1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar5111.c,v 1.3 2009/01/06 06:03:57 mrg Exp $
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ah_eeprom_v3.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #define AH_5212_5111
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar5111State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
38 
39 	uint32_t	Bank0Data[N(ar5212Bank0_5111)];
40 	uint32_t	Bank1Data[N(ar5212Bank1_5111)];
41 	uint32_t	Bank2Data[N(ar5212Bank2_5111)];
42 	uint32_t	Bank3Data[N(ar5212Bank3_5111)];
43 	uint32_t	Bank6Data[N(ar5212Bank6_5111)];
44 	uint32_t	Bank7Data[N(ar5212Bank7_5111)];
45 };
46 #define	AR5111(ah)	((struct ar5111State *) AH5212(ah)->ah_rfHal)
47 
48 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
49 		const PCDACS_EEPROM *pSrcStruct);
50 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
51 		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
52 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
53 		const PCDACS_EEPROM *pSrcStruct,
54 		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
55 
56 extern void ar5212GetLowerUpperValues(uint16_t value,
57 		const uint16_t *pList, uint16_t listSize,
58 		uint16_t *pLowerValue, uint16_t *pUpperValue);
59 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60 		uint32_t numBits, uint32_t firstBit, uint32_t column);
61 
62 static void
ar5111WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)63 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64 	int writes)
65 {
66 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
69 }
70 
71 /*
72  * Take the MHz channel value and set the Channel value
73  *
74  * ASSUMES: Writes enabled to analog bus
75  */
76 static HAL_BOOL
ar5111SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)77 ar5111SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
78 {
79 #define CI_2GHZ_INDEX_CORRECTION 19
80 	uint32_t refClk, reg32, data2111;
81 	int16_t chan5111, chanIEEE;
82 
83 	/*
84 	 * Structure to hold 11b tuning information for 5111/2111
85 	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
86 	 */
87 	typedef struct {
88 		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
89 		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
90 		uint16_t	channel5111;	/* 11a channel for 5111 */
91 	} CHAN_INFO_2GHZ;
92 
93 	static const CHAN_INFO_2GHZ chan2GHzData[] = {
94 		{ 1, 0x46, 96  },	/* 2312 -19 */
95 		{ 1, 0x46, 97  },	/* 2317 -18 */
96 		{ 1, 0x46, 98  },	/* 2322 -17 */
97 		{ 1, 0x46, 99  },	/* 2327 -16 */
98 		{ 1, 0x46, 100 },	/* 2332 -15 */
99 		{ 1, 0x46, 101 },	/* 2337 -14 */
100 		{ 1, 0x46, 102 },	/* 2342 -13 */
101 		{ 1, 0x46, 103 },	/* 2347 -12 */
102 		{ 1, 0x46, 104 },	/* 2352 -11 */
103 		{ 1, 0x46, 105 },	/* 2357 -10 */
104 		{ 1, 0x46, 106 },	/* 2362  -9 */
105 		{ 1, 0x46, 107 },	/* 2367  -8 */
106 		{ 1, 0x46, 108 },	/* 2372  -7 */
107 		/* index -6 to 0 are pad to make this a nolookup table */
108 		{ 1, 0x46, 116 },	/*       -6 */
109 		{ 1, 0x46, 116 },	/*       -5 */
110 		{ 1, 0x46, 116 },	/*       -4 */
111 		{ 1, 0x46, 116 },	/*       -3 */
112 		{ 1, 0x46, 116 },	/*       -2 */
113 		{ 1, 0x46, 116 },	/*       -1 */
114 		{ 1, 0x46, 116 },	/*        0 */
115 		{ 1, 0x46, 116 },	/* 2412   1 */
116 		{ 1, 0x46, 117 },	/* 2417   2 */
117 		{ 1, 0x46, 118 },	/* 2422   3 */
118 		{ 1, 0x46, 119 },	/* 2427   4 */
119 		{ 1, 0x46, 120 },	/* 2432   5 */
120 		{ 1, 0x46, 121 },	/* 2437   6 */
121 		{ 1, 0x46, 122 },	/* 2442   7 */
122 		{ 1, 0x46, 123 },	/* 2447   8 */
123 		{ 1, 0x46, 124 },	/* 2452   9 */
124 		{ 1, 0x46, 125 },	/* 2457  10 */
125 		{ 1, 0x46, 126 },	/* 2462  11 */
126 		{ 1, 0x46, 127 },	/* 2467  12 */
127 		{ 1, 0x46, 128 },	/* 2472  13 */
128 		{ 1, 0x44, 124 },	/* 2484  14 */
129 		{ 1, 0x46, 136 },	/* 2512  15 */
130 		{ 1, 0x46, 140 },	/* 2532  16 */
131 		{ 1, 0x46, 144 },	/* 2552  17 */
132 		{ 1, 0x46, 148 },	/* 2572  18 */
133 		{ 1, 0x46, 152 },	/* 2592  19 */
134 		{ 1, 0x46, 156 },	/* 2612  20 */
135 		{ 1, 0x46, 160 },	/* 2632  21 */
136 		{ 1, 0x46, 164 },	/* 2652  22 */
137 		{ 1, 0x46, 168 },	/* 2672  23 */
138 		{ 1, 0x46, 172 },	/* 2692  24 */
139 		{ 1, 0x46, 176 },	/* 2712  25 */
140 		{ 1, 0x46, 180 } 	/* 2732  26 */
141 	};
142 
143 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
144 
145 	chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
146 	if (IS_CHAN_2GHZ(chan)) {
147 		const CHAN_INFO_2GHZ* ci =
148 			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
149 		uint32_t txctl;
150 
151 		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
152 				<< 5)
153 			 | (ci->refClkSel << 4);
154 		chan5111 = ci->channel5111;
155 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
156 		if (chan->channel == 2484) {
157 			/* Enable channel spreading for channel 14 */
158 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
159 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
160 		} else {
161 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
162 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
163 		}
164 	} else {
165 		chan5111 = chanIEEE;	/* no conversion needed */
166 		data2111 = 0;
167 	}
168 
169 	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
170 	if (chan5111 >= 145 || (chan5111 & 0x1)) {
171 		reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
172 		refClk = 1;
173 	} else {
174 		reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
175 		refClk = 0;
176 	}
177 
178 	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
179 	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
180 	reg32 >>= 8;
181 	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
182 
183 	AH_PRIVATE(ah)->ah_curchan = chan;
184 	return AH_TRUE;
185 #undef CI_2GHZ_INDEX_CORRECTION
186 }
187 
188 /*
189  * Return a reference to the requested RF Bank.
190  */
191 static uint32_t *
ar5111GetRfBank(struct ath_hal * ah,int bank)192 ar5111GetRfBank(struct ath_hal *ah, int bank)
193 {
194 	struct ar5111State *priv = AR5111(ah);
195 
196 	HALASSERT(priv != AH_NULL);
197 	switch (bank) {
198 	case 0: return priv->Bank0Data;
199 	case 1: return priv->Bank1Data;
200 	case 2: return priv->Bank2Data;
201 	case 3: return priv->Bank3Data;
202 	case 6: return priv->Bank6Data;
203 	case 7: return priv->Bank7Data;
204 	}
205 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
206 	    __func__, bank);
207 	return AH_NULL;
208 }
209 
210 /*
211  * Reads EEPROM header info from device structure and programs
212  * all rf registers
213  *
214  * REQUIRES: Access to the analog rf device
215  */
216 static HAL_BOOL
ar5111SetRfRegs(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan,uint16_t modesIndex,uint16_t * rfXpdGain)217 ar5111SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
218 	uint16_t modesIndex, uint16_t *rfXpdGain)
219 {
220 	struct ath_hal_5212 *ahp = AH5212(ah);
221 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
222 	uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
223 	uint16_t tempOB, tempDB;
224 	uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
225 	int i, regWrites = 0;
226 
227 	/* Setup rf parameters */
228 	switch (chan->channelFlags & CHANNEL_ALL) {
229 	case CHANNEL_A:
230 	case CHANNEL_T:
231 		if (4000 < chan->channel && chan->channel < 5260) {
232 			tempOB = ee->ee_ob1;
233 			tempDB = ee->ee_db1;
234 		} else if (5260 <= chan->channel && chan->channel < 5500) {
235 			tempOB = ee->ee_ob2;
236 			tempDB = ee->ee_db2;
237 		} else if (5500 <= chan->channel && chan->channel < 5725) {
238 			tempOB = ee->ee_ob3;
239 			tempDB = ee->ee_db3;
240 		} else if (chan->channel >= 5725) {
241 			tempOB = ee->ee_ob4;
242 			tempDB = ee->ee_db4;
243 		} else {
244 			/* XXX when does this happen??? */
245 			tempOB = tempDB = 0;
246 		}
247 		ob2GHz = db2GHz = 0;
248 
249 		rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
250 		rfPloSel = ee->ee_xpd[headerInfo11A];
251 		rfPwdXpd = !ee->ee_xpd[headerInfo11A];
252 		gainI = ee->ee_gainI[headerInfo11A];
253 		break;
254 	case CHANNEL_B:
255 		tempOB = ee->ee_obFor24;
256 		tempDB = ee->ee_dbFor24;
257 		ob2GHz = ee->ee_ob2GHz[0];
258 		db2GHz = ee->ee_db2GHz[0];
259 
260 		rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
261 		rfPloSel = ee->ee_xpd[headerInfo11B];
262 		rfPwdXpd = !ee->ee_xpd[headerInfo11B];
263 		gainI = ee->ee_gainI[headerInfo11B];
264 		break;
265 	case CHANNEL_G:
266 		tempOB = ee->ee_obFor24g;
267 		tempDB = ee->ee_dbFor24g;
268 		ob2GHz = ee->ee_ob2GHz[1];
269 		db2GHz = ee->ee_db2GHz[1];
270 
271 		rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
272 		rfPloSel = ee->ee_xpd[headerInfo11G];
273 		rfPwdXpd = !ee->ee_xpd[headerInfo11G];
274 		gainI = ee->ee_gainI[headerInfo11G];
275 		break;
276 	default:
277 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
278 		    __func__, chan->channelFlags);
279 		return AH_FALSE;
280 	}
281 
282 	HALASSERT(1 <= tempOB && tempOB <= 5);
283 	HALASSERT(1 <= tempDB && tempDB <= 5);
284 
285 	/* Bank 0 Write */
286 	for (i = 0; i < N(ar5212Bank0_5111); i++)
287 		rfReg[i] = ar5212Bank0_5111[i][modesIndex];
288 	if (IS_CHAN_2GHZ(chan)) {
289 		ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
290 		ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
291 	}
292 	HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
293 
294 	/* Bank 1 Write */
295 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
296 
297 	/* Bank 2 Write */
298 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
299 
300 	/* Bank 3 Write */
301 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
302 
303 	/* Bank 6 Write */
304 	for (i = 0; i < N(ar5212Bank6_5111); i++)
305 		rfReg[i] = ar5212Bank6_5111[i][modesIndex];
306 	if (IS_CHAN_A(chan)) {		/* NB: CHANNEL_A | CHANNEL_T */
307 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
308 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
309 	}
310 	ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
311 	ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
312 	/* Set 5212 OB & DB */
313 	ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
314 	ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
315 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
316 
317 	/* Bank 7 Write */
318 	for (i = 0; i < N(ar5212Bank7_5111); i++)
319 		rfReg[i] = ar5212Bank7_5111[i][modesIndex];
320 	ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
321 	ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
322 
323 	if (IS_CHAN_QUARTER_RATE(chan) || IS_CHAN_HALF_RATE(chan)) {
324         	uint32_t	rfWaitI, rfWaitS, rfMaxTime;
325 
326         	rfWaitS = 0x1f;
327         	rfWaitI = (IS_CHAN_HALF_RATE(chan)) ?  0x10 : 0x1f;
328         	rfMaxTime = 3;
329         	ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
330         	ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
331         	ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
332 
333 	}
334 
335 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
336 
337 	/* Now that we have reprogrammed rfgain value, clear the flag. */
338 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
339 
340 	return AH_TRUE;
341 }
342 
343 /*
344  * Returns interpolated or the scaled up interpolated value
345  */
346 static uint16_t
interpolate(uint16_t target,uint16_t srcLeft,uint16_t srcRight,uint16_t targetLeft,uint16_t targetRight)347 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
348 	uint16_t targetLeft, uint16_t targetRight)
349 {
350 	uint16_t rv;
351 	int16_t lRatio;
352 
353 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
354 	if ((targetLeft * targetRight) == 0)
355 		return 0;
356 
357 	if (srcRight != srcLeft) {
358 		/*
359 		 * Note the ratio always need to be scaled,
360 		 * since it will be a fraction.
361 		 */
362 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
363 		if (lRatio < 0) {
364 		    /* Return as Left target if value would be negative */
365 		    rv = targetLeft;
366 		} else if (lRatio > EEP_SCALE) {
367 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
368 		    rv = targetRight;
369 		} else {
370 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
371 					targetLeft) / EEP_SCALE;
372 		}
373 	} else {
374 		rv = targetLeft;
375 	}
376 	return rv;
377 }
378 
379 /*
380  * Read the transmit power levels from the structures taken from EEPROM
381  * Interpolate read transmit power values for this channel
382  * Organize the transmit power values into a table for writing into the hardware
383  */
384 static HAL_BOOL
ar5111SetPowerTable(struct ath_hal * ah,int16_t * pMinPower,int16_t * pMaxPower,HAL_CHANNEL_INTERNAL * chan,uint16_t * rfXpdGain)385 ar5111SetPowerTable(struct ath_hal *ah,
386 	int16_t *pMinPower, int16_t *pMaxPower, HAL_CHANNEL_INTERNAL *chan,
387 	uint16_t *rfXpdGain)
388 {
389 	struct ath_hal_5212 *ahp = AH5212(ah);
390 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
391 	FULL_PCDAC_STRUCT pcdacStruct;
392 	int i, j;
393 
394 	uint16_t     *pPcdacValues;
395 	int16_t      *pScaledUpDbm;
396 	int16_t      minScaledPwr;
397 	int16_t      maxScaledPwr;
398 	int16_t      pwr;
399 	uint16_t     pcdacMin = 0;
400 	uint16_t     pcdacMax = PCDAC_STOP;
401 	uint16_t     pcdacTableIndex;
402 	uint16_t     scaledPcdac;
403 	PCDACS_EEPROM *pSrcStruct;
404 	PCDACS_EEPROM eepromPcdacs;
405 
406 	/* setup the pcdac struct to point to the correct info, based on mode */
407 	switch (chan->channelFlags & CHANNEL_ALL) {
408 	case CHANNEL_A:
409 	case CHANNEL_T:
410 		eepromPcdacs.numChannels     = ee->ee_numChannels11a;
411 		eepromPcdacs.pChannelList    = ee->ee_channels11a;
412 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
413 		break;
414 	case CHANNEL_B:
415 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
416 		eepromPcdacs.pChannelList    = ee->ee_channels11b;
417 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
418 		break;
419 	case CHANNEL_G:
420 	case CHANNEL_108G:
421 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
422 		eepromPcdacs.pChannelList    = ee->ee_channels11g;
423 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
424 		break;
425 	default:
426 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
427 		    __func__, chan->channelFlags);
428 		return AH_FALSE;
429 	}
430 
431 	pSrcStruct = &eepromPcdacs;
432 
433 	OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
434 	pPcdacValues = pcdacStruct.PcdacValues;
435 	pScaledUpDbm = pcdacStruct.PwrValues;
436 
437 	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
438 	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
439 		pPcdacValues[j] = i;
440 
441 	pcdacStruct.numPcdacValues = j;
442 	pcdacStruct.pcdacMin = PCDAC_START;
443 	pcdacStruct.pcdacMax = PCDAC_STOP;
444 
445 	/* Fill out the power values for this channel */
446 	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
447 		pScaledUpDbm[j] = ar5212GetScaledPower(chan->channel,
448 			pPcdacValues[j], pSrcStruct);
449 
450 	/* Now scale the pcdac values to fit in the 64 entry power table */
451 	minScaledPwr = pScaledUpDbm[0];
452 	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
453 
454 	/* find minimum and make monotonic */
455 	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
456 		if (minScaledPwr >= pScaledUpDbm[j]) {
457 			minScaledPwr = pScaledUpDbm[j];
458 			pcdacMin = j;
459 		}
460 		/*
461 		 * Make the full_hsh monotonically increasing otherwise
462 		 * interpolation algorithm will get fooled gotta start
463 		 * working from the top, hence i = 63 - j.
464 		 */
465 		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
466 		if (i == 0)
467 			break;
468 		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
469 			/*
470 			 * It could be a glitch, so make the power for
471 			 * this pcdac the same as the power from the
472 			 * next highest pcdac.
473 			 */
474 			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
475 		}
476 	}
477 
478 	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
479 		if (maxScaledPwr < pScaledUpDbm[j]) {
480 			maxScaledPwr = pScaledUpDbm[j];
481 			pcdacMax = j;
482 		}
483 
484 	/* Find the first power level with a pcdac */
485 	pwr = (uint16_t)(PWR_STEP *
486 		((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
487 
488 	/* Write all the first pcdac entries based off the pcdacMin */
489 	pcdacTableIndex = 0;
490 	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
491 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
492 		ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
493 	}
494 
495 	i = 0;
496 	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
497 	    pcdacTableIndex < PWR_TABLE_SIZE) {
498 		pwr += PWR_STEP;
499 		/* stop if dbM > max_power_possible */
500 		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
501 		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
502 			i++;
503 		/* scale by 2 and add 1 to enable round up or down as needed */
504 		scaledPcdac = (uint16_t)(interpolate(pwr,
505 			pScaledUpDbm[i], pScaledUpDbm[i + 1],
506 			(uint16_t)(pPcdacValues[i] * 2),
507 			(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
508 
509 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
510 		ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
511 		if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
512 			ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
513 		pcdacTableIndex++;
514 	}
515 
516 	/* Write all the last pcdac entries based off the last valid pcdac */
517 	while (pcdacTableIndex < PWR_TABLE_SIZE) {
518 		ahp->ah_pcdacTable[pcdacTableIndex] =
519 			ahp->ah_pcdacTable[pcdacTableIndex - 1];
520 		pcdacTableIndex++;
521 	}
522 
523 	/* No power table adjustment for 5111 */
524 	ahp->ah_txPowerIndexOffset = 0;
525 
526 	return AH_TRUE;
527 }
528 
529 /*
530  * Get or interpolate the pcdac value from the calibrated data.
531  */
532 static uint16_t
ar5212GetScaledPower(uint16_t channel,uint16_t pcdacValue,const PCDACS_EEPROM * pSrcStruct)533 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
534 	const PCDACS_EEPROM *pSrcStruct)
535 {
536 	uint16_t powerValue;
537 	uint16_t lFreq, rFreq;		/* left and right frequency values */
538 	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
539 	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
540 	uint16_t lPwr = 0, uPwr = 0;		/* lower and upper temp pwr values */
541 	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
542 
543 	if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
544 		/* value was copied from srcStruct */
545 		return powerValue;
546 	}
547 
548 	ar5212GetLowerUpperValues(channel,
549 		pSrcStruct->pChannelList, pSrcStruct->numChannels,
550 		&lFreq, &rFreq);
551 	ar5212GetLowerUpperPcdacs(pcdacValue,
552 		lFreq, pSrcStruct, &llPcdac, &ulPcdac);
553 	ar5212GetLowerUpperPcdacs(pcdacValue,
554 		rFreq, pSrcStruct, &lrPcdac, &urPcdac);
555 
556 	/* get the power index for the pcdac value */
557 	ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
558 	ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
559 	lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
560 
561 	ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
562 	ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
563 	rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
564 
565 	return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
566 }
567 
568 /*
569  * Find the value from the calibrated source data struct
570  */
571 static HAL_BOOL
ar5212FindValueInList(uint16_t channel,uint16_t pcdacValue,const PCDACS_EEPROM * pSrcStruct,uint16_t * powerValue)572 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
573 	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
574 {
575 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
576 	int i;
577 
578 	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
579 		if (pChannelData->channelValue == channel) {
580 			const uint16_t* pPcdac = pChannelData->PcdacValues;
581 			int j;
582 
583 			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
584 				if (*pPcdac == pcdacValue) {
585 					*powerValue = pChannelData->PwrValues[j];
586 					return AH_TRUE;
587 				}
588 				pPcdac++;
589 			}
590 		}
591 		pChannelData++;
592 	}
593 	return AH_FALSE;
594 }
595 
596 /*
597  * Get the upper and lower pcdac given the channel and the pcdac
598  * used in the search
599  */
600 static void
ar5212GetLowerUpperPcdacs(uint16_t pcdac,uint16_t channel,const PCDACS_EEPROM * pSrcStruct,uint16_t * pLowerPcdac,uint16_t * pUpperPcdac)601 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
602 	const PCDACS_EEPROM *pSrcStruct,
603 	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
604 {
605 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
606 	int i;
607 
608 	/* Find the channel information */
609 	for (i = 0; i < pSrcStruct->numChannels; i++) {
610 		if (pChannelData->channelValue == channel)
611 			break;
612 		pChannelData++;
613 	}
614 	ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
615 		      pChannelData->numPcdacValues,
616 		      pLowerPcdac, pUpperPcdac);
617 }
618 
619 static HAL_BOOL
ar5111GetChannelMaxMinPower(struct ath_hal * ah,HAL_CHANNEL * chan,int16_t * maxPow,int16_t * minPow)620 ar5111GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
621 	int16_t *maxPow, int16_t *minPow)
622 {
623 	/* XXX - Get 5111 power limits! */
624 	/* NB: caller will cope */
625 	return AH_FALSE;
626 }
627 
628 /*
629  * Adjust NF based on statistical values for 5GHz frequencies.
630  */
631 static int16_t
ar5111GetNfAdjust(struct ath_hal * ah,const HAL_CHANNEL_INTERNAL * c)632 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
633 {
634 	static const struct {
635 		uint16_t freqLow;
636 		int16_t	  adjust;
637 	} adjust5111[] = {
638 		{ 5790,	6 },	/* NB: ordered high -> low */
639 		{ 5730, 4 },
640 		{ 5690, 3 },
641 		{ 5660, 2 },
642 		{ 5610, 1 },
643 		{ 5530, 0 },
644 		{ 5450, 0 },
645 		{ 5379, 1 },
646 		{ 5209, 3 },
647 		{ 3000, 5 },
648 		{    0, 0 },
649 	};
650 	int i;
651 
652 	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
653 		;
654 	return adjust5111[i].adjust;
655 }
656 
657 /*
658  * Free memory for analog bank scratch buffers
659  */
660 static void
ar5111RfDetach(struct ath_hal * ah)661 ar5111RfDetach(struct ath_hal *ah)
662 {
663 	struct ath_hal_5212 *ahp = AH5212(ah);
664 
665 	HALASSERT(ahp->ah_rfHal != AH_NULL);
666 	ath_hal_free(ahp->ah_rfHal);
667 	ahp->ah_rfHal = AH_NULL;
668 }
669 
670 /*
671  * Allocate memory for analog bank scratch buffers
672  * Scratch Buffer will be reinitialized every reset so no need to zero now
673  */
674 static HAL_BOOL
ar5111RfAttach(struct ath_hal * ah,HAL_STATUS * status)675 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
676 {
677 	struct ath_hal_5212 *ahp = AH5212(ah);
678 	struct ar5111State *priv;
679 
680 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
681 
682 	HALASSERT(ahp->ah_rfHal == AH_NULL);
683 	priv = ath_hal_malloc(sizeof(struct ar5111State));
684 	if (priv == AH_NULL) {
685 		HALDEBUG(ah, HAL_DEBUG_ANY,
686 		    "%s: cannot allocate private state\n", __func__);
687 		*status = HAL_ENOMEM;		/* XXX */
688 		return AH_FALSE;
689 	}
690 	priv->base.rfDetach		= ar5111RfDetach;
691 	priv->base.writeRegs		= ar5111WriteRegs;
692 	priv->base.getRfBank		= ar5111GetRfBank;
693 	priv->base.setChannel		= ar5111SetChannel;
694 	priv->base.setRfRegs		= ar5111SetRfRegs;
695 	priv->base.setPowerTable	= ar5111SetPowerTable;
696 	priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
697 	priv->base.getNfAdjust		= ar5111GetNfAdjust;
698 
699 	ahp->ah_pcdacTable = priv->pcdacTable;
700 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
701 	ahp->ah_rfHal = &priv->base;
702 
703 	return AH_TRUE;
704 }
705 
706 static HAL_BOOL
ar5111Probe(struct ath_hal * ah)707 ar5111Probe(struct ath_hal *ah)
708 {
709 	return IS_RAD5111(ah);
710 }
711 AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
712