1 /* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements. See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License. You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <ctype.h>
18 #include <stdio.h>
19
20 #include "apu_config.h"
21 #include "apu.h"
22 #include "apr_pools.h"
23 #include "apr_dso.h"
24 #include "apr_strings.h"
25 #include "apr_hash.h"
26 #include "apr_thread_mutex.h"
27 #include "apr_lib.h"
28
29 #if APU_HAVE_CRYPTO
30
31 #include "apu_internal.h"
32 #include "apr_crypto_internal.h"
33 #include "apr_crypto.h"
34 #include "apu_version.h"
35
36 static apr_hash_t *drivers = NULL;
37
38 #define ERROR_SIZE 1024
39
40 #define CLEANUP_CAST (apr_status_t (*)(void*))
41
42 #define APR_TYPEDEF_STRUCT(type, incompletion) \
43 struct type { \
44 incompletion \
45 void *unk[]; \
46 };
47
48 APR_TYPEDEF_STRUCT(apr_crypto_t,
49 apr_pool_t *pool;
50 apr_crypto_driver_t *provider;
51 )
52
53 APR_TYPEDEF_STRUCT(apr_crypto_key_t,
54 apr_pool_t *pool;
55 apr_crypto_driver_t *provider;
56 const apr_crypto_t *f;
57 )
58
59 APR_TYPEDEF_STRUCT(apr_crypto_block_t,
60 apr_pool_t *pool;
61 apr_crypto_driver_t *provider;
62 const apr_crypto_t *f;
63 )
64
65 typedef struct apr_crypto_clear_t {
66 void *buffer;
67 apr_size_t size;
68 } apr_crypto_clear_t;
69
70 #if !APU_DSO_BUILD
71 #define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \
72 { \
73 extern const apr_crypto_driver_t driver_name; \
74 apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \
75 if (driver_name.init) { \
76 rv = driver_name.init(pool, params, result); \
77 } \
78 *driver = &driver_name; \
79 }
80 #endif
81
apr_crypto_term(void * ptr)82 static apr_status_t apr_crypto_term(void *ptr)
83 {
84 /* set drivers to NULL so init can work again */
85 drivers = NULL;
86
87 /* Everything else we need is handled by cleanups registered
88 * when we created mutexes and loaded DSOs
89 */
90 return APR_SUCCESS;
91 }
92
apr_crypto_init(apr_pool_t * pool)93 APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool)
94 {
95 apr_status_t ret = APR_SUCCESS;
96 apr_pool_t *parent;
97
98 if (drivers != NULL) {
99 return APR_SUCCESS;
100 }
101
102 /* Top level pool scope, need process-scope lifetime */
103 for (parent = apr_pool_parent_get(pool);
104 parent && parent != pool;
105 parent = apr_pool_parent_get(pool))
106 pool = parent;
107 #if APU_DSO_BUILD
108 /* deprecate in 2.0 - permit implicit initialization */
109 apu_dso_init(pool);
110 #endif
111 drivers = apr_hash_make(pool);
112
113 apr_pool_cleanup_register(pool, NULL, apr_crypto_term,
114 apr_pool_cleanup_null);
115
116 return ret;
117 }
118
crypto_clear(void * ptr)119 static apr_status_t crypto_clear(void *ptr)
120 {
121 apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr;
122
123 apr_crypto_memzero(clear->buffer, clear->size);
124 clear->buffer = NULL;
125 clear->size = 0;
126
127 return APR_SUCCESS;
128 }
129
apr_crypto_clear(apr_pool_t * pool,void * buffer,apr_size_t size)130 APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool,
131 void *buffer, apr_size_t size)
132 {
133 apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t));
134
135 clear->buffer = buffer;
136 clear->size = size;
137
138 apr_pool_cleanup_register(pool, clear, crypto_clear,
139 apr_pool_cleanup_null);
140
141 return APR_SUCCESS;
142 }
143
144 #if defined(HAVE_WEAK_SYMBOLS)
145 void apr__memzero_explicit(void *buffer, apr_size_t size);
146
147 __attribute__ ((weak))
apr__memzero_explicit(void * buffer,apr_size_t size)148 void apr__memzero_explicit(void *buffer, apr_size_t size)
149 {
150 memset(buffer, 0, size);
151 }
152 #endif
153
apr_crypto_memzero(void * buffer,apr_size_t size)154 APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size)
155 {
156 #if defined(WIN32)
157 SecureZeroMemory(buffer, size);
158 #elif defined(HAVE_MEMSET_S)
159 if (size) {
160 return memset_s(buffer, (rsize_t)size, 0, (rsize_t)size);
161 }
162 #elif defined(HAVE_EXPLICIT_BZERO)
163 explicit_bzero(buffer, size);
164 #elif defined(HAVE_WEAK_SYMBOLS)
165 apr__memzero_explicit(buffer, size);
166 #else
167 apr_size_t i;
168 volatile unsigned char *volatile ptr = buffer;
169 for (i = 0; i < size; ++i) {
170 ptr[i] = 0;
171 }
172 #endif
173 return APR_SUCCESS;
174 }
175
apr_crypto_equals(const void * buf1,const void * buf2,apr_size_t size)176 APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2,
177 apr_size_t size)
178 {
179 const unsigned char *p1 = buf1;
180 const unsigned char *p2 = buf2;
181 unsigned char diff = 0;
182 apr_size_t i;
183
184 for (i = 0; i < size; ++i) {
185 diff |= p1[i] ^ p2[i];
186 }
187
188 return 1 & ((diff - 1) >> 8);
189 }
190
apr_crypto_get_driver(const apr_crypto_driver_t ** driver,const char * name,const char * params,const apu_err_t ** result,apr_pool_t * pool)191 APU_DECLARE(apr_status_t) apr_crypto_get_driver(
192 const apr_crypto_driver_t **driver, const char *name,
193 const char *params, const apu_err_t **result, apr_pool_t *pool)
194 {
195 #if APU_DSO_BUILD
196 char modname[32];
197 char symname[34];
198 apr_dso_handle_t *dso;
199 apr_dso_handle_sym_t symbol;
200 #endif
201 apr_status_t rv;
202
203 if (result) {
204 *result = NULL; /* until further notice */
205 }
206
207 #if APU_DSO_BUILD
208 rv = apu_dso_mutex_lock();
209 if (rv) {
210 return rv;
211 }
212 #endif
213 *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING);
214 if (*driver) {
215 #if APU_DSO_BUILD
216 apu_dso_mutex_unlock();
217 #endif
218 return APR_SUCCESS;
219 }
220
221 #if APU_DSO_BUILD
222 /* The driver DSO must have exactly the same lifetime as the
223 * drivers hash table; ignore the passed-in pool */
224 pool = apr_hash_pool_get(drivers);
225
226 #if defined(NETWARE)
227 apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name);
228 #elif defined(WIN32) || defined(__CYGWIN__)
229 apr_snprintf(modname, sizeof(modname),
230 "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name);
231 #else
232 apr_snprintf(modname, sizeof(modname),
233 "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name);
234 #endif
235 apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name);
236 rv = apu_dso_load(&dso, &symbol, modname, symname, pool);
237 if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */
238 apr_crypto_driver_t *d = symbol;
239 rv = APR_SUCCESS;
240 if (d->init) {
241 rv = d->init(pool, params, result);
242 }
243 if (APR_SUCCESS == rv) {
244 *driver = symbol;
245 name = apr_pstrdup(pool, name);
246 apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver);
247 }
248 }
249 apu_dso_mutex_unlock();
250
251 if (APR_SUCCESS != rv && result && !*result) {
252 char *buffer = apr_pcalloc(pool, ERROR_SIZE);
253 apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
254 if (err && buffer) {
255 apr_dso_error(dso, buffer, ERROR_SIZE - 1);
256 err->msg = buffer;
257 err->reason = apr_pstrdup(pool, modname);
258 *result = err;
259 }
260 }
261
262 #else /* not builtin and !APR_HAS_DSO => not implemented */
263 rv = APR_ENOTIMPL;
264
265 /* Load statically-linked drivers: */
266 #if APU_HAVE_OPENSSL
267 if (name[0] == 'o' && !strcmp(name, "openssl")) {
268 DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result);
269 }
270 #endif
271 #if APU_HAVE_NSS
272 if (name[0] == 'n' && !strcmp(name, "nss")) {
273 DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result);
274 }
275 #endif
276 #if APU_HAVE_COMMONCRYPTO
277 if (name[0] == 'c' && !strcmp(name, "commoncrypto")) {
278 DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result);
279 }
280 #endif
281 #if APU_HAVE_MSCAPI
282 if (name[0] == 'm' && !strcmp(name, "mscapi")) {
283 DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result);
284 }
285 #endif
286 #if APU_HAVE_MSCNG
287 if (name[0] == 'm' && !strcmp(name, "mscng")) {
288 DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result);
289 }
290 #endif
291
292 #endif
293
294 return rv;
295 }
296
297 /**
298 * @brief Return the name of the driver.
299 *
300 * @param driver - The driver in use.
301 * @return The name of the driver.
302 */
apr_crypto_driver_name(const apr_crypto_driver_t * driver)303 APU_DECLARE(const char *)apr_crypto_driver_name (
304 const apr_crypto_driver_t *driver)
305 {
306 return driver->name;
307 }
308
309 /**
310 * @brief Get the result of the last operation on a context. If the result
311 * is NULL, the operation was successful.
312 * @param result - the result structure
313 * @param f - context pointer
314 * @return APR_SUCCESS for success
315 */
apr_crypto_error(const apu_err_t ** result,const apr_crypto_t * f)316 APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result,
317 const apr_crypto_t *f)
318 {
319 return f->provider->error(result, f);
320 }
321
322 /**
323 * @brief Create a context for supporting encryption. Keys, certificates,
324 * algorithms and other parameters will be set per context. More than
325 * one context can be created at one time. A cleanup will be automatically
326 * registered with the given pool to guarantee a graceful shutdown.
327 * @param f - context pointer will be written here
328 * @param driver - driver to use
329 * @param params - array of key parameters
330 * @param pool - process pool
331 * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
332 * if the engine cannot be initialised.
333 * @remarks NSS: currently no params are supported.
334 * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal
335 * sign and a value.
336 */
apr_crypto_make(apr_crypto_t ** f,const apr_crypto_driver_t * driver,const char * params,apr_pool_t * pool)337 APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f,
338 const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool)
339 {
340 return driver->make(f, driver, params, pool);
341 }
342
343 /**
344 * @brief Get a hash table of key types, keyed by the name of the type against
345 * a pointer to apr_crypto_block_key_type_t, which in turn begins with an
346 * integer.
347 *
348 * @param types - hashtable of key types keyed to constants.
349 * @param f - encryption context
350 * @return APR_SUCCESS for success
351 */
apr_crypto_get_block_key_types(apr_hash_t ** types,const apr_crypto_t * f)352 APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types,
353 const apr_crypto_t *f)
354 {
355 return f->provider->get_block_key_types(types, f);
356 }
357
358 /**
359 * @brief Get a hash table of key modes, keyed by the name of the mode against
360 * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an
361 * integer.
362 *
363 * @param modes - hashtable of key modes keyed to constants.
364 * @param f - encryption context
365 * @return APR_SUCCESS for success
366 */
apr_crypto_get_block_key_modes(apr_hash_t ** modes,const apr_crypto_t * f)367 APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes,
368 const apr_crypto_t *f)
369 {
370 return f->provider->get_block_key_modes(modes, f);
371 }
372
373 /**
374 * @brief Create a key from the provided secret or passphrase. The key is cleaned
375 * up when the context is cleaned, and may be reused with multiple encryption
376 * or decryption operations.
377 * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
378 * *key is not NULL, *key must point at a previously created structure.
379 * @param key The key returned, see note.
380 * @param rec The key record, from which the key will be derived.
381 * @param f The context to use.
382 * @param p The pool to use.
383 * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
384 * error occurred while generating the key. APR_ENOCIPHER if the type or mode
385 * is not supported by the particular backend. APR_EKEYTYPE if the key type is
386 * not known. APR_EPADDING if padding was requested but is not supported.
387 * APR_ENOTIMPL if not implemented.
388 */
apr_crypto_key(apr_crypto_key_t ** key,const apr_crypto_key_rec_t * rec,const apr_crypto_t * f,apr_pool_t * p)389 APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key,
390 const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
391 {
392 return f->provider->key(key, rec, f, p);
393 }
394
395 /**
396 * @brief Create a key from the given passphrase. By default, the PBKDF2
397 * algorithm is used to generate the key from the passphrase. It is expected
398 * that the same pass phrase will generate the same key, regardless of the
399 * backend crypto platform used. The key is cleaned up when the context
400 * is cleaned, and may be reused with multiple encryption or decryption
401 * operations.
402 * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
403 * *key is not NULL, *key must point at a previously created structure.
404 * @param key The key returned, see note.
405 * @param ivSize The size of the initialisation vector will be returned, based
406 * on whether an IV is relevant for this type of crypto.
407 * @param pass The passphrase to use.
408 * @param passLen The passphrase length in bytes
409 * @param salt The salt to use.
410 * @param saltLen The salt length in bytes
411 * @param type 3DES_192, AES_128, AES_192, AES_256.
412 * @param mode Electronic Code Book / Cipher Block Chaining.
413 * @param doPad Pad if necessary.
414 * @param iterations Number of iterations to use in algorithm
415 * @param f The context to use.
416 * @param p The pool to use.
417 * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
418 * error occurred while generating the key. APR_ENOCIPHER if the type or mode
419 * is not supported by the particular backend. APR_EKEYTYPE if the key type is
420 * not known. APR_EPADDING if padding was requested but is not supported.
421 * APR_ENOTIMPL if not implemented.
422 */
apr_crypto_passphrase(apr_crypto_key_t ** key,apr_size_t * ivSize,const char * pass,apr_size_t passLen,const unsigned char * salt,apr_size_t saltLen,const apr_crypto_block_key_type_e type,const apr_crypto_block_key_mode_e mode,const int doPad,const int iterations,const apr_crypto_t * f,apr_pool_t * p)423 APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key,
424 apr_size_t *ivSize, const char *pass, apr_size_t passLen,
425 const unsigned char * salt, apr_size_t saltLen,
426 const apr_crypto_block_key_type_e type,
427 const apr_crypto_block_key_mode_e mode, const int doPad,
428 const int iterations, const apr_crypto_t *f, apr_pool_t *p)
429 {
430 return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen,
431 type, mode, doPad, iterations, f, p);
432 }
433
434 /**
435 * @brief Initialise a context for encrypting arbitrary data using the given key.
436 * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
437 * *ctx is not NULL, *ctx must point at a previously created structure.
438 * @param ctx The block context returned, see note.
439 * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
440 * an IV will be created at random, in space allocated from the pool.
441 * If the buffer pointed to is not NULL, the IV in the buffer will be
442 * used.
443 * @param key The key structure to use.
444 * @param blockSize The block size of the cipher.
445 * @param p The pool to use.
446 * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
447 * Returns APR_EINIT if the backend failed to initialise the context. Returns
448 * APR_ENOTIMPL if not implemented.
449 */
apr_crypto_block_encrypt_init(apr_crypto_block_t ** ctx,const unsigned char ** iv,const apr_crypto_key_t * key,apr_size_t * blockSize,apr_pool_t * p)450 APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
451 apr_crypto_block_t **ctx, const unsigned char **iv,
452 const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p)
453 {
454 return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p);
455 }
456
457 /**
458 * @brief Encrypt data provided by in, write it to out.
459 * @note The number of bytes written will be written to outlen. If
460 * out is NULL, outlen will contain the maximum size of the
461 * buffer needed to hold the data, including any data
462 * generated by apr_crypto_block_encrypt_finish below. If *out points
463 * to NULL, a buffer sufficiently large will be created from
464 * the pool provided. If *out points to a not-NULL value, this
465 * value will be used as a buffer instead.
466 * @param out Address of a buffer to which data will be written,
467 * see note.
468 * @param outlen Length of the output will be written here.
469 * @param in Address of the buffer to read.
470 * @param inlen Length of the buffer to read.
471 * @param ctx The block context to use.
472 * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
473 * not implemented.
474 */
apr_crypto_block_encrypt(unsigned char ** out,apr_size_t * outlen,const unsigned char * in,apr_size_t inlen,apr_crypto_block_t * ctx)475 APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out,
476 apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
477 apr_crypto_block_t *ctx)
478 {
479 return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx);
480 }
481
482 /**
483 * @brief Encrypt final data block, write it to out.
484 * @note If necessary the final block will be written out after being
485 * padded. Typically the final block will be written to the
486 * same buffer used by apr_crypto_block_encrypt, offset by the
487 * number of bytes returned as actually written by the
488 * apr_crypto_block_encrypt() call. After this call, the context
489 * is cleaned and can be reused by apr_crypto_block_encrypt_init().
490 * @param out Address of a buffer to which data will be written. This
491 * buffer must already exist, and is usually the same
492 * buffer used by apr_evp_crypt(). See note.
493 * @param outlen Length of the output will be written here.
494 * @param ctx The block context to use.
495 * @return APR_ECRYPT if an error occurred.
496 * @return APR_EPADDING if padding was enabled and the block was incorrectly
497 * formatted.
498 * @return APR_ENOTIMPL if not implemented.
499 */
apr_crypto_block_encrypt_finish(unsigned char * out,apr_size_t * outlen,apr_crypto_block_t * ctx)500 APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out,
501 apr_size_t *outlen, apr_crypto_block_t *ctx)
502 {
503 return ctx->provider->block_encrypt_finish(out, outlen, ctx);
504 }
505
506 /**
507 * @brief Initialise a context for decrypting arbitrary data using the given key.
508 * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
509 * *ctx is not NULL, *ctx must point at a previously created structure.
510 * @param ctx The block context returned, see note.
511 * @param blockSize The block size of the cipher.
512 * @param iv Optional initialisation vector.
513 * @param key The key structure to use.
514 * @param p The pool to use.
515 * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
516 * Returns APR_EINIT if the backend failed to initialise the context. Returns
517 * APR_ENOTIMPL if not implemented.
518 */
apr_crypto_block_decrypt_init(apr_crypto_block_t ** ctx,apr_size_t * blockSize,const unsigned char * iv,const apr_crypto_key_t * key,apr_pool_t * p)519 APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
520 apr_crypto_block_t **ctx, apr_size_t *blockSize,
521 const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p)
522 {
523 return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p);
524 }
525
526 /**
527 * @brief Decrypt data provided by in, write it to out.
528 * @note The number of bytes written will be written to outlen. If
529 * out is NULL, outlen will contain the maximum size of the
530 * buffer needed to hold the data, including any data
531 * generated by apr_crypto_block_decrypt_finish below. If *out points
532 * to NULL, a buffer sufficiently large will be created from
533 * the pool provided. If *out points to a not-NULL value, this
534 * value will be used as a buffer instead.
535 * @param out Address of a buffer to which data will be written,
536 * see note.
537 * @param outlen Length of the output will be written here.
538 * @param in Address of the buffer to read.
539 * @param inlen Length of the buffer to read.
540 * @param ctx The block context to use.
541 * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
542 * not implemented.
543 */
apr_crypto_block_decrypt(unsigned char ** out,apr_size_t * outlen,const unsigned char * in,apr_size_t inlen,apr_crypto_block_t * ctx)544 APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out,
545 apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
546 apr_crypto_block_t *ctx)
547 {
548 return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx);
549 }
550
551 /**
552 * @brief Decrypt final data block, write it to out.
553 * @note If necessary the final block will be written out after being
554 * padded. Typically the final block will be written to the
555 * same buffer used by apr_crypto_block_decrypt, offset by the
556 * number of bytes returned as actually written by the
557 * apr_crypto_block_decrypt() call. After this call, the context
558 * is cleaned and can be reused by apr_crypto_block_decrypt_init().
559 * @param out Address of a buffer to which data will be written. This
560 * buffer must already exist, and is usually the same
561 * buffer used by apr_evp_crypt(). See note.
562 * @param outlen Length of the output will be written here.
563 * @param ctx The block context to use.
564 * @return APR_ECRYPT if an error occurred.
565 * @return APR_EPADDING if padding was enabled and the block was incorrectly
566 * formatted.
567 * @return APR_ENOTIMPL if not implemented.
568 */
apr_crypto_block_decrypt_finish(unsigned char * out,apr_size_t * outlen,apr_crypto_block_t * ctx)569 APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out,
570 apr_size_t *outlen, apr_crypto_block_t *ctx)
571 {
572 return ctx->provider->block_decrypt_finish(out, outlen, ctx);
573 }
574
575 /**
576 * @brief Clean encryption / decryption context.
577 * @note After cleanup, a context is free to be reused if necessary.
578 * @param ctx The block context to use.
579 * @return Returns APR_ENOTIMPL if not supported.
580 */
apr_crypto_block_cleanup(apr_crypto_block_t * ctx)581 APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx)
582 {
583 return ctx->provider->block_cleanup(ctx);
584 }
585
586 /**
587 * @brief Clean encryption / decryption context.
588 * @note After cleanup, a context is free to be reused if necessary.
589 * @param f The context to use.
590 * @return Returns APR_ENOTIMPL if not supported.
591 */
apr_crypto_cleanup(apr_crypto_t * f)592 APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f)
593 {
594 return f->provider->cleanup(f);
595 }
596
597 /**
598 * @brief Shutdown the crypto library.
599 * @note After shutdown, it is expected that the init function can be called again.
600 * @param driver - driver to use
601 * @return Returns APR_ENOTIMPL if not supported.
602 */
apr_crypto_shutdown(const apr_crypto_driver_t * driver)603 APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver)
604 {
605 return driver->shutdown();
606 }
607
608 #endif /* APU_HAVE_CRYPTO */
609