->if_flags & IFF_UP) == 0) {
534 CSR_WRITE_2(sc, AN_INT_EN, 0);
535 CSR_WRITE_2(sc, AN_EVENT_ACK, ~0);
536 return 1;
537 }
538
539 /* maximum 10 loops per interrupt */
540 for (i = 0; i < 10; i++) {
541 if (!sc->sc_enabled || sc->sc_invalid)
542 return 1;
543 if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) {
544 DPRINTF(("an_intr: magic number changed: %x\n",
545 CSR_READ_2(sc, AN_SW0)));
546 sc->sc_invalid = 1;
547 return 1;
548 }
549 status = CSR_READ_2(sc, AN_EVENT_STAT);
550 CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS));
551 if ((status & AN_INTRS) == 0)
552 break;
553
554 if (status & AN_EV_RX)
555 an_rxeof(sc);
556
557 if (status & (AN_EV_TX | AN_EV_TX_EXC))
558 an_txeof(sc, status);
559
560 if (status & AN_EV_LINKSTAT)
561 an_linkstat_intr(sc);
562
563 if (ifq_is_oactive(&ifp->if_snd) == 0 &&
564 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
565 !ifq_empty(&ifp->if_snd))
566 an_start(ifp);
567 }
568
569 return 1;
570 }
571
572 /* Must be called at proper protection level! */
573 int
an_cmd(struct an_softc * sc,int cmd,int val)574 an_cmd(struct an_softc *sc, int cmd, int val)
575 {
576 int i, stat;
577
578 /* make sure previous command completed */
579 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) {
580 if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
581 printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname,
582 CSR_READ_2(sc, AN_COMMAND));
583 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
584 }
585
586 CSR_WRITE_2(sc, AN_PARAM0, val);
587 CSR_WRITE_2(sc, AN_PARAM1, 0);
588 CSR_WRITE_2(sc, AN_PARAM2, 0);
589 CSR_WRITE_2(sc, AN_COMMAND, cmd);
590
591 if (cmd == AN_CMD_FW_RESTART) {
592 /* XXX: should sleep here */
593 DELAY(100*1000);
594 }
595
596 for (i = 0; i < AN_TIMEOUT; i++) {
597 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
598 break;
599 DELAY(10);
600 }
601
602 stat = CSR_READ_2(sc, AN_STATUS);
603
604 /* clear stuck command busy if necessary */
605 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
606 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
607
608 /* Ack the command */
609 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
610
611 if (i == AN_TIMEOUT) {
612 if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
613 printf("%s: command 0x%x param 0x%x timeout\n",
614 sc->sc_dev.dv_xname, cmd, val);
615 return ETIMEDOUT;
616 }
617 if (stat & AN_STAT_CMD_RESULT) {
618 if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
619 printf("%s: command 0x%x param 0x%x status 0x%x "
620 "resp 0x%x 0x%x 0x%x\n",
621 sc->sc_dev.dv_xname, cmd, val, stat,
622 CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1),
623 CSR_READ_2(sc, AN_RESP2));
624 return EIO;
625 }
626
627 return 0;
628 }
629
630 int
an_reset(struct an_softc * sc)631 an_reset(struct an_softc *sc)
632 {
633
634 DPRINTF(("an_reset\n"));
635
636 if (!sc->sc_enabled)
637 return ENXIO;
638
639 an_cmd(sc, AN_CMD_ENABLE, 0);
640 an_cmd(sc, AN_CMD_FW_RESTART, 0);
641 an_cmd(sc, AN_CMD_NOOP2, 0);
642
643 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) {
644 printf("%s: reset failed\n", sc->sc_dev.dv_xname);
645 return ETIMEDOUT;
646 }
647
648 an_cmd(sc, AN_CMD_DISABLE, 0);
649 return 0;
650 }
651
652 void
an_linkstat_intr(struct an_softc * sc)653 an_linkstat_intr(struct an_softc *sc)
654 {
655 struct ieee80211com *ic = &sc->sc_ic;
656 u_int16_t status;
657
658 status = CSR_READ_2(sc, AN_LINKSTAT);
659 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
660 DPRINTF(("an_linkstat_intr: status 0x%x\n", status));
661
662 if (status == AN_LINKSTAT_ASSOCIATED) {
663 if (ic->ic_state != IEEE80211_S_RUN
664 #ifndef IEEE80211_STA_ONLY
665 || ic->ic_opmode == IEEE80211_M_IBSS
666 #endif
667 )
668 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
669 } else {
670 if (ic->ic_opmode == IEEE80211_M_STA)
671 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
672 }
673 }
674
675 /*
676 * Wait for firmware come up after power enabled.
677 */
678 void
an_wait(struct an_softc * sc)679 an_wait(struct an_softc *sc)
680 {
681 int i;
682
683 CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2);
684 for (i = 0; i < 3000; i += 100) {
685 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
686 break;
687 tsleep_nsec(sc, PWAIT, "anatch", MSEC_TO_NSEC(100));
688 }
689 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
690 }
691
692 int
an_read_bap(struct an_softc * sc,int id,int off,void * buf,int len,int blen)693 an_read_bap(struct an_softc *sc, int id, int off, void *buf, int len, int blen)
694 {
695 int error, cnt, cnt2;
696
697 if (len == 0 || blen == 0)
698 return 0;
699 if (off == -1)
700 off = sc->sc_bap_off;
701 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
702 if ((error = an_seek_bap(sc, id, off)) != 0)
703 return EIO;
704 }
705
706 cnt = (blen + 1) / 2;
707 CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
708 for (cnt2 = (len + 1) / 2; cnt < cnt2; cnt++)
709 (void) CSR_READ_2(sc, AN_DATA0);
710 sc->sc_bap_off += cnt * 2;
711
712 return 0;
713 }
714
715 int
an_write_bap(struct an_softc * sc,int id,int off,void * buf,int buflen)716 an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen)
717 {
718 int error, cnt;
719
720 if (buflen == 0)
721 return 0;
722 if (off == -1)
723 off = sc->sc_bap_off;
724 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
725 if ((error = an_seek_bap(sc, id, off)) != 0)
726 return EIO;
727 }
728
729 cnt = (buflen + 1) / 2;
730 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
731 sc->sc_bap_off += cnt * 2;
732 return 0;
733 }
734
735 int
an_seek_bap(struct an_softc * sc,int id,int off)736 an_seek_bap(struct an_softc *sc, int id, int off)
737 {
738 int i, status;
739
740 CSR_WRITE_2(sc, AN_SEL0, id);
741 CSR_WRITE_2(sc, AN_OFF0, off);
742
743 for (i = 0; ; i++) {
744 status = CSR_READ_2(sc, AN_OFF0);
745 if ((status & AN_OFF_BUSY) == 0)
746 break;
747 if (i == AN_TIMEOUT) {
748 printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n",
749 sc->sc_dev.dv_xname, id, off);
750 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */
751 return ETIMEDOUT;
752 }
753 DELAY(10);
754 }
755 if (status & AN_OFF_ERR) {
756 printf("%s: failed in an_seek_bap to 0x%x/0x%x\n",
757 sc->sc_dev.dv_xname, id, off);
758 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */
759 return EIO;
760 }
761 sc->sc_bap_id = id;
762 sc->sc_bap_off = off;
763 return 0;
764 }
765
766 int
an_mwrite_bap(struct an_softc * sc,int id,int off,struct mbuf * m,int totlen)767 an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen)
768 {
769 int error, len, cnt;
770
771 if (off == -1)
772 off = sc->sc_bap_off;
773 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
774 if ((error = an_seek_bap(sc, id, off)) != 0)
775 return EIO;
776 }
777
778 for (len = 0; m != NULL; m = m->m_next) {
779 if (m->m_len == 0)
780 continue;
781 len = min(m->m_len, totlen);
782
783 if ((mtod(m, u_long) & 0x1) || (len & 0x1)) {
784 m_copydata(m, 0, totlen, &sc->sc_buf.sc_txbuf);
785 cnt = (totlen + 1) / 2;
786 an_swap16((u_int16_t *)&sc->sc_buf.sc_txbuf, cnt);
787 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0,
788 sc->sc_buf.sc_val, cnt);
789 off += cnt * 2;
790 break;
791 }
792 cnt = len / 2;
793 an_swap16((u_int16_t *)mtod(m, u_int16_t *), cnt);
794 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *),
795 cnt);
796 off += len;
797 totlen -= len;
798 }
799 sc->sc_bap_off = off;
800 return 0;
801 }
802
803 int
an_alloc_nicmem(struct an_softc * sc,int len,int * idp)804 an_alloc_nicmem(struct an_softc *sc, int len, int *idp)
805 {
806 int i;
807
808 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
809 printf("%s: failed to allocate %d bytes on NIC\n",
810 sc->sc_dev.dv_xname, len);
811 return(ENOMEM);
812 }
813
814 for (i = 0; i < AN_TIMEOUT; i++) {
815 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
816 break;
817 if (i == AN_TIMEOUT) {
818 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
819 return ETIMEDOUT;
820 }
821 DELAY(10);
822 }
823
824 *idp = CSR_READ_2(sc, AN_ALLOC_FID);
825 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
826 return 0;
827 }
828
829 int
an_read_rid(struct an_softc * sc,int rid,void * buf,int * buflenp)830 an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp)
831 {
832 int error;
833 u_int16_t len;
834
835 /* Tell the NIC to enter record read mode. */
836 error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid);
837 if (error)
838 return error;
839
840 /* length in byte, including length itself */
841 error = an_read_bap(sc, rid, 0, &len, sizeof(len), sizeof(len));
842 if (error)
843 return error;
844
845 len -= 2;
846 return an_read_bap(sc, rid, sizeof(len), buf, len, *buflenp);
847 }
848
849 int
an_write_rid(struct an_softc * sc,int rid,void * buf,int buflen)850 an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen)
851 {
852 int error;
853 u_int16_t len;
854
855 /* length in byte, including length itself */
856 len = buflen + 2;
857
858 error = an_write_bap(sc, rid, 0, &len, sizeof(len));
859 if (error)
860 return error;
861 error = an_write_bap(sc, rid, sizeof(len), buf, buflen);
862 if (error)
863 return error;
864
865 return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid);
866 }
867
868 int
an_ioctl(struct ifnet * ifp,u_long command,caddr_t data)869 an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
870 {
871 struct an_softc *sc = ifp->if_softc;
872 int s, error = 0;
873
874 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
875 return ENXIO;
876
877 s = splnet();
878
879 switch(command) {
880 case SIOCSIFADDR:
881 ifp->if_flags |= IFF_UP;
882 error = an_init(ifp);
883 break;
884 case SIOCSIFFLAGS:
885 if (ifp->if_flags & IFF_UP) {
886 if (sc->sc_enabled) {
887 /*
888 * To avoid rescanning another access point,
889 * do not call an_init() here. Instead, only
890 * reflect promisc mode settings.
891 */
892 error = an_cmd(sc, AN_CMD_SET_MODE,
893 (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0);
894 } else
895 error = an_init(ifp);
896 } else if (sc->sc_enabled)
897 an_stop(ifp, 1);
898 break;
899 case SIOCADDMULTI:
900 case SIOCDELMULTI:
901 /* The Aironet has no multicast filter. */
902 error = 0;
903 break;
904 case SIOCS80211NWKEY:
905 if ((error = suser(curproc)) != 0)
906 break;
907 error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data);
908 break;
909 case SIOCG80211NWKEY:
910 error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data);
911 break;
912 default:
913 error = ieee80211_ioctl(ifp, command, data);
914 break;
915 }
916 if (error == ENETRESET) {
917 if (sc->sc_enabled)
918 error = an_init(ifp);
919 else
920 error = 0;
921 }
922 splx(s);
923 return(error);
924 }
925
926 int
an_init(struct ifnet * ifp)927 an_init(struct ifnet *ifp)
928 {
929 struct an_softc *sc = ifp->if_softc;
930 struct ieee80211com *ic = &sc->sc_ic;
931 int i, error, fid;
932
933 DPRINTF(("an_init: enabled %d\n", sc->sc_enabled));
934 if (!sc->sc_enabled) {
935 if (sc->sc_enable)
936 (*sc->sc_enable)(sc);
937 an_wait(sc);
938 sc->sc_enabled = 1;
939 } else {
940 an_stop(ifp, 0);
941 if ((error = an_reset(sc)) != 0) {
942 printf("%s: failed to reset\n", ifp->if_xname);
943 an_stop(ifp, 1);
944 return error;
945 }
946 }
947 CSR_WRITE_2(sc, AN_SW0, AN_MAGIC);
948
949 /* Allocate the TX buffers */
950 for (i = 0; i < AN_TX_RING_CNT; i++) {
951 if ((error = an_alloc_nicmem(sc, AN_TX_MAX_LEN, &fid)) != 0) {
952 printf("%s: failed to allocate nic memory\n",
953 ifp->if_xname);
954 an_stop(ifp, 1);
955 return error;
956 }
957 DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid));
958 sc->sc_txd[i].d_fid = fid;
959 sc->sc_txd[i].d_inuse = 0;
960 }
961 sc->sc_txcur = sc->sc_txnext = 0;
962
963 IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr);
964 an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
965 sc->sc_config.an_scanmode = AN_SCANMODE_ACTIVE;
966 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN; /*XXX*/
967 if (ic->ic_flags & IEEE80211_F_WEPON) {
968 sc->sc_config.an_authtype |=
969 AN_AUTHTYPE_PRIVACY_IN_USE;
970 }
971 sc->sc_config.an_listen_interval = ic->ic_lintval;
972 sc->sc_config.an_beacon_period = ic->ic_lintval;
973 if (ic->ic_flags & IEEE80211_F_PMGTON)
974 sc->sc_config.an_psave_mode = AN_PSAVE_PSP;
975 else
976 sc->sc_config.an_psave_mode = AN_PSAVE_CAM;
977 sc->sc_config.an_ds_channel =
978 ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
979
980 switch (ic->ic_opmode) {
981 case IEEE80211_M_STA:
982 sc->sc_config.an_opmode =
983 AN_OPMODE_INFRASTRUCTURE_STATION;
984 sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
985 break;
986 #ifndef IEEE80211_STA_ONLY
987 case IEEE80211_M_IBSS:
988 sc->sc_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
989 sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
990 break;
991 #endif
992 case IEEE80211_M_MONITOR:
993 sc->sc_config.an_opmode =
994 AN_OPMODE_INFRASTRUCTURE_STATION;
995 sc->sc_config.an_rxmode =
996 AN_RXMODE_80211_MONITOR_ANYBSS;
997 sc->sc_config.an_authtype = AN_AUTHTYPE_NONE;
998 if (ic->ic_flags & IEEE80211_F_WEPON)
999 sc->sc_config.an_authtype |=
1000 AN_AUTHTYPE_PRIVACY_IN_USE |
1001 AN_AUTHTYPE_ALLOW_UNENCRYPTED;
1002 break;
1003 default:
1004 printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode);
1005 an_stop(ifp, 1);
1006 return EIO;
1007 }
1008 sc->sc_config.an_rxmode |= AN_RXMODE_NO_8023_HEADER;
1009
1010 /* Set the ssid list */
1011 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist));
1012 sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len =
1013 ic->ic_des_esslen;
1014 if (ic->ic_des_esslen)
1015 memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid,
1016 ic->ic_des_essid, ic->ic_des_esslen);
1017 an_swap16((u_int16_t *)&sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 16);
1018 if ((error = an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf,
1019 sizeof(sc->sc_buf.sc_ssidlist)))) {
1020 printf("%s: failed to write ssid list\n", ifp->if_xname);
1021 an_stop(ifp, 1);
1022 return error;
1023 }
1024
1025 /* Set the AP list */
1026 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist));
1027 (void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf,
1028 sizeof(sc->sc_buf.sc_aplist));
1029
1030 /* Set the encapsulation */
1031 for (i = 0; i < AN_ENCAP_NENTS; i++) {
1032 sc->sc_buf.sc_encap.an_entry[i].an_ethertype = 0;
1033 sc->sc_buf.sc_encap.an_entry[i].an_action =
1034 AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024;
1035 }
1036 (void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf,
1037 sizeof(sc->sc_buf.sc_encap));
1038
1039 /* Set the WEP Keys */
1040 if (ic->ic_flags & IEEE80211_F_WEPON)
1041 an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys,
1042 sc->sc_tx_key);
1043
1044 /* Set the configuration */
1045 if ((error = an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config,
1046 sizeof(sc->sc_config)))) {
1047 printf("%s: failed to write config\n", ifp->if_xname);
1048 an_stop(ifp, 1);
1049 return error;
1050 }
1051
1052 /* Enable the MAC */
1053 if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
1054 printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname);
1055 an_stop(ifp, 1);
1056 return ENXIO;
1057 }
1058 if (ifp->if_flags & IFF_PROMISC)
1059 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
1060
1061 ifp->if_flags |= IFF_RUNNING;
1062 ifq_clr_oactive(&ifp->if_snd);
1063 ic->ic_state = IEEE80211_S_INIT;
1064 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1065 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1066
1067 /* enable interrupts */
1068 CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
1069 return 0;
1070 }
1071
1072 void
an_start(struct ifnet * ifp)1073 an_start(struct ifnet *ifp)
1074 {
1075 struct an_softc *sc = (struct an_softc *)ifp->if_softc;
1076 struct ieee80211com *ic = &sc->sc_ic;
1077 struct ieee80211_node *ni;
1078 struct ieee80211_frame *wh;
1079 struct an_txframe frmhdr;
1080 struct mbuf *m;
1081 u_int16_t len;
1082 int cur, fid;
1083
1084 if (!sc->sc_enabled || sc->sc_invalid) {
1085 DPRINTF(("an_start: noop: enabled %d invalid %d\n",
1086 sc->sc_enabled, sc->sc_invalid));
1087 return;
1088 }
1089
1090 memset(&frmhdr, 0, sizeof(frmhdr));
1091 cur = sc->sc_txnext;
1092 for (;;) {
1093 if (ic->ic_state != IEEE80211_S_RUN) {
1094 DPRINTF(("an_start: not running %d\n", ic->ic_state));
1095 break;
1096 }
1097 m = ifq_deq_begin(&ifp->if_snd);
1098 if (m == NULL) {
1099 DPRINTF2(("an_start: no pending mbuf\n"));
1100 break;
1101 }
1102 if (sc->sc_txd[cur].d_inuse) {
1103 ifq_deq_rollback(&ifp->if_snd, m);
1104 DPRINTF2(("an_start: %x/%d busy\n",
1105 sc->sc_txd[cur].d_fid, cur));
1106 ifq_set_oactive(&ifp->if_snd);
1107 break;
1108 }
1109 ifq_deq_commit(&ifp->if_snd, m);
1110 #if NBPFILTER > 0
1111 if (ifp->if_bpf)
1112 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1113 #endif
1114 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
1115 ifp->if_oerrors++;
1116 continue;
1117 }
1118 if (ni != NULL)
1119 ieee80211_release_node(ic, ni);
1120 #if NBPFILTER > 0
1121 if (ic->ic_rawbpf)
1122 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1123 #endif
1124
1125 wh = mtod(m, struct ieee80211_frame *);
1126 if (ic->ic_flags & IEEE80211_F_WEPON)
1127 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1128 m_copydata(m, 0, sizeof(struct ieee80211_frame),
1129 &frmhdr.an_whdr);
1130 an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
1131
1132 /* insert payload length in front of llc/snap */
1133 len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame));
1134 m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len));
1135 if (mtod(m, u_long) & 0x01)
1136 memcpy(mtod(m, caddr_t), &len, sizeof(len));
1137 else
1138 *mtod(m, u_int16_t *) = len;
1139
1140 /*
1141 * XXX Aironet firmware apparently convert the packet
1142 * with longer than 1500 bytes in length into LLC/SNAP.
1143 * If we have 1500 bytes in ethernet payload, it is
1144 * 1508 bytes including LLC/SNAP and will be inserted
1145 * additional LLC/SNAP header with 1501-1508 in its
1146 * ethertype !!
1147 * So we skip LLC/SNAP header and force firmware to
1148 * convert it to LLC/SNAP again.
1149 */
1150 m_adj(m, sizeof(struct llc));
1151
1152 frmhdr.an_tx_ctl = AN_TXCTL_80211;
1153 frmhdr.an_tx_payload_len = m->m_pkthdr.len;
1154 frmhdr.an_gaplen = AN_TXGAP_802_11;
1155
1156 if (ic->ic_fixed_rate != -1)
1157 frmhdr.an_tx_rate =
1158 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1159 ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1160 else
1161 frmhdr.an_tx_rate = 0;
1162
1163 if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) +
1164 m->m_pkthdr.len > AN_TX_MAX_LEN) {
1165 ifp->if_oerrors++;
1166 m_freem(m);
1167 continue;
1168 }
1169
1170 #if NBPFILTER > 0
1171 if (sc->sc_drvbpf) {
1172 struct mbuf mb;
1173 struct an_tx_radiotap_header *tap = &sc->sc_txtap;
1174
1175 tap->at_rate =
1176 ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate];
1177 tap->at_chan_freq =
1178 ic->ic_bss->ni_chan->ic_freq;
1179 tap->at_chan_flags =
1180 ic->ic_bss->ni_chan->ic_flags;
1181
1182 mb.m_data = (caddr_t)tap;
1183 mb.m_len = sizeof(sc->sc_txtapu);
1184 mb.m_next = m;
1185 mb.m_nextpkt = NULL;
1186 mb.m_type = 0;
1187 mb.m_flags = 0;
1188 bpf_mtap(sc->sc_drvbpf, m, BPF_DIRECTION_OUT);
1189 }
1190 #endif
1191
1192 fid = sc->sc_txd[cur].d_fid;
1193 if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1194 ifp->if_oerrors++;
1195 m_freem(m);
1196 continue;
1197 }
1198 /* dummy write to avoid seek. */
1199 an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11);
1200 an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len);
1201 m_freem(m);
1202
1203 DPRINTF2(("an_start: send %d byte via %x/%d\n",
1204 ntohs(len) + sizeof(struct ieee80211_frame),
1205 fid, cur));
1206 sc->sc_txd[cur].d_inuse = 1;
1207 if (an_cmd(sc, AN_CMD_TX, fid)) {
1208 printf("%s: xmit failed\n", ifp->if_xname);
1209 sc->sc_txd[cur].d_inuse = 0;
1210 continue;
1211 }
1212 sc->sc_tx_timer = 5;
1213 ifp->if_timer = 1;
1214 AN_INC(cur, AN_TX_RING_CNT);
1215 sc->sc_txnext = cur;
1216 }
1217 }
1218
1219 void
an_stop(struct ifnet * ifp,int disable)1220 an_stop(struct ifnet *ifp, int disable)
1221 {
1222 struct an_softc *sc = ifp->if_softc;
1223 int i, s;
1224
1225 if (!sc->sc_enabled)
1226 return;
1227
1228 DPRINTF(("an_stop: disable %d\n", disable));
1229
1230 s = splnet();
1231 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1232 if (!sc->sc_invalid) {
1233 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
1234 CSR_WRITE_2(sc, AN_INT_EN, 0);
1235 an_cmd(sc, AN_CMD_DISABLE, 0);
1236
1237 for (i = 0; i < AN_TX_RING_CNT; i++)
1238 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid);
1239 }
1240
1241 sc->sc_tx_timer = 0;
1242 ifp->if_timer = 0;
1243 ifp->if_flags &= ~IFF_RUNNING;
1244 ifq_clr_oactive(&ifp->if_snd);
1245
1246 if (disable) {
1247 if (sc->sc_disable)
1248 (*sc->sc_disable)(sc);
1249 sc->sc_enabled = 0;
1250 }
1251 splx(s);
1252 }
1253
1254 void
an_watchdog(struct ifnet * ifp)1255 an_watchdog(struct ifnet *ifp)
1256 {
1257 struct an_softc *sc = ifp->if_softc;
1258
1259 if (!sc->sc_enabled)
1260 return;
1261
1262 if (sc->sc_tx_timer) {
1263 if (--sc->sc_tx_timer == 0) {
1264 printf("%s: device timeout\n", ifp->if_xname);
1265 ifp->if_oerrors++;
1266 an_init(ifp);
1267 return;
1268 }
1269 ifp->if_timer = 1;
1270 }
1271 ieee80211_watchdog(ifp);
1272 }
1273
1274 /* TBD factor with ieee80211_media_change */
1275 int
an_media_change(struct ifnet * ifp)1276 an_media_change(struct ifnet *ifp)
1277 {
1278 struct an_softc *sc = ifp->if_softc;
1279 struct ieee80211com *ic = &sc->sc_ic;
1280 struct ifmedia_entry *ime;
1281 enum ieee80211_opmode newmode;
1282 int i, rate, error = 0;
1283
1284 ime = ic->ic_media.ifm_cur;
1285 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1286 i = -1;
1287 } else {
1288 struct ieee80211_rateset *rs =
1289 &ic->ic_sup_rates[IEEE80211_MODE_11B];
1290 rate = ieee80211_media2rate(ime->ifm_media);
1291 if (rate == 0)
1292 return EINVAL;
1293 for (i = 0; i < rs->rs_nrates; i++) {
1294 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1295 break;
1296 }
1297 if (i == rs->rs_nrates)
1298 return EINVAL;
1299 }
1300 if (ic->ic_fixed_rate != i) {
1301 ic->ic_fixed_rate = i;
1302 error = ENETRESET;
1303 }
1304
1305 #ifndef IEEE80211_STA_ONLY
1306 if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1307 newmode = IEEE80211_M_IBSS;
1308 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1309 newmode = IEEE80211_M_HOSTAP;
1310 else
1311 #endif
1312 if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1313 newmode = IEEE80211_M_MONITOR;
1314 else
1315 newmode = IEEE80211_M_STA;
1316 if (ic->ic_opmode != newmode) {
1317 ic->ic_opmode = newmode;
1318 error = ENETRESET;
1319 }
1320 if (error == ENETRESET) {
1321 if (sc->sc_enabled)
1322 error = an_init(ifp);
1323 else
1324 error = 0;
1325 }
1326 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1327
1328 return error;
1329 }
1330
1331 void
an_media_status(struct ifnet * ifp,struct ifmediareq * imr)1332 an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1333 {
1334 struct an_softc *sc = ifp->if_softc;
1335 struct ieee80211com *ic = &sc->sc_ic;
1336 int rate, buflen;
1337
1338 if (sc->sc_enabled == 0) {
1339 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1340 imr->ifm_status = 0;
1341 return;
1342 }
1343
1344 imr->ifm_status = IFM_AVALID;
1345 imr->ifm_active = IFM_IEEE80211;
1346 if (ic->ic_state == IEEE80211_S_RUN)
1347 imr->ifm_status |= IFM_ACTIVE;
1348 buflen = sizeof(sc->sc_buf);
1349 if (ic->ic_fixed_rate != -1)
1350 rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1351 ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1352 else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0)
1353 rate = 0;
1354 else
1355 rate = sc->sc_buf.sc_status.an_current_tx_rate;
1356 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1357 switch (ic->ic_opmode) {
1358 case IEEE80211_M_STA:
1359 break;
1360 #ifndef IEEE80211_STA_ONLY
1361 case IEEE80211_M_IBSS:
1362 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1363 break;
1364 case IEEE80211_M_HOSTAP:
1365 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1366 break;
1367 #endif
1368 case IEEE80211_M_MONITOR:
1369 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1370 break;
1371 default:
1372 break;
1373 }
1374 }
1375
1376 int
an_set_nwkey(struct an_softc * sc,struct ieee80211_nwkey * nwkey)1377 an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1378 {
1379 int error;
1380 struct ieee80211com *ic = &sc->sc_ic;
1381 u_int16_t prevauth;
1382
1383 error = 0;
1384 prevauth = sc->sc_config.an_authtype;
1385
1386 switch (nwkey->i_wepon) {
1387 case IEEE80211_NWKEY_OPEN:
1388 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;
1389 ic->ic_flags &= ~IEEE80211_F_WEPON;
1390 break;
1391
1392 case IEEE80211_NWKEY_WEP:
1393 case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST:
1394 error = an_set_nwkey_wep(sc, nwkey);
1395 if (error == 0 || error == ENETRESET) {
1396 sc->sc_config.an_authtype =
1397 AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE;
1398 ic->ic_flags |= IEEE80211_F_WEPON;
1399 }
1400 break;
1401
1402 default:
1403 error = EINVAL;
1404 break;
1405 }
1406 if (error == 0 && prevauth != sc->sc_config.an_authtype)
1407 error = ENETRESET;
1408 return error;
1409 }
1410
1411 int
an_set_nwkey_wep(struct an_softc * sc,struct ieee80211_nwkey * nwkey)1412 an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1413 {
1414 int i, txkey, anysetkey, needreset, error;
1415 struct an_wepkey keys[IEEE80211_WEP_NKID];
1416
1417 error = 0;
1418 memset(keys, 0, sizeof(keys));
1419 anysetkey = needreset = 0;
1420
1421 /* load argument and sanity check */
1422 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1423 keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen;
1424 if (keys[i].an_wep_keylen < 0)
1425 continue;
1426 if (keys[i].an_wep_keylen != 0 &&
1427 keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN)
1428 return EINVAL;
1429 if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key))
1430 return EINVAL;
1431 if ((error = copyin(nwkey->i_key[i].i_keydat,
1432 keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0)
1433 return error;
1434 anysetkey++;
1435 }
1436 txkey = nwkey->i_defkid - 1;
1437 if (txkey >= 0) {
1438 if (txkey >= IEEE80211_WEP_NKID)
1439 return EINVAL;
1440 /* default key must have a valid value */
1441 if (keys[txkey].an_wep_keylen == 0 ||
1442 (keys[txkey].an_wep_keylen < 0 &&
1443 sc->sc_perskeylen[txkey] == 0))
1444 return EINVAL;
1445 anysetkey++;
1446 }
1447 DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) "
1448 "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n",
1449 sc->sc_dev.dv_xname,
1450 ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""),
1451 sc->sc_tx_key,
1452 sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen,
1453 sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen,
1454 sc->sc_tx_perskey,
1455 sc->sc_perskeylen[0], sc->sc_perskeylen[1],
1456 sc->sc_perskeylen[2], sc->sc_perskeylen[3],
1457 txkey,
1458 keys[0].an_wep_keylen, keys[1].an_wep_keylen,
1459 keys[2].an_wep_keylen, keys[3].an_wep_keylen));
1460 if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) {
1461 /* set temporary keys */
1462 sc->sc_tx_key = txkey;
1463 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1464 if (keys[i].an_wep_keylen < 0)
1465 continue;
1466 memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i]));
1467 }
1468 } else {
1469 /* set persist keys */
1470 if (anysetkey) {
1471 /* prepare to write nvram */
1472 if (!sc->sc_enabled) {
1473 if (sc->sc_enable)
1474 (*sc->sc_enable)(sc);
1475 an_wait(sc);
1476 sc->sc_enabled = 1;
1477 error = an_write_wepkey(sc,
1478 AN_RID_WEP_PERSISTENT, keys, txkey);
1479 if (sc->sc_disable)
1480 (*sc->sc_disable)(sc);
1481 sc->sc_enabled = 0;
1482 } else {
1483 an_cmd(sc, AN_CMD_DISABLE, 0);
1484 error = an_write_wepkey(sc,
1485 AN_RID_WEP_PERSISTENT, keys, txkey);
1486 an_cmd(sc, AN_CMD_ENABLE, 0);
1487 }
1488 if (error)
1489 return error;
1490 }
1491 if (txkey >= 0)
1492 sc->sc_tx_perskey = txkey;
1493 if (sc->sc_tx_key >= 0) {
1494 sc->sc_tx_key = -1;
1495 needreset++;
1496 }
1497 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1498 if (sc->sc_wepkeys[i].an_wep_keylen >= 0) {
1499 memset(&sc->sc_wepkeys[i].an_wep_key, 0,
1500 sizeof(sc->sc_wepkeys[i].an_wep_key));
1501 sc->sc_wepkeys[i].an_wep_keylen = -1;
1502 needreset++;
1503 }
1504 if (keys[i].an_wep_keylen >= 0)
1505 sc->sc_perskeylen[i] = keys[i].an_wep_keylen;
1506 }
1507 }
1508 if (needreset) {
1509 /* firmware restart to reload persistent key */
1510 an_reset(sc);
1511 }
1512 if (anysetkey || needreset)
1513 error = ENETRESET;
1514 return error;
1515 }
1516
1517 int
an_get_nwkey(struct an_softc * sc,struct ieee80211_nwkey * nwkey)1518 an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1519 {
1520 int i;
1521
1522 if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP)
1523 nwkey->i_wepon = IEEE80211_NWKEY_EAP;
1524 else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE)
1525 nwkey->i_wepon = IEEE80211_NWKEY_WEP;
1526 else
1527 nwkey->i_wepon = IEEE80211_NWKEY_OPEN;
1528 if (sc->sc_tx_key == -1)
1529 nwkey->i_defkid = sc->sc_tx_perskey + 1;
1530 else
1531 nwkey->i_defkid = sc->sc_tx_key + 1;
1532 if (nwkey->i_key[0].i_keydat == NULL)
1533 return 0;
1534 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1535 if (nwkey->i_key[i].i_keydat == NULL)
1536 continue;
1537 /* do not show any keys to userland */
1538 return EPERM;
1539 }
1540 return 0;
1541 }
1542
1543 int
an_write_wepkey(struct an_softc * sc,int type,struct an_wepkey * keys,int kid)1544 an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid)
1545 {
1546 int i, error;
1547 struct an_rid_wepkey *akey;
1548
1549 error = 0;
1550 akey = &sc->sc_buf.sc_wepkey;
1551 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1552 memset(akey, 0, sizeof(struct an_rid_wepkey));
1553 if (keys[i].an_wep_keylen < 0 ||
1554 keys[i].an_wep_keylen > sizeof(akey->an_key))
1555 continue;
1556 akey->an_key_len = keys[i].an_wep_keylen;
1557 akey->an_key_index = i;
1558 akey->an_mac_addr[0] = 1; /* default mac */
1559 an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1560 memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen);
1561 an_swap16((u_int16_t *)&akey->an_key, 8);
1562 if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0)
1563 return error;
1564 }
1565 if (kid >= 0) {
1566 memset(akey, 0, sizeof(struct an_rid_wepkey));
1567 akey->an_key_index = 0xffff;
1568 akey->an_mac_addr[0] = kid;
1569 an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1570 akey->an_key_len = 0;
1571 memset(akey->an_key, 0, sizeof(akey->an_key));
1572 error = an_write_rid(sc, type, akey, sizeof(*akey));
1573 }
1574 return error;
1575 }
1576
1577 int
an_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)1578 an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1579 {
1580 struct an_softc *sc = ic->ic_softc;
1581 struct ieee80211_node *ni = ic->ic_bss;
1582 enum ieee80211_state ostate;
1583 int buflen;
1584
1585 ostate = ic->ic_state;
1586 DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate],
1587 ieee80211_state_name[nstate]));
1588
1589 switch (nstate) {
1590 case IEEE80211_S_INIT:
1591 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1592 return (*sc->sc_newstate)(ic, nstate, arg);
1593
1594 case IEEE80211_S_RUN:
1595 buflen = sizeof(sc->sc_buf);
1596 an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen);
1597 an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_cur_bssid, 3);
1598 an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_ssid, 16);
1599 IEEE80211_ADDR_COPY(ni->ni_bssid,
1600 sc->sc_buf.sc_status.an_cur_bssid);
1601 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
1602 ni->ni_chan = &ic->ic_channels[
1603 sc->sc_buf.sc_status.an_cur_channel];
1604 ni->ni_esslen = sc->sc_buf.sc_status.an_ssidlen;
1605 if (ni->ni_esslen > IEEE80211_NWID_LEN)
1606 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
1607 memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid,
1608 ni->ni_esslen);
1609 ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B]; /*XXX*/
1610 if (ic->ic_if.if_flags & IFF_DEBUG) {
1611 printf("%s: ", sc->sc_dev.dv_xname);
1612 if (ic->ic_opmode == IEEE80211_M_STA)
1613 printf("associated ");
1614 else
1615 printf("synchronized ");
1616 printf("with %s ssid ", ether_sprintf(ni->ni_bssid));
1617 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
1618 printf(" channel %u start %uMb\n",
1619 sc->sc_buf.sc_status.an_cur_channel,
1620 sc->sc_buf.sc_status.an_current_tx_rate/2);
1621 }
1622 break;
1623
1624 default:
1625 break;
1626 }
1627 ic->ic_state = nstate;
1628 /* skip standard ieee80211 handling */
1629 return 0;
1630 }
1631
1632 int
an_detach(struct an_softc * sc)1633 an_detach(struct an_softc *sc)
1634 {
1635 struct ifnet *ifp = &sc->sc_ic.ic_if;
1636 int s;
1637
1638 if (!sc->sc_attached)
1639 return 0;
1640
1641 s = splnet();
1642 sc->sc_invalid = 1;
1643 an_stop(ifp, 1);
1644 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
1645 ieee80211_ifdetach(ifp);
1646 if_detach(ifp);
1647 splx(s);
1648 return 0;
1649 }
1650
1651