1 /* $OpenBSD: xform.c,v 1.61 2021/10/22 12:30:53 bluhm Exp $ */
2 /*
3 * The authors of this code are John Ioannidis (ji@tla.org),
4 * Angelos D. Keromytis (kermit@csd.uch.gr),
5 * Niels Provos (provos@physnet.uni-hamburg.de),
6 * Damien Miller (djm@mindrot.org) and
7 * Mike Belopuhov (mikeb@openbsd.org).
8 *
9 * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
10 * in November 1995.
11 *
12 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
13 * by Angelos D. Keromytis.
14 *
15 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
16 * and Niels Provos.
17 *
18 * Additional features in 1999 by Angelos D. Keromytis.
19 *
20 * AES XTS implementation in 2008 by Damien Miller
21 *
22 * AES-GCM-16 and Chacha20-Poly1305 AEAD modes by Mike Belopuhov.
23 *
24 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
25 * Angelos D. Keromytis and Niels Provos.
26 *
27 * Copyright (C) 2001, Angelos D. Keromytis.
28 *
29 * Copyright (C) 2008, Damien Miller
30 *
31 * Copyright (C) 2010, 2015, Mike Belopuhov
32 *
33 * Permission to use, copy, and modify this software with or without fee
34 * is hereby granted, provided that this entire notice is included in
35 * all copies of any software which is or includes a copy or
36 * modification of this software.
37 * You may use this code under the GNU public license if you so wish. Please
38 * contribute changes back to the authors under this freer than GPL license
39 * so that we may further the use of strong encryption without limitations to
40 * all.
41 *
42 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
43 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
44 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
45 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
46 * PURPOSE.
47 */
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <machine/cpu.h>
55
56 #include <crypto/md5.h>
57 #include <crypto/sha1.h>
58 #include <crypto/sha2.h>
59 #include <crypto/rmd160.h>
60 #include <crypto/blf.h>
61 #include <crypto/cast.h>
62 #include <crypto/rijndael.h>
63 #include <crypto/aes.h>
64 #include <crypto/cryptodev.h>
65 #include <crypto/xform.h>
66 #include <crypto/gmac.h>
67 #include <crypto/chachapoly.h>
68
69 extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int);
70
71 int des_set_key(void *, caddr_t);
72 int des3_setkey(void *, u_int8_t *, int);
73 int blf_setkey(void *, u_int8_t *, int);
74 int cast5_setkey(void *, u_int8_t *, int);
75 int aes_setkey(void *, u_int8_t *, int);
76 int aes_ctr_setkey(void *, u_int8_t *, int);
77 int aes_xts_setkey(void *, u_int8_t *, int);
78 int null_setkey(void *, u_int8_t *, int);
79
80 void des3_encrypt(caddr_t, u_int8_t *);
81 void blf_encrypt(caddr_t, u_int8_t *);
82 void cast5_encrypt(caddr_t, u_int8_t *);
83 void aes_encrypt(caddr_t, u_int8_t *);
84 void null_encrypt(caddr_t, u_int8_t *);
85 void aes_xts_encrypt(caddr_t, u_int8_t *);
86
87 void des3_decrypt(caddr_t, u_int8_t *);
88 void blf_decrypt(caddr_t, u_int8_t *);
89 void cast5_decrypt(caddr_t, u_int8_t *);
90 void aes_decrypt(caddr_t, u_int8_t *);
91 void null_decrypt(caddr_t, u_int8_t *);
92 void aes_xts_decrypt(caddr_t, u_int8_t *);
93
94 void aes_ctr_crypt(caddr_t, u_int8_t *);
95
96 void aes_ctr_reinit(caddr_t, u_int8_t *);
97 void aes_xts_reinit(caddr_t, u_int8_t *);
98 void aes_gcm_reinit(caddr_t, u_int8_t *);
99
100 int MD5Update_int(void *, const u_int8_t *, u_int16_t);
101 int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
102 int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
103 int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
104 int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
105 int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
106
107 u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
108 u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
109
110 struct aes_ctr_ctx {
111 AES_CTX ac_key;
112 u_int8_t ac_block[AESCTR_BLOCKSIZE];
113 };
114
115 struct aes_xts_ctx {
116 rijndael_ctx key1;
117 rijndael_ctx key2;
118 u_int8_t tweak[AES_XTS_BLOCKSIZE];
119 };
120
121 /* Helper */
122 void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int);
123
124 /* Encryption instances */
125 const struct enc_xform enc_xform_3des = {
126 CRYPTO_3DES_CBC, "3DES",
127 8, 8, 24, 24, 384,
128 des3_encrypt,
129 des3_decrypt,
130 des3_setkey,
131 NULL
132 };
133
134 const struct enc_xform enc_xform_blf = {
135 CRYPTO_BLF_CBC, "Blowfish",
136 8, 8, 5, 56 /* 448 bits, max key */,
137 sizeof(blf_ctx),
138 blf_encrypt,
139 blf_decrypt,
140 blf_setkey,
141 NULL
142 };
143
144 const struct enc_xform enc_xform_cast5 = {
145 CRYPTO_CAST_CBC, "CAST-128",
146 8, 8, 5, 16,
147 sizeof(cast_key),
148 cast5_encrypt,
149 cast5_decrypt,
150 cast5_setkey,
151 NULL
152 };
153
154 const struct enc_xform enc_xform_aes = {
155 CRYPTO_AES_CBC, "AES",
156 16, 16, 16, 32,
157 sizeof(AES_CTX),
158 aes_encrypt,
159 aes_decrypt,
160 aes_setkey,
161 NULL
162 };
163
164 const struct enc_xform enc_xform_aes_ctr = {
165 CRYPTO_AES_CTR, "AES-CTR",
166 16, 8, 16+4, 32+4,
167 sizeof(struct aes_ctr_ctx),
168 aes_ctr_crypt,
169 aes_ctr_crypt,
170 aes_ctr_setkey,
171 aes_ctr_reinit
172 };
173
174 const struct enc_xform enc_xform_aes_gcm = {
175 CRYPTO_AES_GCM_16, "AES-GCM",
176 1, 8, 16+4, 32+4,
177 sizeof(struct aes_ctr_ctx),
178 aes_ctr_crypt,
179 aes_ctr_crypt,
180 aes_ctr_setkey,
181 aes_gcm_reinit
182 };
183
184 const struct enc_xform enc_xform_aes_gmac = {
185 CRYPTO_AES_GMAC, "AES-GMAC",
186 1, 8, 16+4, 32+4, 0,
187 NULL,
188 NULL,
189 NULL,
190 NULL
191 };
192
193 const struct enc_xform enc_xform_aes_xts = {
194 CRYPTO_AES_XTS, "AES-XTS",
195 16, 8, 32, 64,
196 sizeof(struct aes_xts_ctx),
197 aes_xts_encrypt,
198 aes_xts_decrypt,
199 aes_xts_setkey,
200 aes_xts_reinit
201 };
202
203 const struct enc_xform enc_xform_chacha20_poly1305 = {
204 CRYPTO_CHACHA20_POLY1305, "CHACHA20-POLY1305",
205 1, 8, 32+4, 32+4,
206 sizeof(struct chacha20_ctx),
207 chacha20_crypt,
208 chacha20_crypt,
209 chacha20_setkey,
210 chacha20_reinit
211 };
212
213 const struct enc_xform enc_xform_null = {
214 CRYPTO_NULL, "NULL",
215 4, 0, 0, 256, 0,
216 null_encrypt,
217 null_decrypt,
218 null_setkey,
219 NULL
220 };
221
222 /* Authentication instances */
223 const struct auth_hash auth_hash_hmac_md5_96 = {
224 CRYPTO_MD5_HMAC, "HMAC-MD5",
225 16, 16, 12, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN,
226 (void (*) (void *)) MD5Init, NULL, NULL,
227 MD5Update_int,
228 (void (*) (u_int8_t *, void *)) MD5Final
229 };
230
231 const struct auth_hash auth_hash_hmac_sha1_96 = {
232 CRYPTO_SHA1_HMAC, "HMAC-SHA1",
233 20, 20, 12, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN,
234 (void (*) (void *)) SHA1Init, NULL, NULL,
235 SHA1Update_int,
236 (void (*) (u_int8_t *, void *)) SHA1Final
237 };
238
239 const struct auth_hash auth_hash_hmac_ripemd_160_96 = {
240 CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
241 20, 20, 12, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN,
242 (void (*)(void *)) RMD160Init, NULL, NULL,
243 RMD160Update_int,
244 (void (*)(u_int8_t *, void *)) RMD160Final
245 };
246
247 const struct auth_hash auth_hash_hmac_sha2_256_128 = {
248 CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
249 32, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN,
250 (void (*)(void *)) SHA256Init, NULL, NULL,
251 SHA256Update_int,
252 (void (*)(u_int8_t *, void *)) SHA256Final
253 };
254
255 const struct auth_hash auth_hash_hmac_sha2_384_192 = {
256 CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
257 48, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN,
258 (void (*)(void *)) SHA384Init, NULL, NULL,
259 SHA384Update_int,
260 (void (*)(u_int8_t *, void *)) SHA384Final
261 };
262
263 const struct auth_hash auth_hash_hmac_sha2_512_256 = {
264 CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
265 64, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN,
266 (void (*)(void *)) SHA512Init, NULL, NULL,
267 SHA512Update_int,
268 (void (*)(u_int8_t *, void *)) SHA512Final
269 };
270
271 const struct auth_hash auth_hash_gmac_aes_128 = {
272 CRYPTO_AES_128_GMAC, "GMAC-AES-128",
273 16+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
274 AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
275 AES_GMAC_Update, AES_GMAC_Final
276 };
277
278 const struct auth_hash auth_hash_gmac_aes_192 = {
279 CRYPTO_AES_192_GMAC, "GMAC-AES-192",
280 24+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
281 AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
282 AES_GMAC_Update, AES_GMAC_Final
283 };
284
285 const struct auth_hash auth_hash_gmac_aes_256 = {
286 CRYPTO_AES_256_GMAC, "GMAC-AES-256",
287 32+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
288 AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
289 AES_GMAC_Update, AES_GMAC_Final
290 };
291
292 const struct auth_hash auth_hash_chacha20_poly1305 = {
293 CRYPTO_CHACHA20_POLY1305_MAC, "CHACHA20-POLY1305",
294 CHACHA20_KEYSIZE+CHACHA20_SALT, POLY1305_BLOCK_LEN, POLY1305_TAGLEN,
295 sizeof(CHACHA20_POLY1305_CTX), CHACHA20_BLOCK_LEN,
296 Chacha20_Poly1305_Init, Chacha20_Poly1305_Setkey,
297 Chacha20_Poly1305_Reinit, Chacha20_Poly1305_Update,
298 Chacha20_Poly1305_Final
299 };
300
301 /* Compression instance */
302 const struct comp_algo comp_algo_deflate = {
303 CRYPTO_DEFLATE_COMP, "Deflate",
304 90, deflate_compress,
305 deflate_decompress
306 };
307
308 /*
309 * Encryption wrapper routines.
310 */
311 void
des3_encrypt(caddr_t key,u_int8_t * blk)312 des3_encrypt(caddr_t key, u_int8_t *blk)
313 {
314 des_ecb3_encrypt(blk, blk, key, key + 128, key + 256, 1);
315 }
316
317 void
des3_decrypt(caddr_t key,u_int8_t * blk)318 des3_decrypt(caddr_t key, u_int8_t *blk)
319 {
320 des_ecb3_encrypt(blk, blk, key + 256, key + 128, key, 0);
321 }
322
323 int
des3_setkey(void * sched,u_int8_t * key,int len)324 des3_setkey(void *sched, u_int8_t *key, int len)
325 {
326 if (des_set_key(key, sched) < 0 || des_set_key(key + 8, sched + 128)
327 < 0 || des_set_key(key + 16, sched + 256) < 0)
328 return -1;
329
330 return 0;
331 }
332
333 void
blf_encrypt(caddr_t key,u_int8_t * blk)334 blf_encrypt(caddr_t key, u_int8_t *blk)
335 {
336 blf_ecb_encrypt((blf_ctx *) key, blk, 8);
337 }
338
339 void
blf_decrypt(caddr_t key,u_int8_t * blk)340 blf_decrypt(caddr_t key, u_int8_t *blk)
341 {
342 blf_ecb_decrypt((blf_ctx *) key, blk, 8);
343 }
344
345 int
blf_setkey(void * sched,u_int8_t * key,int len)346 blf_setkey(void *sched, u_int8_t *key, int len)
347 {
348 blf_key((blf_ctx *)sched, key, len);
349
350 return 0;
351 }
352
353 int
null_setkey(void * sched,u_int8_t * key,int len)354 null_setkey(void *sched, u_int8_t *key, int len)
355 {
356 return 0;
357 }
358
359 void
null_encrypt(caddr_t key,u_int8_t * blk)360 null_encrypt(caddr_t key, u_int8_t *blk)
361 {
362 }
363
364 void
null_decrypt(caddr_t key,u_int8_t * blk)365 null_decrypt(caddr_t key, u_int8_t *blk)
366 {
367 }
368
369 void
cast5_encrypt(caddr_t key,u_int8_t * blk)370 cast5_encrypt(caddr_t key, u_int8_t *blk)
371 {
372 cast_encrypt((cast_key *) key, blk, blk);
373 }
374
375 void
cast5_decrypt(caddr_t key,u_int8_t * blk)376 cast5_decrypt(caddr_t key, u_int8_t *blk)
377 {
378 cast_decrypt((cast_key *) key, blk, blk);
379 }
380
381 int
cast5_setkey(void * sched,u_int8_t * key,int len)382 cast5_setkey(void *sched, u_int8_t *key, int len)
383 {
384 cast_setkey((cast_key *)sched, key, len);
385
386 return 0;
387 }
388
389 void
aes_encrypt(caddr_t key,u_int8_t * blk)390 aes_encrypt(caddr_t key, u_int8_t *blk)
391 {
392 AES_Encrypt((AES_CTX *)key, blk, blk);
393 }
394
395 void
aes_decrypt(caddr_t key,u_int8_t * blk)396 aes_decrypt(caddr_t key, u_int8_t *blk)
397 {
398 AES_Decrypt((AES_CTX *)key, blk, blk);
399 }
400
401 int
aes_setkey(void * sched,u_int8_t * key,int len)402 aes_setkey(void *sched, u_int8_t *key, int len)
403 {
404 return AES_Setkey((AES_CTX *)sched, key, len);
405 }
406
407 void
aes_ctr_reinit(caddr_t key,u_int8_t * iv)408 aes_ctr_reinit(caddr_t key, u_int8_t *iv)
409 {
410 struct aes_ctr_ctx *ctx;
411
412 ctx = (struct aes_ctr_ctx *)key;
413 bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
414
415 /* reset counter */
416 bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
417 }
418
419 void
aes_gcm_reinit(caddr_t key,u_int8_t * iv)420 aes_gcm_reinit(caddr_t key, u_int8_t *iv)
421 {
422 struct aes_ctr_ctx *ctx;
423
424 ctx = (struct aes_ctr_ctx *)key;
425 bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
426
427 /* reset counter */
428 bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
429 ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */
430 }
431
432 void
aes_ctr_crypt(caddr_t key,u_int8_t * data)433 aes_ctr_crypt(caddr_t key, u_int8_t *data)
434 {
435 struct aes_ctr_ctx *ctx;
436 u_int8_t keystream[AESCTR_BLOCKSIZE];
437 int i;
438
439 ctx = (struct aes_ctr_ctx *)key;
440 /* increment counter */
441 for (i = AESCTR_BLOCKSIZE - 1;
442 i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
443 if (++ctx->ac_block[i]) /* continue on overflow */
444 break;
445 AES_Encrypt(&ctx->ac_key, ctx->ac_block, keystream);
446 for (i = 0; i < AESCTR_BLOCKSIZE; i++)
447 data[i] ^= keystream[i];
448 explicit_bzero(keystream, sizeof(keystream));
449 }
450
451 int
aes_ctr_setkey(void * sched,u_int8_t * key,int len)452 aes_ctr_setkey(void *sched, u_int8_t *key, int len)
453 {
454 struct aes_ctr_ctx *ctx;
455
456 if (len < AESCTR_NONCESIZE)
457 return -1;
458
459 ctx = (struct aes_ctr_ctx *)sched;
460 if (AES_Setkey(&ctx->ac_key, key, len - AESCTR_NONCESIZE) != 0)
461 return -1;
462 bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
463 return 0;
464 }
465
466 void
aes_xts_reinit(caddr_t key,u_int8_t * iv)467 aes_xts_reinit(caddr_t key, u_int8_t *iv)
468 {
469 struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
470 u_int64_t blocknum;
471 u_int i;
472
473 /*
474 * Prepare tweak as E_k2(IV). IV is specified as LE representation
475 * of a 64-bit block number which we allow to be passed in directly.
476 */
477 memcpy(&blocknum, iv, AES_XTS_IVSIZE);
478 for (i = 0; i < AES_XTS_IVSIZE; i++) {
479 ctx->tweak[i] = blocknum & 0xff;
480 blocknum >>= 8;
481 }
482 /* Last 64 bits of IV are always zero */
483 bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
484
485 rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
486 }
487
488 void
aes_xts_crypt(struct aes_xts_ctx * ctx,u_int8_t * data,u_int do_encrypt)489 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
490 {
491 u_int8_t block[AES_XTS_BLOCKSIZE];
492 u_int i, carry_in, carry_out;
493
494 for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
495 block[i] = data[i] ^ ctx->tweak[i];
496
497 if (do_encrypt)
498 rijndael_encrypt(&ctx->key1, block, data);
499 else
500 rijndael_decrypt(&ctx->key1, block, data);
501
502 for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
503 data[i] ^= ctx->tweak[i];
504
505 /* Exponentiate tweak */
506 carry_in = 0;
507 for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
508 carry_out = ctx->tweak[i] & 0x80;
509 ctx->tweak[i] = (ctx->tweak[i] << 1) | carry_in;
510 carry_in = carry_out >> 7;
511 }
512 ctx->tweak[0] ^= (AES_XTS_ALPHA & -carry_in);
513 explicit_bzero(block, sizeof(block));
514 }
515
516 void
aes_xts_encrypt(caddr_t key,u_int8_t * data)517 aes_xts_encrypt(caddr_t key, u_int8_t *data)
518 {
519 aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
520 }
521
522 void
aes_xts_decrypt(caddr_t key,u_int8_t * data)523 aes_xts_decrypt(caddr_t key, u_int8_t *data)
524 {
525 aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
526 }
527
528 int
aes_xts_setkey(void * sched,u_int8_t * key,int len)529 aes_xts_setkey(void *sched, u_int8_t *key, int len)
530 {
531 struct aes_xts_ctx *ctx;
532
533 if (len != 32 && len != 64)
534 return -1;
535
536 ctx = (struct aes_xts_ctx *)sched;
537
538 rijndael_set_key(&ctx->key1, key, len * 4);
539 rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
540
541 return 0;
542 }
543
544 /*
545 * And now for auth.
546 */
547
548 int
RMD160Update_int(void * ctx,const u_int8_t * buf,u_int16_t len)549 RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
550 {
551 RMD160Update(ctx, buf, len);
552 return 0;
553 }
554
555 int
MD5Update_int(void * ctx,const u_int8_t * buf,u_int16_t len)556 MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
557 {
558 MD5Update(ctx, buf, len);
559 return 0;
560 }
561
562 int
SHA1Update_int(void * ctx,const u_int8_t * buf,u_int16_t len)563 SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
564 {
565 SHA1Update(ctx, buf, len);
566 return 0;
567 }
568
569 int
SHA256Update_int(void * ctx,const u_int8_t * buf,u_int16_t len)570 SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
571 {
572 SHA256Update(ctx, buf, len);
573 return 0;
574 }
575
576 int
SHA384Update_int(void * ctx,const u_int8_t * buf,u_int16_t len)577 SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
578 {
579 SHA384Update(ctx, buf, len);
580 return 0;
581 }
582
583 int
SHA512Update_int(void * ctx,const u_int8_t * buf,u_int16_t len)584 SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
585 {
586 SHA512Update(ctx, buf, len);
587 return 0;
588 }
589
590
591 u_int32_t deflate_global(u_int8_t *, u_int32_t, int, u_int8_t **);
592
593 struct deflate_buf {
594 u_int8_t *out;
595 u_int32_t size;
596 int flag;
597 };
598
599 /*
600 * And compression
601 */
602
603 u_int32_t
deflate_compress(u_int8_t * data,u_int32_t size,u_int8_t ** out)604 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
605 {
606 return deflate_global(data, size, 0, out);
607 }
608
609 u_int32_t
deflate_decompress(u_int8_t * data,u_int32_t size,u_int8_t ** out)610 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
611 {
612 return deflate_global(data, size, 1, out);
613 }
614