1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar5212_reset.c,v 1.5 2014/02/27 01:31:09 joerg Exp $
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 
25 #include "ar5212/ar5212.h"
26 #include "ar5212/ar5212reg.h"
27 #include "ar5212/ar5212phy.h"
28 
29 #include "ah_eeprom_v3.h"
30 
31 /* Additional Time delay to wait after activiting the Base band */
32 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
33 #define PLL_SETTLE_DELAY	300	/* 300 usec */
34 
35 static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
36 /* NB: public for 5312 use */
37 HAL_BOOL	ar5212IsSpurChannel(struct ath_hal *, HAL_CHANNEL *);
38 HAL_BOOL	ar5212ChannelChange(struct ath_hal *, HAL_CHANNEL *);
39 int16_t		ar5212GetNf(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
40 HAL_BOOL	ar5212SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
41 void		ar5212SetDeltaSlope(struct ath_hal *, HAL_CHANNEL *);
42 HAL_BOOL	ar5212SetTransmitPower(struct ath_hal *ah,
43 		HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
44 static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
45 		   HAL_CHANNEL *, int16_t tpcScaleReduction, int16_t powerLimit,
46 		   HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
47 static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
48 static void ar5212GetTargetPowers(struct ath_hal *, HAL_CHANNEL *,
49 		   const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
50 		   TRGT_POWER_INFO *pNewPower);
51 static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
52 		   const RD_EDGES_POWER  *pRdEdgesPower);
53 void		ar5212SetRateDurationTable(struct ath_hal *, HAL_CHANNEL *);
54 void		ar5212SetIFSTiming(struct ath_hal *, HAL_CHANNEL *);
55 
56 /* NB: public for RF backend use */
57 void		ar5212GetLowerUpperValues(uint16_t value,
58 		   uint16_t *pList, uint16_t listSize,
59 		   uint16_t *pLowerValue, uint16_t *pUpperValue);
60 void		ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 		   uint32_t numBits, uint32_t firstBit, uint32_t column);
62 
63 static int
write_common(struct ath_hal * ah,const HAL_INI_ARRAY * ia,HAL_BOOL bChannelChange,int writes)64 write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
65 	HAL_BOOL bChannelChange, int writes)
66 {
67 #define IS_NO_RESET_TIMER_ADDR(x)                      \
68     ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
69       (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
70 #define	V(r, c)	(ia)->data[((r)*(ia)->cols) + (c)]
71 	int r;
72 
73 	/* Write Common Array Parameters */
74 	for (r = 0; r < ia->rows; r++) {
75 		uint32_t reg = V(r, 0);
76 		/* XXX timer/beacon setup registers? */
77 		/* On channel change, don't reset the PCU registers */
78 		if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
79 			OS_REG_WRITE(ah, reg, V(r, 1));
80 			DMA_YIELD(writes);
81 		}
82 	}
83 	return writes;
84 #undef IS_NO_RESET_TIMER_ADDR
85 #undef V
86 }
87 
88 #define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
89 
90 /*
91  * Places the device in and out of reset and then places sane
92  * values in the registers based on EEPROM config, initialization
93  * vectors (as determined by the mode), and station configuration
94  *
95  * bChannelChange is used to preserve DMA/PCU registers across
96  * a HW Reset during channel change.
97  */
98 HAL_BOOL
ar5212Reset(struct ath_hal * ah,HAL_OPMODE opmode,HAL_CHANNEL * chan,HAL_BOOL bChannelChange,HAL_STATUS * status)99 ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
100 	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
101 {
102 #define	N(a)	(sizeof (a) / sizeof (a[0]))
103 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
104 	struct ath_hal_5212 *ahp = AH5212(ah);
105 	HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
106 	const HAL_EEPROM *ee;
107 	uint32_t softLedCfg, softLedState;
108 	uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
109 	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
110 	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
111 	int16_t cckOfdmPwrDelta = 0;
112 	u_int modesIndex, freqIndex;
113 	HAL_STATUS ecode;
114 	int i, regWrites;
115 	uint32_t testReg, powerVal;
116 	int8_t twiceAntennaGain, twiceAntennaReduction;
117 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
118 	HAL_BOOL isBmode = AH_FALSE;
119 	HAL_BOOL ichan_isBmode = AH_FALSE;
120 
121 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
122 	ee = AH_PRIVATE(ah)->ah_eeprom;
123 
124 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
125 #define	IS(_c,_f)	(((_c)->channelFlags & _f) || 0)
126 	if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
127 		HALDEBUG(ah, HAL_DEBUG_ANY,
128 		    "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
129 		    __func__, chan->channel, chan->channelFlags);
130 		FAIL(HAL_EINVAL);
131 	}
132 	if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
133 		HALDEBUG(ah, HAL_DEBUG_ANY,
134 		    "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
135 		    __func__, chan->channel, chan->channelFlags);
136 		FAIL(HAL_EINVAL);
137 	}
138 #undef IS
139 
140 	/* Bring out of sleep mode */
141 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
142 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
143 		    __func__);
144 		FAIL(HAL_EIO);
145 	}
146 
147 	/*
148 	 * Map public channel to private.
149 	 */
150 	ichan = ath_hal_checkchannel(ah, chan);
151 	if (ichan == AH_NULL) {
152 		HALDEBUG(ah, HAL_DEBUG_ANY,
153 		    "%s: invalid channel %u/0x%x; no mapping\n",
154 		    __func__, chan->channel, chan->channelFlags);
155 		FAIL(HAL_EINVAL);
156 	}
157 	switch (opmode) {
158 	case HAL_M_STA:
159 	case HAL_M_IBSS:
160 	case HAL_M_HOSTAP:
161 	case HAL_M_MONITOR:
162 		break;
163 	default:
164 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
165 		    __func__, opmode);
166 		FAIL(HAL_EINVAL);
167 		break;
168 	}
169 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
170 
171 	SAVE_CCK(ah, ichan, ichan_isBmode);
172 	SAVE_CCK(ah, chan, isBmode);
173 
174 	/* Preserve certain DMA hardware registers on a channel change */
175 	if (bChannelChange) {
176 		/*
177 		 * On Venice, the TSF is almost preserved across a reset;
178 		 * it requires doubling writes to the RESET_TSF
179 		 * bit in the AR_BEACON register; it also has the quirk
180 		 * of the TSF going back in time on the station (station
181 		 * latches onto the last beacon's tsf during a reset 50%
182 		 * of the times); the latter is not a problem for adhoc
183 		 * stations since as long as the TSF is behind, it will
184 		 * get resynchronized on receiving the next beacon; the
185 		 * TSF going backwards in time could be a problem for the
186 		 * sleep operation (supported on infrastructure stations
187 		 * only) - the best and most general fix for this situation
188 		 * is to resynchronize the various sleep/beacon timers on
189 		 * the receipt of the next beacon i.e. when the TSF itself
190 		 * gets resynchronized to the AP's TSF - power save is
191 		 * needed to be temporarily disabled until that time
192 		 *
193 		 * Need to save the sequence number to restore it after
194 		 * the reset!
195 		 */
196 		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
197 	} else
198 		saveFrameSeqCount = 0;		/* NB: silence compiler */
199 #if 0
200 	/*
201 	 * XXX disable for now; this appears to sometimes cause OFDM
202 	 * XXX timing error floods when ani is enabled and bg scanning
203 	 * XXX kicks in
204 	 */
205 	/* If the channel change is across the same mode - perform a fast channel change */
206 	if (IS_2413(ah) || IS_5413(ah)) {
207 		/*
208 		 * Fast channel change can only be used when:
209 		 *  -channel change requested - so it's not the initial reset.
210 		 *  -it's not a change to the current channel -
211 		 *	often called when switching modes on a channel
212 		 *  -the modes of the previous and requested channel are the
213 		 *	same
214 		 * XXX opmode shouldn't change either?
215 		 */
216 		if (bChannelChange &&
217 		    (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
218 		    (chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) &&
219 		    ((chan->channelFlags & CHANNEL_ALL) ==
220 		     (AH_PRIVATE(ah)->ah_curchan->channelFlags & CHANNEL_ALL))) {
221 			if (ar5212ChannelChange(ah, chan)) {
222 				/* If ChannelChange completed - skip the rest of reset */
223 				/* XXX ani? */
224 				return AH_TRUE;
225 			}
226 		}
227 	}
228 #endif
229 	/*
230 	 * Preserve the antenna on a channel change
231 	 */
232 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
233 	if (saveDefAntenna == 0)		/* XXX magic constants */
234 		saveDefAntenna = 1;
235 
236 	/* Save hardware flag before chip reset clears the register */
237 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
238 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
239 
240 	/* Save led state from pci config register */
241 	saveLedState = OS_REG_READ(ah, AR_PCICFG) &
242 		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
243 		 AR_PCICFG_LEDSLOW);
244 	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
245 	softLedState = OS_REG_READ(ah, AR_GPIODO);
246 
247 	ar5212RestoreClock(ah, opmode);		/* move to refclk operation */
248 
249 	/*
250 	 * Adjust gain parameters before reset if
251 	 * there's an outstanding gain updated.
252 	 */
253 	(void) ar5212GetRfgain(ah);
254 
255 	if (!ar5212ChipReset(ah, chan)) {
256 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
257 		FAIL(HAL_EIO);
258 	}
259 
260 	/* Setup the indices for the next set of register array writes */
261 	switch (chan->channelFlags & CHANNEL_ALL) {
262 	case CHANNEL_A:
263 		modesIndex = 1;
264 		freqIndex  = 1;
265 		break;
266 	case CHANNEL_T:
267 		modesIndex = 2;
268 		freqIndex  = 1;
269 		break;
270 	case CHANNEL_B:
271 		modesIndex = 3;
272 		freqIndex  = 2;
273 		break;
274 	case CHANNEL_PUREG:
275 		modesIndex = 4;
276 		freqIndex  = 2;
277 		break;
278 	case CHANNEL_108G:
279 		modesIndex = 5;
280 		freqIndex  = 2;
281 		break;
282 	default:
283 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
284 		    __func__, chan->channelFlags);
285 		FAIL(HAL_EINVAL);
286 	}
287 
288 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
289 
290 	/* Set correct Baseband to analog shift setting to access analog chips. */
291 	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
292 
293 	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
294 	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
295 		regWrites);
296 	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
297 
298 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
299 
300 	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) {
301 		ar5212SetIFSTiming(ah, chan);
302 		if (IS_5413(ah)) {
303 			/*
304 			 * Force window_length for 1/2 and 1/4 rate channels,
305 			 * the ini file sets this to zero otherwise.
306 			 */
307 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
308 				AR_PHY_FRAME_CTL_WINLEN, 3);
309 		}
310 	}
311 
312 	/* Overwrite INI values for revised chipsets */
313 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
314 		/* ADC_CTL */
315 		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
316 			SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
317 			SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
318 			AR_PHY_ADC_CTL_OFF_PWDDAC |
319 			AR_PHY_ADC_CTL_OFF_PWDADC);
320 
321 		/* TX_PWR_ADJ */
322 		if (chan->channel == 2484) {
323 			cckOfdmPwrDelta = SCALE_OC_DELTA(
324 			    ee->ee_cckOfdmPwrDelta -
325 			    ee->ee_scaledCh14FilterCckDelta);
326 		} else {
327 			cckOfdmPwrDelta = SCALE_OC_DELTA(
328 			    ee->ee_cckOfdmPwrDelta);
329 		}
330 
331 		if (IS_CHAN_G(chan)) {
332 		    OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
333 			SM((ee->ee_cckOfdmPwrDelta*-1),
334 			    AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
335 			SM((cckOfdmPwrDelta*-1),
336 			    AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
337 		} else {
338 			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
339 		}
340 
341 		/* Add barker RSSI thresh enable as disabled */
342 		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
343 			AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
344 		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
345 			AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
346 
347 		/* Set the mute mask to the correct default */
348 		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
349 	}
350 
351 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
352 		/* Clear reg to alllow RX_CLEAR line debug */
353 		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
354 	}
355 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
356 #ifdef notyet
357 		/* Enable burst prefetch for the data queues */
358 		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
359 		/* Enable double-buffering */
360 		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
361 #endif
362 	}
363 
364 	/* Set ADC/DAC select values */
365 	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
366 
367 	if (IS_5413(ah) || IS_2417(ah)) {
368 		uint32_t newReg=1;
369 		if (IS_DISABLE_FAST_ADC_CHAN(chan->channel))
370 			newReg = 0;
371 		/* As it's a clock changing register, only write when the value needs to be changed */
372 		if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
373 			OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
374 	}
375 
376 	/* Setup the transmit power values. */
377 	if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
378 		HALDEBUG(ah, HAL_DEBUG_ANY,
379 		    "%s: error init'ing transmit power\n", __func__);
380 		FAIL(HAL_EIO);
381 	}
382 
383 	/* Write the analog registers */
384 	if (!ahp->ah_rfHal->setRfRegs(ah, ichan, modesIndex, rfXpdGain)) {
385 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
386 		    __func__);
387 		FAIL(HAL_EIO);
388 	}
389 
390 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
391 	if (IS_CHAN_OFDM(chan)) {
392 		if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
393 		    (!IS_CHAN_B(chan)))
394 			ar5212SetSpurMitigation(ah, ichan);
395 		ar5212SetDeltaSlope(ah, chan);
396 	}
397 
398 	/* Setup board specific options for EEPROM version 3 */
399 	if (!ar5212SetBoardValues(ah, ichan)) {
400 		HALDEBUG(ah, HAL_DEBUG_ANY,
401 		    "%s: error setting board options\n", __func__);
402 		FAIL(HAL_EIO);
403 	}
404 
405 	/* Restore certain DMA hardware registers on a channel change */
406 	if (bChannelChange)
407 		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
408 
409 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
410 
411 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
412 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
413 		| macStaId1
414 		| AR_STA_ID1_RTS_USE_DEF
415 		| ahp->ah_staId1Defaults
416 	);
417 	ar5212SetOperatingMode(ah, opmode);
418 
419 	/* Set Venice BSSID mask according to current state */
420 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
421 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
422 
423 	/* Restore previous led state */
424 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
425 
426 	/* Restore soft Led state to GPIO */
427 	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
428 	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
429 
430 	/* Restore previous antenna */
431 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
432 
433 	/* then our BSSID */
434 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
435 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
436 
437 	/* Restore bmiss rssi & count thresholds */
438 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
439 
440 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
441 
442 	if (!ar5212SetChannel(ah, ichan))
443 		FAIL(HAL_EIO);
444 
445 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
446 
447 	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
448 
449 	ar5212SetRateDurationTable(ah, chan);
450 
451 	/* Set Tx frame start to tx data start delay */
452 	if (IS_RAD5112_ANY(ah) &&
453 	    (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan) ||
454 	     IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan))) {
455 		txFrm2TxDStart =
456 			(IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) ?
457 					TX_FRAME_D_START_HALF_RATE:
458 					TX_FRAME_D_START_QUARTER_RATE;
459 		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
460 			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
461 	}
462 
463 	/*
464 	 * Setup fast diversity.
465 	 * Fast diversity can be enabled or disabled via regadd.txt.
466 	 * Default is enabled.
467 	 * For reference,
468 	 *    Disable: reg        val
469 	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
470 	 *             0x00009970 0x192bb514
471 	 *             0x0000a208 0xd03e4648
472 	 *
473 	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
474 	 *             0x00009970 0x192fb514
475 	 *             0x0000a208 0xd03e6788
476 	 */
477 
478 	/* XXX Setup pre PHY ENABLE EAR additions */
479 	/*
480 	 * Wait for the frequency synth to settle (synth goes on
481 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
482 	 * Value is in 100ns increments.
483 	 */
484 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
485 	if (IS_CHAN_CCK(chan)) {
486 		synthDelay = (4 * synthDelay) / 22;
487 	} else {
488 		synthDelay /= 10;
489 	}
490 
491 	/* Activate the PHY (includes baseband activate and synthesizer on) */
492 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
493 
494 	/*
495 	 * There is an issue if the AP starts the calibration before
496 	 * the base band timeout completes.  This could result in the
497 	 * rx_clear false triggering.  As a workaround we add delay an
498 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
499 	 * does not happen.
500 	 */
501 	if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
502 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
503 	} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
504 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
505 	} else {
506 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
507 	}
508 
509 	/*
510 	 * The udelay method is not reliable with notebooks.
511 	 * Need to check to see if the baseband is ready
512 	 */
513 	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
514 	/* Selects the Tx hold */
515 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
516 	i = 0;
517 	while ((i++ < 20) &&
518 	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
519 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
520 
521 	/* Calibrate the AGC and start a NF calculation */
522 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
523 		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
524 		| AR_PHY_AGC_CONTROL_CAL
525 		| AR_PHY_AGC_CONTROL_NF);
526 
527 	if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
528 		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
529 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
530 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
531 			INIT_IQCAL_LOG_COUNT_MAX);
532 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
533 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
534 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
535 	} else
536 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
537 
538 	/* Setup compression registers */
539 	ar5212SetCompRegs(ah);
540 
541 	/* Set 1:1 QCU to DCU mapping for all queues */
542 	for (i = 0; i < AR_NUM_DCU; i++)
543 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
544 
545 	ahp->ah_intrTxqs = 0;
546 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
547 		ar5212ResetTxQueue(ah, i);
548 
549 	/*
550 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
551 	 * manipulates the secondary IMR's as queues are enabled
552 	 * and disabled.  This is done with RMW ops to insure the
553 	 * settings we make here are preserved.
554 	 */
555 	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
556 			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
557 			| AR_IMR_HIUERR
558 			;
559 	if (opmode == HAL_M_HOSTAP)
560 		ahp->ah_maskReg |= AR_IMR_MIB;
561 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
562 	/* Enable bus errors that are OR'd to set the HIUERR bit */
563 	OS_REG_WRITE(ah, AR_IMR_S2,
564 		OS_REG_READ(ah, AR_IMR_S2)
565 		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
566 
567 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
568 		ar5212EnableRfKill(ah);
569 
570 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
571 		HALDEBUG(ah, HAL_DEBUG_ANY,
572 		    "%s: offset calibration failed to complete in 1ms;"
573 		    " noisy environment?\n", __func__);
574 	}
575 
576 	/*
577 	 * Set clocks back to 32kHz if they had been using refClk, then
578 	 * use an external 32kHz crystal when sleeping, if one exists.
579 	 */
580 	ar5212SetupClock(ah, opmode);
581 
582 	/*
583 	 * Writing to AR_BEACON will start timers. Hence it should
584 	 * be the last register to be written. Do not reset tsf, do
585 	 * not enable beacons at this point, but preserve other values
586 	 * like beaconInterval.
587 	 */
588 	OS_REG_WRITE(ah, AR_BEACON,
589 		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
590 
591 	/* XXX Setup post reset EAR additions */
592 
593 	/* QoS support */
594 	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
595 	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
596 	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
597 		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
598 		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
599 	}
600 
601 	/* Turn on NOACK Support for QoS packets */
602 	OS_REG_WRITE(ah, AR_NOACK,
603 		SM(2, AR_NOACK_2BIT_VALUE) |
604 		SM(5, AR_NOACK_BIT_OFFSET) |
605 		SM(0, AR_NOACK_BYTE_OFFSET));
606 
607 	/* Get Antenna Gain reduction */
608 	if (IS_CHAN_5GHZ(chan)) {
609 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
610 	} else {
611 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
612 	}
613 	twiceAntennaReduction =
614 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
615 
616 	/* TPC for self-generated frames */
617 
618 	ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
619 	if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
620 		ackTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
621 
622 	if (ackTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
623 		ackTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
624 			+ ahp->ah_txPowerIndexOffset;
625 
626 	ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
627 	if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
628 		ctsTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
629 
630 	if (ctsTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
631 		ctsTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
632 			+ ahp->ah_txPowerIndexOffset;
633 
634 	chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
635 	if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
636 		chirpTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
637 
638 	if (chirpTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
639 		chirpTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
640 			+ ahp->ah_txPowerIndexOffset;
641 
642 	if (ackTpcPow > 63)
643 		ackTpcPow = 63;
644 	if (ctsTpcPow > 63)
645 		ctsTpcPow = 63;
646 	if (chirpTpcPow > 63)
647 		chirpTpcPow = 63;
648 
649 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
650 		SM(ctsTpcPow, AR_TPC_CTS) |
651 		SM(chirpTpcPow, AR_TPC_CHIRP);
652 
653 	OS_REG_WRITE(ah, AR_TPC, powerVal);
654 
655 	/* Restore user-specified settings */
656 	if (ahp->ah_miscMode != 0)
657 		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
658 	if (ahp->ah_sifstime != (u_int) -1)
659 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
660 	if (ahp->ah_slottime != (u_int) -1)
661 		ar5212SetSlotTime(ah, ahp->ah_slottime);
662 	if (ahp->ah_acktimeout != (u_int) -1)
663 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
664 	if (ahp->ah_ctstimeout != (u_int) -1)
665 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
666 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
667 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
668 
669 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
670 
671 	if (bChannelChange) {
672 		if (!(ichan->privFlags & CHANNEL_DFS))
673 			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
674 		chan->channelFlags = ichan->channelFlags;
675 		chan->privFlags = ichan->privFlags;
676 		chan->maxRegTxPower = ichan->maxRegTxPower;
677 		chan->maxTxPower = ichan->maxTxPower;
678 		chan->minTxPower = ichan->minTxPower;
679 	}
680 
681 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
682 
683 	RESTORE_CCK(ah, ichan, ichan_isBmode);
684 	RESTORE_CCK(ah, chan, isBmode);
685 
686 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
687 
688 	return AH_TRUE;
689 bad:
690 	if (ichan != AH_NULL)
691 		RESTORE_CCK(ah, ichan, ichan_isBmode);
692 	RESTORE_CCK(ah, chan, isBmode);
693 
694 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
695 	if (status != AH_NULL)
696 		*status = ecode;
697 	return AH_FALSE;
698 #undef FAIL
699 #undef N
700 }
701 
702 /*
703  * Call the rf backend to change the channel.
704  */
705 HAL_BOOL
ar5212SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)706 ar5212SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
707 {
708 	struct ath_hal_5212 *ahp = AH5212(ah);
709 
710 	/* Change the synth */
711 	if (!ahp->ah_rfHal->setChannel(ah, chan))
712 		return AH_FALSE;
713 	return AH_TRUE;
714 }
715 
716 /*
717  * This channel change evaluates whether the selected hardware can
718  * perform a synthesizer-only channel change (no reset).  If the
719  * TX is not stopped, or the RFBus cannot be granted in the given
720  * time, the function returns false as a reset is necessary
721  */
722 HAL_BOOL
ar5212ChannelChange(struct ath_hal * ah,HAL_CHANNEL * chan)723 ar5212ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
724 {
725 	uint32_t       ulCount;
726 	uint32_t   data, synthDelay, qnum;
727 	uint16_t   rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
728 	HAL_BOOL    txStopped = AH_TRUE;
729 	HAL_CHANNEL_INTERNAL *ichan;
730 
731 	/*
732 	 * Map public channel to private.
733 	 */
734 	ichan = ath_hal_checkchannel(ah, chan);
735 
736 	/* TX must be stopped or RF Bus grant will not work */
737 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
738 		if (ar5212NumTxPending(ah, qnum)) {
739 			txStopped = AH_FALSE;
740 			break;
741 		}
742 	}
743 	if (!txStopped)
744 		return AH_FALSE;
745 
746 	/* Kill last Baseband Rx Frame */
747 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
748 	for (ulCount = 0; ulCount < 100; ulCount++) {
749 		if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
750 			break;
751 		OS_DELAY(5);
752 	}
753 	if (ulCount >= 100)
754 		return AH_FALSE;
755 
756 	/* Change the synth */
757 	if (!ar5212SetChannel(ah, ichan))
758 		return AH_FALSE;
759 
760 	/*
761 	 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
762 	 * Read the phy active delay register. Value is in 100ns increments.
763 	 */
764 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
765 	if (IS_CHAN_CCK(ichan)) {
766 		synthDelay = (4 * data) / 22;
767 	} else {
768 		synthDelay = data / 10;
769 	}
770 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
771 
772 	/* Setup the transmit power values. */
773 	if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
774 		HALDEBUG(ah, HAL_DEBUG_ANY,
775 		    "%s: error init'ing transmit power\n", __func__);
776 		return AH_FALSE;
777 	}
778 
779 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
780 	if (IS_CHAN_OFDM(ichan)) {
781 		if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
782 		    (!IS_CHAN_B(chan)))
783 			ar5212SetSpurMitigation(ah, ichan);
784 		ar5212SetDeltaSlope(ah, chan);
785 	}
786 
787 	/* Release the RFBus Grant */
788 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
789 
790 	/* Start Noise Floor Cal */
791 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
792 
793 	if (!(ichan->privFlags & CHANNEL_DFS))
794 		ichan->privFlags &= ~CHANNEL_INTERFERENCE;
795 	chan->channelFlags = ichan->channelFlags;
796 	chan->privFlags = ichan->privFlags;
797 	chan->maxRegTxPower = ichan->maxRegTxPower;
798 	chan->maxTxPower = ichan->maxTxPower;
799 	chan->minTxPower = ichan->minTxPower;
800 	return AH_TRUE;
801 }
802 
803 void
ar5212SetOperatingMode(struct ath_hal * ah,int opmode)804 ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
805 {
806 	uint32_t val;
807 
808 	val = OS_REG_READ(ah, AR_STA_ID1);
809 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
810 	switch (opmode) {
811 	case HAL_M_HOSTAP:
812 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
813 					| AR_STA_ID1_KSRCH_MODE);
814 		OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
815 		break;
816 	case HAL_M_IBSS:
817 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
818 					| AR_STA_ID1_KSRCH_MODE);
819 		OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
820 		break;
821 	case HAL_M_STA:
822 	case HAL_M_MONITOR:
823 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
824 		break;
825 	}
826 }
827 
828 /*
829  * Places the PHY and Radio chips into reset.  A full reset
830  * must be called to leave this state.  The PCI/MAC/PCU are
831  * not placed into reset as we must receive interrupt to
832  * re-enable the hardware.
833  */
834 HAL_BOOL
ar5212PhyDisable(struct ath_hal * ah)835 ar5212PhyDisable(struct ath_hal *ah)
836 {
837 	return ar5212SetResetReg(ah, AR_RC_BB);
838 }
839 
840 /*
841  * Places all of hardware into reset
842  */
843 HAL_BOOL
ar5212Disable(struct ath_hal * ah)844 ar5212Disable(struct ath_hal *ah)
845 {
846 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
847 		return AH_FALSE;
848 	/*
849 	 * Reset the HW - PCI must be reset after the rest of the
850 	 * device has been reset.
851 	 */
852 	return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
853 }
854 
855 /*
856  * Places the hardware into reset and then pulls it out of reset
857  *
858  * TODO: Only write the PLL if we're changing to or from CCK mode
859  *
860  * WARNING: The order of the PLL and mode registers must be correct.
861  */
862 HAL_BOOL
ar5212ChipReset(struct ath_hal * ah,HAL_CHANNEL * chan)863 ar5212ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
864 {
865 
866 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
867 
868 	/*
869 	 * Reset the HW - PCI must be reset after the rest of the
870 	 * device has been reset
871 	 */
872 	if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
873 		return AH_FALSE;
874 
875 	/* Bring out of sleep mode (AGAIN) */
876 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
877 		return AH_FALSE;
878 
879 	/* Clear warm reset register */
880 	if (!ar5212SetResetReg(ah, 0))
881 		return AH_FALSE;
882 
883 	/*
884 	 * Perform warm reset before the mode/PLL/turbo registers
885 	 * are changed in order to deactivate the radio.  Mode changes
886 	 * with an active radio can result in corrupted shifts to the
887 	 * radio device.
888 	 */
889 
890 	/*
891 	 * Set CCK and Turbo modes correctly.
892 	 */
893 	if (chan != AH_NULL) {		/* NB: can be null during attach */
894 		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
895 
896 		if (IS_5413(ah)) {	/* NB: =>'s 5424 also */
897 			rfMode = AR_PHY_MODE_AR5112;
898 			if (IS_CHAN_HALF_RATE(chan))
899 				rfMode |= AR_PHY_MODE_HALF;
900 			else if (IS_CHAN_QUARTER_RATE(chan))
901 				rfMode |= AR_PHY_MODE_QUARTER;
902 
903 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
904 				phyPLL = AR_PHY_PLL_CTL_44_5112;
905 			else
906 				phyPLL = AR_PHY_PLL_CTL_40_5413;
907 		} else if (IS_RAD5111(ah)) {
908 			rfMode = AR_PHY_MODE_AR5111;
909 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
910 				phyPLL = AR_PHY_PLL_CTL_44;
911 			else
912 				phyPLL = AR_PHY_PLL_CTL_40;
913 			if (IS_CHAN_HALF_RATE(chan))
914 				phyPLL = AR_PHY_PLL_CTL_HALF;
915 			else if (IS_CHAN_QUARTER_RATE(chan))
916 				phyPLL = AR_PHY_PLL_CTL_QUARTER;
917 		} else {		/* 5112, 2413, 2316, 2317 */
918 			rfMode = AR_PHY_MODE_AR5112;
919 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
920 				phyPLL = AR_PHY_PLL_CTL_44_5112;
921 			else
922 				phyPLL = AR_PHY_PLL_CTL_40_5112;
923 			if (IS_CHAN_HALF_RATE(chan))
924 				phyPLL |= AR_PHY_PLL_CTL_HALF;
925 			else if (IS_CHAN_QUARTER_RATE(chan))
926 				phyPLL |= AR_PHY_PLL_CTL_QUARTER;
927 		}
928 		if (IS_CHAN_OFDM(chan) && (IS_CHAN_CCK(chan) ||
929 					   IS_CHAN_G(chan)))
930 			rfMode |= AR_PHY_MODE_DYNAMIC;
931 		else if (IS_CHAN_OFDM(chan))
932 			rfMode |= AR_PHY_MODE_OFDM;
933 		else
934 			rfMode |= AR_PHY_MODE_CCK;
935 		if (IS_CHAN_5GHZ(chan))
936 			rfMode |= AR_PHY_MODE_RF5GHZ;
937 		else
938 			rfMode |= AR_PHY_MODE_RF2GHZ;
939 		turbo = IS_CHAN_TURBO(chan) ?
940 			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
941 		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
942 		/*
943 		 * PLL, Mode, and Turbo values must be written in the correct
944 		 * order to ensure:
945 		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
946 		 *   mode bit is set
947 		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
948 		 */
949 		if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
950 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
951 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
952 			if (curPhyPLL != phyPLL) {
953 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
954 				/* Wait for the PLL to settle */
955 				OS_DELAY(PLL_SETTLE_DELAY);
956 			}
957 		} else {
958 			if (curPhyPLL != phyPLL) {
959 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
960 				/* Wait for the PLL to settle */
961 				OS_DELAY(PLL_SETTLE_DELAY);
962 			}
963 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
964 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
965 		}
966 	}
967 	return AH_TRUE;
968 }
969 
970 /*
971  * Recalibrate the lower PHY chips to account for temperature/environment
972  * changes.
973  */
974 HAL_BOOL
ar5212PerCalibrationN(struct ath_hal * ah,HAL_CHANNEL * chan,u_int chainMask,HAL_BOOL longCal,HAL_BOOL * isCalDone)975 ar5212PerCalibrationN(struct ath_hal *ah,  HAL_CHANNEL *chan, u_int chainMask,
976 	HAL_BOOL longCal, HAL_BOOL *isCalDone)
977 {
978 #define IQ_CAL_TRIES    10
979 	struct ath_hal_5212 *ahp = AH5212(ah);
980 	HAL_CHANNEL_INTERNAL *ichan;
981 	int32_t qCoff, qCoffDenom;
982 	int32_t iqCorrMeas, iCoff, iCoffDenom;
983 	uint32_t powerMeasQ, powerMeasI;
984 	HAL_BOOL ichan_isBmode = AH_FALSE;
985 	HAL_BOOL isBmode = AH_FALSE;
986 
987 	OS_MARK(ah, AH_MARK_PERCAL, chan->channel);
988 	*isCalDone = AH_FALSE;
989 	ichan = ath_hal_checkchannel(ah, chan);
990 	if (ichan == AH_NULL) {
991 		HALDEBUG(ah, HAL_DEBUG_ANY,
992 		    "%s: invalid channel %u/0x%x; no mapping\n",
993 		    __func__, chan->channel, chan->channelFlags);
994 		return AH_FALSE;
995 	}
996 	SAVE_CCK(ah, ichan, ichan_isBmode);
997 	SAVE_CCK(ah, chan, isBmode);
998 
999 	if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
1000 	    ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
1001 		*isCalDone = AH_TRUE;
1002 
1003 	/* IQ calibration in progress. Check to see if it has finished. */
1004 	if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
1005 	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
1006 		int i;
1007 
1008 		/* IQ Calibration has finished. */
1009 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
1010 		*isCalDone = AH_TRUE;
1011 
1012 		/* workaround for misgated IQ Cal results */
1013 		i = 0;
1014 		do {
1015 			/* Read calibration results. */
1016 			powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
1017 			powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
1018 			iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
1019 			if (powerMeasI && powerMeasQ)
1020 				break;
1021 			/* Do we really need this??? */
1022 			OS_REG_WRITE (ah,  AR_PHY_TIMING_CTRL4,
1023 				      OS_REG_READ(ah,  AR_PHY_TIMING_CTRL4) |
1024 				      AR_PHY_TIMING_CTRL4_DO_IQCAL);
1025 		} while (++i < IQ_CAL_TRIES);
1026 
1027 		/*
1028 		 * Prescale these values to remove 64-bit operation
1029 		 * requirement at the loss of a little precision.
1030 		 */
1031 		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1032 		qCoffDenom = powerMeasQ / 128;
1033 
1034 		/* Protect against divide-by-0 and loss of sign bits. */
1035 		if (iCoffDenom != 0 && qCoffDenom >= 2) {
1036 			iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1037 			/* IQCORR_Q_I_COFF is a signed 6 bit number */
1038 			if (iCoff < -32) {
1039 				iCoff = -32;
1040 			} else if (iCoff > 31) {
1041 				iCoff = 31;
1042 			}
1043 
1044 			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
1045 			qCoff = (powerMeasI / qCoffDenom) - 128;
1046 			if (qCoff < -16) {
1047 				qCoff = -16;
1048 			} else if (qCoff > 15) {
1049 				qCoff = 15;
1050 			}
1051 
1052 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1053 			    "****************** MISGATED IQ CAL! *******************\n");
1054 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1055 			    "time       = %d, i = %d, \n", OS_GETUPTIME(ah), i);
1056 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1057 			    "powerMeasI = 0x%08x\n", powerMeasI);
1058 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1059 			    "powerMeasQ = 0x%08x\n", powerMeasQ);
1060 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1061 			    "iqCorrMeas = 0x%08x\n", iqCorrMeas);
1062 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1063 			    "iCoff      = %d\n", iCoff);
1064 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1065 			    "qCoff      = %d\n", qCoff);
1066 
1067 			/* Write values and enable correction */
1068 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1069 				AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1070 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1071 				AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1072 			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1073 				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1074 
1075 			ahp->ah_bIQCalibration = IQ_CAL_DONE;
1076 			ichan->iqCalValid = AH_TRUE;
1077 			ichan->iCoff = iCoff;
1078 			ichan->qCoff = qCoff;
1079 		}
1080 	} else if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1081 	    !ichan->iqCalValid) {
1082 		/*
1083 		 * Start IQ calibration if configured channel has changed.
1084 		 * Use a magic number of 15 based on default value.
1085 		 */
1086 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1087 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1088 			INIT_IQCAL_LOG_COUNT_MAX);
1089 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1090 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
1091 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1092 	}
1093 	/* XXX EAR */
1094 
1095 	if (longCal) {
1096 		/* Check noise floor results */
1097 		ar5212GetNf(ah, ichan);
1098 
1099 		if ((ichan->channelFlags & CHANNEL_CW_INT) == 0) {
1100 			/* Perform cal for 5Ghz channels and any OFDM on 5112 */
1101 			if (IS_CHAN_5GHZ(chan) ||
1102 			    (IS_RAD5112(ah) && IS_CHAN_OFDM(chan)))
1103 				ar5212RequestRfgain(ah);
1104 		} else {
1105 			/* report up and clear internal state */
1106 			chan->channelFlags |= CHANNEL_CW_INT;
1107 			ichan->channelFlags &= ~CHANNEL_CW_INT;
1108 		}
1109 	}
1110 	RESTORE_CCK(ah, ichan, ichan_isBmode);
1111 	RESTORE_CCK(ah, chan, isBmode);
1112 
1113 	return AH_TRUE;
1114 #undef IQ_CAL_TRIES
1115 }
1116 
1117 HAL_BOOL
ar5212PerCalibration(struct ath_hal * ah,HAL_CHANNEL * chan,HAL_BOOL * isIQdone)1118 ar5212PerCalibration(struct ath_hal *ah,  HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
1119 {
1120 	return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1121 }
1122 
1123 HAL_BOOL
ar5212ResetCalValid(struct ath_hal * ah,HAL_CHANNEL * chan)1124 ar5212ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
1125 {
1126 	/* XXX */
1127 	return AH_TRUE;
1128 }
1129 
1130 /*
1131  * Write the given reset bit mask into the reset register
1132  */
1133 static HAL_BOOL
ar5212SetResetReg(struct ath_hal * ah,uint32_t resetMask)1134 ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1135 {
1136 	uint32_t mask = resetMask ? resetMask : ~0;
1137 	HAL_BOOL rt;
1138 
1139 	/* XXX ar5212MacStop & co. */
1140 
1141 	if (AH_PRIVATE(ah)->ah_ispcie) {
1142 		resetMask &= ~AR_RC_PCI;
1143 	}
1144 
1145 	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1146 	OS_REG_WRITE(ah, AR_RC, resetMask);
1147 	OS_DELAY(15);			/* need to wait at least 128 clocks
1148 					   when reseting PCI before read */
1149 	mask &= (AR_RC_MAC | AR_RC_BB);
1150 	resetMask &= (AR_RC_MAC | AR_RC_BB);
1151 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1152         if ((resetMask & AR_RC_MAC) == 0) {
1153 		if (isBigEndian()) {
1154 			/*
1155 			 * Set CFG, little-endian for register
1156 			 * and descriptor accesses.
1157 			 */
1158 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1159 #ifndef AH_NEED_DESC_SWAP
1160 			mask |= AR_CFG_SWTD;
1161 #endif
1162 			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1163 		} else
1164 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1165 		if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1166 			(void) OS_REG_READ(ah, AR_ISR_RAC);
1167 	}
1168 
1169 	/* track PHY power state so we don't try to r/w BB registers */
1170 	AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1171 	return rt;
1172 }
1173 
1174 int16_t
ar5212GetNoiseFloor(struct ath_hal * ah)1175 ar5212GetNoiseFloor(struct ath_hal *ah)
1176 {
1177 	int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1178 	if (nf & 0x100)
1179 		nf = 0 - ((nf ^ 0x1ff) + 1);
1180 	return nf;
1181 }
1182 
1183 static HAL_BOOL
getNoiseFloorThresh(struct ath_hal * ah,const HAL_CHANNEL_INTERNAL * chan,int16_t * nft)1184 getNoiseFloorThresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan,
1185 	int16_t *nft)
1186 {
1187 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1188 
1189 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1190 
1191 	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1192 	case CHANNEL_A:
1193 		*nft = ee->ee_noiseFloorThresh[headerInfo11A];
1194 		break;
1195 	case CHANNEL_B:
1196 		*nft = ee->ee_noiseFloorThresh[headerInfo11B];
1197 		break;
1198 	case CHANNEL_PUREG:
1199 		*nft = ee->ee_noiseFloorThresh[headerInfo11G];
1200 		break;
1201 	default:
1202 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1203 		    __func__, chan->channelFlags);
1204 		return AH_FALSE;
1205 	}
1206 	return AH_TRUE;
1207 }
1208 
1209 /*
1210  * Setup the noise floor cal history buffer.
1211  */
1212 void
ar5212InitNfCalHistBuffer(struct ath_hal * ah)1213 ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1214 {
1215 	struct ath_hal_5212 *ahp = AH5212(ah);
1216 	int i;
1217 
1218 	ahp->ah_nfCalHist.first_run = 1;
1219 	ahp->ah_nfCalHist.currIndex = 0;
1220 	ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1221 	ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1222 	for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1223 		ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1224 }
1225 
1226 /*
1227  * Add a noise floor value to the ring buffer.
1228  */
1229 static __inline void
updateNFHistBuff(struct ar5212NfCalHist * h,int16_t nf)1230 updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1231 {
1232  	h->nfCalBuffer[h->currIndex] = nf;
1233      	if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1234 		h->currIndex = 0;
1235 }
1236 
1237 /*
1238  * Return the median noise floor value in the ring buffer.
1239  */
1240 int16_t
ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])1241 ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1242 {
1243 	int16_t sort[AR512_NF_CAL_HIST_MAX];
1244 	int i, j;
1245 
1246 	OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1247 	for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1248 		for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1249 			if (sort[j] > sort[j-1]) {
1250 				int16_t nf = sort[j];
1251 				sort[j] = sort[j-1];
1252 				sort[j-1] = nf;
1253 			}
1254 		}
1255 	}
1256 	return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1257 }
1258 
1259 /*
1260  * Read the NF and check it against the noise floor threshhold
1261  */
1262 int16_t
ar5212GetNf(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)1263 ar5212GetNf(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1264 {
1265 	struct ath_hal_5212 *ahp = AH5212(ah);
1266 	struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1267 	int16_t nf, nfThresh;
1268  	int32_t val;
1269 
1270 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1271 		HALDEBUG(ah, HAL_DEBUG_ANY,
1272 		    "%s: NF did not complete in calibration window\n", __func__);
1273 		chan->rawNoiseFloor = h->privNF;	/* most recent value */
1274 		return chan->rawNoiseFloor;
1275 	}
1276 
1277 	/*
1278 	 * Finished NF cal, check against threshold.
1279 	 */
1280 	nf = ar5212GetNoiseFloor(ah);
1281 	if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1282 		if (nf > nfThresh) {
1283 			HALDEBUG(ah, HAL_DEBUG_ANY,
1284 			    "%s: noise floor failed detected; detected %u, "
1285 			    "threshold %u\n", __func__, nf, nfThresh);
1286 			/*
1287 			 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1288 			 *     happens it indicates a problem regardless
1289 			 *     of the band.
1290 			 */
1291 			chan->channelFlags |= CHANNEL_CW_INT;
1292 			nf = 0;
1293 		}
1294 	} else
1295 		nf = 0;
1296 
1297 	/*
1298 	 * Pass through histogram and write median value as
1299 	 * calculated from the accrued window.  We require a
1300 	 * full window of in-range values to be seen before we
1301 	 * start using the history.
1302 	 */
1303 	updateNFHistBuff(h, nf);
1304 	if (h->first_run) {
1305 		if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1306 		    nf > AR5212_CCA_MAX_HIGH_VALUE) {
1307 			nf = AR5212_CCA_MAX_GOOD_VALUE;
1308 			h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1309 		} else if (--(h->invalidNFcount) == 0) {
1310 			h->first_run = 0;
1311 			h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1312 		} else {
1313 			nf = AR5212_CCA_MAX_GOOD_VALUE;
1314 		}
1315 	} else {
1316 		h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1317 	}
1318 
1319 	val = OS_REG_READ(ah, AR_PHY(25));
1320 	val &= 0xFFFFFE00;
1321 	val |= (((uint32_t)nf << 1) & 0x1FF);
1322 	OS_REG_WRITE(ah, AR_PHY(25), val);
1323 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1324 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1325 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1326 
1327 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1328 #ifdef AH_DEBUG
1329 		ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1330 		    __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1331 #endif
1332 	}
1333 
1334 	/*
1335 	 * Now load a high maxCCAPower value again so that we're
1336 	 * not capped by the median we just loaded
1337 	 */
1338 	val &= 0xFFFFFE00;
1339 	val |= (((uint32_t)(-50) << 1) & 0x1FF);
1340 	OS_REG_WRITE(ah, AR_PHY(25), val);
1341 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1342 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1343 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1344 
1345 	return (chan->rawNoiseFloor = nf);
1346 }
1347 
1348 /*
1349  * Set up compression configuration registers
1350  */
1351 void
ar5212SetCompRegs(struct ath_hal * ah)1352 ar5212SetCompRegs(struct ath_hal *ah)
1353 {
1354 	struct ath_hal_5212 *ahp = AH5212(ah);
1355 	int i;
1356 
1357         /* Check if h/w supports compression */
1358 	if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1359 		return;
1360 
1361 	OS_REG_WRITE(ah, AR_DCCFG, 1);
1362 
1363 	OS_REG_WRITE(ah, AR_CCFG,
1364 		(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1365 
1366 	OS_REG_WRITE(ah, AR_CCFG,
1367 		OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1368 	OS_REG_WRITE(ah, AR_CCUCFG,
1369 		AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1370 
1371 	OS_REG_WRITE(ah, AR_CPCOVF, 0);
1372 
1373 	/* reset decompression mask */
1374 	for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1375 		OS_REG_WRITE(ah, AR_DCM_A, i);
1376 		OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1377 	}
1378 }
1379 
1380 HAL_BOOL
ar5212SetAntennaSwitchInternal(struct ath_hal * ah,HAL_ANT_SETTING settings,const HAL_CHANNEL_INTERNAL * chan)1381 ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1382 	const HAL_CHANNEL_INTERNAL *chan)
1383 {
1384 #define	ANT_SWITCH_TABLE1	AR_PHY(88)
1385 #define	ANT_SWITCH_TABLE2	AR_PHY(89)
1386 	struct ath_hal_5212 *ahp = AH5212(ah);
1387 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1388 	uint32_t antSwitchA, antSwitchB;
1389 	int ix;
1390 	HAL_BOOL isBmode = AH_FALSE;
1391 	/* NB: need local copy for SAVE/RESTORE 'cuz chan is const */
1392 	HAL_CHANNEL_INTERNAL ichan = *chan;
1393 
1394 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1395 	HALASSERT(ahp->ah_phyPowerOn);
1396 
1397 	SAVE_CCK(ah, &ichan, isBmode);
1398 	switch (ichan.channelFlags & CHANNEL_ALL_NOTURBO) {
1399 	case CHANNEL_A:		ix = 0; break;
1400 	case CHANNEL_B:		ix = 1; break;
1401 	case CHANNEL_PUREG:	ix = 2; break;
1402 	default:
1403 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1404 		    __func__, ichan.channelFlags);
1405 		RESTORE_CCK(ah, &ichan, isBmode);
1406 		return AH_FALSE;
1407 	}
1408 	RESTORE_CCK(ah, &ichan, isBmode);
1409 
1410 	antSwitchA =  ee->ee_antennaControl[1][ix]
1411 		   | (ee->ee_antennaControl[2][ix] << 6)
1412 		   | (ee->ee_antennaControl[3][ix] << 12)
1413 		   | (ee->ee_antennaControl[4][ix] << 18)
1414 		   | (ee->ee_antennaControl[5][ix] << 24)
1415 		   ;
1416 	antSwitchB =  ee->ee_antennaControl[6][ix]
1417 		   | (ee->ee_antennaControl[7][ix] << 6)
1418 		   | (ee->ee_antennaControl[8][ix] << 12)
1419 		   | (ee->ee_antennaControl[9][ix] << 18)
1420 		   | (ee->ee_antennaControl[10][ix] << 24)
1421 		   ;
1422 	/*
1423 	 * For fixed antenna, give the same setting for both switch banks
1424 	 */
1425 	switch (settings) {
1426 	case HAL_ANT_FIXED_A:
1427 		antSwitchB = antSwitchA;
1428 		break;
1429 	case HAL_ANT_FIXED_B:
1430 		antSwitchA = antSwitchB;
1431 		break;
1432 	case HAL_ANT_VARIABLE:
1433 		break;
1434 	default:
1435 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1436 		    __func__, settings);
1437 		return AH_FALSE;
1438 	}
1439 	if (antSwitchB == antSwitchA) {
1440 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1441 		    "%s: Setting fast diversity off.\n", __func__);
1442 		OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1443 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1444 		ahp->ah_diversity = AH_FALSE;
1445 	} else {
1446 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1447 		    "%s: Setting fast diversity on.\n", __func__);
1448 		OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1449 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1450 		ahp->ah_diversity = AH_TRUE;
1451 	}
1452 	ahp->ah_antControl = settings;
1453 
1454 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1455 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1456 
1457 	return AH_TRUE;
1458 #undef ANT_SWITCH_TABLE2
1459 #undef ANT_SWITCH_TABLE1
1460 }
1461 
1462 HAL_BOOL
ar5212IsSpurChannel(struct ath_hal * ah,HAL_CHANNEL * chan)1463 ar5212IsSpurChannel(struct ath_hal *ah, HAL_CHANNEL *chan)
1464 {
1465     uint32_t clockFreq =
1466 	((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1467     return ( ((chan->channel % clockFreq) != 0)
1468           && (((chan->channel % clockFreq) < 10)
1469          || (((chan->channel) % clockFreq) > 22)) );
1470 }
1471 
1472 /*
1473  * Read EEPROM header info and program the device for correct operation
1474  * given the channel value.
1475  */
1476 HAL_BOOL
ar5212SetBoardValues(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)1477 ar5212SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1478 {
1479 #define NO_FALSE_DETECT_BACKOFF   2
1480 #define CB22_FALSE_DETECT_BACKOFF 6
1481 #define	AR_PHY_BIS(_ah, _reg, _mask, _val) \
1482 	OS_REG_WRITE(_ah, AR_PHY(_reg), \
1483 		(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1484 	struct ath_hal_5212 *ahp = AH5212(ah);
1485 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1486 	int arrayMode, falseDectectBackoff;
1487 	int is2GHz = IS_CHAN_2GHZ(chan);
1488 	int8_t adcDesiredSize, pgaDesiredSize;
1489 	uint16_t switchSettling, txrxAtten, rxtxMargin;
1490 	int iCoff, qCoff;
1491 
1492 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1493 
1494 	switch (chan->channelFlags & CHANNEL_ALL) {
1495 	case CHANNEL_A:
1496 	case CHANNEL_T:
1497 		arrayMode = headerInfo11A;
1498 		if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1499 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1500 				AR_PHY_FRAME_CTL_TX_CLIP,
1501 				ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1502 		break;
1503 	case CHANNEL_B:
1504 		arrayMode = headerInfo11B;
1505 		break;
1506 	case CHANNEL_G:
1507 	case CHANNEL_108G:
1508 		arrayMode = headerInfo11G;
1509 		break;
1510 	default:
1511 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1512 		    __func__, chan->channelFlags);
1513 		return AH_FALSE;
1514 	}
1515 
1516 	/* Set the antenna register(s) correctly for the chip revision */
1517 	AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1518 		(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1519 
1520 	ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1521 
1522 	/* Set the Noise Floor Thresh on ar5211 devices */
1523 	OS_REG_WRITE(ah, AR_PHY(90),
1524 		(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1525 		| (1 << 9));
1526 
1527 	if (ee->ee_version >= AR_EEPROM_VER5_0 && IS_CHAN_TURBO(chan)) {
1528 		switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1529 		adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1530 		pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1531 		txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1532 		rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1533 	} else {
1534 		switchSettling = ee->ee_switchSettling[arrayMode];
1535 		adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1536 		pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1537 		txrxAtten = ee->ee_txrxAtten[is2GHz];
1538 		rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1539 	}
1540 
1541 	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1542 			 AR_PHY_SETTLING_SWITCH, switchSettling);
1543 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1544 			 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1545 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1546 			 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1547 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1548 			 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1549 	OS_REG_WRITE(ah, AR_PHY(13),
1550 		(ee->ee_txEndToXPAOff[arrayMode] << 24)
1551 		| (ee->ee_txEndToXPAOff[arrayMode] << 16)
1552 		| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1553 		| ee->ee_txFrameToXPAOn[arrayMode]);
1554 	AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1555 		ee->ee_txEndToXLNAOn[arrayMode] << 8);
1556 	AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1557 		(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1558 
1559 	/*
1560 	 * False detect backoff - suspected 32 MHz spur causes false
1561 	 * detects in OFDM, causing Tx Hangs.  Decrease weak signal
1562 	 * sensitivity for this card.
1563 	 */
1564 	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1565 	if (ee->ee_version < AR_EEPROM_VER3_3) {
1566 		/* XXX magic number */
1567 		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1568 		    IS_CHAN_OFDM(chan))
1569 			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1570 	} else {
1571 		if (ar5212IsSpurChannel(ah, (HAL_CHANNEL *)chan)) {
1572 			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1573 		}
1574 	}
1575 	AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1576 
1577 	if (chan->iqCalValid) {
1578 		iCoff = chan->iCoff;
1579 		qCoff = chan->qCoff;
1580 	} else {
1581 		iCoff = ee->ee_iqCalI[is2GHz];
1582 		qCoff = ee->ee_iqCalQ[is2GHz];
1583 	}
1584 
1585 	/* write previous IQ results */
1586 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1587 		AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1588 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1589 		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1590 	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1591 		AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1592 
1593 	if (ee->ee_version >= AR_EEPROM_VER4_1) {
1594 		if (!IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1595 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1596 				AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1597 	}
1598 	if (ee->ee_version >= AR_EEPROM_VER5_1) {
1599 		/* for now always disabled */
1600 		OS_REG_WRITE(ah,  AR_PHY_HEAVY_CLIP_ENABLE,  0);
1601 	}
1602 
1603 	return AH_TRUE;
1604 #undef AR_PHY_BIS
1605 #undef NO_FALSE_DETECT_BACKOFF
1606 #undef CB22_FALSE_DETECT_BACKOFF
1607 }
1608 
1609 /*
1610  * Apply Spur Immunity to Boards that require it.
1611  * Applies only to OFDM RX operation.
1612  */
1613 
1614 void
ar5212SetSpurMitigation(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * ichan)1615 ar5212SetSpurMitigation(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1616 {
1617 	uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1618 	uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1619 	int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1620 	int16_t numBinOffsets;
1621 	static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1622 	static const uint16_t magMapFor3[3] = {1, 2, 1};
1623 	const uint16_t *pMagMap;
1624 	HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
1625 	uint32_t val;
1626 
1627 #define CHAN_TO_SPUR(_f, _freq)   ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1628 	if (IS_2417(ah)) {
1629 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1630 		    __func__);
1631 		return;
1632 	}
1633 
1634 	curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1635 
1636 	if (ichan->mainSpur) {
1637 		/* Pull out the saved spur value */
1638 		finalSpur = ichan->mainSpur;
1639 	} else {
1640 		/*
1641 		 * Check if spur immunity should be performed for this channel
1642 		 * Should only be performed once per channel and then saved
1643 		 */
1644 		finalSpur = AR_NO_SPUR;
1645 		spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1646 		if (IS_CHAN_TURBO(ichan))
1647 			spurDetectWidth *= 2;
1648 
1649 		/* Decide if any spur affects the current channel */
1650 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1651 			spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1652 			if (spurChan == AR_NO_SPUR) {
1653 				break;
1654 			}
1655 			if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1656 			    (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1657 				finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1658 				break;
1659 			}
1660 		}
1661 		/* Save detected spur (or no spur) for this channel */
1662 		ichan->mainSpur = finalSpur;
1663 	}
1664 
1665 	/* Write spur immunity data */
1666 	if (finalSpur == AR_NO_SPUR) {
1667 		/* Disable Spur Immunity Regs if they appear set */
1668 		if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1669 			/* Clear Spur Delta Phase, Spur Freq, and enable bits */
1670 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1671 			val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1672 			val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1673 				 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1674 				 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1675 			OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1676 			OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1677 
1678 			/* Clear pilot masks */
1679 			OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1680 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1681 			OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1682 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1683 
1684 			/* Clear magnitude masks */
1685 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1686 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1687 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1688 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1689 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1690 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1691 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1692 			OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1693 		}
1694 	} else {
1695 		spurOffset = finalSpur - curChanAsSpur;
1696 		/*
1697 		 * Spur calculations:
1698 		 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1699 		 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1700 		 */
1701 		switch (ichan->channelFlags & CHANNEL_ALL) {
1702 		case CHANNEL_A: /* Chip Frequency & sampleFrequency are 40 MHz */
1703 			spurDeltaPhase = (spurOffset << 17) / 25;
1704 			spurFreqSd = spurDeltaPhase >> 10;
1705 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1706 			break;
1707 		case CHANNEL_G: /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1708 			spurFreqSd = (spurOffset << 8) / 55;
1709 			spurDeltaPhase = (spurOffset << 17) / 25;
1710 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1711 			break;
1712 		case CHANNEL_T: /* Chip Frequency & sampleFrequency are 80 MHz */
1713 		case CHANNEL_108G:
1714 			spurDeltaPhase = (spurOffset << 16) / 25;
1715 			spurFreqSd = spurDeltaPhase >> 10;
1716 			binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1717 			break;
1718 		}
1719 
1720 		/* Compute Pilot Mask */
1721 		binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1722 		/* The spur is on a bin if it's remainder at times 16 is 0 */
1723 		if (binOffsetNumT16 & 0xF) {
1724 			numBinOffsets = 4;
1725 			pMagMap = magMapFor4;
1726 		} else {
1727 			numBinOffsets = 3;
1728 			pMagMap = magMapFor3;
1729 		}
1730 		for (i = 0; i < numBinOffsets; i++) {
1731 			if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1732 				HALDEBUG(ah, HAL_DEBUG_ANY,
1733 				    "Too man bins in spur mitigation\n");
1734 				return;
1735 			}
1736 
1737 			/* Get Pilot Mask values */
1738 			curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1739 			if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1740 				if (curBinOffset <= 25)
1741 					pilotMask[0] |= 1 << curBinOffset;
1742 				else if (curBinOffset >= 27)
1743 					pilotMask[0] |= 1 << (curBinOffset - 1);
1744 			} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1745 				pilotMask[1] |= 1 << (curBinOffset - 33);
1746 
1747 			/* Get viterbi values */
1748 			if ((curBinOffset >= -1) && (curBinOffset <= 14))
1749 				binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1750 			else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1751 				binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1752 			else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1753 				binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1754 			else if((curBinOffset >= 47) && (curBinOffset <= 53))
1755 				binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1756 		}
1757 
1758 		/* Write Spur Delta Phase, Spur Freq, and enable bits */
1759 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1760 		val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1761 		val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1762 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1763 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1764 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1765 		OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1766 			     SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1767 			     SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1768 
1769 		/* Write pilot masks */
1770 		OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1771 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1772 		OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1773 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1774 
1775 		/* Write magnitude masks */
1776 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1777 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1778 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1779 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1780 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1781 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1782 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1783 		OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1784 	}
1785 #undef CHAN_TO_SPUR
1786 }
1787 
1788 
1789 /*
1790  * Delta slope coefficient computation.
1791  * Required for OFDM operation.
1792  */
1793 void
ar5212SetDeltaSlope(struct ath_hal * ah,HAL_CHANNEL * chan)1794 ar5212SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL *chan)
1795 {
1796 #define COEF_SCALE_S 24
1797 #define INIT_CLOCKMHZSCALED	0x64000000
1798 	unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1799 	unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1800 
1801 	if (IS_CHAN_TURBO(chan))
1802 		clockMhzScaled *= 2;
1803 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1804 	/* scale for selected channel bandwidth */
1805 	if (IS_CHAN_HALF_RATE(chan)) {
1806 		clockMhzScaled = clockMhzScaled >> 1;
1807 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1808 		clockMhzScaled = clockMhzScaled >> 2;
1809 	}
1810 
1811 	/*
1812 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1813 	 * scaled coef to provide precision for this floating calculation
1814 	 */
1815 	coef_scaled = clockMhzScaled / chan->channel;
1816 
1817 	/*
1818 	 * ALGO -> coef_exp = 14-floor(log2(coef));
1819 	 * floor(log2(x)) is the highest set bit position
1820 	 */
1821 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1822 		if ((coef_scaled >> coef_exp) & 0x1)
1823 			break;
1824 	/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1825 	HALASSERT(coef_exp);
1826 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1827 
1828 	/*
1829 	 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1830 	 * The coefficient is already shifted up for scaling
1831 	 */
1832 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1833 	ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1834 	ds_coef_exp = coef_exp - 16;
1835 
1836 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1837 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1838 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1839 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1840 #undef INIT_CLOCKMHZSCALED
1841 #undef COEF_SCALE_S
1842 }
1843 
1844 /*
1845  * Set a limit on the overall output power.  Used for dynamic
1846  * transmit power control and the like.
1847  *
1848  * NB: limit is in units of 0.5 dbM.
1849  */
1850 HAL_BOOL
ar5212SetTxPowerLimit(struct ath_hal * ah,uint32_t limit)1851 ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1852 {
1853 	uint16_t dummyXpdGains[2];
1854 	HAL_BOOL ret, isBmode = AH_FALSE;
1855 
1856 	SAVE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
1857 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1858 	ret = ar5212SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
1859 			dummyXpdGains);
1860 	RESTORE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
1861 	return ret;
1862 }
1863 
1864 /*
1865  * Set the transmit power in the baseband for the given
1866  * operating channel and mode.
1867  */
1868 HAL_BOOL
ar5212SetTransmitPower(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan,uint16_t * rfXpdGain)1869 ar5212SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
1870 	uint16_t *rfXpdGain)
1871 {
1872 #define	POW_OFDM(_r, _s)	(((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
1873 #define	POW_CCK(_r, _s)		(((_r) & 0x3f) << (_s))
1874 #define	N(a)			(sizeof (a) / sizeof (a[0]))
1875 	static const uint16_t tpcScaleReductionTable[5] =
1876 		{ 0, 3, 6, 9, MAX_RATE_POWER };
1877 	struct ath_hal_5212 *ahp = AH5212(ah);
1878 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1879 	int16_t minPower, maxPower, tpcInDb, powerLimit;
1880 	int i;
1881 
1882 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1883 
1884 	OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
1885 	OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
1886 
1887 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1888 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
1889 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
1890 	else
1891 		tpcInDb = 0;
1892 	if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
1893 				AH_TRUE, &minPower, &maxPower)) {
1894 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
1895 		    __func__);
1896 		return AH_FALSE;
1897 	}
1898 	if (!ahp->ah_rfHal->setPowerTable(ah,
1899 		&minPower, &maxPower, chan, rfXpdGain)) {
1900 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1901 		    __func__);
1902 		return AH_FALSE;
1903 	}
1904 
1905 	/*
1906 	 * Adjust XR power/rate up by 2 dB to account for greater peak
1907 	 * to avg ratio - except in newer avg power designs
1908 	 */
1909 	if (!IS_2413(ah) && !IS_5413(ah))
1910 		ahp->ah_ratesArray[15] += 4;
1911 	/*
1912 	 * txPowerIndexOffset is set by the SetPowerTable() call -
1913 	 *  adjust the rate table
1914 	 */
1915 	for (i = 0; i < N(ahp->ah_ratesArray); i++) {
1916 		ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
1917 		if (ahp->ah_ratesArray[i] > 63)
1918 			ahp->ah_ratesArray[i] = 63;
1919 	}
1920 
1921 	if (ee->ee_eepMap < 2) {
1922 		/*
1923 		 * Correct gain deltas for 5212 G operation -
1924 		 * Removed with revised chipset
1925 		 */
1926 		if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
1927 		    IS_CHAN_G(chan)) {
1928 			uint16_t cckOfdmPwrDelta;
1929 
1930 			if (chan->channel == 2484)
1931 				cckOfdmPwrDelta = SCALE_OC_DELTA(
1932 					ee->ee_cckOfdmPwrDelta -
1933 					ee->ee_scaledCh14FilterCckDelta);
1934 			else
1935 				cckOfdmPwrDelta = SCALE_OC_DELTA(
1936 					ee->ee_cckOfdmPwrDelta);
1937 			ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
1938 		}
1939 		/*
1940 		 * Finally, write the power values into the
1941 		 * baseband power table
1942 		 */
1943 		for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
1944 			OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
1945 				 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
1946 				| (((ahp->ah_pcdacTable[2*i]     << 8) | 0xff) & 0xffff)
1947 			);
1948 		}
1949 	}
1950 
1951 	/* Write the OFDM power per rate set */
1952 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1953 		POW_OFDM(ahp->ah_ratesArray[3], 24)
1954 	      | POW_OFDM(ahp->ah_ratesArray[2], 16)
1955 	      | POW_OFDM(ahp->ah_ratesArray[1],  8)
1956 	      | POW_OFDM(ahp->ah_ratesArray[0],  0)
1957 	);
1958 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1959 		POW_OFDM(ahp->ah_ratesArray[7], 24)
1960 	      | POW_OFDM(ahp->ah_ratesArray[6], 16)
1961 	      | POW_OFDM(ahp->ah_ratesArray[5],  8)
1962 	      | POW_OFDM(ahp->ah_ratesArray[4],  0)
1963 	);
1964 
1965 	/* Write the CCK power per rate set */
1966 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1967 		POW_CCK(ahp->ah_ratesArray[10], 24)
1968 	      | POW_CCK(ahp->ah_ratesArray[9],  16)
1969 	      | POW_CCK(ahp->ah_ratesArray[15],  8)	/* XR target power */
1970 	      | POW_CCK(ahp->ah_ratesArray[8],   0)
1971 	);
1972 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1973 		POW_CCK(ahp->ah_ratesArray[14], 24)
1974 	      | POW_CCK(ahp->ah_ratesArray[13], 16)
1975 	      | POW_CCK(ahp->ah_ratesArray[12],  8)
1976 	      | POW_CCK(ahp->ah_ratesArray[11],  0)
1977 	);
1978 
1979 	/*
1980 	 * Set max power to 30 dBm and, optionally,
1981 	 * enable TPC in tx descriptors.
1982 	 */
1983 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1984 		(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1985 
1986 	return AH_TRUE;
1987 #undef N
1988 #undef POW_CCK
1989 #undef POW_OFDM
1990 }
1991 
1992 /*
1993  * Sets the transmit power in the baseband for the given
1994  * operating channel and mode.
1995  */
1996 static HAL_BOOL
ar5212SetRateTable(struct ath_hal * ah,HAL_CHANNEL * chan,int16_t tpcScaleReduction,int16_t powerLimit,HAL_BOOL commit,int16_t * pMinPower,int16_t * pMaxPower)1997 ar5212SetRateTable(struct ath_hal *ah, HAL_CHANNEL *chan,
1998 		   int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
1999                    int16_t *pMinPower, int16_t *pMaxPower)
2000 {
2001 	struct ath_hal_5212 *ahp = AH5212(ah);
2002 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2003 	uint16_t *rpow = ahp->ah_ratesArray;
2004 	uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
2005 	uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
2006 	uint16_t twiceMaxRDPower = MAX_RATE_POWER;
2007 	int i;
2008 	uint8_t cfgCtl;
2009 	int8_t twiceAntennaGain, twiceAntennaReduction;
2010 	const RD_EDGES_POWER *rep;
2011 	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2012 	int16_t scaledPower, maxAvailPower = 0;
2013 	int16_t r13, r9, r7, r0;
2014 
2015 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2016 
2017 	twiceMaxRDPower = chan->maxRegTxPower * 2;
2018 	*pMaxPower = -MAX_RATE_POWER;
2019 	*pMinPower = MAX_RATE_POWER;
2020 
2021 	/* Get conformance test limit maximum for this channel */
2022 	cfgCtl = ath_hal_getctl(ah, chan);
2023 	for (i = 0; i < ee->ee_numCtls; i++) {
2024 		uint16_t twiceMinEdgePower;
2025 
2026 		if (ee->ee_ctl[i] == 0)
2027 			continue;
2028 		if (ee->ee_ctl[i] == cfgCtl ||
2029 		    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2030 			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2031 			twiceMinEdgePower = ar5212GetMaxEdgePower(chan->channel, rep);
2032 			if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2033 				/* Find the minimum of all CTL edge powers that apply to this channel */
2034 				twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2035 			} else {
2036 				twiceMaxEdgePower = twiceMinEdgePower;
2037 				break;
2038 			}
2039 		}
2040 	}
2041 
2042 	if (IS_CHAN_G(chan)) {
2043 		/* Check for a CCK CTL for 11G CCK powers */
2044 		cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2045 		for (i = 0; i < ee->ee_numCtls; i++) {
2046 			uint16_t twiceMinEdgePowerCck;
2047 
2048 			if (ee->ee_ctl[i] == 0)
2049 				continue;
2050 			if (ee->ee_ctl[i] == cfgCtl ||
2051 			    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2052 				rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2053 				twiceMinEdgePowerCck = ar5212GetMaxEdgePower(chan->channel, rep);
2054 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2055 					/* Find the minimum of all CTL edge powers that apply to this channel */
2056 					twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2057 				} else {
2058 					twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2059 					break;
2060 				}
2061 			}
2062 		}
2063 	} else {
2064 		/* Set the 11B cck edge power to the one found before */
2065 		twiceMaxEdgePowerCck = twiceMaxEdgePower;
2066 	}
2067 
2068 	/* Get Antenna Gain reduction */
2069 	if (IS_CHAN_5GHZ(chan)) {
2070 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2071 	} else {
2072 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2073 	}
2074 	twiceAntennaReduction =
2075 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2076 
2077 	if (IS_CHAN_OFDM(chan)) {
2078 		/* Get final OFDM target powers */
2079 		if (IS_CHAN_2GHZ(chan)) {
2080 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2081 				ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2082 		} else {
2083 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2084 				ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2085 		}
2086 
2087 		/* Get Maximum OFDM power */
2088 		/* Minimum of target and edge powers */
2089 		scaledPower = AH_MIN(twiceMaxEdgePower,
2090 				twiceMaxRDPower - twiceAntennaReduction);
2091 
2092 		/*
2093 		 * If turbo is set, reduce power to keep power
2094 		 * consumption under 2 Watts.  Note that we always do
2095 		 * this unless specially configured.  Then we limit
2096 		 * power only for non-AP operation.
2097 		 */
2098 		if (IS_CHAN_TURBO(chan)
2099 #ifdef AH_ENABLE_AP_SUPPORT
2100 		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2101 #endif
2102 		) {
2103 			/*
2104 			 * If turbo is set, reduce power to keep power
2105 			 * consumption under 2 Watts
2106 			 */
2107 			if (ee->ee_version >= AR_EEPROM_VER3_1)
2108 				scaledPower = AH_MIN(scaledPower,
2109 					ee->ee_turbo2WMaxPower5);
2110 			/*
2111 			 * EEPROM version 4.0 added an additional
2112 			 * constraint on 2.4GHz channels.
2113 			 */
2114 			if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2115 			    IS_CHAN_2GHZ(chan))
2116 				scaledPower = AH_MIN(scaledPower,
2117 					ee->ee_turbo2WMaxPower2);
2118 		}
2119 
2120 		maxAvailPower = AH_MIN(scaledPower,
2121 					targetPowerOfdm.twicePwr6_24);
2122 
2123 		/* Reduce power by max regulatory domain allowed restrictions */
2124 		scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2125 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2126 		scaledPower = AH_MIN(scaledPower, powerLimit);
2127 
2128 		if (commit) {
2129 			/* Set OFDM rates 9, 12, 18, 24 */
2130 			r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2131 
2132 			/* Set OFDM rates 36, 48, 54, XR */
2133 			rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2134 			rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2135 			r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2136 
2137 			if (ee->ee_version >= AR_EEPROM_VER4_0) {
2138 				/* Setup XR target power from EEPROM */
2139 				rpow[15] = AH_MIN(scaledPower, IS_CHAN_2GHZ(chan) ?
2140 						  ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2141 			} else {
2142 				/* XR uses 6mb power */
2143 				rpow[15] = rpow[0];
2144 			}
2145 			ahp->ah_ofdmTxPower = *pMaxPower;
2146 
2147 		} else {
2148 			r0 = scaledPower;
2149 			r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2150 		}
2151 		*pMinPower = r7;
2152 		*pMaxPower = r0;
2153 
2154 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2155 		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2156 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2157 		    __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2158 		    twiceMaxEdgePower, tpcScaleReduction * 2,
2159 		    chan->channel, chan->channelFlags,
2160 		    maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2161 	}
2162 
2163 	if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
2164 		/* Get final CCK target powers */
2165 		ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2166 			ee->ee_numTargetPwr_11b, &targetPowerCck);
2167 
2168 		/* Reduce power by max regulatory domain allowed restrictions */
2169 		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2170 			twiceMaxRDPower - twiceAntennaReduction);
2171 		if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2172 			maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2173 
2174 		/* Reduce power by user selection */
2175 		scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2176 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2177 		scaledPower = AH_MIN(scaledPower, powerLimit);
2178 
2179 		if (commit) {
2180 			/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2181 			rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2182 			r9 = rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2183 			rpow[10] = rpow[9];
2184 			rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2185 			rpow[12] = rpow[11];
2186 			r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2187 			rpow[14] = rpow[13];
2188 		} else {
2189 			r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2190 			r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2191 		}
2192 
2193 		/* Set min/max power based off OFDM values or initialization */
2194 		if (r13 < *pMinPower)
2195 			*pMinPower = r13;
2196 		if (r9 > *pMaxPower)
2197 			*pMaxPower = r9;
2198 
2199 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2200 		    "%s: cck: MaxRD: %d MaxCTL: %d "
2201 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2202 		    __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2203 		    tpcScaleReduction * 2, chan->channel, chan->channelFlags,
2204 		    maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2205 	}
2206 	if (commit) {
2207 		ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2208 		AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2209 	}
2210 	return AH_TRUE;
2211 }
2212 
2213 HAL_BOOL
ar5212GetChipPowerLimits(struct ath_hal * ah,HAL_CHANNEL * chans,uint32_t nchans)2214 ar5212GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
2215 {
2216 	struct ath_hal_5212 *ahp = AH5212(ah);
2217 	static const uint16_t tpcScaleReductionTable[5] =
2218 		{ 0, 3, 6, 9, MAX_RATE_POWER };
2219 	int16_t minPower, maxPower, tpcInDb, powerLimit;
2220 	HAL_CHANNEL *chan;
2221 	int i;
2222 
2223 	/*
2224 	 * Get Pier table max and min powers.
2225 	 */
2226 	for (i = 0; i < nchans; i++) {
2227 		chan = &chans[i];
2228 		if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2229 			/* NB: rf code returns 1/4 dBm units, convert */
2230 			chan->maxTxPower = maxPower / 2;
2231 			chan->minTxPower = minPower / 2;
2232 		} else {
2233 			HALDEBUG(ah, HAL_DEBUG_ANY,
2234 			    "%s: no min/max power for %u/0x%x\n",
2235 			    __func__, chan->channel, chan->channelFlags);
2236 			chan->maxTxPower = MAX_RATE_POWER;
2237 			chan->minTxPower = 0;
2238 		}
2239 	}
2240 	/*
2241 	 * Now adjust to reflect any global scale and/or CTL's.
2242 	 * (XXX is that correct?)
2243 	 */
2244 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2245 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2246 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2247 	else
2248 		tpcInDb = 0;
2249 	for (i=0; i<nchans; i++) {
2250 		chan = &chans[i];
2251 		if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
2252 					AH_FALSE, &minPower, &maxPower)) {
2253 			HALDEBUG(ah, HAL_DEBUG_ANY,
2254 			    "%s: unable to find max/min power\n",__func__);
2255 			return AH_FALSE;
2256 		}
2257 		if (maxPower < chan->maxTxPower)
2258 			chan->maxTxPower = maxPower;
2259 		if (minPower < chan->minTxPower)
2260 			chan->minTxPower = minPower;
2261 	}
2262 #ifdef AH_DEBUG
2263 	for (i=0; i<nchans; i++) {
2264 		HALDEBUG(ah, HAL_DEBUG_RESET,
2265 		    "Chan %d: MaxPow = %d MinPow = %d\n",
2266 		    chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
2267 	}
2268 #endif
2269 	return AH_TRUE;
2270 }
2271 
2272 /*
2273  * Correct for the gain-delta between ofdm and cck mode target
2274  * powers. Write the results to the rate table and the power table.
2275  *
2276  *   Conventions :
2277  *   1. rpow[ii] is the integer value of 2*(desired power
2278  *    for the rate ii in dBm) to provide 0.5dB resolution. rate
2279  *    mapping is as following :
2280  *     [0..7]  --> ofdm 6, 9, .. 48, 54
2281  *     [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2282  *     [15]    --> XR (all rates get the same power)
2283  *   2. powv[ii]  is the pcdac corresponding to ii/2 dBm.
2284  */
2285 static void
ar5212CorrectGainDelta(struct ath_hal * ah,int twiceOfdmCckDelta)2286 ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2287 {
2288 #define	N(_a)	(sizeof(_a) / sizeof(_a[0]))
2289 	struct ath_hal_5212 *ahp = AH5212(ah);
2290 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2291 	int16_t ratesIndex[N(ahp->ah_ratesArray)];
2292 	uint16_t ii, jj, iter;
2293 	int32_t cckIndex;
2294 	int16_t gainDeltaAdjust;
2295 
2296 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2297 
2298 	gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2299 
2300 	/* make a local copy of desired powers as initial indices */
2301 	OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2302 
2303 	/* fix only the CCK indices */
2304 	for (ii = 8; ii < 15; ii++) {
2305 		/* apply a gain_delta correction of -15 for CCK */
2306 		ratesIndex[ii] -= gainDeltaAdjust;
2307 
2308 		/* Now check for contention with all ofdm target powers */
2309 		jj = 0;
2310 		iter = 0;
2311 		/* indicates not all ofdm rates checked forcontention yet */
2312 		while (jj < 16) {
2313 			if (ratesIndex[ii] < 0)
2314 				ratesIndex[ii] = 0;
2315 			if (jj == 8) {		/* skip CCK rates */
2316 				jj = 15;
2317 				continue;
2318 			}
2319 			if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2320 				if (ahp->ah_ratesArray[jj] == 0)
2321 					ratesIndex[ii]++;
2322 				else if (iter > 50) {
2323 					/*
2324 					 * To avoid pathological case of of
2325 					 * dm target powers 0 and 0.5dBm
2326 					 */
2327 					ratesIndex[ii]++;
2328 				} else
2329 					ratesIndex[ii]--;
2330 				/* check with all rates again */
2331 				jj = 0;
2332 				iter++;
2333 			} else
2334 				jj++;
2335 		}
2336 		if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2337 			ratesIndex[ii] = PWR_TABLE_SIZE -1;
2338 		cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2339 		if (cckIndex < 0)
2340 			cckIndex = 0;
2341 
2342 		/*
2343 		 * Validate that the indexes for the powv are not
2344 		 * out of bounds.
2345 		 */
2346 		HALASSERT(cckIndex < PWR_TABLE_SIZE);
2347 		HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2348 		ahp->ah_pcdacTable[ratesIndex[ii]] =
2349 			ahp->ah_pcdacTable[cckIndex];
2350 	}
2351 	/* Override rate per power table with new values */
2352 	for (ii = 8; ii < 15; ii++)
2353 		ahp->ah_ratesArray[ii] = ratesIndex[ii];
2354 #undef N
2355 }
2356 
2357 /*
2358  * Find the maximum conformance test limit for the given channel and CTL info
2359  */
2360 static uint16_t
ar5212GetMaxEdgePower(uint16_t channel,const RD_EDGES_POWER * pRdEdgesPower)2361 ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2362 {
2363 	/* temp array for holding edge channels */
2364 	uint16_t tempChannelList[NUM_EDGES];
2365 	uint16_t clo = 0, chi = 0, twiceMaxEdgePower;
2366 	int i, numEdges;
2367 
2368 	/* Get the edge power */
2369 	for (i = 0; i < NUM_EDGES; i++) {
2370 		if (pRdEdgesPower[i].rdEdge == 0)
2371 			break;
2372 		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2373 	}
2374 	numEdges = i;
2375 
2376 	ar5212GetLowerUpperValues(channel, tempChannelList,
2377 		numEdges, &clo, &chi);
2378 	/* Get the index for the lower channel */
2379 	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2380 		;
2381 	/* Is lower channel ever outside the rdEdge? */
2382 	HALASSERT(i != numEdges);
2383 
2384 	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2385 		/*
2386 		 * If there's an exact channel match or an inband flag set
2387 		 * on the lower channel use the given rdEdgePower
2388 		 */
2389 		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2390 		HALASSERT(twiceMaxEdgePower > 0);
2391 	} else
2392 		twiceMaxEdgePower = MAX_RATE_POWER;
2393 	return twiceMaxEdgePower;
2394 }
2395 
2396 /*
2397  * Returns interpolated or the scaled up interpolated value
2398  */
2399 static uint16_t
interpolate(uint16_t target,uint16_t srcLeft,uint16_t srcRight,uint16_t targetLeft,uint16_t targetRight)2400 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2401 	uint16_t targetLeft, uint16_t targetRight)
2402 {
2403 	uint16_t rv;
2404 	int16_t lRatio;
2405 
2406 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2407 	if ((targetLeft * targetRight) == 0)
2408 		return 0;
2409 
2410 	if (srcRight != srcLeft) {
2411 		/*
2412 		 * Note the ratio always need to be scaled,
2413 		 * since it will be a fraction.
2414 		 */
2415 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2416 		if (lRatio < 0) {
2417 		    /* Return as Left target if value would be negative */
2418 		    rv = targetLeft;
2419 		} else if (lRatio > EEP_SCALE) {
2420 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
2421 		    rv = targetRight;
2422 		} else {
2423 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2424 					targetLeft) / EEP_SCALE;
2425 		}
2426 	} else {
2427 		rv = targetLeft;
2428 	}
2429 	return rv;
2430 }
2431 
2432 /*
2433  * Return the four rates of target power for the given target power table
2434  * channel, and number of channels
2435  */
2436 static void
ar5212GetTargetPowers(struct ath_hal * ah,HAL_CHANNEL * chan,const TRGT_POWER_INFO * powInfo,uint16_t numChannels,TRGT_POWER_INFO * pNewPower)2437 ar5212GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL *chan,
2438 	const TRGT_POWER_INFO *powInfo,
2439 	uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2440 {
2441 	/* temp array for holding target power channels */
2442 	uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2443 	uint16_t clo = 0, chi = 0, ixlo, ixhi;
2444 	int i;
2445 
2446 	/* Copy the target powers into the temp channel list */
2447 	for (i = 0; i < numChannels; i++)
2448 		tempChannelList[i] = powInfo[i].testChannel;
2449 
2450 	ar5212GetLowerUpperValues(chan->channel, tempChannelList,
2451 		numChannels, &clo, &chi);
2452 
2453 	/* Get the indices for the channel */
2454 	ixlo = ixhi = 0;
2455 	for (i = 0; i < numChannels; i++) {
2456 		if (clo == tempChannelList[i]) {
2457 			ixlo = i;
2458 		}
2459 		if (chi == tempChannelList[i]) {
2460 			ixhi = i;
2461 			break;
2462 		}
2463 	}
2464 
2465 	/*
2466 	 * Get the lower and upper channels, target powers,
2467 	 * and interpolate between them.
2468 	 */
2469 	pNewPower->twicePwr6_24 = interpolate(chan->channel, clo, chi,
2470 		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2471 	pNewPower->twicePwr36 = interpolate(chan->channel, clo, chi,
2472 		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2473 	pNewPower->twicePwr48 = interpolate(chan->channel, clo, chi,
2474 		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2475 	pNewPower->twicePwr54 = interpolate(chan->channel, clo, chi,
2476 		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2477 }
2478 
2479 /*
2480  * Search a list for a specified value v that is within
2481  * EEP_DELTA of the search values.  Return the closest
2482  * values in the list above and below the desired value.
2483  * EEP_DELTA is a factional value; everything is scaled
2484  * so only integer arithmetic is used.
2485  *
2486  * NB: the input list is assumed to be sorted in ascending order
2487  */
2488 void
ar5212GetLowerUpperValues(uint16_t v,uint16_t * lp,uint16_t listSize,uint16_t * vlo,uint16_t * vhi)2489 ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2490                           uint16_t *vlo, uint16_t *vhi)
2491 {
2492 	uint32_t target = v * EEP_SCALE;
2493 	uint16_t *ep = lp+listSize;
2494 
2495 	/*
2496 	 * Check first and last elements for out-of-bounds conditions.
2497 	 */
2498 	if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2499 		*vlo = *vhi = lp[0];
2500 		return;
2501 	}
2502 	if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2503 		*vlo = *vhi = ep[-1];
2504 		return;
2505 	}
2506 
2507 	/* look for value being near or between 2 values in list */
2508 	for (; lp < ep; lp++) {
2509 		/*
2510 		 * If value is close to the current value of the list
2511 		 * then target is not between values, it is one of the values
2512 		 */
2513 		if (lp[0] * EEP_SCALE - target < EEP_DELTA) {
2514 			*vlo = *vhi = lp[0];
2515 			return;
2516 		}
2517 		/*
2518 		 * Look for value being between current value and next value
2519 		 * if so return these 2 values
2520 		 */
2521 		if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2522 			*vlo = lp[0];
2523 			*vhi = lp[1];
2524 			return;
2525 		}
2526 	}
2527 	HALASSERT(AH_FALSE);		/* should not reach here */
2528 }
2529 
2530 /*
2531  * Perform analog "swizzling" of parameters into their location
2532  *
2533  * NB: used by RF backends
2534  */
2535 void
ar5212ModifyRfBuffer(uint32_t * rfBuf,uint32_t reg32,uint32_t numBits,uint32_t firstBit,uint32_t column)2536 ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2537                      uint32_t firstBit, uint32_t column)
2538 {
2539 #define	MAX_ANALOG_START	319		/* XXX */
2540 	uint32_t tmp32, mask, arrayEntry, lastBit;
2541 	int32_t bitPosition, bitsLeft;
2542 
2543 	HALASSERT(column <= 3);
2544 	HALASSERT(numBits <= 32);
2545 	HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2546 
2547 	tmp32 = ath_hal_reverseBits(reg32, numBits);
2548 	arrayEntry = (firstBit - 1) / 8;
2549 	bitPosition = (firstBit - 1) % 8;
2550 	bitsLeft = numBits;
2551 	while (bitsLeft > 0) {
2552 		lastBit = (bitPosition + bitsLeft > 8) ?
2553 			8 : bitPosition + bitsLeft;
2554 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2555 			(column * 8);
2556 		rfBuf[arrayEntry] &= ~mask;
2557 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2558 			(column * 8)) & mask;
2559 		bitsLeft -= 8 - bitPosition;
2560 		tmp32 = tmp32 >> (8 - bitPosition);
2561 		bitPosition = 0;
2562 		arrayEntry++;
2563 	}
2564 #undef MAX_ANALOG_START
2565 }
2566 
2567 /*
2568  * Sets the rate to duration values in MAC - used for multi-
2569  * rate retry.
2570  * The rate duration table needs to cover all valid rate codes;
2571  * the 11g table covers all ofdm rates, while the 11b table
2572  * covers all cck rates => all valid rates get covered between
2573  * these two mode's ratetables!
2574  * But if we're turbo, the ofdm phy is replaced by the turbo phy
2575  * and cck is not valid with turbo => all rates get covered
2576  * by the turbo ratetable only
2577  */
2578 void
ar5212SetRateDurationTable(struct ath_hal * ah,HAL_CHANNEL * chan)2579 ar5212SetRateDurationTable(struct ath_hal *ah, HAL_CHANNEL *chan)
2580 {
2581 	const HAL_RATE_TABLE *rt;
2582 	int i;
2583 
2584 	/* NB: band doesn't matter for 1/2 and 1/4 rate */
2585 	if (IS_CHAN_HALF_RATE(chan)) {
2586 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2587 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
2588 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2589 	} else {
2590 		rt = ar5212GetRateTable(ah,
2591 			IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2592 	}
2593 
2594 	for (i = 0; i < rt->rateCount; ++i)
2595 		OS_REG_WRITE(ah,
2596 			AR_RATE_DURATION(rt->info[i].rateCode),
2597 			ath_hal_computetxtime(ah, rt,
2598 				WLAN_CTRL_FRAME_SIZE,
2599 				rt->info[i].controlRate, AH_FALSE));
2600 	if (!IS_CHAN_TURBO(chan)) {
2601 		/* 11g Table is used to cover the CCK rates. */
2602 		rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2603 		for (i = 0; i < rt->rateCount; ++i) {
2604 			uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2605 
2606 			if (rt->info[i].phy != IEEE80211_T_CCK)
2607 				continue;
2608 
2609 			OS_REG_WRITE(ah, reg,
2610 				ath_hal_computetxtime(ah, rt,
2611 					WLAN_CTRL_FRAME_SIZE,
2612 					rt->info[i].controlRate, AH_FALSE));
2613 			/* cck rates have short preamble option also */
2614 			if (rt->info[i].shortPreamble) {
2615 				reg += rt->info[i].shortPreamble << 2;
2616 				OS_REG_WRITE(ah, reg,
2617 					ath_hal_computetxtime(ah, rt,
2618 						WLAN_CTRL_FRAME_SIZE,
2619 						rt->info[i].controlRate,
2620 						AH_TRUE));
2621 			}
2622 		}
2623 	}
2624 }
2625 
2626 /* Adjust various register settings based on half/quarter rate clock setting.
2627  * This includes: +USEC, TX/RX latency,
2628  *                + IFS params: slot, eifs, misc etc.
2629  */
2630 void
ar5212SetIFSTiming(struct ath_hal * ah,HAL_CHANNEL * chan)2631 ar5212SetIFSTiming(struct ath_hal *ah, HAL_CHANNEL *chan)
2632 {
2633 	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2634 
2635 	HALASSERT(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan));
2636 
2637 	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2638 	if (IS_CHAN_HALF_RATE(chan)) {
2639 		slot = IFS_SLOT_HALF_RATE;
2640 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2641 		txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2642 		usec = HALF_RATE_USEC;
2643 		eifs = IFS_EIFS_HALF_RATE;
2644 		init_usec = INIT_USEC >> 1;
2645 	} else { /* quarter rate */
2646 		slot = IFS_SLOT_QUARTER_RATE;
2647 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2648 		txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2649 		usec = QUARTER_RATE_USEC;
2650 		eifs = IFS_EIFS_QUARTER_RATE;
2651 		init_usec = INIT_USEC >> 2;
2652 	}
2653 
2654 	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2655 	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2656 	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2657 	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2658 				AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2659 }
2660