xref: /netbsd/sys/dev/pci/arcmsr.c (revision 882ffae7)
1 /*	$NetBSD: arcmsr.c,v 1.44 2022/09/25 17:52:25 thorpej Exp $ */
2 /*	$OpenBSD: arc.c,v 1.68 2007/10/27 03:28:27 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2007, 2008 Juan Romero Pardines <xtraeme@netbsd.org>
6  * Copyright (c) 2006 David Gwynne <dlg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include "bio.h"
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: arcmsr.c,v 1.44 2022/09/25 17:52:25 thorpej Exp $");
25 
26 #include <sys/param.h>
27 #include <sys/buf.h>
28 #include <sys/kernel.h>
29 #include <sys/device.h>
30 #include <sys/kmem.h>
31 #include <sys/kthread.h>
32 #include <sys/mutex.h>
33 #include <sys/condvar.h>
34 #include <sys/rwlock.h>
35 
36 #if NBIO > 0
37 #include <sys/ioctl.h>
38 #include <dev/biovar.h>
39 #endif
40 
41 #include <dev/pci/pcireg.h>
42 #include <dev/pci/pcivar.h>
43 #include <dev/pci/pcidevs.h>
44 
45 #include <dev/scsipi/scsipi_all.h>
46 #include <dev/scsipi/scsi_all.h>
47 #include <dev/scsipi/scsiconf.h>
48 
49 #include <dev/sysmon/sysmonvar.h>
50 
51 #include <sys/bus.h>
52 
53 #include <dev/pci/arcmsrvar.h>
54 
55 /* #define ARC_DEBUG */
56 #ifdef ARC_DEBUG
57 #define ARC_D_INIT	(1<<0)
58 #define ARC_D_RW	(1<<1)
59 #define ARC_D_DB	(1<<2)
60 
61 int arcdebug = 0;
62 
63 #define DPRINTF(p...)		do { if (arcdebug) printf(p); } while (0)
64 #define DNPRINTF(n, p...)	do { if ((n) & arcdebug) printf(p); } while (0)
65 
66 #else
67 #define DPRINTF(p, ...)		/* p */
68 #define DNPRINTF(n, p, ...)	/* n, p */
69 #endif
70 
71 /*
72  * the fw header must always equal this.
73  */
74 #if NBIO > 0
75 static struct arc_fw_hdr arc_fw_hdr = { 0x5e, 0x01, 0x61 };
76 #endif
77 
78 /*
79  * autoconf(9) glue.
80  */
81 static int 	arc_match(device_t, cfdata_t, void *);
82 static void 	arc_attach(device_t, device_t, void *);
83 static int 	arc_detach(device_t, int);
84 static bool 	arc_shutdown(device_t, int);
85 static int 	arc_intr(void *);
86 static void	arc_minphys(struct buf *);
87 
88 CFATTACH_DECL_NEW(arcmsr, sizeof(struct arc_softc),
89 	arc_match, arc_attach, arc_detach, NULL);
90 
91 /*
92  * bio(4) and sysmon_envsys(9) glue.
93  */
94 #if NBIO > 0
95 static int 	arc_bioctl(device_t, u_long, void *);
96 static int 	arc_bio_inq(struct arc_softc *, struct bioc_inq *);
97 static int 	arc_bio_vol(struct arc_softc *, struct bioc_vol *);
98 static int	arc_bio_disk_volume(struct arc_softc *, struct bioc_disk *);
99 static int	arc_bio_disk_novol(struct arc_softc *, struct bioc_disk *);
100 static void	arc_bio_disk_filldata(struct arc_softc *, struct bioc_disk *,
101 				      struct arc_fw_diskinfo *, int);
102 static int 	arc_bio_alarm(struct arc_softc *, struct bioc_alarm *);
103 static int 	arc_bio_alarm_state(struct arc_softc *, struct bioc_alarm *);
104 static int 	arc_bio_getvol(struct arc_softc *, int,
105 			       struct arc_fw_volinfo *);
106 static int	arc_bio_setstate(struct arc_softc *, struct bioc_setstate *);
107 static int 	arc_bio_volops(struct arc_softc *, struct bioc_volops *);
108 static void 	arc_create_sensors(void *);
109 static void 	arc_refresh_sensors(struct sysmon_envsys *, envsys_data_t *);
110 static int	arc_fw_parse_status_code(struct arc_softc *, uint8_t *);
111 #endif
112 
113 /*
114  * interface for scsi midlayer to talk to.
115  */
116 static void 	arc_scsi_cmd(struct scsipi_channel *, scsipi_adapter_req_t,
117     void *);
118 
119 /*
120  * code to deal with getting bits in and out of the bus space.
121  */
122 static uint32_t arc_read(struct arc_softc *, bus_size_t);
123 static void 	arc_read_region(struct arc_softc *, bus_size_t, void *,
124     size_t);
125 static void 	arc_write(struct arc_softc *, bus_size_t, uint32_t);
126 #if NBIO > 0
127 static void 	arc_write_region(struct arc_softc *, bus_size_t, void *,
128     size_t);
129 #endif
130 static int 	arc_wait_eq(struct arc_softc *, bus_size_t, uint32_t,
131     uint32_t);
132 #ifdef unused
133 static int 	arc_wait_ne(struct arc_softc *, bus_size_t, uint32_t,
134     uint32_t);
135 #endif
136 static int	arc_msg0(struct arc_softc *, uint32_t);
137 static struct arc_dmamem 	*arc_dmamem_alloc(struct arc_softc *, size_t);
138 static void	arc_dmamem_free(struct arc_softc *,
139     struct arc_dmamem *);
140 
141 static int 	arc_alloc_ccbs(device_t);
142 static struct arc_ccb	*arc_get_ccb(struct arc_softc *);
143 static void 	arc_put_ccb(struct arc_softc *, struct arc_ccb *);
144 static int 	arc_load_xs(struct arc_ccb *);
145 static int 	arc_complete(struct arc_softc *, struct arc_ccb *, int);
146 static void 	arc_scsi_cmd_done(struct arc_softc *, struct arc_ccb *,
147     uint32_t);
148 
149 /*
150  * real stuff for dealing with the hardware.
151  */
152 static int 	arc_map_pci_resources(device_t, struct pci_attach_args *);
153 static void 	arc_unmap_pci_resources(struct arc_softc *);
154 static int 	arc_query_firmware(device_t);
155 
156 /*
157  * stuff to do messaging via the doorbells.
158  */
159 #if NBIO > 0
160 static void 	arc_lock(struct arc_softc *);
161 static void 	arc_unlock(struct arc_softc *);
162 static void 	arc_wait(struct arc_softc *);
163 static uint8_t 	arc_msg_cksum(void *, uint16_t);
164 static int 	arc_msgbuf(struct arc_softc *, void *, size_t, void *, size_t);
165 #endif
166 
167 #define arc_push(_s, _r)	arc_write((_s), ARC_REG_POST_QUEUE, (_r))
168 #define arc_pop(_s)		arc_read((_s), ARC_REG_REPLY_QUEUE)
169 
170 static int
arc_match(device_t parent,cfdata_t match,void * aux)171 arc_match(device_t parent, cfdata_t match, void *aux)
172 {
173 	struct pci_attach_args *pa = aux;
174 
175 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ARECA) {
176 		switch (PCI_PRODUCT(pa->pa_id)) {
177 		case PCI_PRODUCT_ARECA_ARC1110:
178 		case PCI_PRODUCT_ARECA_ARC1120:
179 		case PCI_PRODUCT_ARECA_ARC1130:
180 		case PCI_PRODUCT_ARECA_ARC1160:
181 		case PCI_PRODUCT_ARECA_ARC1170:
182 		case PCI_PRODUCT_ARECA_ARC1200:
183 		case PCI_PRODUCT_ARECA_ARC1202:
184 		case PCI_PRODUCT_ARECA_ARC1210:
185 		case PCI_PRODUCT_ARECA_ARC1220:
186 		case PCI_PRODUCT_ARECA_ARC1230:
187 		case PCI_PRODUCT_ARECA_ARC1260:
188 		case PCI_PRODUCT_ARECA_ARC1270:
189 		case PCI_PRODUCT_ARECA_ARC1280:
190 		case PCI_PRODUCT_ARECA_ARC1380:
191 		case PCI_PRODUCT_ARECA_ARC1381:
192 		case PCI_PRODUCT_ARECA_ARC1680:
193 		case PCI_PRODUCT_ARECA_ARC1681:
194 			return 1;
195 		default:
196 			break;
197 		}
198 	}
199 
200 	return 0;
201 }
202 
203 static void
arc_attach(device_t parent,device_t self,void * aux)204 arc_attach(device_t parent, device_t self, void *aux)
205 {
206 	struct arc_softc	*sc = device_private(self);
207 	struct pci_attach_args	*pa = aux;
208 	struct scsipi_adapter	*adapt = &sc->sc_adapter;
209 	struct scsipi_channel	*chan = &sc->sc_chan;
210 
211 	sc->sc_dev = self;
212 	sc->sc_talking = 0;
213 	rw_init(&sc->sc_rwlock);
214 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_BIO);
215 	cv_init(&sc->sc_condvar, "arcdb");
216 
217 	if (arc_map_pci_resources(self, pa) != 0) {
218 		/* error message printed by arc_map_pci_resources */
219 		return;
220 	}
221 
222 	if (arc_query_firmware(self) != 0) {
223 		/* error message printed by arc_query_firmware */
224 		goto unmap_pci;
225 	}
226 
227 	if (arc_alloc_ccbs(self) != 0) {
228 		/* error message printed by arc_alloc_ccbs */
229 		goto unmap_pci;
230 	}
231 
232 	if (!pmf_device_register1(self, NULL, NULL, arc_shutdown))
233 		panic("%s: couldn't establish shutdown handler\n",
234 		    device_xname(self));
235 
236 	memset(adapt, 0, sizeof(*adapt));
237 	adapt->adapt_dev = self;
238 	adapt->adapt_nchannels = 1;
239 	adapt->adapt_openings = sc->sc_req_count / ARC_MAX_TARGET;
240 	adapt->adapt_max_periph = adapt->adapt_openings;
241 	adapt->adapt_minphys = arc_minphys;
242 	adapt->adapt_request = arc_scsi_cmd;
243 	adapt->adapt_flags = SCSIPI_ADAPT_MPSAFE;
244 
245 	memset(chan, 0, sizeof(*chan));
246 	chan->chan_adapter = adapt;
247 	chan->chan_bustype = &scsi_bustype;
248 	chan->chan_nluns = ARC_MAX_LUN;
249 	chan->chan_ntargets = ARC_MAX_TARGET;
250 	chan->chan_id = ARC_MAX_TARGET;
251 	chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
252 
253 	/*
254 	 * Save the device_t returned, because we could to attach
255 	 * devices via the management interface.
256 	 */
257 	sc->sc_scsibus_dv = config_found(self, &sc->sc_chan, scsiprint,
258 	    CFARGS_NONE);
259 
260 	/* enable interrupts */
261 	arc_write(sc, ARC_REG_INTRMASK,
262 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRSTAT_DOORBELL));
263 
264 #if NBIO > 0
265 	/*
266 	 * Register the driver to bio(4) and setup the sensors.
267 	 */
268 	if (bio_register(self, arc_bioctl) != 0)
269 		panic("%s: bioctl registration failed\n", device_xname(self));
270 
271 	/*
272 	 * you need to talk to the firmware to get volume info. our firmware
273 	 * interface relies on being able to sleep, so we need to use a thread
274 	 * to do the work.
275 	 */
276 	if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
277 	    arc_create_sensors, sc, &sc->sc_lwp, "arcmsr_sensors") != 0)
278 		panic("%s: unable to create a kernel thread for sensors\n",
279 		    device_xname(self));
280 #endif
281 
282         return;
283 
284 unmap_pci:
285 	arc_unmap_pci_resources(sc);
286 }
287 
288 static int
arc_detach(device_t self,int flags)289 arc_detach(device_t self, int flags)
290 {
291 	struct arc_softc		*sc = device_private(self);
292 
293 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
294 		aprint_error_dev(self, "timeout waiting to stop bg rebuild\n");
295 
296 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
297 		aprint_error_dev(self, "timeout waiting to flush cache\n");
298 
299 	if (sc->sc_sme != NULL)
300 		sysmon_envsys_unregister(sc->sc_sme);
301 
302 	return 0;
303 }
304 
305 static bool
arc_shutdown(device_t self,int how)306 arc_shutdown(device_t self, int how)
307 {
308 	struct arc_softc		*sc = device_private(self);
309 
310 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
311 		aprint_error_dev(self, "timeout waiting to stop bg rebuild\n");
312 
313 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
314 		aprint_error_dev(self, "timeout waiting to flush cache\n");
315 
316 	return true;
317 }
318 
319 static void
arc_minphys(struct buf * bp)320 arc_minphys(struct buf *bp)
321 {
322 	if (bp->b_bcount > MAXPHYS)
323 		bp->b_bcount = MAXPHYS;
324 	minphys(bp);
325 }
326 
327 static int
arc_intr(void * arg)328 arc_intr(void *arg)
329 {
330 	struct arc_softc		*sc = arg;
331 	struct arc_ccb			*ccb = NULL;
332 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
333 	struct arc_io_cmd		*cmd;
334 	uint32_t			reg, intrstat;
335 
336 	mutex_spin_enter(&sc->sc_mutex);
337 	intrstat = arc_read(sc, ARC_REG_INTRSTAT);
338 	if (intrstat == 0x0) {
339 		mutex_spin_exit(&sc->sc_mutex);
340 		return 0;
341 	}
342 
343 	intrstat &= ARC_REG_INTRSTAT_POSTQUEUE | ARC_REG_INTRSTAT_DOORBELL;
344 	arc_write(sc, ARC_REG_INTRSTAT, intrstat);
345 
346 	if (intrstat & ARC_REG_INTRSTAT_DOORBELL) {
347 		if (sc->sc_talking) {
348 			arc_write(sc, ARC_REG_INTRMASK,
349 			    ~ARC_REG_INTRMASK_POSTQUEUE);
350 			cv_broadcast(&sc->sc_condvar);
351 		} else {
352 			/* otherwise drop it */
353 			reg = arc_read(sc, ARC_REG_OUTB_DOORBELL);
354 			arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
355 			if (reg & ARC_REG_OUTB_DOORBELL_WRITE_OK)
356 				arc_write(sc, ARC_REG_INB_DOORBELL,
357 				    ARC_REG_INB_DOORBELL_READ_OK);
358 		}
359 	}
360 	mutex_spin_exit(&sc->sc_mutex);
361 
362 	while ((reg = arc_pop(sc)) != 0xffffffff) {
363 		cmd = (struct arc_io_cmd *)(kva +
364 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
365 		    (uint32_t)ARC_DMA_DVA(sc->sc_requests)));
366 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
367 
368 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
369 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
370 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
371 
372 		arc_scsi_cmd_done(sc, ccb, reg);
373 	}
374 
375 
376 	return 1;
377 }
378 
379 void
arc_scsi_cmd(struct scsipi_channel * chan,scsipi_adapter_req_t req,void * arg)380 arc_scsi_cmd(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg)
381 {
382 	struct scsipi_periph		*periph;
383 	struct scsipi_xfer		*xs;
384 	struct scsipi_adapter		*adapt = chan->chan_adapter;
385 	struct arc_softc		*sc = device_private(adapt->adapt_dev);
386 	struct arc_ccb			*ccb;
387 	struct arc_msg_scsicmd		*cmd;
388 	uint32_t			reg;
389 	uint8_t				target;
390 
391 	switch (req) {
392 	case ADAPTER_REQ_GROW_RESOURCES:
393 		/* Not supported. */
394 		return;
395 	case ADAPTER_REQ_SET_XFER_MODE:
396 		/* Not supported. */
397 		return;
398 	case ADAPTER_REQ_RUN_XFER:
399 		break;
400 	}
401 
402 	mutex_spin_enter(&sc->sc_mutex);
403 
404 	xs = arg;
405 	periph = xs->xs_periph;
406 	target = periph->periph_target;
407 
408 	if (xs->cmdlen > ARC_MSG_CDBLEN) {
409 		memset(&xs->sense, 0, sizeof(xs->sense));
410 		xs->sense.scsi_sense.response_code = SSD_RCODE_VALID | 0x70;
411 		xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
412 		xs->sense.scsi_sense.asc = 0x20;
413 		xs->error = XS_SENSE;
414 		xs->status = SCSI_CHECK;
415 		mutex_spin_exit(&sc->sc_mutex);
416 		scsipi_done(xs);
417 		return;
418 	}
419 
420 	ccb = arc_get_ccb(sc);
421 	if (ccb == NULL) {
422 		xs->error = XS_RESOURCE_SHORTAGE;
423 		mutex_spin_exit(&sc->sc_mutex);
424 		scsipi_done(xs);
425 		return;
426 	}
427 
428 	ccb->ccb_xs = xs;
429 
430 	if (arc_load_xs(ccb) != 0) {
431 		xs->error = XS_DRIVER_STUFFUP;
432 		arc_put_ccb(sc, ccb);
433 		mutex_spin_exit(&sc->sc_mutex);
434 		scsipi_done(xs);
435 		return;
436 	}
437 
438 	cmd = &ccb->ccb_cmd->cmd;
439 	reg = ccb->ccb_cmd_post;
440 
441 	/* bus is always 0 */
442 	cmd->target = target;
443 	cmd->lun = periph->periph_lun;
444 	cmd->function = 1; /* XXX magic number */
445 
446 	cmd->cdb_len = xs->cmdlen;
447 	cmd->sgl_len = ccb->ccb_dmamap->dm_nsegs;
448 	if (xs->xs_control & XS_CTL_DATA_OUT)
449 		cmd->flags = ARC_MSG_SCSICMD_FLAG_WRITE;
450 	if (ccb->ccb_dmamap->dm_nsegs > ARC_SGL_256LEN) {
451 		cmd->flags |= ARC_MSG_SCSICMD_FLAG_SGL_BSIZE_512;
452 		reg |= ARC_REG_POST_QUEUE_BIGFRAME;
453 	}
454 
455 	cmd->context = htole32(ccb->ccb_id);
456 	cmd->data_len = htole32(xs->datalen);
457 
458 	memcpy(cmd->cdb, xs->cmd, xs->cmdlen);
459 
460 	/* we've built the command, let's put it on the hw */
461 	bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
462 	    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
463 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
464 
465 	arc_push(sc, reg);
466 	if (xs->xs_control & XS_CTL_POLL) {
467 		if (arc_complete(sc, ccb, xs->timeout) != 0) {
468 			xs->error = XS_DRIVER_STUFFUP;
469 			mutex_spin_exit(&sc->sc_mutex);
470 			scsipi_done(xs);
471 			return;
472 		}
473 	}
474 
475 	mutex_spin_exit(&sc->sc_mutex);
476 }
477 
478 int
arc_load_xs(struct arc_ccb * ccb)479 arc_load_xs(struct arc_ccb *ccb)
480 {
481 	struct arc_softc		*sc = ccb->ccb_sc;
482 	struct scsipi_xfer		*xs = ccb->ccb_xs;
483 	bus_dmamap_t			dmap = ccb->ccb_dmamap;
484 	struct arc_sge			*sgl = ccb->ccb_cmd->sgl, *sge;
485 	uint64_t			addr;
486 	int				i, error;
487 
488 	if (xs->datalen == 0)
489 		return 0;
490 
491 	error = bus_dmamap_load(sc->sc_dmat, dmap,
492 	    xs->data, xs->datalen, NULL,
493 	    (xs->xs_control & XS_CTL_NOSLEEP) ?
494 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
495 	if (error != 0) {
496 		aprint_error("%s: error %d loading dmamap\n",
497 		    device_xname(sc->sc_dev), error);
498 		return 1;
499 	}
500 
501 	for (i = 0; i < dmap->dm_nsegs; i++) {
502 		sge = &sgl[i];
503 
504 		sge->sg_hdr = htole32(ARC_SGE_64BIT | dmap->dm_segs[i].ds_len);
505 		addr = dmap->dm_segs[i].ds_addr;
506 		sge->sg_hi_addr = htole32((uint32_t)(addr >> 32));
507 		sge->sg_lo_addr = htole32((uint32_t)addr);
508 	}
509 
510 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
511 	    (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD :
512 	    BUS_DMASYNC_PREWRITE);
513 
514 	return 0;
515 }
516 
517 void
arc_scsi_cmd_done(struct arc_softc * sc,struct arc_ccb * ccb,uint32_t reg)518 arc_scsi_cmd_done(struct arc_softc *sc, struct arc_ccb *ccb, uint32_t reg)
519 {
520 	struct scsipi_xfer		*xs = ccb->ccb_xs;
521 	struct arc_msg_scsicmd		*cmd;
522 
523 	if (xs->datalen != 0) {
524 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
525 		    ccb->ccb_dmamap->dm_mapsize,
526 		    (xs->xs_control & XS_CTL_DATA_IN) ?
527 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
528 		bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
529 	}
530 
531 	/* timeout_del */
532 	xs->status |= XS_STS_DONE;
533 
534 	if (reg & ARC_REG_REPLY_QUEUE_ERR) {
535 		cmd = &ccb->ccb_cmd->cmd;
536 
537 		switch (cmd->status) {
538 		case ARC_MSG_STATUS_SELTIMEOUT:
539 		case ARC_MSG_STATUS_ABORTED:
540 		case ARC_MSG_STATUS_INIT_FAIL:
541 			xs->status = SCSI_OK;
542 			xs->error = XS_SELTIMEOUT;
543 			break;
544 
545 		case SCSI_CHECK:
546 			memset(&xs->sense, 0, sizeof(xs->sense));
547 			memcpy(&xs->sense, cmd->sense_data,
548 			    uimin(ARC_MSG_SENSELEN, sizeof(xs->sense)));
549 			xs->sense.scsi_sense.response_code =
550 			    SSD_RCODE_VALID | 0x70;
551 			xs->status = SCSI_CHECK;
552 			xs->error = XS_SENSE;
553 			xs->resid = 0;
554 			break;
555 
556 		default:
557 			/* unknown device status */
558 			xs->error = XS_BUSY; /* try again later? */
559 			xs->status = SCSI_BUSY;
560 			break;
561 		}
562 	} else {
563 		xs->status = SCSI_OK;
564 		xs->error = XS_NOERROR;
565 		xs->resid = 0;
566 	}
567 
568 	arc_put_ccb(sc, ccb);
569 	scsipi_done(xs);
570 }
571 
572 int
arc_complete(struct arc_softc * sc,struct arc_ccb * nccb,int timeout)573 arc_complete(struct arc_softc *sc, struct arc_ccb *nccb, int timeout)
574 {
575 	struct arc_ccb			*ccb = NULL;
576 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
577 	struct arc_io_cmd		*cmd;
578 	uint32_t			reg;
579 
580 	do {
581 		reg = arc_pop(sc);
582 		if (reg == 0xffffffff) {
583 			if (timeout-- == 0)
584 				return 1;
585 
586 			delay(1000);
587 			continue;
588 		}
589 
590 		cmd = (struct arc_io_cmd *)(kva +
591 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
592 		    ARC_DMA_DVA(sc->sc_requests)));
593 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
594 
595 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
596 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
597 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
598 
599 		arc_scsi_cmd_done(sc, ccb, reg);
600 	} while (nccb != ccb);
601 
602 	return 0;
603 }
604 
605 int
arc_map_pci_resources(device_t self,struct pci_attach_args * pa)606 arc_map_pci_resources(device_t self, struct pci_attach_args *pa)
607 {
608 	struct arc_softc		*sc = device_private(self);
609 	pcireg_t			memtype;
610 	pci_intr_handle_t		ih;
611 	char intrbuf[PCI_INTRSTR_LEN];
612 
613 	sc->sc_pc = pa->pa_pc;
614 	sc->sc_tag = pa->pa_tag;
615 	sc->sc_dmat = pa->pa_dmat;
616 
617 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, ARC_PCI_BAR);
618 	if (pci_mapreg_map(pa, ARC_PCI_BAR, memtype, 0, &sc->sc_iot,
619 	    &sc->sc_ioh, NULL, &sc->sc_ios) != 0) {
620 		aprint_error(": unable to map system interface register\n");
621 		return 1;
622 	}
623 
624 	if (pci_intr_map(pa, &ih) != 0) {
625 		aprint_error(": unable to map interrupt\n");
626 		goto unmap;
627 	}
628 
629 	pci_intr_setattr(pa->pa_pc, &ih, PCI_INTR_MPSAFE, true);
630 
631 	sc->sc_ih = pci_intr_establish_xname(pa->pa_pc, ih, IPL_BIO,
632 	    arc_intr, sc, device_xname(self));
633 	if (sc->sc_ih == NULL) {
634 		aprint_error(": unable to map interrupt [2]\n");
635 		goto unmap;
636 	}
637 
638 	aprint_normal("\n");
639 	aprint_normal_dev(self, "interrupting at %s\n",
640 	    pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf)));
641 
642 	return 0;
643 
644 unmap:
645 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
646 	sc->sc_ios = 0;
647 	return 1;
648 }
649 
650 void
arc_unmap_pci_resources(struct arc_softc * sc)651 arc_unmap_pci_resources(struct arc_softc *sc)
652 {
653 	pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
654 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
655 	sc->sc_ios = 0;
656 }
657 
658 int
arc_query_firmware(device_t self)659 arc_query_firmware(device_t self)
660 {
661 	struct arc_softc 		*sc = device_private(self);
662 	struct arc_msg_firmware_info	fwinfo;
663 	char				string[81]; /* sizeof(vendor)*2+1 */
664 
665 	if (arc_wait_eq(sc, ARC_REG_OUTB_ADDR1, ARC_REG_OUTB_ADDR1_FIRMWARE_OK,
666 	    ARC_REG_OUTB_ADDR1_FIRMWARE_OK) != 0) {
667 		aprint_debug_dev(self, "timeout waiting for firmware ok\n");
668 		return 1;
669 	}
670 
671 	if (arc_msg0(sc, ARC_REG_INB_MSG0_GET_CONFIG) != 0) {
672 		aprint_debug_dev(self, "timeout waiting for get config\n");
673 		return 1;
674 	}
675 
676 	if (arc_msg0(sc, ARC_REG_INB_MSG0_START_BGRB) != 0) {
677 		aprint_debug_dev(self, "timeout waiting to start bg rebuild\n");
678 		return 1;
679 	}
680 
681 	arc_read_region(sc, ARC_REG_MSGBUF, &fwinfo, sizeof(fwinfo));
682 
683 	DNPRINTF(ARC_D_INIT, "%s: signature: 0x%08x\n",
684 	    device_xname(self), htole32(fwinfo.signature));
685 
686 	if (htole32(fwinfo.signature) != ARC_FWINFO_SIGNATURE_GET_CONFIG) {
687 		aprint_error_dev(self, "invalid firmware info from iop\n");
688 		return 1;
689 	}
690 
691 	DNPRINTF(ARC_D_INIT, "%s: request_len: %d\n",
692 	    device_xname(self), htole32(fwinfo.request_len));
693 	DNPRINTF(ARC_D_INIT, "%s: queue_len: %d\n",
694 	    device_xname(self), htole32(fwinfo.queue_len));
695 	DNPRINTF(ARC_D_INIT, "%s: sdram_size: %d\n",
696 	    device_xname(self), htole32(fwinfo.sdram_size));
697 	DNPRINTF(ARC_D_INIT, "%s: sata_ports: %d\n",
698 	    device_xname(self), htole32(fwinfo.sata_ports));
699 
700 	strnvisx(string, sizeof(string), fwinfo.vendor, sizeof(fwinfo.vendor),
701 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
702 	DNPRINTF(ARC_D_INIT, "%s: vendor: \"%s\"\n",
703 	    device_xname(self), string);
704 
705 	strnvisx(string, sizeof(string), fwinfo.model, sizeof(fwinfo.model),
706 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
707 	aprint_normal_dev(self, "Areca %s Host Adapter RAID controller\n",
708 	    string);
709 
710 	strnvisx(string, sizeof(string), fwinfo.fw_version,
711 	    sizeof(fwinfo.fw_version), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
712 	DNPRINTF(ARC_D_INIT, "%s: version: \"%s\"\n",
713 	    device_xname(self), string);
714 
715 	aprint_normal_dev(self, "%d ports, %dMB SDRAM, firmware <%s>\n",
716 	    htole32(fwinfo.sata_ports), htole32(fwinfo.sdram_size), string);
717 
718 	if (htole32(fwinfo.request_len) != ARC_MAX_IOCMDLEN) {
719 		aprint_error_dev(self,
720 		    "unexpected request frame size (%d != %d)\n",
721 		    htole32(fwinfo.request_len), ARC_MAX_IOCMDLEN);
722 		return 1;
723 	}
724 
725 	sc->sc_req_count = htole32(fwinfo.queue_len);
726 
727 	return 0;
728 }
729 
730 #if NBIO > 0
731 static int
arc_bioctl(device_t self,u_long cmd,void * addr)732 arc_bioctl(device_t self, u_long cmd, void *addr)
733 {
734 	struct arc_softc *sc = device_private(self);
735 	int error = 0;
736 
737 	switch (cmd) {
738 	case BIOCINQ:
739 		error = arc_bio_inq(sc, (struct bioc_inq *)addr);
740 		break;
741 
742 	case BIOCVOL:
743 		error = arc_bio_vol(sc, (struct bioc_vol *)addr);
744 		break;
745 
746 	case BIOCDISK:
747 		error = arc_bio_disk_volume(sc, (struct bioc_disk *)addr);
748 		break;
749 
750 	case BIOCDISK_NOVOL:
751 		error = arc_bio_disk_novol(sc, (struct bioc_disk *)addr);
752 		break;
753 
754 	case BIOCALARM:
755 		error = arc_bio_alarm(sc, (struct bioc_alarm *)addr);
756 		break;
757 
758 	case BIOCSETSTATE:
759 		error = arc_bio_setstate(sc, (struct bioc_setstate *)addr);
760 		break;
761 
762 	case BIOCVOLOPS:
763 		error = arc_bio_volops(sc, (struct bioc_volops *)addr);
764 		break;
765 
766 	default:
767 		error = ENOTTY;
768 		break;
769 	}
770 
771 	return error;
772 }
773 
774 static int
arc_fw_parse_status_code(struct arc_softc * sc,uint8_t * reply)775 arc_fw_parse_status_code(struct arc_softc *sc, uint8_t *reply)
776 {
777 	switch (*reply) {
778 	case ARC_FW_CMD_RAIDINVAL:
779 		printf("%s: firmware error (invalid raid set)\n",
780 		    device_xname(sc->sc_dev));
781 		return EINVAL;
782 	case ARC_FW_CMD_VOLINVAL:
783 		printf("%s: firmware error (invalid volume set)\n",
784 		    device_xname(sc->sc_dev));
785 		return EINVAL;
786 	case ARC_FW_CMD_NORAID:
787 		printf("%s: firmware error (unexistent raid set)\n",
788 		    device_xname(sc->sc_dev));
789 		return ENODEV;
790 	case ARC_FW_CMD_NOVOLUME:
791 		printf("%s: firmware error (unexistent volume set)\n",
792 		    device_xname(sc->sc_dev));
793 		return ENODEV;
794 	case ARC_FW_CMD_NOPHYSDRV:
795 		printf("%s: firmware error (unexistent physical drive)\n",
796 		    device_xname(sc->sc_dev));
797 		return ENODEV;
798 	case ARC_FW_CMD_PARAM_ERR:
799 		printf("%s: firmware error (parameter error)\n",
800 		    device_xname(sc->sc_dev));
801 		return EINVAL;
802 	case ARC_FW_CMD_UNSUPPORTED:
803 		printf("%s: firmware error (unsupported command)\n",
804 		    device_xname(sc->sc_dev));
805 		return EOPNOTSUPP;
806 	case ARC_FW_CMD_DISKCFG_CHGD:
807 		printf("%s: firmware error (disk configuration changed)\n",
808 		    device_xname(sc->sc_dev));
809 		return EINVAL;
810 	case ARC_FW_CMD_PASS_INVAL:
811 		printf("%s: firmware error (invalid password)\n",
812 		    device_xname(sc->sc_dev));
813 		return EINVAL;
814 	case ARC_FW_CMD_NODISKSPACE:
815 		printf("%s: firmware error (no disk space available)\n",
816 		    device_xname(sc->sc_dev));
817 		return EOPNOTSUPP;
818 	case ARC_FW_CMD_CHECKSUM_ERR:
819 		printf("%s: firmware error (checksum error)\n",
820 		    device_xname(sc->sc_dev));
821 		return EINVAL;
822 	case ARC_FW_CMD_PASS_REQD:
823 		printf("%s: firmware error (password required)\n",
824 		    device_xname(sc->sc_dev));
825 		return EPERM;
826 	case ARC_FW_CMD_OK:
827 	default:
828 		return 0;
829 	}
830 }
831 
832 static int
arc_bio_alarm(struct arc_softc * sc,struct bioc_alarm * ba)833 arc_bio_alarm(struct arc_softc *sc, struct bioc_alarm *ba)
834 {
835 	uint8_t	request[2], reply[1];
836 	size_t	len;
837 	int	error = 0;
838 
839 	switch (ba->ba_opcode) {
840 	case BIOC_SAENABLE:
841 	case BIOC_SADISABLE:
842 		request[0] = ARC_FW_SET_ALARM;
843 		request[1] = (ba->ba_opcode == BIOC_SAENABLE) ?
844 		    ARC_FW_SET_ALARM_ENABLE : ARC_FW_SET_ALARM_DISABLE;
845 		len = sizeof(request);
846 
847 		break;
848 
849 	case BIOC_SASILENCE:
850 		request[0] = ARC_FW_MUTE_ALARM;
851 		len = 1;
852 
853 		break;
854 
855 	case BIOC_GASTATUS:
856 		/* system info is too big/ugly to deal with here */
857 		return arc_bio_alarm_state(sc, ba);
858 
859 	default:
860 		return EOPNOTSUPP;
861 	}
862 
863 	error = arc_msgbuf(sc, request, len, reply, sizeof(reply));
864 	if (error != 0)
865 		return error;
866 
867 	return arc_fw_parse_status_code(sc, &reply[0]);
868 }
869 
870 static int
arc_bio_alarm_state(struct arc_softc * sc,struct bioc_alarm * ba)871 arc_bio_alarm_state(struct arc_softc *sc, struct bioc_alarm *ba)
872 {
873 	struct arc_fw_sysinfo	*sysinfo;
874 	uint8_t			request;
875 	int			error = 0;
876 
877 	sysinfo = kmem_zalloc(sizeof(*sysinfo), KM_SLEEP);
878 
879 	request = ARC_FW_SYSINFO;
880 	error = arc_msgbuf(sc, &request, sizeof(request),
881 	    sysinfo, sizeof(struct arc_fw_sysinfo));
882 
883 	if (error != 0)
884 		goto out;
885 
886 	ba->ba_status = sysinfo->alarm;
887 
888 out:
889 	kmem_free(sysinfo, sizeof(*sysinfo));
890 	return error;
891 }
892 
893 static int
arc_bio_volops(struct arc_softc * sc,struct bioc_volops * bc)894 arc_bio_volops(struct arc_softc *sc, struct bioc_volops *bc)
895 {
896 	/* to create a raid set */
897 	struct req_craidset {
898 		uint8_t		cmdcode;
899 		uint32_t	devmask;
900 		uint8_t 	raidset_name[16];
901 	} __packed;
902 
903 	/* to create a volume set */
904 	struct req_cvolset {
905 		uint8_t 	cmdcode;
906 		uint8_t 	raidset;
907 		uint8_t 	volset_name[16];
908 		uint64_t	capacity;
909 		uint8_t 	raidlevel;
910 		uint8_t 	stripe;
911 		uint8_t 	scsi_chan;
912 		uint8_t 	scsi_target;
913 		uint8_t 	scsi_lun;
914 		uint8_t 	tagqueue;
915 		uint8_t 	cache;
916 		uint8_t 	speed;
917 		uint8_t 	quick_init;
918 	} __packed;
919 
920 	struct scsibus_softc	*scsibus_sc = NULL;
921 	struct req_craidset	req_craidset;
922 	struct req_cvolset 	req_cvolset;
923 	uint8_t 		request[2];
924 	uint8_t 		reply[1];
925 	int 			error = 0;
926 
927 	switch (bc->bc_opcode) {
928 	case BIOC_VCREATE_VOLUME:
929 	    {
930 		/*
931 		 * Zero out the structs so that we use some defaults
932 		 * in raid and volume sets.
933 		 */
934 		memset(&req_craidset, 0, sizeof(req_craidset));
935 		memset(&req_cvolset, 0, sizeof(req_cvolset));
936 
937 		/*
938 		 * Firstly we have to create the raid set and
939 		 * use the default name for all them.
940 		 */
941 		req_craidset.cmdcode = ARC_FW_CREATE_RAIDSET;
942 		req_craidset.devmask = bc->bc_devmask;
943 		error = arc_msgbuf(sc, &req_craidset, sizeof(req_craidset),
944 		    reply, sizeof(reply));
945 		if (error != 0)
946 			return error;
947 
948 		error = arc_fw_parse_status_code(sc, &reply[0]);
949 		if (error) {
950 			printf("%s: create raidset%d failed\n",
951 			    device_xname(sc->sc_dev), bc->bc_volid);
952 			return error;
953 		}
954 
955 		/*
956 		 * At this point the raid set was created, so it's
957 		 * time to create the volume set.
958 		 */
959 		req_cvolset.cmdcode = ARC_FW_CREATE_VOLUME;
960 		req_cvolset.raidset = bc->bc_volid;
961 		req_cvolset.capacity = bc->bc_size * ARC_BLOCKSIZE;
962 
963 		/*
964 		 * Set the RAID level.
965 		 */
966 		switch (bc->bc_level) {
967 		case 0:
968 		case 1:
969 			req_cvolset.raidlevel = bc->bc_level;
970 			break;
971 		case BIOC_SVOL_RAID10:
972 			req_cvolset.raidlevel = 1;
973 			break;
974 		case 3:
975 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_3;
976 			break;
977 		case 5:
978 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_5;
979 			break;
980 		case 6:
981 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_6;
982 			break;
983 		default:
984 			return EOPNOTSUPP;
985 		}
986 
987 		/*
988 		 * Set the stripe size.
989 		 */
990 		switch (bc->bc_stripe) {
991 		case 4:
992 			req_cvolset.stripe = 0;
993 			break;
994 		case 8:
995 			req_cvolset.stripe = 1;
996 			break;
997 		case 16:
998 			req_cvolset.stripe = 2;
999 			break;
1000 		case 32:
1001 			req_cvolset.stripe = 3;
1002 			break;
1003 		case 64:
1004 			req_cvolset.stripe = 4;
1005 			break;
1006 		case 128:
1007 			req_cvolset.stripe = 5;
1008 			break;
1009 		default:
1010 			req_cvolset.stripe = 4; /* by default 64K */
1011 			break;
1012 		}
1013 
1014 		req_cvolset.scsi_chan = bc->bc_channel;
1015 		req_cvolset.scsi_target = bc->bc_target;
1016 		req_cvolset.scsi_lun = bc->bc_lun;
1017 		req_cvolset.tagqueue = 1; /* always enabled */
1018 		req_cvolset.cache = 1; /* always enabled */
1019 		req_cvolset.speed = 4; /* always max speed */
1020 
1021 		/* RAID 1 and 1+0 levels need foreground initialization */
1022 		if (bc->bc_level == 1 || bc->bc_level == BIOC_SVOL_RAID10)
1023 			req_cvolset.quick_init = 1; /* foreground init */
1024 
1025 		error = arc_msgbuf(sc, &req_cvolset, sizeof(req_cvolset),
1026 		    reply, sizeof(reply));
1027 		if (error != 0)
1028 			return error;
1029 
1030 		error = arc_fw_parse_status_code(sc, &reply[0]);
1031 		if (error) {
1032 			printf("%s: create volumeset%d failed\n",
1033 			    device_xname(sc->sc_dev), bc->bc_volid);
1034 			return error;
1035 		}
1036 
1037 		/*
1038 		 * If we are creating a RAID 1 or RAID 1+0 volume,
1039 		 * the volume will be created immediately but it won't
1040 		 * be available until the initialization is done... so
1041 		 * don't bother attaching the sd(4) device.
1042 		 */
1043 		if (bc->bc_level == 1 || bc->bc_level == BIOC_SVOL_RAID10)
1044 			break;
1045 
1046 		/*
1047 		 * Do a rescan on the bus to attach the device associated
1048 		 * with the new volume.
1049 		 */
1050 		scsibus_sc = device_private(sc->sc_scsibus_dv);
1051 		(void)scsi_probe_bus(scsibus_sc, bc->bc_target, bc->bc_lun);
1052 
1053 		break;
1054 	    }
1055 	case BIOC_VREMOVE_VOLUME:
1056 	    {
1057 		/*
1058 		 * Remove the volume set specified in bc_volid.
1059 		 */
1060 		request[0] = ARC_FW_DELETE_VOLUME;
1061 		request[1] = bc->bc_volid;
1062 		error = arc_msgbuf(sc, request, sizeof(request),
1063 		    reply, sizeof(reply));
1064 		if (error != 0)
1065 			return error;
1066 
1067 		error = arc_fw_parse_status_code(sc, &reply[0]);
1068 		if (error) {
1069 			printf("%s: delete volumeset%d failed\n",
1070 			    device_xname(sc->sc_dev), bc->bc_volid);
1071 			return error;
1072 		}
1073 
1074 		/*
1075 		 * Detach the sd(4) device associated with the volume,
1076 		 * but if there's an error don't make it a priority.
1077 		 */
1078 		error = scsipi_target_detach(&sc->sc_chan, bc->bc_target,
1079 					     bc->bc_lun, 0);
1080 		if (error)
1081 			printf("%s: couldn't detach sd device for volume %d "
1082 			    "at %u:%u.%u (error=%d)\n",
1083 			    device_xname(sc->sc_dev), bc->bc_volid,
1084 			    bc->bc_channel, bc->bc_target, bc->bc_lun, error);
1085 
1086 		/*
1087 		 * and remove the raid set specified in bc_volid,
1088 		 * we only care about volumes.
1089 		 */
1090 		request[0] = ARC_FW_DELETE_RAIDSET;
1091 		request[1] = bc->bc_volid;
1092 		error = arc_msgbuf(sc, request, sizeof(request),
1093 		    reply, sizeof(reply));
1094 		if (error != 0)
1095 			return error;
1096 
1097 		error = arc_fw_parse_status_code(sc, &reply[0]);
1098 		if (error) {
1099 			printf("%s: delete raidset%d failed\n",
1100 			    device_xname(sc->sc_dev), bc->bc_volid);
1101 			return error;
1102 		}
1103 
1104 		break;
1105 	    }
1106 	default:
1107 		return EOPNOTSUPP;
1108 	}
1109 
1110 	return error;
1111 }
1112 
1113 static int
arc_bio_setstate(struct arc_softc * sc,struct bioc_setstate * bs)1114 arc_bio_setstate(struct arc_softc *sc, struct bioc_setstate *bs)
1115 {
1116 	/* for a hotspare disk */
1117 	struct request_hs {
1118 		uint8_t		cmdcode;
1119 		uint32_t	devmask;
1120 	} __packed;
1121 
1122 	/* for a pass-through disk */
1123 	struct request_pt {
1124 		uint8_t 	cmdcode;
1125 		uint8_t		devid;
1126 		uint8_t		scsi_chan;
1127 		uint8_t 	scsi_id;
1128 		uint8_t 	scsi_lun;
1129 		uint8_t 	tagged_queue;
1130 		uint8_t 	cache_mode;
1131 		uint8_t 	max_speed;
1132 	} __packed;
1133 
1134 	struct scsibus_softc	*scsibus_sc = NULL;
1135 	struct request_hs	req_hs; /* to add/remove hotspare */
1136 	struct request_pt	req_pt;	/* to add a pass-through */
1137 	uint8_t			req_gen[2];
1138 	uint8_t			reply[1];
1139 	int			error = 0;
1140 
1141 	switch (bs->bs_status) {
1142 	case BIOC_SSHOTSPARE:
1143 	    {
1144 		req_hs.cmdcode = ARC_FW_CREATE_HOTSPARE;
1145 		req_hs.devmask = (1 << bs->bs_target);
1146 		goto hotspare;
1147 	    }
1148 	case BIOC_SSDELHOTSPARE:
1149 	    {
1150 		req_hs.cmdcode = ARC_FW_DELETE_HOTSPARE;
1151 		req_hs.devmask = (1 << bs->bs_target);
1152 		goto hotspare;
1153 	    }
1154 	case BIOC_SSPASSTHRU:
1155 	    {
1156 		req_pt.cmdcode = ARC_FW_CREATE_PASSTHRU;
1157 		req_pt.devid = bs->bs_other_id; /* this wants device# */
1158 		req_pt.scsi_chan = bs->bs_channel;
1159 		req_pt.scsi_id = bs->bs_target;
1160 		req_pt.scsi_lun = bs->bs_lun;
1161 		req_pt.tagged_queue = 1; /* always enabled */
1162 		req_pt.cache_mode = 1; /* always enabled */
1163 		req_pt.max_speed = 4; /* always max speed */
1164 
1165 		error = arc_msgbuf(sc, &req_pt, sizeof(req_pt),
1166 		    reply, sizeof(reply));
1167 		if (error != 0)
1168 			return error;
1169 
1170 		/*
1171 		 * Do a rescan on the bus to attach the new device
1172 		 * associated with the pass-through disk.
1173 		 */
1174 		scsibus_sc = device_private(sc->sc_scsibus_dv);
1175 		(void)scsi_probe_bus(scsibus_sc, bs->bs_target, bs->bs_lun);
1176 
1177 		goto out;
1178 	    }
1179 	case BIOC_SSDELPASSTHRU:
1180 	    {
1181 		req_gen[0] = ARC_FW_DELETE_PASSTHRU;
1182 		req_gen[1] = bs->bs_target;
1183 		error = arc_msgbuf(sc, &req_gen, sizeof(req_gen),
1184 		    reply, sizeof(reply));
1185 		if (error != 0)
1186 			return error;
1187 
1188 		/*
1189 		 * Detach the sd device associated with this pass-through disk.
1190 		 */
1191 		error = scsipi_target_detach(&sc->sc_chan, bs->bs_target,
1192 					     bs->bs_lun, 0);
1193 		if (error)
1194 			printf("%s: couldn't detach sd device for the "
1195 			    "pass-through disk at %u:%u.%u (error=%d)\n",
1196 			    device_xname(sc->sc_dev),
1197 			    bs->bs_channel, bs->bs_target, bs->bs_lun, error);
1198 
1199 		goto out;
1200 	    }
1201 	case BIOC_SSCHECKSTART_VOL:
1202 	    {
1203 		req_gen[0] = ARC_FW_START_CHECKVOL;
1204 		req_gen[1] = bs->bs_volid;
1205 		error = arc_msgbuf(sc, &req_gen, sizeof(req_gen),
1206 		    reply, sizeof(reply));
1207 		if (error != 0)
1208 			return error;
1209 
1210 		goto out;
1211 	    }
1212 	case BIOC_SSCHECKSTOP_VOL:
1213 	    {
1214 		uint8_t req = ARC_FW_STOP_CHECKVOL;
1215 		error = arc_msgbuf(sc, &req, 1, reply, sizeof(reply));
1216 		if (error != 0)
1217 			return error;
1218 
1219 		goto out;
1220 	    }
1221 	default:
1222 		return EOPNOTSUPP;
1223 	}
1224 
1225 hotspare:
1226 	error = arc_msgbuf(sc, &req_hs, sizeof(req_hs),
1227 	    reply, sizeof(reply));
1228 	if (error != 0)
1229 		return error;
1230 
1231 out:
1232 	return arc_fw_parse_status_code(sc, &reply[0]);
1233 }
1234 
1235 static int
arc_bio_inq(struct arc_softc * sc,struct bioc_inq * bi)1236 arc_bio_inq(struct arc_softc *sc, struct bioc_inq *bi)
1237 {
1238 	uint8_t			request[2];
1239 	struct arc_fw_sysinfo	*sysinfo = NULL;
1240 	struct arc_fw_raidinfo	*raidinfo;
1241 	int			nvols = 0, i;
1242 	int			error = 0;
1243 
1244 	raidinfo = kmem_zalloc(sizeof(*raidinfo), KM_SLEEP);
1245 
1246 	if (!sc->sc_maxraidset || !sc->sc_maxvolset || !sc->sc_cchans) {
1247 		sysinfo = kmem_zalloc(sizeof(*sysinfo), KM_SLEEP);
1248 
1249 		request[0] = ARC_FW_SYSINFO;
1250 		error = arc_msgbuf(sc, request, 1, sysinfo,
1251 		    sizeof(struct arc_fw_sysinfo));
1252 		if (error != 0)
1253 			goto out;
1254 
1255 		sc->sc_maxraidset = sysinfo->max_raid_set;
1256 		sc->sc_maxvolset = sysinfo->max_volume_set;
1257 		sc->sc_cchans = sysinfo->ide_channels;
1258 	}
1259 
1260 	request[0] = ARC_FW_RAIDINFO;
1261 	for (i = 0; i < sc->sc_maxraidset; i++) {
1262 		request[1] = i;
1263 		error = arc_msgbuf(sc, request, sizeof(request), raidinfo,
1264 		    sizeof(struct arc_fw_raidinfo));
1265 		if (error != 0)
1266 			goto out;
1267 
1268 		nvols += raidinfo->volumes;
1269 	}
1270 
1271 	strlcpy(bi->bi_dev, device_xname(sc->sc_dev), sizeof(bi->bi_dev));
1272 	bi->bi_novol = nvols;
1273 	bi->bi_nodisk = sc->sc_cchans;
1274 
1275 out:
1276 	if (sysinfo)
1277 		kmem_free(sysinfo, sizeof(*sysinfo));
1278 	kmem_free(raidinfo, sizeof(*raidinfo));
1279 	return error;
1280 }
1281 
1282 static int
arc_bio_getvol(struct arc_softc * sc,int vol,struct arc_fw_volinfo * volinfo)1283 arc_bio_getvol(struct arc_softc *sc, int vol, struct arc_fw_volinfo *volinfo)
1284 {
1285 	uint8_t			request[2];
1286 	int			error = 0;
1287 	int			nvols = 0, i;
1288 
1289 	request[0] = ARC_FW_VOLINFO;
1290 	for (i = 0; i < sc->sc_maxvolset; i++) {
1291 		request[1] = i;
1292 		error = arc_msgbuf(sc, request, sizeof(request), volinfo,
1293 		    sizeof(struct arc_fw_volinfo));
1294 		if (error != 0)
1295 			goto out;
1296 
1297 		if (volinfo->capacity == 0 && volinfo->capacity2 == 0)
1298 			continue;
1299 
1300 		if (nvols == vol)
1301 			break;
1302 
1303 		nvols++;
1304 	}
1305 
1306 	if (nvols != vol ||
1307 	    (volinfo->capacity == 0 && volinfo->capacity2 == 0)) {
1308 		error = ENODEV;
1309 		goto out;
1310 	}
1311 
1312 out:
1313 	return error;
1314 }
1315 
1316 static int
arc_bio_vol(struct arc_softc * sc,struct bioc_vol * bv)1317 arc_bio_vol(struct arc_softc *sc, struct bioc_vol *bv)
1318 {
1319 	struct arc_fw_volinfo	*volinfo;
1320 	uint64_t		blocks;
1321 	uint32_t		status;
1322 	int			error = 0;
1323 
1324 	volinfo = kmem_zalloc(sizeof(*volinfo), KM_SLEEP);
1325 
1326 	error = arc_bio_getvol(sc, bv->bv_volid, volinfo);
1327 	if (error != 0)
1328 		goto out;
1329 
1330 	bv->bv_percent = -1;
1331 	bv->bv_seconds = 0;
1332 
1333 	status = htole32(volinfo->volume_status);
1334 	if (status == 0x0) {
1335 		if (htole32(volinfo->fail_mask) == 0x0)
1336 			bv->bv_status = BIOC_SVONLINE;
1337 		else
1338 			bv->bv_status = BIOC_SVDEGRADED;
1339 	} else if (status & ARC_FW_VOL_STATUS_NEED_REGEN) {
1340 		bv->bv_status = BIOC_SVDEGRADED;
1341 	} else if (status & ARC_FW_VOL_STATUS_FAILED) {
1342 		bv->bv_status = BIOC_SVOFFLINE;
1343 	} else if (status & ARC_FW_VOL_STATUS_INITTING) {
1344 		bv->bv_status = BIOC_SVBUILDING;
1345 		bv->bv_percent = htole32(volinfo->progress);
1346 	} else if (status & ARC_FW_VOL_STATUS_REBUILDING) {
1347 		bv->bv_status = BIOC_SVREBUILD;
1348 		bv->bv_percent = htole32(volinfo->progress);
1349 	} else if (status & ARC_FW_VOL_STATUS_MIGRATING) {
1350 		bv->bv_status = BIOC_SVMIGRATING;
1351 		bv->bv_percent = htole32(volinfo->progress);
1352 	} else if (status & ARC_FW_VOL_STATUS_CHECKING) {
1353 		bv->bv_status = BIOC_SVCHECKING;
1354 		bv->bv_percent = htole32(volinfo->progress);
1355 	} else if (status & ARC_FW_VOL_STATUS_NEED_INIT) {
1356 		bv->bv_status = BIOC_SVOFFLINE;
1357 	} else {
1358 		printf("%s: volume %d status 0x%x\n",
1359 		    device_xname(sc->sc_dev), bv->bv_volid, status);
1360 	}
1361 
1362 	blocks = (uint64_t)htole32(volinfo->capacity2) << 32;
1363 	blocks += (uint64_t)htole32(volinfo->capacity);
1364 	bv->bv_size = blocks * ARC_BLOCKSIZE; /* XXX */
1365 
1366 	switch (volinfo->raid_level) {
1367 	case ARC_FW_VOL_RAIDLEVEL_0:
1368 		bv->bv_level = 0;
1369 		break;
1370 	case ARC_FW_VOL_RAIDLEVEL_1:
1371 		if (volinfo->member_disks > 2)
1372 			bv->bv_level = BIOC_SVOL_RAID10;
1373 		else
1374 			bv->bv_level = 1;
1375 		break;
1376 	case ARC_FW_VOL_RAIDLEVEL_3:
1377 		bv->bv_level = 3;
1378 		break;
1379 	case ARC_FW_VOL_RAIDLEVEL_5:
1380 		bv->bv_level = 5;
1381 		break;
1382 	case ARC_FW_VOL_RAIDLEVEL_6:
1383 		bv->bv_level = 6;
1384 		break;
1385 	case ARC_FW_VOL_RAIDLEVEL_PASSTHRU:
1386 		bv->bv_level = BIOC_SVOL_PASSTHRU;
1387 		break;
1388 	default:
1389 		bv->bv_level = -1;
1390 		break;
1391 	}
1392 
1393 	bv->bv_nodisk = volinfo->member_disks;
1394 	bv->bv_stripe_size = volinfo->stripe_size / 2;
1395 	snprintf(bv->bv_dev, sizeof(bv->bv_dev), "sd%d", bv->bv_volid);
1396 	strnvisx(bv->bv_vendor, sizeof(bv->bv_vendor), volinfo->set_name,
1397 	    sizeof(volinfo->set_name), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1398 
1399 out:
1400 	kmem_free(volinfo, sizeof(*volinfo));
1401 	return error;
1402 }
1403 
1404 static int
arc_bio_disk_novol(struct arc_softc * sc,struct bioc_disk * bd)1405 arc_bio_disk_novol(struct arc_softc *sc, struct bioc_disk *bd)
1406 {
1407 	struct arc_fw_diskinfo	*diskinfo;
1408 	uint8_t			request[2];
1409 	int			error = 0;
1410 
1411 	diskinfo = kmem_zalloc(sizeof(*diskinfo), KM_SLEEP);
1412 
1413 	if (bd->bd_diskid >= sc->sc_cchans) {
1414 		error = ENODEV;
1415 		goto out;
1416 	}
1417 
1418 	request[0] = ARC_FW_DISKINFO;
1419 	request[1] = bd->bd_diskid;
1420 	error = arc_msgbuf(sc, request, sizeof(request),
1421 	    diskinfo, sizeof(struct arc_fw_diskinfo));
1422 	if (error != 0)
1423 		goto out;
1424 
1425 	/* skip disks with no capacity */
1426 	if (htole32(diskinfo->capacity) == 0 &&
1427 	    htole32(diskinfo->capacity2) == 0)
1428 		goto out;
1429 
1430 	bd->bd_disknovol = true;
1431 	arc_bio_disk_filldata(sc, bd, diskinfo, bd->bd_diskid);
1432 
1433 out:
1434 	kmem_free(diskinfo, sizeof(*diskinfo));
1435 	return error;
1436 }
1437 
1438 static void
arc_bio_disk_filldata(struct arc_softc * sc,struct bioc_disk * bd,struct arc_fw_diskinfo * diskinfo,int diskid)1439 arc_bio_disk_filldata(struct arc_softc *sc, struct bioc_disk *bd,
1440 		     struct arc_fw_diskinfo *diskinfo, int diskid)
1441 {
1442 	uint64_t		blocks;
1443 	char			model[81];
1444 	char			serial[41];
1445 	char			rev[17];
1446 
1447 	/* Ignore bit zero for now, we don't know what it means */
1448 	diskinfo->device_state &= ~0x1;
1449 
1450 	switch (diskinfo->device_state) {
1451 	case ARC_FW_DISK_FAILED:
1452 		bd->bd_status = BIOC_SDFAILED;
1453 		break;
1454 	case ARC_FW_DISK_PASSTHRU:
1455 		bd->bd_status = BIOC_SDPASSTHRU;
1456 		break;
1457 	case ARC_FW_DISK_NORMAL:
1458 		bd->bd_status = BIOC_SDONLINE;
1459 		break;
1460 	case ARC_FW_DISK_HOTSPARE:
1461 		bd->bd_status = BIOC_SDHOTSPARE;
1462 		break;
1463 	case ARC_FW_DISK_UNUSED:
1464 		bd->bd_status = BIOC_SDUNUSED;
1465 		break;
1466 	case 0:
1467 		/* disk has been disconnected */
1468 		bd->bd_status = BIOC_SDOFFLINE;
1469 		bd->bd_channel = 1;
1470 		bd->bd_target = 0;
1471 		bd->bd_lun = 0;
1472 		strlcpy(bd->bd_vendor, "disk missing", sizeof(bd->bd_vendor));
1473 		break;
1474 	default:
1475 		printf("%s: unknown disk device_state: 0x%x\n", __func__,
1476 		    diskinfo->device_state);
1477 		bd->bd_status = BIOC_SDINVALID;
1478 		return;
1479 	}
1480 
1481 	blocks = (uint64_t)htole32(diskinfo->capacity2) << 32;
1482 	blocks += (uint64_t)htole32(diskinfo->capacity);
1483 	bd->bd_size = blocks * ARC_BLOCKSIZE; /* XXX */
1484 
1485 	strnvisx(model, sizeof(model), diskinfo->model,
1486 	    sizeof(diskinfo->model), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1487 	strnvisx(serial, sizeof(serial), diskinfo->serial,
1488 	    sizeof(diskinfo->serial), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1489 	strnvisx(rev, sizeof(rev), diskinfo->firmware_rev,
1490 	    sizeof(diskinfo->firmware_rev), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1491 
1492 	snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s", model, rev);
1493 	strlcpy(bd->bd_serial, serial, sizeof(bd->bd_serial));
1494 
1495 #if 0
1496 	bd->bd_channel = diskinfo->scsi_attr.channel;
1497 	bd->bd_target = diskinfo->scsi_attr.target;
1498 	bd->bd_lun = diskinfo->scsi_attr.lun;
1499 #endif
1500 
1501 	/*
1502 	 * the firwmare doesnt seem to fill scsi_attr in, so fake it with
1503 	 * the diskid.
1504 	 */
1505 	bd->bd_channel = 0;
1506 	bd->bd_target = diskid;
1507 	bd->bd_lun = 0;
1508 }
1509 
1510 static int
arc_bio_disk_volume(struct arc_softc * sc,struct bioc_disk * bd)1511 arc_bio_disk_volume(struct arc_softc *sc, struct bioc_disk *bd)
1512 {
1513 	struct arc_fw_raidinfo	*raidinfo;
1514 	struct arc_fw_volinfo	*volinfo;
1515 	struct arc_fw_diskinfo	*diskinfo;
1516 	uint8_t			request[2];
1517 	int			error = 0;
1518 
1519 	volinfo = kmem_zalloc(sizeof(*volinfo), KM_SLEEP);
1520 	raidinfo = kmem_zalloc(sizeof(*raidinfo), KM_SLEEP);
1521 	diskinfo = kmem_zalloc(sizeof(*diskinfo), KM_SLEEP);
1522 
1523 	error = arc_bio_getvol(sc, bd->bd_volid, volinfo);
1524 	if (error != 0)
1525 		goto out;
1526 
1527 	request[0] = ARC_FW_RAIDINFO;
1528 	request[1] = volinfo->raid_set_number;
1529 
1530 	error = arc_msgbuf(sc, request, sizeof(request), raidinfo,
1531 	    sizeof(struct arc_fw_raidinfo));
1532 	if (error != 0)
1533 		goto out;
1534 
1535 	if (bd->bd_diskid >= sc->sc_cchans ||
1536 	    bd->bd_diskid >= raidinfo->member_devices) {
1537 		error = ENODEV;
1538 		goto out;
1539 	}
1540 
1541 	if (raidinfo->device_array[bd->bd_diskid] == 0xff) {
1542 		/*
1543 		 * The disk has been disconnected, mark it offline
1544 		 * and put it on another bus.
1545 		 */
1546 		bd->bd_channel = 1;
1547 		bd->bd_target = 0;
1548 		bd->bd_lun = 0;
1549 		bd->bd_status = BIOC_SDOFFLINE;
1550 		strlcpy(bd->bd_vendor, "disk missing", sizeof(bd->bd_vendor));
1551 		goto out;
1552 	}
1553 
1554 	request[0] = ARC_FW_DISKINFO;
1555 	request[1] = raidinfo->device_array[bd->bd_diskid];
1556 	error = arc_msgbuf(sc, request, sizeof(request), diskinfo,
1557 	    sizeof(struct arc_fw_diskinfo));
1558 	if (error != 0)
1559 		goto out;
1560 
1561 	/* now fill our bio disk with data from the firmware */
1562 	arc_bio_disk_filldata(sc, bd, diskinfo,
1563 	    raidinfo->device_array[bd->bd_diskid]);
1564 
1565 out:
1566 	kmem_free(raidinfo, sizeof(*raidinfo));
1567 	kmem_free(volinfo, sizeof(*volinfo));
1568 	kmem_free(diskinfo, sizeof(*diskinfo));
1569 	return error;
1570 }
1571 
1572 static uint8_t
arc_msg_cksum(void * cmd,uint16_t len)1573 arc_msg_cksum(void *cmd, uint16_t len)
1574 {
1575 	uint8_t	*buf = cmd;
1576 	uint8_t	cksum;
1577 	int	i;
1578 
1579 	cksum = (uint8_t)(len >> 8) + (uint8_t)len;
1580 	for (i = 0; i < len; i++)
1581 		cksum += buf[i];
1582 
1583 	return cksum;
1584 }
1585 
1586 
1587 static int
arc_msgbuf(struct arc_softc * sc,void * wptr,size_t wbuflen,void * rptr,size_t rbuflen)1588 arc_msgbuf(struct arc_softc *sc, void *wptr, size_t wbuflen, void *rptr,
1589 	   size_t rbuflen)
1590 {
1591 	uint8_t			rwbuf[ARC_REG_IOC_RWBUF_MAXLEN];
1592 	uint8_t			*wbuf, *rbuf;
1593 	int			wlen, wdone = 0, rlen, rdone = 0;
1594 	struct arc_fw_bufhdr	*bufhdr;
1595 	uint32_t		reg, rwlen;
1596 	int			error = 0;
1597 #ifdef ARC_DEBUG
1598 	int			i;
1599 #endif
1600 
1601 	wbuf = rbuf = NULL;
1602 
1603 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wbuflen: %d rbuflen: %d\n",
1604 	    device_xname(sc->sc_dev), wbuflen, rbuflen);
1605 
1606 	wlen = sizeof(struct arc_fw_bufhdr) + wbuflen + 1; /* 1 for cksum */
1607 	wbuf = kmem_alloc(wlen, KM_SLEEP);
1608 
1609 	rlen = sizeof(struct arc_fw_bufhdr) + rbuflen + 1; /* 1 for cksum */
1610 	rbuf = kmem_alloc(rlen, KM_SLEEP);
1611 
1612 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wlen: %d rlen: %d\n",
1613 	    device_xname(sc->sc_dev), wlen, rlen);
1614 
1615 	bufhdr = (struct arc_fw_bufhdr *)wbuf;
1616 	bufhdr->hdr = arc_fw_hdr;
1617 	bufhdr->len = htole16(wbuflen);
1618 	memcpy(wbuf + sizeof(struct arc_fw_bufhdr), wptr, wbuflen);
1619 	wbuf[wlen - 1] = arc_msg_cksum(wptr, wbuflen);
1620 
1621 	arc_lock(sc);
1622 	if (arc_read(sc, ARC_REG_OUTB_DOORBELL) != 0) {
1623 		error = EBUSY;
1624 		goto out;
1625 	}
1626 
1627 	reg = ARC_REG_OUTB_DOORBELL_READ_OK;
1628 
1629 	do {
1630 		if ((reg & ARC_REG_OUTB_DOORBELL_READ_OK) && wdone < wlen) {
1631 			memset(rwbuf, 0, sizeof(rwbuf));
1632 			rwlen = (wlen - wdone) % sizeof(rwbuf);
1633 			memcpy(rwbuf, &wbuf[wdone], rwlen);
1634 
1635 #ifdef ARC_DEBUG
1636 			if (arcdebug & ARC_D_DB) {
1637 				printf("%s: write %d:",
1638 				    device_xname(sc->sc_dev), rwlen);
1639 				for (i = 0; i < rwlen; i++)
1640 					printf(" 0x%02x", rwbuf[i]);
1641 				printf("\n");
1642 			}
1643 #endif
1644 
1645 			/* copy the chunk to the hw */
1646 			arc_write(sc, ARC_REG_IOC_WBUF_LEN, rwlen);
1647 			arc_write_region(sc, ARC_REG_IOC_WBUF, rwbuf,
1648 			    sizeof(rwbuf));
1649 
1650 			/* say we have a buffer for the hw */
1651 			arc_write(sc, ARC_REG_INB_DOORBELL,
1652 			    ARC_REG_INB_DOORBELL_WRITE_OK);
1653 
1654 			wdone += rwlen;
1655 		}
1656 
1657 		while ((reg = arc_read(sc, ARC_REG_OUTB_DOORBELL)) == 0)
1658 			arc_wait(sc);
1659 
1660 		arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
1661 
1662 		DNPRINTF(ARC_D_DB, "%s: reg: 0x%08x\n",
1663 		    device_xname(sc->sc_dev), reg);
1664 
1665 		if ((reg & ARC_REG_OUTB_DOORBELL_WRITE_OK) && rdone < rlen) {
1666 			rwlen = arc_read(sc, ARC_REG_IOC_RBUF_LEN);
1667 			if (rwlen > sizeof(rwbuf)) {
1668 				DNPRINTF(ARC_D_DB, "%s:  rwlen too big\n",
1669 				    device_xname(sc->sc_dev));
1670 				error = EIO;
1671 				goto out;
1672 			}
1673 
1674 			arc_read_region(sc, ARC_REG_IOC_RBUF, rwbuf,
1675 			    sizeof(rwbuf));
1676 
1677 			arc_write(sc, ARC_REG_INB_DOORBELL,
1678 			    ARC_REG_INB_DOORBELL_READ_OK);
1679 
1680 #ifdef ARC_DEBUG
1681 			printf("%s:  len: %d+%d=%d/%d\n",
1682 			    device_xname(sc->sc_dev),
1683 			    rwlen, rdone, rwlen + rdone, rlen);
1684 			if (arcdebug & ARC_D_DB) {
1685 				printf("%s: read:",
1686 				    device_xname(sc->sc_dev));
1687 				for (i = 0; i < rwlen; i++)
1688 					printf(" 0x%02x", rwbuf[i]);
1689 				printf("\n");
1690 			}
1691 #endif
1692 
1693 			if ((rdone + rwlen) > rlen) {
1694 				DNPRINTF(ARC_D_DB, "%s:  rwbuf too big\n",
1695 				    device_xname(sc->sc_dev));
1696 				error = EIO;
1697 				goto out;
1698 			}
1699 
1700 			memcpy(&rbuf[rdone], rwbuf, rwlen);
1701 			rdone += rwlen;
1702 		}
1703 	} while (rdone != rlen);
1704 
1705 	bufhdr = (struct arc_fw_bufhdr *)rbuf;
1706 	if (memcmp(&bufhdr->hdr, &arc_fw_hdr, sizeof(bufhdr->hdr)) != 0 ||
1707 	    bufhdr->len != htole16(rbuflen)) {
1708 		DNPRINTF(ARC_D_DB, "%s:  rbuf hdr is wrong\n",
1709 		    device_xname(sc->sc_dev));
1710 		error = EIO;
1711 		goto out;
1712 	}
1713 
1714 	memcpy(rptr, rbuf + sizeof(struct arc_fw_bufhdr), rbuflen);
1715 
1716 	if (rbuf[rlen - 1] != arc_msg_cksum(rptr, rbuflen)) {
1717 		DNPRINTF(ARC_D_DB, "%s:  invalid cksum\n",
1718 		    device_xname(sc->sc_dev));
1719 		error = EIO;
1720 		goto out;
1721 	}
1722 
1723 out:
1724 	arc_unlock(sc);
1725 	kmem_free(wbuf, wlen);
1726 	kmem_free(rbuf, rlen);
1727 
1728 	return error;
1729 }
1730 
1731 static void
arc_lock(struct arc_softc * sc)1732 arc_lock(struct arc_softc *sc)
1733 {
1734 	rw_enter(&sc->sc_rwlock, RW_WRITER);
1735 	mutex_spin_enter(&sc->sc_mutex);
1736 	arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1737 	sc->sc_talking = 1;
1738 }
1739 
1740 static void
arc_unlock(struct arc_softc * sc)1741 arc_unlock(struct arc_softc *sc)
1742 {
1743 	KASSERT(mutex_owned(&sc->sc_mutex));
1744 
1745 	arc_write(sc, ARC_REG_INTRMASK,
1746 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1747 	sc->sc_talking = 0;
1748 	mutex_spin_exit(&sc->sc_mutex);
1749 	rw_exit(&sc->sc_rwlock);
1750 }
1751 
1752 static void
arc_wait(struct arc_softc * sc)1753 arc_wait(struct arc_softc *sc)
1754 {
1755 	KASSERT(mutex_owned(&sc->sc_mutex));
1756 
1757 	arc_write(sc, ARC_REG_INTRMASK,
1758 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1759 	if (cv_timedwait(&sc->sc_condvar, &sc->sc_mutex, hz) == EWOULDBLOCK)
1760 		arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1761 }
1762 
1763 
1764 static void
arc_create_sensors(void * arg)1765 arc_create_sensors(void *arg)
1766 {
1767 	struct arc_softc	*sc = arg;
1768 	struct bioc_inq		bi;
1769 	struct bioc_vol		bv;
1770 	int			i, j;
1771 	size_t			slen, count = 0;
1772 
1773 	memset(&bi, 0, sizeof(bi));
1774 	if (arc_bio_inq(sc, &bi) != 0) {
1775 		aprint_error("%s: unable to query firmware for sensor info\n",
1776 		    device_xname(sc->sc_dev));
1777 		kthread_exit(0);
1778 	}
1779 
1780 	/* There's no point to continue if there are no volumes */
1781 	if (!bi.bi_novol)
1782 		kthread_exit(0);
1783 
1784 	for (i = 0; i < bi.bi_novol; i++) {
1785 		memset(&bv, 0, sizeof(bv));
1786 		bv.bv_volid = i;
1787 		if (arc_bio_vol(sc, &bv) != 0)
1788 			kthread_exit(0);
1789 
1790 		/* Skip passthrough volumes */
1791 		if (bv.bv_level == BIOC_SVOL_PASSTHRU)
1792 			continue;
1793 
1794 		/* new volume found */
1795 		sc->sc_nsensors++;
1796 		/* new disk in a volume found */
1797 		sc->sc_nsensors+= bv.bv_nodisk;
1798 	}
1799 
1800 	/* No valid volumes */
1801 	if (!sc->sc_nsensors)
1802 		kthread_exit(0);
1803 
1804 	sc->sc_sme = sysmon_envsys_create();
1805 	slen = sizeof(arc_edata_t) * sc->sc_nsensors;
1806 	sc->sc_arc_sensors = kmem_zalloc(slen, KM_SLEEP);
1807 
1808 	/* Attach sensors for volumes and disks */
1809 	for (i = 0; i < bi.bi_novol; i++) {
1810 		memset(&bv, 0, sizeof(bv));
1811 		bv.bv_volid = i;
1812 		if (arc_bio_vol(sc, &bv) != 0)
1813 			goto bad;
1814 
1815 		sc->sc_arc_sensors[count].arc_sensor.units = ENVSYS_DRIVE;
1816 		sc->sc_arc_sensors[count].arc_sensor.state = ENVSYS_SINVALID;
1817 		sc->sc_arc_sensors[count].arc_sensor.value_cur =
1818 		    ENVSYS_DRIVE_EMPTY;
1819 		sc->sc_arc_sensors[count].arc_sensor.flags =
1820 		    ENVSYS_FMONSTCHANGED;
1821 
1822 		/* Skip passthrough volumes */
1823 		if (bv.bv_level == BIOC_SVOL_PASSTHRU)
1824 			continue;
1825 
1826 		if (bv.bv_level == BIOC_SVOL_RAID10)
1827 			snprintf(sc->sc_arc_sensors[count].arc_sensor.desc,
1828 			    sizeof(sc->sc_arc_sensors[count].arc_sensor.desc),
1829 			    "RAID 1+0 volume%d (%s)", i, bv.bv_dev);
1830 		else
1831 			snprintf(sc->sc_arc_sensors[count].arc_sensor.desc,
1832 			    sizeof(sc->sc_arc_sensors[count].arc_sensor.desc),
1833 			    "RAID %d volume%d (%s)", bv.bv_level, i,
1834 			    bv.bv_dev);
1835 
1836 		sc->sc_arc_sensors[count].arc_volid = i;
1837 
1838 		if (sysmon_envsys_sensor_attach(sc->sc_sme,
1839 		    &sc->sc_arc_sensors[count].arc_sensor))
1840 			goto bad;
1841 
1842 		count++;
1843 
1844 		/* Attach disk sensors for this volume */
1845 		for (j = 0; j < bv.bv_nodisk; j++) {
1846 			sc->sc_arc_sensors[count].arc_sensor.state =
1847 			    ENVSYS_SINVALID;
1848 			sc->sc_arc_sensors[count].arc_sensor.units =
1849 			    ENVSYS_DRIVE;
1850 			sc->sc_arc_sensors[count].arc_sensor.value_cur =
1851 			    ENVSYS_DRIVE_EMPTY;
1852 			sc->sc_arc_sensors[count].arc_sensor.flags =
1853 			    ENVSYS_FMONSTCHANGED;
1854 
1855 			snprintf(sc->sc_arc_sensors[count].arc_sensor.desc,
1856 			    sizeof(sc->sc_arc_sensors[count].arc_sensor.desc),
1857 			    "disk%d volume%d (%s)", j, i, bv.bv_dev);
1858 			sc->sc_arc_sensors[count].arc_volid = i;
1859 			sc->sc_arc_sensors[count].arc_diskid = j + 10;
1860 
1861 			if (sysmon_envsys_sensor_attach(sc->sc_sme,
1862 			    &sc->sc_arc_sensors[count].arc_sensor))
1863 				goto bad;
1864 
1865 			count++;
1866 		}
1867 	}
1868 
1869 	/*
1870 	 * Register our envsys driver with the framework now that the
1871 	 * sensors were all attached.
1872 	 */
1873 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
1874 	sc->sc_sme->sme_cookie = sc;
1875 	sc->sc_sme->sme_refresh = arc_refresh_sensors;
1876 
1877 	if (sysmon_envsys_register(sc->sc_sme)) {
1878 		aprint_debug("%s: unable to register with sysmon\n",
1879 		    device_xname(sc->sc_dev));
1880 		goto bad;
1881 	}
1882 	kthread_exit(0);
1883 
1884 bad:
1885 	sysmon_envsys_destroy(sc->sc_sme);
1886 	sc->sc_sme = NULL;
1887 
1888 	kmem_free(sc->sc_arc_sensors, slen);
1889 	sc->sc_arc_sensors = NULL;
1890 
1891 	kthread_exit(0);
1892 }
1893 
1894 static void
arc_refresh_sensors(struct sysmon_envsys * sme,envsys_data_t * edata)1895 arc_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata)
1896 {
1897 	struct arc_softc	*sc = sme->sme_cookie;
1898 	struct bioc_vol		bv;
1899 	struct bioc_disk	bd;
1900 	arc_edata_t		*arcdata = (arc_edata_t *)edata;
1901 
1902 	/* sanity check */
1903 	if (edata->units != ENVSYS_DRIVE)
1904 		return;
1905 
1906 	memset(&bv, 0, sizeof(bv));
1907 	bv.bv_volid = arcdata->arc_volid;
1908 
1909 	if (arc_bio_vol(sc, &bv)) {
1910 		bv.bv_status = BIOC_SVINVALID;
1911 		bio_vol_to_envsys(edata, &bv);
1912 		return;
1913 	}
1914 
1915 	if (arcdata->arc_diskid) {
1916 		/* Current sensor is handling a disk volume member */
1917 		memset(&bd, 0, sizeof(bd));
1918 		bd.bd_volid = arcdata->arc_volid;
1919 		bd.bd_diskid = arcdata->arc_diskid - 10;
1920 
1921 		if (arc_bio_disk_volume(sc, &bd))
1922 			bd.bd_status = BIOC_SDOFFLINE;
1923 		bio_disk_to_envsys(edata, &bd);
1924 	} else {
1925 		/* Current sensor is handling a volume */
1926 		bio_vol_to_envsys(edata, &bv);
1927 	}
1928 }
1929 #endif /* NBIO > 0 */
1930 
1931 static uint32_t
arc_read(struct arc_softc * sc,bus_size_t r)1932 arc_read(struct arc_softc *sc, bus_size_t r)
1933 {
1934 	uint32_t			v;
1935 
1936 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1937 	    BUS_SPACE_BARRIER_READ);
1938 	v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
1939 
1940 	DNPRINTF(ARC_D_RW, "%s: arc_read 0x%lx 0x%08x\n",
1941 	    device_xname(sc->sc_dev), r, v);
1942 
1943 	return v;
1944 }
1945 
1946 static void
arc_read_region(struct arc_softc * sc,bus_size_t r,void * buf,size_t len)1947 arc_read_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1948 {
1949 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1950 	    BUS_SPACE_BARRIER_READ);
1951 	bus_space_read_region_4(sc->sc_iot, sc->sc_ioh, r,
1952 	    (uint32_t *)buf, len >> 2);
1953 }
1954 
1955 static void
arc_write(struct arc_softc * sc,bus_size_t r,uint32_t v)1956 arc_write(struct arc_softc *sc, bus_size_t r, uint32_t v)
1957 {
1958 	DNPRINTF(ARC_D_RW, "%s: arc_write 0x%lx 0x%08x\n",
1959 	    device_xname(sc->sc_dev), r, v);
1960 
1961 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
1962 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1963 	    BUS_SPACE_BARRIER_WRITE);
1964 }
1965 
1966 #if NBIO > 0
1967 static void
arc_write_region(struct arc_softc * sc,bus_size_t r,void * buf,size_t len)1968 arc_write_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1969 {
1970 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, r,
1971 	    (const uint32_t *)buf, len >> 2);
1972 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1973 	    BUS_SPACE_BARRIER_WRITE);
1974 }
1975 #endif /* NBIO > 0 */
1976 
1977 static int
arc_wait_eq(struct arc_softc * sc,bus_size_t r,uint32_t mask,uint32_t target)1978 arc_wait_eq(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1979 	    uint32_t target)
1980 {
1981 	int i;
1982 
1983 	DNPRINTF(ARC_D_RW, "%s: arc_wait_eq 0x%lx 0x%08x 0x%08x\n",
1984 	    device_xname(sc->sc_dev), r, mask, target);
1985 
1986 	for (i = 0; i < 10000; i++) {
1987 		if ((arc_read(sc, r) & mask) == target)
1988 			return 0;
1989 		delay(1000);
1990 	}
1991 
1992 	return 1;
1993 }
1994 
1995 #if unused
1996 static int
arc_wait_ne(struct arc_softc * sc,bus_size_t r,uint32_t mask,uint32_t target)1997 arc_wait_ne(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1998 	    uint32_t target)
1999 {
2000 	int i;
2001 
2002 	DNPRINTF(ARC_D_RW, "%s: arc_wait_ne 0x%lx 0x%08x 0x%08x\n",
2003 	    device_xname(sc->sc_dev), r, mask, target);
2004 
2005 	for (i = 0; i < 10000; i++) {
2006 		if ((arc_read(sc, r) & mask) != target)
2007 			return 0;
2008 		delay(1000);
2009 	}
2010 
2011 	return 1;
2012 }
2013 #endif
2014 
2015 static int
arc_msg0(struct arc_softc * sc,uint32_t m)2016 arc_msg0(struct arc_softc *sc, uint32_t m)
2017 {
2018 	/* post message */
2019 	arc_write(sc, ARC_REG_INB_MSG0, m);
2020 	/* wait for the fw to do it */
2021 	if (arc_wait_eq(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0,
2022 	    ARC_REG_INTRSTAT_MSG0) != 0)
2023 		return 1;
2024 
2025 	/* ack it */
2026 	arc_write(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0);
2027 
2028 	return 0;
2029 }
2030 
2031 static struct arc_dmamem *
arc_dmamem_alloc(struct arc_softc * sc,size_t size)2032 arc_dmamem_alloc(struct arc_softc *sc, size_t size)
2033 {
2034 	struct arc_dmamem		*adm;
2035 	int				nsegs;
2036 
2037 	adm = kmem_zalloc(sizeof(*adm), KM_SLEEP);
2038 	adm->adm_size = size;
2039 
2040 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2041 	    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &adm->adm_map) != 0)
2042 		goto admfree;
2043 
2044 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &adm->adm_seg,
2045 	    1, &nsegs, BUS_DMA_NOWAIT) != 0)
2046 		goto destroy;
2047 
2048 	if (bus_dmamem_map(sc->sc_dmat, &adm->adm_seg, nsegs, size,
2049 	    &adm->adm_kva, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) != 0)
2050 		goto free;
2051 
2052 	if (bus_dmamap_load(sc->sc_dmat, adm->adm_map, adm->adm_kva, size,
2053 	    NULL, BUS_DMA_NOWAIT) != 0)
2054 		goto unmap;
2055 
2056 	memset(adm->adm_kva, 0, size);
2057 
2058 	return adm;
2059 
2060 unmap:
2061 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, size);
2062 free:
2063 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
2064 destroy:
2065 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
2066 admfree:
2067 	kmem_free(adm, sizeof(*adm));
2068 
2069 	return NULL;
2070 }
2071 
2072 static void
arc_dmamem_free(struct arc_softc * sc,struct arc_dmamem * adm)2073 arc_dmamem_free(struct arc_softc *sc, struct arc_dmamem *adm)
2074 {
2075 	bus_dmamap_unload(sc->sc_dmat, adm->adm_map);
2076 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, adm->adm_size);
2077 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
2078 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
2079 	kmem_free(adm, sizeof(*adm));
2080 }
2081 
2082 static int
arc_alloc_ccbs(device_t self)2083 arc_alloc_ccbs(device_t self)
2084 {
2085 	struct arc_softc 	*sc = device_private(self);
2086 	struct arc_ccb		*ccb;
2087 	uint8_t			*cmd;
2088 	int			i;
2089 	size_t			ccbslen;
2090 
2091 	TAILQ_INIT(&sc->sc_ccb_free);
2092 
2093 	ccbslen = sizeof(struct arc_ccb) * sc->sc_req_count;
2094 	sc->sc_ccbs = kmem_zalloc(ccbslen, KM_SLEEP);
2095 
2096 	sc->sc_requests = arc_dmamem_alloc(sc,
2097 	    ARC_MAX_IOCMDLEN * sc->sc_req_count);
2098 	if (sc->sc_requests == NULL) {
2099 		aprint_error_dev(self, "unable to allocate ccb dmamem\n");
2100 		goto free_ccbs;
2101 	}
2102 	cmd = ARC_DMA_KVA(sc->sc_requests);
2103 
2104 	for (i = 0; i < sc->sc_req_count; i++) {
2105 		ccb = &sc->sc_ccbs[i];
2106 
2107 		if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, ARC_SGL_MAXLEN,
2108 		    MAXPHYS, 0, 0, &ccb->ccb_dmamap) != 0) {
2109 			aprint_error_dev(self,
2110 			    "unable to create dmamap for ccb %d\n", i);
2111 			goto free_maps;
2112 		}
2113 
2114 		ccb->ccb_sc = sc;
2115 		ccb->ccb_id = i;
2116 		ccb->ccb_offset = ARC_MAX_IOCMDLEN * i;
2117 
2118 		ccb->ccb_cmd = (struct arc_io_cmd *)&cmd[ccb->ccb_offset];
2119 		ccb->ccb_cmd_post = (ARC_DMA_DVA(sc->sc_requests) +
2120 		    ccb->ccb_offset) >> ARC_REG_POST_QUEUE_ADDR_SHIFT;
2121 
2122 		arc_put_ccb(sc, ccb);
2123 	}
2124 
2125 	return 0;
2126 
2127 free_maps:
2128 	while ((ccb = arc_get_ccb(sc)) != NULL)
2129 	    bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
2130 	arc_dmamem_free(sc, sc->sc_requests);
2131 
2132 free_ccbs:
2133 	kmem_free(sc->sc_ccbs, ccbslen);
2134 
2135 	return 1;
2136 }
2137 
2138 static struct arc_ccb *
arc_get_ccb(struct arc_softc * sc)2139 arc_get_ccb(struct arc_softc *sc)
2140 {
2141 	struct arc_ccb			*ccb;
2142 
2143 	ccb = TAILQ_FIRST(&sc->sc_ccb_free);
2144 	if (ccb != NULL)
2145 		TAILQ_REMOVE(&sc->sc_ccb_free, ccb, ccb_link);
2146 
2147 	return ccb;
2148 }
2149 
2150 static void
arc_put_ccb(struct arc_softc * sc,struct arc_ccb * ccb)2151 arc_put_ccb(struct arc_softc *sc, struct arc_ccb *ccb)
2152 {
2153 	ccb->ccb_xs = NULL;
2154 	memset(ccb->ccb_cmd, 0, ARC_MAX_IOCMDLEN);
2155 	TAILQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_link);
2156 }
2157