1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Øyvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
28  ***************************************************************************/
29 
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33 
34 #include "breakpoints.h"
35 #include "embeddedice.h"
36 #include "target_request.h"
37 #include "etm.h"
38 #include <helper/time_support.h>
39 #include "arm_simulator.h"
40 #include "arm_semihosting.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "armv4_5.h"
44 
45 /**
46  * @file
47  * Hold common code supporting the ARM7 and ARM9 core generations.
48  *
49  * While the ARM core implementations evolved substantially during these
50  * two generations, they look quite similar from the JTAG perspective.
51  * Both have similar debug facilities, based on the same two scan chains
52  * providing access to the core and to an EmbeddedICE module.  Both can
53  * support similar ETM and ETB modules, for tracing.  And both expose
54  * what could be viewed as "ARM Classic", with multiple processor modes,
55  * shadowed registers, and support for the Thumb instruction set.
56  *
57  * Processor differences include things like presence or absence of MMU
58  * and cache, pipeline sizes, use of a modified Harvard Architecture
59  * (with separate instruction and data buses from the CPU), support
60  * for cpu clock gating during idle, and more.
61  */
62 
63 static int arm7_9_debug_entry(struct target *target);
64 
65 /**
66  * Clear watchpoints for an ARM7/9 target.
67  *
68  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69  * @return JTAG error status after executing queue
70  */
arm7_9_clear_watchpoints(struct arm7_9_common * arm7_9)71 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
72 {
73 	LOG_DEBUG("-");
74 	embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
75 	embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
76 	arm7_9->sw_breakpoint_count = 0;
77 	arm7_9->sw_breakpoints_added = 0;
78 	arm7_9->wp0_used = 0;
79 	arm7_9->wp1_used = arm7_9->wp1_used_default;
80 	arm7_9->wp_available = arm7_9->wp_available_max;
81 
82 	return jtag_execute_queue();
83 }
84 
85 /**
86  * Assign a watchpoint to one of the two available hardware comparators in an
87  * ARM7 or ARM9 target.
88  *
89  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
91  */
arm7_9_assign_wp(struct arm7_9_common * arm7_9,struct breakpoint * breakpoint)92 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
93 {
94 	if (!arm7_9->wp0_used) {
95 		arm7_9->wp0_used = 1;
96 		breakpoint->set = 1;
97 		arm7_9->wp_available--;
98 	} else if (!arm7_9->wp1_used) {
99 		arm7_9->wp1_used = 1;
100 		breakpoint->set = 2;
101 		arm7_9->wp_available--;
102 	} else
103 		LOG_ERROR("BUG: no hardware comparator available");
104 
105 	LOG_DEBUG("BPID: %" PRIu32 " (0x%08" TARGET_PRIxADDR ") using hw wp: %d",
106 			breakpoint->unique_id,
107 			breakpoint->address,
108 			breakpoint->set);
109 }
110 
111 /**
112  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
113  *
114  * @param arm7_9 Pointer to common struct for ARM7/9 targets
115  * @return Error codes if there is a problem finding a watchpoint or the result
116  * of executing the JTAG queue
117  */
arm7_9_set_software_breakpoints(struct arm7_9_common * arm7_9)118 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
119 {
120 	if (arm7_9->sw_breakpoints_added)
121 		return ERROR_OK;
122 	if (arm7_9->wp_available < 1) {
123 		LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
124 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
125 	}
126 	arm7_9->wp_available--;
127 
128 	/* pick a breakpoint unit */
129 	if (!arm7_9->wp0_used) {
130 		arm7_9->sw_breakpoints_added = 1;
131 		arm7_9->wp0_used = 3;
132 	} else if (!arm7_9->wp1_used) {
133 		arm7_9->sw_breakpoints_added = 2;
134 		arm7_9->wp1_used = 3;
135 	} else {
136 		LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137 		return ERROR_FAIL;
138 	}
139 
140 	if (arm7_9->sw_breakpoints_added == 1) {
141 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
142 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
143 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
144 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
145 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
146 	} else if (arm7_9->sw_breakpoints_added == 2) {
147 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
148 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
149 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
150 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
151 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
152 	} else {
153 		LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
154 		return ERROR_FAIL;
155 	}
156 	LOG_DEBUG("SW BP using hw wp: %d",
157 		arm7_9->sw_breakpoints_added);
158 
159 	return jtag_execute_queue();
160 }
161 
162 /**
163  * Setup the common pieces for an ARM7/9 target after reset or on startup.
164  *
165  * @param target Pointer to an ARM7/9 target to setup
166  * @return Result of clearing the watchpoints on the target
167  */
arm7_9_setup(struct target * target)168 static int arm7_9_setup(struct target *target)
169 {
170 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
171 
172 	return arm7_9_clear_watchpoints(arm7_9);
173 }
174 
175 /**
176  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
177  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
178  * might have erased the values in Embedded ICE.
179  *
180  * @param target Pointer to the target device to set the breakpoints on
181  * @param breakpoint Pointer to the breakpoint to be set
182  * @return For hardware breakpoints, this is the result of executing the JTAG
183  * queue.  For software breakpoints, this will be the status of the
184  * required memory reads and writes
185  */
arm7_9_set_breakpoint(struct target * target,struct breakpoint * breakpoint)186 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
187 {
188 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
189 	int retval = ERROR_OK;
190 
191 	LOG_DEBUG("BPID: %" PRIu32 ", Address: 0x%08" TARGET_PRIxADDR ", Type: %d",
192 		breakpoint->unique_id,
193 		breakpoint->address,
194 		breakpoint->type);
195 
196 	if (target->state != TARGET_HALTED) {
197 		LOG_WARNING("target not halted");
198 		return ERROR_TARGET_NOT_HALTED;
199 	}
200 
201 	if (breakpoint->type == BKPT_HARD) {
202 		/* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
203 		uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
204 
205 		/* reassign a hw breakpoint */
206 		if (breakpoint->set == 0)
207 			arm7_9_assign_wp(arm7_9, breakpoint);
208 
209 		if (breakpoint->set == 1) {
210 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
211 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
212 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
213 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
214 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
215 		} else if (breakpoint->set == 2) {
216 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
217 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
218 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
219 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
220 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
221 		} else {
222 			LOG_ERROR("BUG: no hardware comparator available");
223 			return ERROR_OK;
224 		}
225 
226 		retval = jtag_execute_queue();
227 	} else if (breakpoint->type == BKPT_SOFT) {
228 		/* did we already set this breakpoint? */
229 		if (breakpoint->set)
230 			return ERROR_OK;
231 
232 		if (breakpoint->length == 4) {
233 			uint32_t verify = 0xffffffff;
234 			/* keep the original instruction in target endianness */
235 			retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
236 			if (retval != ERROR_OK)
237 				return retval;
238 			/* write the breakpoint instruction in target
239 			 * endianness (arm7_9->arm_bkpt is host endian) */
240 			retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
241 			if (retval != ERROR_OK)
242 				return retval;
243 
244 			retval = target_read_u32(target, breakpoint->address, &verify);
245 			if (retval != ERROR_OK)
246 				return retval;
247 			if (verify != arm7_9->arm_bkpt) {
248 				LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" TARGET_PRIxADDR
249 						" - check that memory is read/writable", breakpoint->address);
250 				return ERROR_OK;
251 			}
252 		} else {
253 			uint16_t verify = 0xffff;
254 			/* keep the original instruction in target endianness */
255 			retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
256 			if (retval != ERROR_OK)
257 				return retval;
258 			/* write the breakpoint instruction in target
259 			 * endianness (arm7_9->thumb_bkpt is host endian) */
260 			retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
261 			if (retval != ERROR_OK)
262 				return retval;
263 
264 			retval = target_read_u16(target, breakpoint->address, &verify);
265 			if (retval != ERROR_OK)
266 				return retval;
267 			if (verify != arm7_9->thumb_bkpt) {
268 				LOG_ERROR("Unable to set thumb software breakpoint at address %08" TARGET_PRIxADDR
269 						" - check that memory is read/writable", breakpoint->address);
270 				return ERROR_OK;
271 			}
272 		}
273 
274 		retval = arm7_9_set_software_breakpoints(arm7_9);
275 		if (retval != ERROR_OK)
276 			return retval;
277 
278 		arm7_9->sw_breakpoint_count++;
279 
280 		breakpoint->set = 1;
281 	}
282 
283 	return retval;
284 }
285 
286 /**
287  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
288  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
289  * will be updated.  Otherwise, the software breakpoint will be restored to its
290  * original instruction if it hasn't already been modified.
291  *
292  * @param target Pointer to ARM7/9 target to unset the breakpoint from
293  * @param breakpoint Pointer to breakpoint to be unset
294  * @return For hardware breakpoints, this is the result of executing the JTAG
295  * queue.  For software breakpoints, this will be the status of the
296  * required memory reads and writes
297  */
arm7_9_unset_breakpoint(struct target * target,struct breakpoint * breakpoint)298 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
299 {
300 	int retval = ERROR_OK;
301 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
302 
303 	LOG_DEBUG("BPID: %" PRIu32 ", Address: 0x%08" TARGET_PRIxADDR,
304 		breakpoint->unique_id,
305 		breakpoint->address);
306 
307 	if (!breakpoint->set) {
308 		LOG_WARNING("breakpoint not set");
309 		return ERROR_OK;
310 	}
311 
312 	if (breakpoint->type == BKPT_HARD) {
313 		LOG_DEBUG("BPID: %" PRIu32 " Releasing hw wp: %d",
314 			breakpoint->unique_id,
315 			breakpoint->set);
316 		if (breakpoint->set == 1) {
317 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
318 			arm7_9->wp0_used = 0;
319 			arm7_9->wp_available++;
320 		} else if (breakpoint->set == 2) {
321 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
322 			arm7_9->wp1_used = 0;
323 			arm7_9->wp_available++;
324 		}
325 		retval = jtag_execute_queue();
326 		breakpoint->set = 0;
327 	} else {
328 		/* restore original instruction (kept in target endianness) */
329 		if (breakpoint->length == 4) {
330 			uint32_t current_instr;
331 			/* check that user program as not modified breakpoint instruction */
332 			retval = target_read_memory(target,
333 					breakpoint->address, 4, 1, (uint8_t *)&current_instr);
334 			if (retval != ERROR_OK)
335 				return retval;
336 			current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
337 			if (current_instr == arm7_9->arm_bkpt) {
338 				retval = target_write_memory(target,
339 						breakpoint->address, 4, 1, breakpoint->orig_instr);
340 				if (retval != ERROR_OK)
341 					return retval;
342 			}
343 
344 		} else {
345 			uint16_t current_instr;
346 			/* check that user program as not modified breakpoint instruction */
347 			retval = target_read_memory(target,
348 					breakpoint->address, 2, 1, (uint8_t *)&current_instr);
349 			if (retval != ERROR_OK)
350 				return retval;
351 			current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
352 			if (current_instr == arm7_9->thumb_bkpt) {
353 				retval = target_write_memory(target,
354 						breakpoint->address, 2, 1, breakpoint->orig_instr);
355 				if (retval != ERROR_OK)
356 					return retval;
357 			}
358 		}
359 
360 		if (--arm7_9->sw_breakpoint_count == 0) {
361 			/* We have removed the last sw breakpoint, clear the hw breakpoint we used
362 			 *to implement it */
363 			if (arm7_9->sw_breakpoints_added == 1)
364 				embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
365 						EICE_W0_CONTROL_VALUE], 0);
366 			else if (arm7_9->sw_breakpoints_added == 2)
367 				embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
368 						EICE_W1_CONTROL_VALUE], 0);
369 		}
370 
371 		breakpoint->set = 0;
372 	}
373 
374 	return retval;
375 }
376 
377 /**
378  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
379  * dangling breakpoints and that the desired breakpoint can be added.
380  *
381  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
382  * @param breakpoint Pointer to the breakpoint to be added
383  * @return An error status if there is a problem adding the breakpoint or the
384  * result of setting the breakpoint
385  */
arm7_9_add_breakpoint(struct target * target,struct breakpoint * breakpoint)386 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
387 {
388 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
389 
390 	if (arm7_9->breakpoint_count == 0) {
391 		/* make sure we don't have any dangling breakpoints. This is vital upon
392 		 * GDB connect/disconnect
393 		 */
394 		arm7_9_clear_watchpoints(arm7_9);
395 	}
396 
397 	if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
398 		LOG_INFO("no watchpoint unit available for hardware breakpoint");
399 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
400 	}
401 
402 	if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
403 		LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
404 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
405 	}
406 
407 	if (breakpoint->type == BKPT_HARD)
408 		arm7_9_assign_wp(arm7_9, breakpoint);
409 
410 	arm7_9->breakpoint_count++;
411 
412 	return arm7_9_set_breakpoint(target, breakpoint);
413 }
414 
415 /**
416  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
417  * dangling breakpoints and updates available watchpoints if it is a hardware
418  * breakpoint.
419  *
420  * @param target Pointer to the target to have a breakpoint removed
421  * @param breakpoint Pointer to the breakpoint to be removed
422  * @return Error status if there was a problem unsetting the breakpoint or the
423  * watchpoints could not be cleared
424  */
arm7_9_remove_breakpoint(struct target * target,struct breakpoint * breakpoint)425 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427 	int retval = ERROR_OK;
428 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
429 
430 	retval = arm7_9_unset_breakpoint(target, breakpoint);
431 	if (retval != ERROR_OK)
432 		return retval;
433 
434 	if (breakpoint->type == BKPT_HARD)
435 		arm7_9->wp_available++;
436 
437 	arm7_9->breakpoint_count--;
438 	if (arm7_9->breakpoint_count == 0) {
439 		/* make sure we don't have any dangling breakpoints */
440 		retval = arm7_9_clear_watchpoints(arm7_9);
441 		if (retval != ERROR_OK)
442 			return retval;
443 	}
444 
445 	return ERROR_OK;
446 }
447 
448 /**
449  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
450  * considered a bug to call this function when there are no available watchpoint
451  * units.
452  *
453  * @param target Pointer to an ARM7/9 target to set a watchpoint on
454  * @param watchpoint Pointer to the watchpoint to be set
455  * @return Error status if watchpoint set fails or the result of executing the
456  * JTAG queue
457  */
arm7_9_set_watchpoint(struct target * target,struct watchpoint * watchpoint)458 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
459 {
460 	int retval = ERROR_OK;
461 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
462 	int rw_mask = 1;
463 	uint32_t mask;
464 
465 	mask = watchpoint->length - 1;
466 
467 	if (target->state != TARGET_HALTED) {
468 		LOG_WARNING("target not halted");
469 		return ERROR_TARGET_NOT_HALTED;
470 	}
471 
472 	if (watchpoint->rw == WPT_ACCESS)
473 		rw_mask = 0;
474 	else
475 		rw_mask = 1;
476 
477 	if (!arm7_9->wp0_used) {
478 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
479 			watchpoint->address);
480 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
481 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
482 			watchpoint->mask);
483 		if (watchpoint->mask != 0xffffffffu)
484 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
485 				watchpoint->value);
486 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
487 			0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
488 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
489 			EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
490 
491 		retval = jtag_execute_queue();
492 		if (retval != ERROR_OK)
493 			return retval;
494 		watchpoint->set = 1;
495 		arm7_9->wp0_used = 2;
496 	} else if (!arm7_9->wp1_used) {
497 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
498 			watchpoint->address);
499 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
500 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
501 			watchpoint->mask);
502 		if (watchpoint->mask != 0xffffffffu)
503 			embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
504 				watchpoint->value);
505 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
506 			0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
507 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
508 			EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
509 
510 		retval = jtag_execute_queue();
511 		if (retval != ERROR_OK)
512 			return retval;
513 		watchpoint->set = 2;
514 		arm7_9->wp1_used = 2;
515 	} else {
516 		LOG_ERROR("BUG: no hardware comparator available");
517 		return ERROR_OK;
518 	}
519 
520 	return ERROR_OK;
521 }
522 
523 /**
524  * Unset an existing watchpoint and clear the used watchpoint unit.
525  *
526  * @param target Pointer to the target to have the watchpoint removed
527  * @param watchpoint Pointer to the watchpoint to be removed
528  * @return Error status while trying to unset the watchpoint or the result of
529  *         executing the JTAG queue
530  */
arm7_9_unset_watchpoint(struct target * target,struct watchpoint * watchpoint)531 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
532 {
533 	int retval = ERROR_OK;
534 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
535 
536 	if (target->state != TARGET_HALTED) {
537 		LOG_WARNING("target not halted");
538 		return ERROR_TARGET_NOT_HALTED;
539 	}
540 
541 	if (!watchpoint->set) {
542 		LOG_WARNING("breakpoint not set");
543 		return ERROR_OK;
544 	}
545 
546 	if (watchpoint->set == 1) {
547 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
548 		retval = jtag_execute_queue();
549 		if (retval != ERROR_OK)
550 			return retval;
551 		arm7_9->wp0_used = 0;
552 	} else if (watchpoint->set == 2) {
553 		embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
554 		retval = jtag_execute_queue();
555 		if (retval != ERROR_OK)
556 			return retval;
557 		arm7_9->wp1_used = 0;
558 	}
559 	watchpoint->set = 0;
560 
561 	return ERROR_OK;
562 }
563 
564 /**
565  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
566  * available, an error response is returned.
567  *
568  * @param target Pointer to the ARM7/9 target to add a watchpoint to
569  * @param watchpoint Pointer to the watchpoint to be added
570  * @return Error status while trying to add the watchpoint
571  */
arm7_9_add_watchpoint(struct target * target,struct watchpoint * watchpoint)572 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
573 {
574 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
575 
576 	if (arm7_9->wp_available < 1)
577 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
578 
579 	if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
580 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
581 
582 	arm7_9->wp_available--;
583 
584 	return ERROR_OK;
585 }
586 
587 /**
588  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
589  * the used watchpoint unit will be reopened.
590  *
591  * @param target Pointer to the target to remove a watchpoint from
592  * @param watchpoint Pointer to the watchpoint to be removed
593  * @return Result of trying to unset the watchpoint
594  */
arm7_9_remove_watchpoint(struct target * target,struct watchpoint * watchpoint)595 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
596 {
597 	int retval = ERROR_OK;
598 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
599 
600 	if (watchpoint->set) {
601 		retval = arm7_9_unset_watchpoint(target, watchpoint);
602 		if (retval != ERROR_OK)
603 			return retval;
604 	}
605 
606 	arm7_9->wp_available++;
607 
608 	return ERROR_OK;
609 }
610 
611 /**
612  * Restarts the target by sending a RESTART instruction and moving the JTAG
613  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
614  * asserted by the processor.
615  *
616  * @param target Pointer to target to issue commands to
617  * @return Error status if there is a timeout or a problem while executing the
618  * JTAG queue
619  */
arm7_9_execute_sys_speed(struct target * target)620 int arm7_9_execute_sys_speed(struct target *target)
621 {
622 	int retval;
623 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
624 	struct arm_jtag *jtag_info = &arm7_9->jtag_info;
625 	struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
626 
627 	/* set RESTART instruction */
628 	if (arm7_9->need_bypass_before_restart) {
629 		arm7_9->need_bypass_before_restart = 0;
630 		retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
631 		if (retval != ERROR_OK)
632 			return retval;
633 	}
634 	retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
635 	if (retval != ERROR_OK)
636 		return retval;
637 
638 	int64_t then = timeval_ms();
639 	bool timeout;
640 	while (!(timeout = ((timeval_ms()-then) > 1000))) {
641 		/* read debug status register */
642 		embeddedice_read_reg(dbg_stat);
643 		retval = jtag_execute_queue();
644 		if (retval != ERROR_OK)
645 			return retval;
646 		if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
647 				&& (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
648 			break;
649 		if (debug_level >= 3)
650 			alive_sleep(100);
651 		else
652 			keep_alive();
653 	}
654 	if (timeout) {
655 		LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
656 			buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
657 		return ERROR_TARGET_TIMEOUT;
658 	}
659 
660 	return ERROR_OK;
661 }
662 
663 /**
664  * Restarts the target by sending a RESTART instruction and moving the JTAG
665  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
666  * waiting until they are.
667  *
668  * @param target Pointer to the target to issue commands to
669  * @return Always ERROR_OK
670  */
arm7_9_execute_fast_sys_speed(struct target * target)671 static int arm7_9_execute_fast_sys_speed(struct target *target)
672 {
673 	static int set;
674 	static uint8_t check_value[4], check_mask[4];
675 
676 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
677 	struct arm_jtag *jtag_info = &arm7_9->jtag_info;
678 	struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
679 	int retval;
680 
681 	/* set RESTART instruction */
682 	if (arm7_9->need_bypass_before_restart) {
683 		arm7_9->need_bypass_before_restart = 0;
684 		retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
685 		if (retval != ERROR_OK)
686 			return retval;
687 	}
688 	retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
689 	if (retval != ERROR_OK)
690 		return retval;
691 
692 	if (!set) {
693 		/* check for DBGACK and SYSCOMP set (others don't care) */
694 
695 		/* NB! These are constants that must be available until after next jtag_execute() and
696 		 * we evaluate the values upon first execution in lieu of setting up these constants
697 		 * during early setup.
698 		 * */
699 		buf_set_u32(check_value, 0, 32, 0x9);
700 		buf_set_u32(check_mask, 0, 32, 0x9);
701 		set = 1;
702 	}
703 
704 	/* read debug status register */
705 	embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
706 
707 	return ERROR_OK;
708 }
709 
710 /**
711  * Get some data from the ARM7/9 target.
712  *
713  * @param target Pointer to the ARM7/9 target to read data from
714  * @param size The number of 32bit words to be read
715  * @param buffer Pointer to the buffer that will hold the data
716  * @return The result of receiving data from the Embedded ICE unit
717  */
arm7_9_target_request_data(struct target * target,uint32_t size,uint8_t * buffer)718 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
719 {
720 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
721 	struct arm_jtag *jtag_info = &arm7_9->jtag_info;
722 	uint32_t *data;
723 	int retval = ERROR_OK;
724 	uint32_t i;
725 
726 	data = malloc(size * (sizeof(uint32_t)));
727 
728 	retval = embeddedice_receive(jtag_info, data, size);
729 
730 	/* return the 32-bit ints in the 8-bit array */
731 	for (i = 0; i < size; i++)
732 		h_u32_to_le(buffer + (i * 4), data[i]);
733 
734 	free(data);
735 
736 	return retval;
737 }
738 
739 /**
740  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
741  * target is running and the DCC control register has the W bit high, this will
742  * execute the request on the target.
743  *
744  * @param priv Void pointer expected to be a struct target pointer
745  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
746  * from the Embedded ICE unit
747  */
arm7_9_handle_target_request(void * priv)748 static int arm7_9_handle_target_request(void *priv)
749 {
750 	int retval = ERROR_OK;
751 	struct target *target = priv;
752 	if (!target_was_examined(target))
753 		return ERROR_OK;
754 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
755 	struct arm_jtag *jtag_info = &arm7_9->jtag_info;
756 	struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
757 
758 	if (!target->dbg_msg_enabled)
759 		return ERROR_OK;
760 
761 	if (target->state == TARGET_RUNNING) {
762 		/* read DCC control register */
763 		embeddedice_read_reg(dcc_control);
764 		retval = jtag_execute_queue();
765 		if (retval != ERROR_OK)
766 			return retval;
767 
768 		/* check W bit */
769 		if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
770 			uint32_t request;
771 
772 			retval = embeddedice_receive(jtag_info, &request, 1);
773 			if (retval != ERROR_OK)
774 				return retval;
775 			retval = target_request(target, request);
776 			if (retval != ERROR_OK)
777 				return retval;
778 		}
779 	}
780 
781 	return ERROR_OK;
782 }
783 
784 /**
785  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
786  * is manipulated to the right halted state based on its current state.  This is
787  * what happens:
788  *
789  * <table>
790  *   <tr><th > State</th><th > Action</th></tr>
791  *   <tr><td > TARGET_RUNNING | TARGET_RESET</td>
792  *     <td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
793  *   <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
794  *   <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
795  *   <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
796  * </table>
797  *
798  * If the target does not end up in the halted state, a warning is produced.  If
799  * DBGACK is cleared, then the target is expected to either be running or
800  * running in debug.
801  *
802  * @param target Pointer to the ARM7/9 target to poll
803  * @return ERROR_OK or an error status if a command fails
804  */
arm7_9_poll(struct target * target)805 int arm7_9_poll(struct target *target)
806 {
807 	int retval;
808 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
809 	struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
810 
811 	/* read debug status register */
812 	embeddedice_read_reg(dbg_stat);
813 	retval = jtag_execute_queue();
814 	if (retval != ERROR_OK)
815 		return retval;
816 
817 	if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
818 		/* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
819 		if (target->state == TARGET_UNKNOWN) {
820 			/* Starting OpenOCD with target in debug-halt */
821 			target->state = TARGET_RUNNING;
822 			LOG_DEBUG("DBGACK already set during server startup.");
823 		}
824 		if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
825 			target->state = TARGET_HALTED;
826 
827 			retval = arm7_9_debug_entry(target);
828 			if (retval != ERROR_OK)
829 				return retval;
830 
831 			if (arm_semihosting(target, &retval) != 0)
832 				return retval;
833 
834 			retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
835 			if (retval != ERROR_OK)
836 				return retval;
837 		}
838 		if (target->state == TARGET_DEBUG_RUNNING) {
839 			target->state = TARGET_HALTED;
840 			retval = arm7_9_debug_entry(target);
841 			if (retval != ERROR_OK)
842 				return retval;
843 
844 			retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
845 			if (retval != ERROR_OK)
846 				return retval;
847 		}
848 		if (target->state != TARGET_HALTED)
849 			LOG_WARNING(
850 				"DBGACK set, but the target did not end up in the halted state %d",
851 				target->state);
852 	} else {
853 		if (target->state != TARGET_DEBUG_RUNNING)
854 			target->state = TARGET_RUNNING;
855 	}
856 
857 	return ERROR_OK;
858 }
859 
860 /**
861  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
862  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
863  * affected) completely stop the JTAG clock while the core is held in reset
864  * (SRST).  It isn't possible to program the halt condition once reset is
865  * asserted, hence a hook that allows the target to set up its reset-halt
866  * condition is setup prior to asserting reset.
867  *
868  * @param target Pointer to an ARM7/9 target to assert reset on
869  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
870  */
arm7_9_assert_reset(struct target * target)871 int arm7_9_assert_reset(struct target *target)
872 {
873 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
874 	enum reset_types jtag_reset_config = jtag_get_reset_config();
875 	bool use_event = false;
876 
877 	/* TODO: apply hw reset signal in not examined state */
878 	if (!(target_was_examined(target))) {
879 		LOG_WARNING("Reset is not asserted because the target is not examined.");
880 		LOG_WARNING("Use a reset button or power cycle the target.");
881 		return ERROR_TARGET_NOT_EXAMINED;
882 	}
883 
884 	LOG_DEBUG("target->state: %s", target_state_name(target));
885 
886 	if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
887 		use_event = true;
888 	else if (!(jtag_reset_config & RESET_HAS_SRST)) {
889 		LOG_ERROR("%s: how to reset?", target_name(target));
890 		return ERROR_FAIL;
891 	}
892 
893 	/* At this point trst has been asserted/deasserted once. We would
894 	 * like to program EmbeddedICE while SRST is asserted, instead of
895 	 * depending on SRST to leave that module alone.  However, many CPUs
896 	 * gate the JTAG clock while SRST is asserted; or JTAG may need
897 	 * clock stability guarantees (adaptive clocking might help).
898 	 *
899 	 * So we assume JTAG access during SRST is off the menu unless it's
900 	 * been specifically enabled.
901 	 */
902 	bool srst_asserted = false;
903 
904 	if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
905 			&& (jtag_reset_config & RESET_SRST_NO_GATING)) {
906 		jtag_add_reset(0, 1);
907 		srst_asserted = true;
908 	}
909 
910 	if (target->reset_halt) {
911 		/*
912 		 * For targets that don't support communication while SRST is
913 		 * asserted, we need to set up the reset vector catch first.
914 		 *
915 		 * When we use TRST+SRST and that's equivalent to a power-up
916 		 * reset, these settings may well be reset anyway; so setting
917 		 * them here won't matter.
918 		 */
919 		if (arm7_9->has_vector_catch) {
920 			/* program vector catch register to catch reset */
921 			embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
922 
923 			/* extra runtest added as issues were found with
924 			 * certain ARM9 cores (maybe more) - AT91SAM9260
925 			 * and STR9
926 			 */
927 			jtag_add_runtest(1, TAP_IDLE);
928 		} else {
929 			/* program watchpoint unit to match on reset vector
930 			 * address
931 			 */
932 			embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
933 			embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
934 			embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
935 			embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
936 			embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
937 		}
938 	}
939 
940 	if (use_event)
941 		target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
942 	else {
943 		/* If we use SRST ... we'd like to issue just SRST, but the
944 		 * board or chip may be set up so we have to assert TRST as
945 		 * well.  On some chips that combination is equivalent to a
946 		 * power-up reset, and generally clobbers EICE state.
947 		 */
948 		if (jtag_reset_config & RESET_SRST_PULLS_TRST)
949 			jtag_add_reset(1, 1);
950 		else if (!srst_asserted)
951 			jtag_add_reset(0, 1);
952 		jtag_add_sleep(50000);
953 	}
954 
955 	target->state = TARGET_RESET;
956 	register_cache_invalidate(arm7_9->arm.core_cache);
957 
958 	/* REVISIT why isn't standard debug entry logic sufficient?? */
959 	if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
960 		/* debug entry was prepared above */
961 		target->debug_reason = DBG_REASON_DBGRQ;
962 	}
963 
964 	return ERROR_OK;
965 }
966 
967 /**
968  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
969  * and the target is being reset into a halt, a warning will be triggered
970  * because it is not possible to reset into a halted mode in this case.  The
971  * target is halted using the target's functions.
972  *
973  * @param target Pointer to the target to have the reset deasserted
974  * @return ERROR_OK or an error from polling or halting the target
975  */
arm7_9_deassert_reset(struct target * target)976 int arm7_9_deassert_reset(struct target *target)
977 {
978 	int retval = ERROR_OK;
979 	LOG_DEBUG("target->state: %s", target_state_name(target));
980 
981 	/* deassert reset lines */
982 	jtag_add_reset(0, 0);
983 
984 	/* In case polling is disabled, we need to examine the
985 	 * target and poll here for this target to work correctly.
986 	 *
987 	 * Otherwise, e.g. halt will fail afterwards with bogus
988 	 * error messages as halt will believe that reset is
989 	 * still in effect.
990 	 */
991 	retval = target_examine_one(target);
992 	if (retval != ERROR_OK)
993 		return retval;
994 
995 	retval = target_poll(target);
996 	if (retval != ERROR_OK)
997 		return retval;
998 
999 	enum reset_types jtag_reset_config = jtag_get_reset_config();
1000 	if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
1001 		LOG_WARNING(
1002 			"srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1003 		retval = target_halt(target);
1004 		if (retval != ERROR_OK)
1005 			return retval;
1006 	}
1007 	return retval;
1008 }
1009 
1010 /**
1011  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1012  * reset and if DBGRQ is used, it is programmed to be deasserted.  If the reset
1013  * vector catch was used, it is restored.  Otherwise, the control value is
1014  * restored and the watchpoint unit is restored if it was in use.
1015  *
1016  * @param target Pointer to the ARM7/9 target to have halt cleared
1017  * @return Always ERROR_OK
1018  */
arm7_9_clear_halt(struct target * target)1019 static int arm7_9_clear_halt(struct target *target)
1020 {
1021 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1022 	struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1023 
1024 	/* we used DBGRQ only if we didn't come out of reset */
1025 	if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
1026 		/* program EmbeddedICE Debug Control Register to deassert DBGRQ
1027 		 */
1028 		buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1029 		embeddedice_store_reg(dbg_ctrl);
1030 	} else {
1031 		if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
1032 			/* if we came out of reset, and vector catch is supported, we used
1033 			 * vector catch to enter debug state
1034 			 * restore the register in that case
1035 			 */
1036 			embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1037 		} else {
1038 			/* restore registers if watchpoint unit 0 was in use
1039 			 */
1040 			if (arm7_9->wp0_used) {
1041 				if (arm7_9->debug_entry_from_reset)
1042 					embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1043 							EICE_W0_ADDR_VALUE]);
1044 				embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1045 						EICE_W0_ADDR_MASK]);
1046 				embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1047 						EICE_W0_DATA_MASK]);
1048 				embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1049 						EICE_W0_CONTROL_MASK]);
1050 			}
1051 			/* control value always has to be restored, as it was either disabled,
1052 			 * or enabled with possibly different bits
1053 			 */
1054 			embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1055 		}
1056 	}
1057 
1058 	return ERROR_OK;
1059 }
1060 
1061 /**
1062  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1063  * and then there is a wait until the processor shows the halt.  This wait can
1064  * timeout and results in an error being returned.  The software reset involves
1065  * clearing the halt, updating the debug control register, changing to ARM mode,
1066  * reset of the program counter, and reset of all of the registers.
1067  *
1068  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1069  * @return Error status if any of the commands fail, otherwise ERROR_OK
1070  */
arm7_9_soft_reset_halt(struct target * target)1071 int arm7_9_soft_reset_halt(struct target *target)
1072 {
1073 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1074 	struct arm *arm = &arm7_9->arm;
1075 	struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1076 	struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1077 	int i;
1078 	int retval;
1079 
1080 	/* FIX!!! replace some of this code with tcl commands
1081 	 *
1082 	 * halt # the halt command is synchronous
1083 	 * armv4_5 core_state arm
1084 	 *
1085 	 */
1086 
1087 	retval = target_halt(target);
1088 	if (retval != ERROR_OK)
1089 		return retval;
1090 
1091 	long long then = timeval_ms();
1092 	int timeout;
1093 	while (!(timeout = ((timeval_ms()-then) > 1000))) {
1094 		if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1095 			break;
1096 		embeddedice_read_reg(dbg_stat);
1097 		retval = jtag_execute_queue();
1098 		if (retval != ERROR_OK)
1099 			return retval;
1100 		if (debug_level >= 3)
1101 			alive_sleep(100);
1102 		else
1103 			keep_alive();
1104 	}
1105 	if (timeout) {
1106 		LOG_ERROR("Failed to halt CPU after 1 sec");
1107 		return ERROR_TARGET_TIMEOUT;
1108 	}
1109 	target->state = TARGET_HALTED;
1110 
1111 	/* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1112 	 * ensure that DBGRQ is cleared
1113 	 */
1114 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1115 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1116 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1117 	embeddedice_store_reg(dbg_ctrl);
1118 
1119 	retval = arm7_9_clear_halt(target);
1120 	if (retval != ERROR_OK)
1121 		return retval;
1122 
1123 	/* if the target is in Thumb state, change to ARM state */
1124 	if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1125 		uint32_t r0_thumb, pc_thumb;
1126 		LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1127 		/* Entered debug from Thumb mode */
1128 		arm->core_state = ARM_STATE_THUMB;
1129 		arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1130 	}
1131 
1132 	/* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1133 
1134 	/* all register content is now invalid */
1135 	register_cache_invalidate(arm->core_cache);
1136 
1137 	/* SVC, ARM state, IRQ and FIQ disabled */
1138 	uint32_t cpsr;
1139 
1140 	cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1141 	cpsr &= ~0xff;
1142 	cpsr |= 0xd3;
1143 	arm_set_cpsr(arm, cpsr);
1144 	arm->cpsr->dirty = true;
1145 
1146 	/* start fetching from 0x0 */
1147 	buf_set_u32(arm->pc->value, 0, 32, 0x0);
1148 	arm->pc->dirty = true;
1149 	arm->pc->valid = true;
1150 
1151 	/* reset registers */
1152 	for (i = 0; i <= 14; i++) {
1153 		struct reg *r = arm_reg_current(arm, i);
1154 
1155 		buf_set_u32(r->value, 0, 32, 0xffffffff);
1156 		r->dirty = true;
1157 		r->valid = true;
1158 	}
1159 
1160 	retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1161 	if (retval != ERROR_OK)
1162 		return retval;
1163 
1164 	return ERROR_OK;
1165 }
1166 
1167 /**
1168  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1169  * line or by programming a watchpoint to trigger on any address.  It is
1170  * considered a bug to call this function while the target is in the
1171  * TARGET_RESET state.
1172  *
1173  * @param target Pointer to the ARM7/9 target to be halted
1174  * @return Always ERROR_OK
1175  */
arm7_9_halt(struct target * target)1176 int arm7_9_halt(struct target *target)
1177 {
1178 	if (target->state == TARGET_RESET) {
1179 		LOG_ERROR(
1180 			"BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1181 		return ERROR_OK;
1182 	}
1183 
1184 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1185 	struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1186 
1187 	LOG_DEBUG("target->state: %s",
1188 		target_state_name(target));
1189 
1190 	if (target->state == TARGET_HALTED) {
1191 		LOG_DEBUG("target was already halted");
1192 		return ERROR_OK;
1193 	}
1194 
1195 	if (target->state == TARGET_UNKNOWN)
1196 		LOG_WARNING("target was in unknown state when halt was requested");
1197 
1198 	if (arm7_9->use_dbgrq) {
1199 		/* program EmbeddedICE Debug Control Register to assert DBGRQ
1200 		 */
1201 		if (arm7_9->set_special_dbgrq)
1202 			arm7_9->set_special_dbgrq(target);
1203 		else {
1204 			buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1205 			embeddedice_store_reg(dbg_ctrl);
1206 		}
1207 	} else {
1208 		/* program watchpoint unit to match on any address
1209 		 */
1210 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1211 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1212 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1213 			EICE_W_CTRL_ENABLE);
1214 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1215 			~EICE_W_CTRL_nOPC & 0xff);
1216 	}
1217 
1218 	target->debug_reason = DBG_REASON_DBGRQ;
1219 
1220 	return ERROR_OK;
1221 }
1222 
1223 /**
1224  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1225  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1226  * examined.  Once done, the target is verified to be halted and the processor
1227  * is forced into ARM mode.  The core registers are saved for the current core
1228  * mode and the program counter (register 15) is updated as needed.  The core
1229  * registers and CPSR and SPSR are saved for restoration later.
1230  *
1231  * @param target Pointer to target that is entering debug mode
1232  * @return Error code if anything fails, otherwise ERROR_OK
1233  */
arm7_9_debug_entry(struct target * target)1234 static int arm7_9_debug_entry(struct target *target)
1235 {
1236 	int i;
1237 	uint32_t context[16];
1238 	uint32_t *context_p[16];
1239 	uint32_t r0_thumb, pc_thumb;
1240 	uint32_t cpsr, cpsr_mask = 0;
1241 	int retval;
1242 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1243 	struct arm *arm = &arm7_9->arm;
1244 	struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1245 	struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1246 
1247 #ifdef _DEBUG_ARM7_9_
1248 	LOG_DEBUG("-");
1249 #endif
1250 
1251 	/* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1252 	 * ensure that DBGRQ is cleared
1253 	 */
1254 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1255 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1256 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1257 	embeddedice_store_reg(dbg_ctrl);
1258 
1259 	retval = arm7_9_clear_halt(target);
1260 	if (retval != ERROR_OK)
1261 		return retval;
1262 
1263 	retval = jtag_execute_queue();
1264 	if (retval != ERROR_OK)
1265 		return retval;
1266 
1267 	retval = arm7_9->examine_debug_reason(target);
1268 	if (retval != ERROR_OK)
1269 		return retval;
1270 
1271 	if (target->state != TARGET_HALTED) {
1272 		LOG_WARNING("target not halted");
1273 		return ERROR_TARGET_NOT_HALTED;
1274 	}
1275 
1276 	/* if the target is in Thumb state, change to ARM state */
1277 	if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1278 		LOG_DEBUG("target entered debug from Thumb state");
1279 		/* Entered debug from Thumb mode */
1280 		arm->core_state = ARM_STATE_THUMB;
1281 		cpsr_mask = 1 << 5;
1282 		arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1283 		LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1284 			", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1285 	} else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1286 		/* \todo Get some vaguely correct handling of Jazelle, if
1287 		 * anyone ever uses it and full info becomes available.
1288 		 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1289 		 * B.7.3 for the reverse.  That'd be the bare minimum...
1290 		 */
1291 		LOG_DEBUG("target entered debug from Jazelle state");
1292 		arm->core_state = ARM_STATE_JAZELLE;
1293 		cpsr_mask = 1 << 24;
1294 		LOG_ERROR("Jazelle debug entry -- BROKEN!");
1295 	} else {
1296 		LOG_DEBUG("target entered debug from ARM state");
1297 		/* Entered debug from ARM mode */
1298 		arm->core_state = ARM_STATE_ARM;
1299 	}
1300 
1301 	for (i = 0; i < 16; i++)
1302 		context_p[i] = &context[i];
1303 	/* save core registers (r0 - r15 of current core mode) */
1304 	arm7_9->read_core_regs(target, 0xffff, context_p);
1305 
1306 	arm7_9->read_xpsr(target, &cpsr, 0);
1307 
1308 	retval = jtag_execute_queue();
1309 	if (retval != ERROR_OK)
1310 		return retval;
1311 
1312 	/* Sync our CPSR copy with J or T bits EICE reported, but
1313 	 * which we then erased by putting the core into ARM mode.
1314 	 */
1315 	arm_set_cpsr(arm, cpsr | cpsr_mask);
1316 
1317 	if (!is_arm_mode(arm->core_mode)) {
1318 		target->state = TARGET_UNKNOWN;
1319 		LOG_ERROR("cpsr contains invalid mode value - communication failure");
1320 		return ERROR_TARGET_FAILURE;
1321 	}
1322 
1323 	LOG_DEBUG("target entered debug state in %s mode",
1324 		arm_mode_name(arm->core_mode));
1325 
1326 	if (arm->core_state == ARM_STATE_THUMB) {
1327 		LOG_DEBUG("thumb state, applying fixups");
1328 		context[0] = r0_thumb;
1329 		context[15] = pc_thumb;
1330 	} else if (arm->core_state == ARM_STATE_ARM) {
1331 		/* adjust value stored by STM */
1332 		context[15] -= 3 * 4;
1333 	}
1334 
1335 	if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1336 		context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1337 	else
1338 		context[15] -= arm7_9->dbgreq_adjust_pc *
1339 			((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1340 
1341 	for (i = 0; i <= 15; i++) {
1342 		struct reg *r = arm_reg_current(arm, i);
1343 
1344 		LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1345 
1346 		buf_set_u32(r->value, 0, 32, context[i]);
1347 		/* r0 and r15 (pc) have to be restored later */
1348 		r->dirty = (i == 0) || (i == 15);
1349 		r->valid = true;
1350 	}
1351 
1352 	LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1353 
1354 	/* exceptions other than USR & SYS have a saved program status register */
1355 	if (arm->spsr) {
1356 		uint32_t spsr;
1357 		arm7_9->read_xpsr(target, &spsr, 1);
1358 		retval = jtag_execute_queue();
1359 		if (retval != ERROR_OK)
1360 			return retval;
1361 		buf_set_u32(arm->spsr->value, 0, 32, spsr);
1362 		arm->spsr->dirty = false;
1363 		arm->spsr->valid = true;
1364 	}
1365 
1366 	retval = jtag_execute_queue();
1367 	if (retval != ERROR_OK)
1368 		return retval;
1369 
1370 	if (arm7_9->post_debug_entry) {
1371 		retval = arm7_9->post_debug_entry(target);
1372 		if (retval != ERROR_OK)
1373 			return retval;
1374 	}
1375 
1376 	return ERROR_OK;
1377 }
1378 
1379 /**
1380  * Validate the full context for an ARM7/9 target in all processor modes.  If
1381  * there are any invalid registers for the target, they will all be read.  This
1382  * includes the PSR.
1383  *
1384  * @param target Pointer to the ARM7/9 target to capture the full context from
1385  * @return Error if the target is not halted, has an invalid core mode, or if
1386  *         the JTAG queue fails to execute
1387  */
arm7_9_full_context(struct target * target)1388 static int arm7_9_full_context(struct target *target)
1389 {
1390 	int i;
1391 	int retval;
1392 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1393 	struct arm *arm = &arm7_9->arm;
1394 	struct {
1395 		uint32_t value;
1396 		uint8_t *reg_p;
1397 	} read_cache[6 * (16 + 1)];
1398 	int read_cache_idx = 0;
1399 
1400 	LOG_DEBUG("-");
1401 
1402 	if (target->state != TARGET_HALTED) {
1403 		LOG_WARNING("target not halted");
1404 		return ERROR_TARGET_NOT_HALTED;
1405 	}
1406 
1407 	if (!is_arm_mode(arm->core_mode)) {
1408 		LOG_ERROR("not a valid arm core mode - communication failure?");
1409 		return ERROR_FAIL;
1410 	}
1411 
1412 	/* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1413 	 * SYS shares registers with User, so we don't touch SYS
1414 	 */
1415 	for (i = 0; i < 6; i++) {
1416 		uint32_t mask = 0;
1417 		uint32_t *reg_p[16];
1418 		int j;
1419 		bool valid = true;
1420 
1421 		/* check if there are invalid registers in the current mode
1422 		 */
1423 		for (j = 0; j <= 16; j++) {
1424 			if (!ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid)
1425 				valid = false;
1426 		}
1427 
1428 		if (!valid) {
1429 			uint32_t tmp_cpsr;
1430 
1431 			/* change processor mode (and mask T bit) */
1432 			tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1433 				& 0xe0;
1434 			tmp_cpsr |= armv4_5_number_to_mode(i);
1435 			tmp_cpsr &= ~0x20;
1436 			arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1437 
1438 			for (j = 0; j < 15; j++) {
1439 				if (!ARMV4_5_CORE_REG_MODE(arm->core_cache,
1440 						armv4_5_number_to_mode(i), j).valid) {
1441 					read_cache[read_cache_idx].reg_p = ARMV4_5_CORE_REG_MODE(
1442 							arm->core_cache,
1443 							armv4_5_number_to_mode(i),
1444 							j).value;
1445 					reg_p[j] = &read_cache[read_cache_idx].value;
1446 					read_cache_idx++;
1447 					mask |= 1 << j;
1448 					ARMV4_5_CORE_REG_MODE(arm->core_cache,
1449 						armv4_5_number_to_mode(i),
1450 						j).valid = true;
1451 					ARMV4_5_CORE_REG_MODE(arm->core_cache,
1452 						armv4_5_number_to_mode(i),
1453 						j).dirty = false;
1454 				}
1455 			}
1456 
1457 			/* if only the PSR is invalid, mask is all zeroes */
1458 			if (mask)
1459 				arm7_9->read_core_regs(target, mask, reg_p);
1460 
1461 			/* check if the PSR has to be read */
1462 			if (!ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1463 					16).valid) {
1464 				read_cache[read_cache_idx].reg_p = ARMV4_5_CORE_REG_MODE(arm->core_cache,
1465 					armv4_5_number_to_mode(i), 16).value;
1466 				arm7_9->read_xpsr(target, &read_cache[read_cache_idx].value, 1);
1467 				read_cache_idx++;
1468 				ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1469 					16).valid = true;
1470 				ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1471 					16).dirty = false;
1472 			}
1473 		}
1474 	}
1475 
1476 	/* restore processor mode (mask T bit) */
1477 	arm7_9->write_xpsr_im8(target,
1478 		buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
1479 
1480 	retval = jtag_execute_queue();
1481 	if (retval != ERROR_OK)
1482 		return retval;
1483 	/*
1484 	 * FIXME: regs in cache should be tagged as 'valid' only now,
1485 	 * not before the jtag_execute_queue()
1486 	 */
1487 	while (read_cache_idx) {
1488 		read_cache_idx--;
1489 		buf_set_u32(read_cache[read_cache_idx].reg_p, 0, 32, read_cache[read_cache_idx].value);
1490 	}
1491 	return ERROR_OK;
1492 }
1493 
1494 /**
1495  * Restore the processor context on an ARM7/9 target.  The full processor
1496  * context is analyzed to see if any of the registers are dirty on this end, but
1497  * have a valid new value.  If this is the case, the processor is changed to the
1498  * appropriate mode and the new register values are written out to the
1499  * processor.  If there happens to be a dirty register with an invalid value, an
1500  * error will be logged.
1501  *
1502  * @param target Pointer to the ARM7/9 target to have its context restored
1503  * @return Error status if the target is not halted or the core mode in the
1504  * armv4_5 struct is invalid.
1505  */
arm7_9_restore_context(struct target * target)1506 static int arm7_9_restore_context(struct target *target)
1507 {
1508 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1509 	struct arm *arm = &arm7_9->arm;
1510 	struct reg *reg;
1511 	enum arm_mode current_mode = arm->core_mode;
1512 	int i, j;
1513 	bool dirty;
1514 	int mode_change;
1515 
1516 	LOG_DEBUG("-");
1517 
1518 	if (target->state != TARGET_HALTED) {
1519 		LOG_WARNING("target not halted");
1520 		return ERROR_TARGET_NOT_HALTED;
1521 	}
1522 
1523 	if (arm7_9->pre_restore_context)
1524 		arm7_9->pre_restore_context(target);
1525 
1526 	if (!is_arm_mode(arm->core_mode)) {
1527 		LOG_ERROR("not a valid arm core mode - communication failure?");
1528 		return ERROR_FAIL;
1529 	}
1530 
1531 	/* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1532 	 * SYS shares registers with User, so we don't touch SYS
1533 	 */
1534 	for (i = 0; i < 6; i++) {
1535 		LOG_DEBUG("examining %s mode",
1536 			arm_mode_name(arm->core_mode));
1537 		dirty = false;
1538 		mode_change = 0;
1539 		/* check if there are dirty registers in the current mode
1540 		*/
1541 		for (j = 0; j <= 16; j++) {
1542 			reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1543 			if (reg->dirty) {
1544 				if (reg->valid) {
1545 					dirty = true;
1546 					LOG_DEBUG("examining dirty reg: %s", reg->name);
1547 					struct arm_reg *reg_arch_info;
1548 					reg_arch_info = reg->arch_info;
1549 					if ((reg_arch_info->mode != ARM_MODE_ANY)
1550 							&& (reg_arch_info->mode != current_mode)
1551 							&& !((reg_arch_info->mode == ARM_MODE_USR)
1552 							&& (arm->core_mode == ARM_MODE_SYS))
1553 							&& !((reg_arch_info->mode == ARM_MODE_SYS)
1554 							&& (arm->core_mode == ARM_MODE_USR))) {
1555 						mode_change = 1;
1556 						LOG_DEBUG("require mode change");
1557 					}
1558 				} else
1559 					LOG_ERROR("BUG: dirty register '%s', but no valid data",
1560 						reg->name);
1561 			}
1562 		}
1563 
1564 		if (dirty) {
1565 			uint32_t mask = 0x0;
1566 			int num_regs = 0;
1567 			uint32_t regs[16];
1568 
1569 			if (mode_change) {
1570 				uint32_t tmp_cpsr;
1571 
1572 				/* change processor mode (mask T bit) */
1573 				tmp_cpsr = buf_get_u32(arm->cpsr->value,
1574 						0, 8) & 0xe0;
1575 				tmp_cpsr |= armv4_5_number_to_mode(i);
1576 				tmp_cpsr &= ~0x20;
1577 				arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1578 				current_mode = armv4_5_number_to_mode(i);
1579 			}
1580 
1581 			for (j = 0; j <= 14; j++) {
1582 				reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1583 						armv4_5_number_to_mode(i),
1584 						j);
1585 
1586 				if (reg->dirty) {
1587 					regs[j] = buf_get_u32(reg->value, 0, 32);
1588 					mask |= 1 << j;
1589 					num_regs++;
1590 					reg->dirty = false;
1591 					reg->valid = true;
1592 					LOG_DEBUG("writing register %i mode %s "
1593 						"with value 0x%8.8" PRIx32, j,
1594 						arm_mode_name(arm->core_mode),
1595 						regs[j]);
1596 				}
1597 			}
1598 
1599 			if (mask)
1600 				arm7_9->write_core_regs(target, mask, regs);
1601 
1602 			reg =
1603 				&ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
1604 						i), 16);
1605 			struct arm_reg *reg_arch_info;
1606 			reg_arch_info = reg->arch_info;
1607 			if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
1608 				LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
1609 					i,
1610 					buf_get_u32(reg->value, 0, 32));
1611 				arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1612 			}
1613 		}
1614 	}
1615 
1616 	if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1617 		/* restore processor mode (mask T bit) */
1618 		uint32_t tmp_cpsr;
1619 
1620 		tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1621 		tmp_cpsr |= armv4_5_number_to_mode(i);
1622 		tmp_cpsr &= ~0x20;
1623 		LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1624 		arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1625 
1626 	} else if (arm->cpsr->dirty) {
1627 		/* CPSR has been changed, full restore necessary (mask T bit) */
1628 		LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1629 			buf_get_u32(arm->cpsr->value, 0, 32));
1630 		arm7_9->write_xpsr(target,
1631 			buf_get_u32(arm->cpsr->value, 0, 32)
1632 			& ~0x20, 0);
1633 		arm->cpsr->dirty = false;
1634 		arm->cpsr->valid = true;
1635 	}
1636 
1637 	/* restore PC */
1638 	LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1639 		buf_get_u32(arm->pc->value, 0, 32));
1640 	arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1641 	arm->pc->dirty = false;
1642 
1643 	return ERROR_OK;
1644 }
1645 
1646 /**
1647  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1648  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1649  * restart.
1650  *
1651  * @param target Pointer to the ARM7/9 target to be restarted
1652  * @return Result of executing the JTAG queue
1653  */
arm7_9_restart_core(struct target * target)1654 static int arm7_9_restart_core(struct target *target)
1655 {
1656 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1657 	struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1658 	int retval;
1659 
1660 	/* set RESTART instruction */
1661 	if (arm7_9->need_bypass_before_restart) {
1662 		arm7_9->need_bypass_before_restart = 0;
1663 
1664 		retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
1665 		if (retval != ERROR_OK)
1666 			return retval;
1667 	}
1668 	retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
1669 	if (retval != ERROR_OK)
1670 		return retval;
1671 
1672 	jtag_add_runtest(1, TAP_IDLE);
1673 	return jtag_execute_queue();
1674 }
1675 
1676 /**
1677  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1678  * iterated through and are set on the target if they aren't already set.
1679  *
1680  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1681  */
arm7_9_enable_watchpoints(struct target * target)1682 static void arm7_9_enable_watchpoints(struct target *target)
1683 {
1684 	struct watchpoint *watchpoint = target->watchpoints;
1685 
1686 	while (watchpoint) {
1687 		if (watchpoint->set == 0)
1688 			arm7_9_set_watchpoint(target, watchpoint);
1689 		watchpoint = watchpoint->next;
1690 	}
1691 }
1692 
1693 /**
1694  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1695  * iterated through and are set on the target.
1696  *
1697  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1698  */
arm7_9_enable_breakpoints(struct target * target)1699 static void arm7_9_enable_breakpoints(struct target *target)
1700 {
1701 	struct breakpoint *breakpoint = target->breakpoints;
1702 
1703 	/* set any pending breakpoints */
1704 	while (breakpoint) {
1705 		arm7_9_set_breakpoint(target, breakpoint);
1706 		breakpoint = breakpoint->next;
1707 	}
1708 }
1709 
arm7_9_resume(struct target * target,int current,target_addr_t address,int handle_breakpoints,int debug_execution)1710 int arm7_9_resume(struct target *target,
1711 	int current,
1712 	target_addr_t address,
1713 	int handle_breakpoints,
1714 	int debug_execution)
1715 {
1716 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1717 	struct arm *arm = &arm7_9->arm;
1718 	struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1719 	int err, retval = ERROR_OK;
1720 
1721 	LOG_DEBUG("-");
1722 
1723 	if (target->state != TARGET_HALTED) {
1724 		LOG_WARNING("target not halted");
1725 		return ERROR_TARGET_NOT_HALTED;
1726 	}
1727 
1728 	if (!debug_execution)
1729 		target_free_all_working_areas(target);
1730 
1731 	/* current = 1: continue on current pc, otherwise continue at <address> */
1732 	if (!current)
1733 		buf_set_u32(arm->pc->value, 0, 32, address);
1734 
1735 	uint32_t current_pc;
1736 	current_pc = buf_get_u32(arm->pc->value, 0, 32);
1737 
1738 	/* the front-end may request us not to handle breakpoints */
1739 	if (handle_breakpoints) {
1740 		struct breakpoint *breakpoint;
1741 		breakpoint = breakpoint_find(target,
1742 				buf_get_u32(arm->pc->value, 0, 32));
1743 		if (breakpoint != NULL) {
1744 			LOG_DEBUG("unset breakpoint at 0x%8.8" TARGET_PRIxADDR " (id: %" PRIu32,
1745 				breakpoint->address,
1746 				breakpoint->unique_id);
1747 			retval = arm7_9_unset_breakpoint(target, breakpoint);
1748 			if (retval != ERROR_OK)
1749 				return retval;
1750 
1751 			/* calculate PC of next instruction */
1752 			uint32_t next_pc;
1753 			retval = arm_simulate_step(target, &next_pc);
1754 			if (retval != ERROR_OK) {
1755 				uint32_t current_opcode;
1756 				target_read_u32(target, current_pc, &current_opcode);
1757 				LOG_ERROR(
1758 					"Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1759 					current_opcode);
1760 				return retval;
1761 			}
1762 
1763 			LOG_DEBUG("enable single-step");
1764 			arm7_9->enable_single_step(target, next_pc);
1765 
1766 			target->debug_reason = DBG_REASON_SINGLESTEP;
1767 
1768 			retval = arm7_9_restore_context(target);
1769 			if (retval != ERROR_OK)
1770 				return retval;
1771 
1772 			if (arm->core_state == ARM_STATE_ARM)
1773 				arm7_9->branch_resume(target);
1774 			else if (arm->core_state == ARM_STATE_THUMB)
1775 				arm7_9->branch_resume_thumb(target);
1776 			else {
1777 				LOG_ERROR("unhandled core state");
1778 				return ERROR_FAIL;
1779 			}
1780 
1781 			buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1782 			embeddedice_write_reg(dbg_ctrl,
1783 				buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1784 			err = arm7_9_execute_sys_speed(target);
1785 
1786 			LOG_DEBUG("disable single-step");
1787 			arm7_9->disable_single_step(target);
1788 
1789 			if (err != ERROR_OK) {
1790 				retval = arm7_9_set_breakpoint(target, breakpoint);
1791 				if (retval != ERROR_OK)
1792 					return retval;
1793 				target->state = TARGET_UNKNOWN;
1794 				return err;
1795 			}
1796 
1797 			retval = arm7_9_debug_entry(target);
1798 			if (retval != ERROR_OK)
1799 				return retval;
1800 			LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1801 				buf_get_u32(arm->pc->value, 0, 32));
1802 
1803 			LOG_DEBUG("set breakpoint at 0x%8.8" TARGET_PRIxADDR "", breakpoint->address);
1804 			retval = arm7_9_set_breakpoint(target, breakpoint);
1805 			if (retval != ERROR_OK)
1806 				return retval;
1807 		}
1808 	}
1809 
1810 	/* enable any pending breakpoints and watchpoints */
1811 	arm7_9_enable_breakpoints(target);
1812 	arm7_9_enable_watchpoints(target);
1813 
1814 	retval = arm7_9_restore_context(target);
1815 	if (retval != ERROR_OK)
1816 		return retval;
1817 
1818 	if (arm->core_state == ARM_STATE_ARM)
1819 		arm7_9->branch_resume(target);
1820 	else if (arm->core_state == ARM_STATE_THUMB)
1821 		arm7_9->branch_resume_thumb(target);
1822 	else {
1823 		LOG_ERROR("unhandled core state");
1824 		return ERROR_FAIL;
1825 	}
1826 
1827 	/* deassert DBGACK and INTDIS */
1828 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1829 	/* INTDIS only when we really resume, not during debug execution */
1830 	if (!debug_execution)
1831 		buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1832 	embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1833 
1834 	retval = arm7_9_restart_core(target);
1835 	if (retval != ERROR_OK)
1836 		return retval;
1837 
1838 	target->debug_reason = DBG_REASON_NOTHALTED;
1839 
1840 	if (!debug_execution) {
1841 		/* registers are now invalid */
1842 		register_cache_invalidate(arm->core_cache);
1843 		target->state = TARGET_RUNNING;
1844 		retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1845 		if (retval != ERROR_OK)
1846 			return retval;
1847 	} else {
1848 		target->state = TARGET_DEBUG_RUNNING;
1849 		retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1850 		if (retval != ERROR_OK)
1851 			return retval;
1852 	}
1853 
1854 	LOG_DEBUG("target resumed");
1855 
1856 	return ERROR_OK;
1857 }
1858 
arm7_9_enable_eice_step(struct target * target,uint32_t next_pc)1859 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1860 {
1861 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1862 	struct arm *arm = &arm7_9->arm;
1863 	uint32_t current_pc;
1864 	current_pc = buf_get_u32(arm->pc->value, 0, 32);
1865 
1866 	if (next_pc != current_pc) {
1867 		/* setup an inverse breakpoint on the current PC
1868 		* - comparator 1 matches the current address
1869 		* - rangeout from comparator 1 is connected to comparator 0 rangein
1870 		* - comparator 0 matches any address, as long as rangein is low */
1871 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1872 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1873 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1874 			EICE_W_CTRL_ENABLE);
1875 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1876 			~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1877 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
1878 			current_pc);
1879 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1880 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1881 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1882 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1883 			~EICE_W_CTRL_nOPC & 0xff);
1884 	} else {
1885 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1886 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1887 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1888 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1889 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1890 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1891 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1892 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
1893 			EICE_W_CTRL_ENABLE);
1894 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1895 			~EICE_W_CTRL_nOPC & 0xff);
1896 	}
1897 }
1898 
arm7_9_disable_eice_step(struct target * target)1899 void arm7_9_disable_eice_step(struct target *target)
1900 {
1901 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1902 
1903 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1904 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1905 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1906 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1907 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1908 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1909 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1910 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1911 	embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1912 }
1913 
arm7_9_step(struct target * target,int current,target_addr_t address,int handle_breakpoints)1914 int arm7_9_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1915 {
1916 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1917 	struct arm *arm = &arm7_9->arm;
1918 	struct breakpoint *breakpoint = NULL;
1919 	int err, retval;
1920 
1921 	if (target->state != TARGET_HALTED) {
1922 		LOG_WARNING("target not halted");
1923 		return ERROR_TARGET_NOT_HALTED;
1924 	}
1925 
1926 	/* current = 1: continue on current pc, otherwise continue at <address> */
1927 	if (!current)
1928 		buf_set_u32(arm->pc->value, 0, 32, address);
1929 
1930 	uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
1931 
1932 	/* the front-end may request us not to handle breakpoints */
1933 	if (handle_breakpoints)
1934 		breakpoint = breakpoint_find(target, current_pc);
1935 	if (breakpoint != NULL) {
1936 		retval = arm7_9_unset_breakpoint(target, breakpoint);
1937 		if (retval != ERROR_OK)
1938 			return retval;
1939 	}
1940 
1941 	target->debug_reason = DBG_REASON_SINGLESTEP;
1942 
1943 	/* calculate PC of next instruction */
1944 	uint32_t next_pc;
1945 	retval = arm_simulate_step(target, &next_pc);
1946 	if (retval != ERROR_OK) {
1947 		uint32_t current_opcode;
1948 		target_read_u32(target, current_pc, &current_opcode);
1949 		LOG_ERROR(
1950 			"Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1951 			current_opcode);
1952 		return retval;
1953 	}
1954 
1955 	retval = arm7_9_restore_context(target);
1956 	if (retval != ERROR_OK)
1957 		return retval;
1958 
1959 	arm7_9->enable_single_step(target, next_pc);
1960 
1961 	if (arm->core_state == ARM_STATE_ARM)
1962 		arm7_9->branch_resume(target);
1963 	else if (arm->core_state == ARM_STATE_THUMB)
1964 		arm7_9->branch_resume_thumb(target);
1965 	else {
1966 		LOG_ERROR("unhandled core state");
1967 		return ERROR_FAIL;
1968 	}
1969 
1970 	retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1971 	if (retval != ERROR_OK)
1972 		return retval;
1973 
1974 	err = arm7_9_execute_sys_speed(target);
1975 	arm7_9->disable_single_step(target);
1976 
1977 	/* registers are now invalid */
1978 	register_cache_invalidate(arm->core_cache);
1979 
1980 	if (err != ERROR_OK)
1981 		target->state = TARGET_UNKNOWN;
1982 	else {
1983 		retval = arm7_9_debug_entry(target);
1984 		if (retval != ERROR_OK)
1985 			return retval;
1986 		retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1987 		if (retval != ERROR_OK)
1988 			return retval;
1989 		LOG_DEBUG("target stepped");
1990 	}
1991 
1992 	if (breakpoint) {
1993 		retval = arm7_9_set_breakpoint(target, breakpoint);
1994 		if (retval != ERROR_OK)
1995 			return retval;
1996 	}
1997 
1998 	return err;
1999 }
2000 
arm7_9_read_core_reg(struct target * target,struct reg * r,int num,enum arm_mode mode)2001 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2002 	int num, enum arm_mode mode)
2003 {
2004 	uint32_t *reg_p[16];
2005 	int retval;
2006 	struct arm_reg *areg = r->arch_info;
2007 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2008 	struct arm *arm = &arm7_9->arm;
2009 
2010 	if (!is_arm_mode(arm->core_mode))
2011 		return ERROR_FAIL;
2012 	if ((num < 0) || (num > 16))
2013 		return ERROR_COMMAND_SYNTAX_ERROR;
2014 
2015 	if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2016 			&& (areg->mode != ARM_MODE_ANY)) {
2017 		uint32_t tmp_cpsr;
2018 
2019 		/* change processor mode (mask T bit) */
2020 		tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2021 		tmp_cpsr |= mode;
2022 		tmp_cpsr &= ~0x20;
2023 		arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2024 	}
2025 
2026 	uint32_t value = 0;
2027 	if ((num >= 0) && (num <= 15)) {
2028 		/* read a normal core register */
2029 		reg_p[num] = &value;
2030 
2031 		arm7_9->read_core_regs(target, 1 << num, reg_p);
2032 	} else {
2033 		/* read a program status register
2034 		 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2035 		 */
2036 		arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2037 	}
2038 
2039 	retval = jtag_execute_queue();
2040 	if (retval != ERROR_OK)
2041 		return retval;
2042 
2043 	r->valid = true;
2044 	r->dirty = false;
2045 	buf_set_u32(r->value, 0, 32, value);
2046 
2047 	if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2048 			&& (areg->mode != ARM_MODE_ANY)) {
2049 		/* restore processor mode (mask T bit) */
2050 		arm7_9->write_xpsr_im8(target,
2051 			buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2052 	}
2053 
2054 	return ERROR_OK;
2055 }
2056 
arm7_9_write_core_reg(struct target * target,struct reg * r,int num,enum arm_mode mode,uint8_t * value)2057 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2058 	int num, enum arm_mode mode, uint8_t *value)
2059 {
2060 	uint32_t reg[16];
2061 	struct arm_reg *areg = r->arch_info;
2062 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2063 	struct arm *arm = &arm7_9->arm;
2064 
2065 	if (!is_arm_mode(arm->core_mode))
2066 		return ERROR_FAIL;
2067 	if ((num < 0) || (num > 16))
2068 		return ERROR_COMMAND_SYNTAX_ERROR;
2069 
2070 	if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2071 			&& (areg->mode != ARM_MODE_ANY)) {
2072 		uint32_t tmp_cpsr;
2073 
2074 		/* change processor mode (mask T bit) */
2075 		tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2076 		tmp_cpsr |= mode;
2077 		tmp_cpsr &= ~0x20;
2078 		arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2079 	}
2080 
2081 	if ((num >= 0) && (num <= 15)) {
2082 		/* write a normal core register */
2083 		reg[num] = buf_get_u32(value, 0, 32);
2084 
2085 		arm7_9->write_core_regs(target, 1 << num, reg);
2086 	} else {
2087 		/* write a program status register
2088 		* if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2089 		*/
2090 		int spsr = (areg->mode != ARM_MODE_ANY);
2091 
2092 		uint32_t t = buf_get_u32(value, 0, 32);
2093 		/* if we're writing the CPSR, mask the T bit */
2094 		if (!spsr)
2095 			t &= ~0x20;
2096 
2097 		arm7_9->write_xpsr(target, t, spsr);
2098 	}
2099 
2100 	r->valid = true;
2101 	r->dirty = false;
2102 
2103 	if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2104 			&& (areg->mode != ARM_MODE_ANY)) {
2105 		/* restore processor mode (mask T bit) */
2106 		arm7_9->write_xpsr_im8(target,
2107 				buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2108 	}
2109 
2110 	return jtag_execute_queue();
2111 }
2112 
arm7_9_read_memory(struct target * target,target_addr_t address,uint32_t size,uint32_t count,uint8_t * buffer)2113 int arm7_9_read_memory(struct target *target,
2114 	target_addr_t address,
2115 	uint32_t size,
2116 	uint32_t count,
2117 	uint8_t *buffer)
2118 {
2119 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2120 	struct arm *arm = &arm7_9->arm;
2121 	uint32_t reg[16];
2122 	uint32_t num_accesses = 0;
2123 	int thisrun_accesses;
2124 	int i;
2125 	uint32_t cpsr;
2126 	int retval;
2127 	int last_reg = 0;
2128 
2129 	LOG_DEBUG("address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
2130 		address, size, count);
2131 
2132 	if (target->state != TARGET_HALTED) {
2133 		LOG_WARNING("target not halted");
2134 		return ERROR_TARGET_NOT_HALTED;
2135 	}
2136 
2137 	/* sanitize arguments */
2138 	if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2139 		return ERROR_COMMAND_SYNTAX_ERROR;
2140 
2141 	if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2142 		return ERROR_TARGET_UNALIGNED_ACCESS;
2143 
2144 	/* load the base register with the address of the first word */
2145 	reg[0] = address;
2146 	arm7_9->write_core_regs(target, 0x1, reg);
2147 
2148 	int j = 0;
2149 
2150 	switch (size) {
2151 		case 4:
2152 			while (num_accesses < count) {
2153 				uint32_t reg_list;
2154 				thisrun_accesses =
2155 						((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2156 				reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2157 
2158 				if (last_reg <= thisrun_accesses)
2159 					last_reg = thisrun_accesses;
2160 
2161 				arm7_9->load_word_regs(target, reg_list);
2162 
2163 				/* fast memory reads are only safe when the target is running
2164 				 * from a sufficiently high clock (32 kHz is usually too slow)
2165 				 */
2166 				if (arm7_9->fast_memory_access)
2167 					retval = arm7_9_execute_fast_sys_speed(target);
2168 				else
2169 					retval = arm7_9_execute_sys_speed(target);
2170 				if (retval != ERROR_OK)
2171 					return retval;
2172 
2173 				arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2174 
2175 				/* advance buffer, count number of accesses */
2176 				buffer += thisrun_accesses * 4;
2177 				num_accesses += thisrun_accesses;
2178 
2179 				if ((j++%1024) == 0)
2180 					keep_alive();
2181 			}
2182 			break;
2183 		case 2:
2184 			while (num_accesses < count) {
2185 				uint32_t reg_list;
2186 				thisrun_accesses =
2187 						((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2188 				reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2189 
2190 				for (i = 1; i <= thisrun_accesses; i++) {
2191 					if (i > last_reg)
2192 					    last_reg = i;
2193 					arm7_9->load_hword_reg(target, i);
2194 					/* fast memory reads are only safe when the target is running
2195 					 * from a sufficiently high clock (32 kHz is usually too slow)
2196 					 */
2197 					if (arm7_9->fast_memory_access)
2198 						retval = arm7_9_execute_fast_sys_speed(target);
2199 					else
2200 						retval = arm7_9_execute_sys_speed(target);
2201 					if (retval != ERROR_OK)
2202 						return retval;
2203 
2204 				}
2205 
2206 				arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2207 
2208 				/* advance buffer, count number of accesses */
2209 				buffer += thisrun_accesses * 2;
2210 				num_accesses += thisrun_accesses;
2211 
2212 				if ((j++%1024) == 0)
2213 					keep_alive();
2214 			}
2215 			break;
2216 		case 1:
2217 			while (num_accesses < count) {
2218 				uint32_t reg_list;
2219 				thisrun_accesses =
2220 						((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2221 				reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2222 
2223 				for (i = 1; i <= thisrun_accesses; i++) {
2224 					if (i > last_reg)
2225 						last_reg = i;
2226 					arm7_9->load_byte_reg(target, i);
2227 					/* fast memory reads are only safe when the target is running
2228 					 * from a sufficiently high clock (32 kHz is usually too slow)
2229 					 */
2230 					if (arm7_9->fast_memory_access)
2231 						retval = arm7_9_execute_fast_sys_speed(target);
2232 					else
2233 						retval = arm7_9_execute_sys_speed(target);
2234 					if (retval != ERROR_OK)
2235 						return retval;
2236 				}
2237 
2238 				arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2239 
2240 				/* advance buffer, count number of accesses */
2241 				buffer += thisrun_accesses * 1;
2242 				num_accesses += thisrun_accesses;
2243 
2244 				if ((j++%1024) == 0)
2245 					keep_alive();
2246 			}
2247 			break;
2248 	}
2249 
2250 	if (!is_arm_mode(arm->core_mode))
2251 		return ERROR_FAIL;
2252 
2253 	for (i = 0; i <= last_reg; i++) {
2254 		struct reg *r = arm_reg_current(arm, i);
2255 		r->dirty = r->valid;
2256 	}
2257 
2258 	arm7_9->read_xpsr(target, &cpsr, 0);
2259 	retval = jtag_execute_queue();
2260 	if (retval != ERROR_OK) {
2261 		LOG_ERROR("JTAG error while reading cpsr");
2262 		return ERROR_TARGET_DATA_ABORT;
2263 	}
2264 
2265 	if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2266 		LOG_WARNING(
2267 			"memory read caused data abort "
2268 			"(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2269 			address,
2270 			size,
2271 			count);
2272 
2273 		arm7_9->write_xpsr_im8(target,
2274 			buf_get_u32(arm->cpsr->value, 0, 8)
2275 			& ~0x20, 0, 0);
2276 
2277 		return ERROR_TARGET_DATA_ABORT;
2278 	}
2279 
2280 	return ERROR_OK;
2281 }
2282 
arm7_9_write_memory(struct target * target,target_addr_t address,uint32_t size,uint32_t count,const uint8_t * buffer)2283 int arm7_9_write_memory(struct target *target,
2284 	target_addr_t address,
2285 	uint32_t size,
2286 	uint32_t count,
2287 	const uint8_t *buffer)
2288 {
2289 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2290 	struct arm *arm = &arm7_9->arm;
2291 	struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2292 
2293 	uint32_t reg[16];
2294 	uint32_t num_accesses = 0;
2295 	int thisrun_accesses;
2296 	int i;
2297 	uint32_t cpsr;
2298 	int retval;
2299 	int last_reg = 0;
2300 
2301 #ifdef _DEBUG_ARM7_9_
2302 	LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2303 #endif
2304 
2305 	if (target->state != TARGET_HALTED) {
2306 		LOG_WARNING("target not halted");
2307 		return ERROR_TARGET_NOT_HALTED;
2308 	}
2309 
2310 	/* sanitize arguments */
2311 	if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2312 		return ERROR_COMMAND_SYNTAX_ERROR;
2313 
2314 	if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2315 		return ERROR_TARGET_UNALIGNED_ACCESS;
2316 
2317 	/* load the base register with the address of the first word */
2318 	reg[0] = address;
2319 	arm7_9->write_core_regs(target, 0x1, reg);
2320 
2321 	/* Clear DBGACK, to make sure memory fetches work as expected */
2322 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2323 	embeddedice_store_reg(dbg_ctrl);
2324 
2325 	switch (size) {
2326 		case 4:
2327 			while (num_accesses < count) {
2328 				uint32_t reg_list;
2329 				thisrun_accesses =
2330 						((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2331 				reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2332 
2333 				for (i = 1; i <= thisrun_accesses; i++) {
2334 					if (i > last_reg)
2335 						last_reg = i;
2336 					reg[i] = target_buffer_get_u32(target, buffer);
2337 					buffer += 4;
2338 				}
2339 
2340 				arm7_9->write_core_regs(target, reg_list, reg);
2341 
2342 				arm7_9->store_word_regs(target, reg_list);
2343 
2344 				/* fast memory writes are only safe when the target is running
2345 				 * from a sufficiently high clock (32 kHz is usually too slow)
2346 				 */
2347 				if (arm7_9->fast_memory_access)
2348 					retval = arm7_9_execute_fast_sys_speed(target);
2349 				else {
2350 					retval = arm7_9_execute_sys_speed(target);
2351 
2352 					/*
2353 					 * if memory writes are made when the clock is running slow
2354 					 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2355 					 * processor operations after a "reset halt" or "reset init",
2356 					 * need to immediately stroke the keep alive or will end up with
2357 					 * gdb "keep alive not sent error message" problem.
2358 					 */
2359 
2360 					keep_alive();
2361 				}
2362 
2363 				if (retval != ERROR_OK)
2364 					return retval;
2365 
2366 				num_accesses += thisrun_accesses;
2367 			}
2368 			break;
2369 		case 2:
2370 			while (num_accesses < count) {
2371 				uint32_t reg_list;
2372 				thisrun_accesses =
2373 						((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2374 				reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2375 
2376 				for (i = 1; i <= thisrun_accesses; i++) {
2377 					if (i > last_reg)
2378 						last_reg = i;
2379 					reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2380 					buffer += 2;
2381 				}
2382 
2383 				arm7_9->write_core_regs(target, reg_list, reg);
2384 
2385 				for (i = 1; i <= thisrun_accesses; i++) {
2386 					arm7_9->store_hword_reg(target, i);
2387 
2388 					/* fast memory writes are only safe when the target is running
2389 					 * from a sufficiently high clock (32 kHz is usually too slow)
2390 					 */
2391 					if (arm7_9->fast_memory_access)
2392 						retval = arm7_9_execute_fast_sys_speed(target);
2393 					else {
2394 						retval = arm7_9_execute_sys_speed(target);
2395 
2396 						/*
2397 						 * if memory writes are made when the clock is running slow
2398 						 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2399 						 * processor operations after a "reset halt" or "reset init",
2400 						 * need to immediately stroke the keep alive or will end up with
2401 						 * gdb "keep alive not sent error message" problem.
2402 						 */
2403 
2404 						keep_alive();
2405 					}
2406 
2407 					if (retval != ERROR_OK)
2408 						return retval;
2409 				}
2410 
2411 				num_accesses += thisrun_accesses;
2412 			}
2413 			break;
2414 		case 1:
2415 			while (num_accesses < count) {
2416 				uint32_t reg_list;
2417 				thisrun_accesses =
2418 						((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2419 				reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2420 
2421 				for (i = 1; i <= thisrun_accesses; i++) {
2422 					if (i > last_reg)
2423 						last_reg = i;
2424 					reg[i] = *buffer++ & 0xff;
2425 				}
2426 
2427 				arm7_9->write_core_regs(target, reg_list, reg);
2428 
2429 				for (i = 1; i <= thisrun_accesses; i++) {
2430 					arm7_9->store_byte_reg(target, i);
2431 					/* fast memory writes are only safe when the target is running
2432 					 * from a sufficiently high clock (32 kHz is usually too slow)
2433 					 */
2434 					if (arm7_9->fast_memory_access)
2435 						retval = arm7_9_execute_fast_sys_speed(target);
2436 					else {
2437 						retval = arm7_9_execute_sys_speed(target);
2438 
2439 						/*
2440 						 * if memory writes are made when the clock is running slow
2441 						 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2442 						 * processor operations after a "reset halt" or "reset init",
2443 						 * need to immediately stroke the keep alive or will end up with
2444 						 * gdb "keep alive not sent error message" problem.
2445 						 */
2446 
2447 						keep_alive();
2448 					}
2449 
2450 					if (retval != ERROR_OK)
2451 						return retval;
2452 
2453 				}
2454 
2455 				num_accesses += thisrun_accesses;
2456 			}
2457 			break;
2458 	}
2459 
2460 	/* Re-Set DBGACK */
2461 	buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2462 	embeddedice_store_reg(dbg_ctrl);
2463 
2464 	if (!is_arm_mode(arm->core_mode))
2465 		return ERROR_FAIL;
2466 
2467 	for (i = 0; i <= last_reg; i++) {
2468 		struct reg *r = arm_reg_current(arm, i);
2469 		r->dirty = r->valid;
2470 	}
2471 
2472 	arm7_9->read_xpsr(target, &cpsr, 0);
2473 	retval = jtag_execute_queue();
2474 	if (retval != ERROR_OK) {
2475 		LOG_ERROR("JTAG error while reading cpsr");
2476 		return ERROR_TARGET_DATA_ABORT;
2477 	}
2478 
2479 	if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2480 		LOG_WARNING(
2481 			"memory write caused data abort "
2482 			"(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2483 			address,
2484 			size,
2485 			count);
2486 
2487 		arm7_9->write_xpsr_im8(target,
2488 			buf_get_u32(arm->cpsr->value, 0, 8)
2489 			& ~0x20, 0, 0);
2490 
2491 		return ERROR_TARGET_DATA_ABORT;
2492 	}
2493 
2494 	return ERROR_OK;
2495 }
2496 
arm7_9_write_memory_opt(struct target * target,target_addr_t address,uint32_t size,uint32_t count,const uint8_t * buffer)2497 int arm7_9_write_memory_opt(struct target *target,
2498 	target_addr_t address,
2499 	uint32_t size,
2500 	uint32_t count,
2501 	const uint8_t *buffer)
2502 {
2503 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2504 	int retval;
2505 
2506 	if (size == 4 && count > 32 && arm7_9->bulk_write_memory) {
2507 		/* Attempt to do a bulk write */
2508 		retval = arm7_9->bulk_write_memory(target, address, count, buffer);
2509 
2510 		if (retval == ERROR_OK)
2511 			return ERROR_OK;
2512 	}
2513 
2514 	return arm7_9->write_memory(target, address, size, count, buffer);
2515 }
2516 
arm7_9_write_memory_no_opt(struct target * target,uint32_t address,uint32_t size,uint32_t count,const uint8_t * buffer)2517 int arm7_9_write_memory_no_opt(struct target *target,
2518 	uint32_t address,
2519 	uint32_t size,
2520 	uint32_t count,
2521 	const uint8_t *buffer)
2522 {
2523 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2524 
2525 	return arm7_9->write_memory(target, address, size, count, buffer);
2526 }
2527 
2528 static int dcc_count;
2529 static const uint8_t *dcc_buffer;
2530 
arm7_9_dcc_completion(struct target * target,uint32_t exit_point,int timeout_ms,void * arch_info)2531 static int arm7_9_dcc_completion(struct target *target,
2532 	uint32_t exit_point,
2533 	int timeout_ms,
2534 	void *arch_info)
2535 {
2536 	int retval = ERROR_OK;
2537 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2538 
2539 	retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
2540 	if (retval != ERROR_OK)
2541 		return retval;
2542 
2543 	int little = target->endianness == TARGET_LITTLE_ENDIAN;
2544 	int count = dcc_count;
2545 	const uint8_t *buffer = dcc_buffer;
2546 	if (count > 2) {
2547 		/* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2548 		 * core function repeated. */
2549 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2550 			fast_target_buffer_get_u32(buffer, little));
2551 		buffer += 4;
2552 
2553 		struct embeddedice_reg *ice_reg =
2554 			arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2555 		uint8_t reg_addr = ice_reg->addr & 0x1f;
2556 		struct jtag_tap *tap;
2557 		tap = ice_reg->jtag_info->tap;
2558 
2559 		embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2560 		buffer += (count-2)*4;
2561 
2562 		embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2563 			fast_target_buffer_get_u32(buffer, little));
2564 	} else {
2565 		int i;
2566 		for (i = 0; i < count; i++) {
2567 			embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2568 				fast_target_buffer_get_u32(buffer, little));
2569 			buffer += 4;
2570 		}
2571 	}
2572 
2573 	retval = target_halt(target);
2574 	if (retval != ERROR_OK)
2575 		return retval;
2576 	return target_wait_state(target, TARGET_HALTED, 500);
2577 }
2578 
2579 static const uint32_t dcc_code[] = {
2580 	/* r0 == input, points to memory buffer
2581 	 * r1 == scratch
2582 	 */
2583 
2584 	/* spin until DCC control (c0) reports data arrived */
2585 	0xee101e10,	/* w: mrc p14, #0, r1, c0, c0 */
2586 	0xe3110001,	/*    tst r1, #1              */
2587 	0x0afffffc,	/*    bne w                   */
2588 
2589 	/* read word from DCC (c1), write to memory */
2590 	0xee111e10,	/*    mrc p14, #0, r1, c1, c0 */
2591 	0xe4801004,	/*    str r1, [r0], #4        */
2592 
2593 	/* repeat */
2594 	0xeafffff9	/*    b   w                   */
2595 };
2596 
arm7_9_bulk_write_memory(struct target * target,target_addr_t address,uint32_t count,const uint8_t * buffer)2597 int arm7_9_bulk_write_memory(struct target *target,
2598 	target_addr_t address,
2599 	uint32_t count,
2600 	const uint8_t *buffer)
2601 {
2602 	int retval;
2603 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2604 
2605 	if (address % 4 != 0)
2606 		return ERROR_TARGET_UNALIGNED_ACCESS;
2607 
2608 	if (!arm7_9->dcc_downloads)
2609 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2610 
2611 	/* regrab previously allocated working_area, or allocate a new one */
2612 	if (!arm7_9->dcc_working_area) {
2613 		uint8_t dcc_code_buf[6 * 4];
2614 
2615 		/* make sure we have a working area */
2616 		if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
2617 			LOG_INFO("no working area available, falling back to memory writes");
2618 			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2619 		}
2620 
2621 		/* copy target instructions to target endianness */
2622 		target_buffer_set_u32_array(target, dcc_code_buf, ARRAY_SIZE(dcc_code), dcc_code);
2623 
2624 		/* write DCC code to working area, using the non-optimized
2625 		 * memory write to avoid ending up here again */
2626 		retval = arm7_9_write_memory_no_opt(target,
2627 				arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
2628 		if (retval != ERROR_OK)
2629 			return retval;
2630 	}
2631 
2632 	struct arm_algorithm arm_algo;
2633 	struct reg_param reg_params[1];
2634 
2635 	arm_algo.common_magic = ARM_COMMON_MAGIC;
2636 	arm_algo.core_mode = ARM_MODE_SVC;
2637 	arm_algo.core_state = ARM_STATE_ARM;
2638 
2639 	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2640 
2641 	buf_set_u32(reg_params[0].value, 0, 32, address);
2642 
2643 	dcc_count = count;
2644 	dcc_buffer = buffer;
2645 	retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2646 			arm7_9->dcc_working_area->address,
2647 			arm7_9->dcc_working_area->address + 6*4,
2648 			20*1000, &arm_algo, arm7_9_dcc_completion);
2649 
2650 	if (retval == ERROR_OK) {
2651 		uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2652 		if (endaddress != (address + count*4)) {
2653 			LOG_ERROR(
2654 				"DCC write failed, expected end address 0x%08" TARGET_PRIxADDR " got 0x%0" PRIx32 "",
2655 				(address + count*4),
2656 				endaddress);
2657 			retval = ERROR_FAIL;
2658 		}
2659 	}
2660 
2661 	destroy_reg_param(&reg_params[0]);
2662 
2663 	return retval;
2664 }
2665 
2666 /**
2667  * Perform per-target setup that requires JTAG access.
2668  */
arm7_9_examine(struct target * target)2669 int arm7_9_examine(struct target *target)
2670 {
2671 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2672 	int retval;
2673 
2674 	if (!target_was_examined(target)) {
2675 		struct reg_cache *t, **cache_p;
2676 
2677 		t = embeddedice_build_reg_cache(target, arm7_9);
2678 		if (t == NULL)
2679 			return ERROR_FAIL;
2680 
2681 		cache_p = register_get_last_cache_p(&target->reg_cache);
2682 		(*cache_p) = t;
2683 		arm7_9->eice_cache = (*cache_p);
2684 
2685 		if (arm7_9->arm.etm)
2686 			(*cache_p)->next = etm_build_reg_cache(target,
2687 					&arm7_9->jtag_info,
2688 					arm7_9->arm.etm);
2689 
2690 		target_set_examined(target);
2691 	}
2692 
2693 	retval = embeddedice_setup(target);
2694 	if (retval == ERROR_OK)
2695 		retval = arm7_9_setup(target);
2696 	if (retval == ERROR_OK && arm7_9->arm.etm)
2697 		retval = etm_setup(target);
2698 	return retval;
2699 }
2700 
arm7_9_deinit(struct target * target)2701 void arm7_9_deinit(struct target *target)
2702 {
2703 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2704 
2705 	if (target_was_examined(target))
2706 		embeddedice_free_reg_cache(arm7_9->eice_cache);
2707 
2708 	arm_jtag_close_connection(&arm7_9->jtag_info);
2709 }
2710 
arm7_9_check_reset(struct target * target)2711 int arm7_9_check_reset(struct target *target)
2712 {
2713 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2714 
2715 	if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2716 		LOG_WARNING(
2717 			"NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2718 
2719 	if (get_target_reset_nag() && (target->working_area_size == 0))
2720 		LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2721 
2722 	if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2723 		LOG_WARNING(
2724 			"NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2725 
2726 	return ERROR_OK;
2727 }
2728 
arm7_9_endianness_callback(jtag_callback_data_t pu8_in,jtag_callback_data_t i_size,jtag_callback_data_t i_be,jtag_callback_data_t i_flip)2729 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
2730 		jtag_callback_data_t i_size, jtag_callback_data_t i_be,
2731 		jtag_callback_data_t i_flip)
2732 {
2733 	uint8_t *in = (uint8_t *)pu8_in;
2734 	int size = (int)i_size;
2735 	int be = (int)i_be;
2736 	int flip = (int)i_flip;
2737 	uint32_t readback;
2738 
2739 	switch (size) {
2740 	case 4:
2741 		readback = le_to_h_u32(in);
2742 		if (flip)
2743 			readback = flip_u32(readback, 32);
2744 		if (be)
2745 			h_u32_to_be(in, readback);
2746 		else
2747 			h_u32_to_le(in, readback);
2748 		break;
2749 	case 2:
2750 		readback = le_to_h_u16(in);
2751 		if (flip)
2752 			readback = flip_u32(readback, 16);
2753 		if (be)
2754 			h_u16_to_be(in, readback & 0xffff);
2755 		else
2756 			h_u16_to_le(in, readback & 0xffff);
2757 		break;
2758 	case 1:
2759 		readback = *in;
2760 		if (flip)
2761 			readback = flip_u32(readback, 8);
2762 		*in = readback & 0xff;
2763 		break;
2764 	}
2765 
2766 	return ERROR_OK;
2767 }
2768 
COMMAND_HANDLER(handle_arm7_9_dbgrq_command)2769 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2770 {
2771 	struct target *target = get_current_target(CMD_CTX);
2772 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2773 
2774 	if (!is_arm7_9(arm7_9)) {
2775 		command_print(CMD, "current target isn't an ARM7/ARM9 target");
2776 		return ERROR_TARGET_INVALID;
2777 	}
2778 
2779 	if (CMD_ARGC > 0)
2780 		COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
2781 
2782 	command_print(CMD,
2783 		"use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2784 		(arm7_9->use_dbgrq) ? "enabled" : "disabled");
2785 
2786 	return ERROR_OK;
2787 }
2788 
COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)2789 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2790 {
2791 	struct target *target = get_current_target(CMD_CTX);
2792 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2793 
2794 	if (!is_arm7_9(arm7_9)) {
2795 		command_print(CMD, "current target isn't an ARM7/ARM9 target");
2796 		return ERROR_TARGET_INVALID;
2797 	}
2798 
2799 	if (CMD_ARGC > 0)
2800 		COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2801 
2802 	command_print(CMD,
2803 		"fast memory access is %s",
2804 		(arm7_9->fast_memory_access) ? "enabled" : "disabled");
2805 
2806 	return ERROR_OK;
2807 }
2808 
COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)2809 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2810 {
2811 	struct target *target = get_current_target(CMD_CTX);
2812 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2813 
2814 	if (!is_arm7_9(arm7_9)) {
2815 		command_print(CMD, "current target isn't an ARM7/ARM9 target");
2816 		return ERROR_TARGET_INVALID;
2817 	}
2818 
2819 	if (CMD_ARGC > 0)
2820 		COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2821 
2822 	command_print(CMD,
2823 		"dcc downloads are %s",
2824 		(arm7_9->dcc_downloads) ? "enabled" : "disabled");
2825 
2826 	return ERROR_OK;
2827 }
2828 
arm7_9_setup_semihosting(struct target * target,int enable)2829 static int arm7_9_setup_semihosting(struct target *target, int enable)
2830 {
2831 	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2832 
2833 	if (!is_arm7_9(arm7_9)) {
2834 		LOG_USER("current target isn't an ARM7/ARM9 target");
2835 		return ERROR_TARGET_INVALID;
2836 	}
2837 
2838 	if (arm7_9->has_vector_catch) {
2839 		struct reg *vector_catch = &arm7_9->eice_cache
2840 			->reg_list[EICE_VEC_CATCH];
2841 
2842 		if (!vector_catch->valid)
2843 			embeddedice_read_reg(vector_catch);
2844 		buf_set_u32(vector_catch->value, 2, 1, enable);
2845 		embeddedice_store_reg(vector_catch);
2846 	} else {
2847 		/* TODO: allow optional high vectors and/or BKPT_HARD */
2848 		if (enable)
2849 			breakpoint_add(target, 8, 4, BKPT_SOFT);
2850 		else
2851 			breakpoint_remove(target, 8);
2852 	}
2853 
2854 	return ERROR_OK;
2855 }
2856 
arm7_9_init_arch_info(struct target * target,struct arm7_9_common * arm7_9)2857 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2858 {
2859 	int retval = ERROR_OK;
2860 	struct arm *arm = &arm7_9->arm;
2861 
2862 	arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2863 
2864 	retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
2865 	if (retval != ERROR_OK)
2866 		return retval;
2867 
2868 	/* caller must have allocated via calloc(), so everything's zeroed */
2869 
2870 	arm7_9->wp_available_max = 2;
2871 
2872 	arm7_9->fast_memory_access = false;
2873 	arm7_9->dcc_downloads = false;
2874 
2875 	arm->arch_info = arm7_9;
2876 	arm->core_type = ARM_CORE_TYPE_STD;
2877 	arm->read_core_reg = arm7_9_read_core_reg;
2878 	arm->write_core_reg = arm7_9_write_core_reg;
2879 	arm->full_context = arm7_9_full_context;
2880 	arm->setup_semihosting = arm7_9_setup_semihosting;
2881 
2882 	retval = arm_init_arch_info(target, arm);
2883 	if (retval != ERROR_OK)
2884 		return retval;
2885 
2886 	return target_register_timer_callback(arm7_9_handle_target_request,
2887 		1, TARGET_TIMER_TYPE_PERIODIC, target);
2888 }
2889 
2890 static const struct command_registration arm7_9_any_command_handlers[] = {
2891 	{
2892 		.name = "dbgrq",
2893 		.handler = handle_arm7_9_dbgrq_command,
2894 		.mode = COMMAND_ANY,
2895 		.usage = "['enable'|'disable']",
2896 		.help = "use EmbeddedICE dbgrq instead of breakpoint "
2897 			"for target halt requests",
2898 	},
2899 	{
2900 		.name = "fast_memory_access",
2901 		.handler = handle_arm7_9_fast_memory_access_command,
2902 		.mode = COMMAND_ANY,
2903 		.usage = "['enable'|'disable']",
2904 		.help = "use fast memory accesses instead of slower "
2905 			"but potentially safer accesses",
2906 	},
2907 	{
2908 		.name = "dcc_downloads",
2909 		.handler = handle_arm7_9_dcc_downloads_command,
2910 		.mode = COMMAND_ANY,
2911 		.usage = "['enable'|'disable']",
2912 		.help = "use DCC downloads for larger memory writes",
2913 	},
2914 	COMMAND_REGISTRATION_DONE
2915 };
2916 const struct command_registration arm7_9_command_handlers[] = {
2917 	{
2918 		.chain = arm_command_handlers,
2919 	},
2920 	{
2921 		.chain = etm_command_handlers,
2922 	},
2923 	{
2924 		.name = "arm7_9",
2925 		.mode = COMMAND_ANY,
2926 		.help = "arm7/9 specific commands",
2927 		.usage = "",
2928 		.chain = arm7_9_any_command_handlers,
2929 	},
2930 	COMMAND_REGISTRATION_DONE
2931 };
2932