1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "error.h"
18 #include "extents.h"
19 #include "io_write.h"
20 #include "journal.h"
21 #include "journal_reclaim.h"
22 #include "keylist.h"
23 #include "recovery_passes.h"
24 #include "replicas.h"
25 #include "sb-members.h"
26 #include "super-io.h"
27 #include "trace.h"
28
29 #include <linux/random.h>
30
31 static const char * const bch2_btree_update_modes[] = {
32 #define x(t) #t,
33 BTREE_UPDATE_MODES()
34 #undef x
35 NULL
36 };
37
38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
39 btree_path_idx_t, struct btree *, struct keylist *);
40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
41
42 /*
43 * Verify that child nodes correctly span parent node's range:
44 */
bch2_btree_node_check_topology(struct btree_trans * trans,struct btree * b)45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
46 {
47 struct bch_fs *c = trans->c;
48 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
49 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
50 : b->data->min_key;
51 struct btree_and_journal_iter iter;
52 struct bkey_s_c k;
53 struct printbuf buf = PRINTBUF;
54 struct bkey_buf prev;
55 int ret = 0;
56
57 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
58 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
59 b->data->min_key));
60
61 if (b == btree_node_root(c, b)) {
62 if (!bpos_eq(b->data->min_key, POS_MIN)) {
63 printbuf_reset(&buf);
64 bch2_bpos_to_text(&buf, b->data->min_key);
65 need_fsck_err(trans, btree_root_bad_min_key,
66 "btree root with incorrect min_key: %s", buf.buf);
67 goto topology_repair;
68 }
69
70 if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
71 printbuf_reset(&buf);
72 bch2_bpos_to_text(&buf, b->data->max_key);
73 need_fsck_err(trans, btree_root_bad_max_key,
74 "btree root with incorrect max_key: %s", buf.buf);
75 goto topology_repair;
76 }
77 }
78
79 if (!b->c.level)
80 return 0;
81
82 bch2_bkey_buf_init(&prev);
83 bkey_init(&prev.k->k);
84 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
85
86 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
87 if (k.k->type != KEY_TYPE_btree_ptr_v2)
88 goto out;
89
90 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
91
92 struct bpos expected_min = bkey_deleted(&prev.k->k)
93 ? node_min
94 : bpos_successor(prev.k->k.p);
95
96 if (!bpos_eq(expected_min, bp.v->min_key)) {
97 bch2_topology_error(c);
98
99 printbuf_reset(&buf);
100 prt_str(&buf, "end of prev node doesn't match start of next node\n"),
101 prt_printf(&buf, " in btree %s level %u node ",
102 bch2_btree_id_str(b->c.btree_id), b->c.level);
103 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
104 prt_str(&buf, "\n prev ");
105 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
106 prt_str(&buf, "\n next ");
107 bch2_bkey_val_to_text(&buf, c, k);
108
109 need_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf);
110 goto topology_repair;
111 }
112
113 bch2_bkey_buf_reassemble(&prev, c, k);
114 bch2_btree_and_journal_iter_advance(&iter);
115 }
116
117 if (bkey_deleted(&prev.k->k)) {
118 bch2_topology_error(c);
119
120 printbuf_reset(&buf);
121 prt_str(&buf, "empty interior node\n");
122 prt_printf(&buf, " in btree %s level %u node ",
123 bch2_btree_id_str(b->c.btree_id), b->c.level);
124 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
125
126 need_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf);
127 goto topology_repair;
128 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
129 bch2_topology_error(c);
130
131 printbuf_reset(&buf);
132 prt_str(&buf, "last child node doesn't end at end of parent node\n");
133 prt_printf(&buf, " in btree %s level %u node ",
134 bch2_btree_id_str(b->c.btree_id), b->c.level);
135 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
136 prt_str(&buf, "\n last key ");
137 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
138
139 need_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf);
140 goto topology_repair;
141 }
142 out:
143 fsck_err:
144 bch2_btree_and_journal_iter_exit(&iter);
145 bch2_bkey_buf_exit(&prev, c);
146 printbuf_exit(&buf);
147 return ret;
148 topology_repair:
149 if ((c->opts.recovery_passes & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) &&
150 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) {
151 bch2_inconsistent_error(c);
152 ret = -BCH_ERR_btree_need_topology_repair;
153 } else {
154 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
155 }
156 goto out;
157 }
158
159 /* Calculate ideal packed bkey format for new btree nodes: */
160
__bch2_btree_calc_format(struct bkey_format_state * s,struct btree * b)161 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
162 {
163 struct bkey_packed *k;
164 struct bkey uk;
165
166 for_each_bset(b, t)
167 bset_tree_for_each_key(b, t, k)
168 if (!bkey_deleted(k)) {
169 uk = bkey_unpack_key(b, k);
170 bch2_bkey_format_add_key(s, &uk);
171 }
172 }
173
bch2_btree_calc_format(struct btree * b)174 static struct bkey_format bch2_btree_calc_format(struct btree *b)
175 {
176 struct bkey_format_state s;
177
178 bch2_bkey_format_init(&s);
179 bch2_bkey_format_add_pos(&s, b->data->min_key);
180 bch2_bkey_format_add_pos(&s, b->data->max_key);
181 __bch2_btree_calc_format(&s, b);
182
183 return bch2_bkey_format_done(&s);
184 }
185
btree_node_u64s_with_format(struct btree_nr_keys nr,struct bkey_format * old_f,struct bkey_format * new_f)186 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
187 struct bkey_format *old_f,
188 struct bkey_format *new_f)
189 {
190 /* stupid integer promotion rules */
191 ssize_t delta =
192 (((int) new_f->key_u64s - old_f->key_u64s) *
193 (int) nr.packed_keys) +
194 (((int) new_f->key_u64s - BKEY_U64s) *
195 (int) nr.unpacked_keys);
196
197 BUG_ON(delta + nr.live_u64s < 0);
198
199 return nr.live_u64s + delta;
200 }
201
202 /**
203 * bch2_btree_node_format_fits - check if we could rewrite node with a new format
204 *
205 * @c: filesystem handle
206 * @b: btree node to rewrite
207 * @nr: number of keys for new node (i.e. b->nr)
208 * @new_f: bkey format to translate keys to
209 *
210 * Returns: true if all re-packed keys will be able to fit in a new node.
211 *
212 * Assumes all keys will successfully pack with the new format.
213 */
bch2_btree_node_format_fits(struct bch_fs * c,struct btree * b,struct btree_nr_keys nr,struct bkey_format * new_f)214 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
215 struct btree_nr_keys nr,
216 struct bkey_format *new_f)
217 {
218 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
219
220 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
221 }
222
223 /* Btree node freeing/allocation: */
224
__btree_node_free(struct btree_trans * trans,struct btree * b)225 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
226 {
227 struct bch_fs *c = trans->c;
228
229 trace_and_count(c, btree_node_free, trans, b);
230
231 BUG_ON(btree_node_write_blocked(b));
232 BUG_ON(btree_node_dirty(b));
233 BUG_ON(btree_node_need_write(b));
234 BUG_ON(b == btree_node_root(c, b));
235 BUG_ON(b->ob.nr);
236 BUG_ON(!list_empty(&b->write_blocked));
237 BUG_ON(b->will_make_reachable);
238
239 clear_btree_node_noevict(b);
240
241 mutex_lock(&c->btree_cache.lock);
242 list_move(&b->list, &c->btree_cache.freeable);
243 mutex_unlock(&c->btree_cache.lock);
244 }
245
bch2_btree_node_free_inmem(struct btree_trans * trans,struct btree_path * path,struct btree * b)246 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
247 struct btree_path *path,
248 struct btree *b)
249 {
250 struct bch_fs *c = trans->c;
251 unsigned i, level = b->c.level;
252
253 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
254
255 mutex_lock(&c->btree_cache.lock);
256 bch2_btree_node_hash_remove(&c->btree_cache, b);
257 mutex_unlock(&c->btree_cache.lock);
258
259 __btree_node_free(trans, b);
260
261 six_unlock_write(&b->c.lock);
262 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
263
264 trans_for_each_path(trans, path, i)
265 if (path->l[level].b == b) {
266 btree_node_unlock(trans, path, level);
267 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
268 }
269 }
270
bch2_btree_node_free_never_used(struct btree_update * as,struct btree_trans * trans,struct btree * b)271 static void bch2_btree_node_free_never_used(struct btree_update *as,
272 struct btree_trans *trans,
273 struct btree *b)
274 {
275 struct bch_fs *c = as->c;
276 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
277 struct btree_path *path;
278 unsigned i, level = b->c.level;
279
280 BUG_ON(!list_empty(&b->write_blocked));
281 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
282
283 b->will_make_reachable = 0;
284 closure_put(&as->cl);
285
286 clear_btree_node_will_make_reachable(b);
287 clear_btree_node_accessed(b);
288 clear_btree_node_dirty_acct(c, b);
289 clear_btree_node_need_write(b);
290
291 mutex_lock(&c->btree_cache.lock);
292 bch2_btree_node_hash_remove(&c->btree_cache, b);
293 mutex_unlock(&c->btree_cache.lock);
294
295 BUG_ON(p->nr >= ARRAY_SIZE(p->b));
296 p->b[p->nr++] = b;
297
298 six_unlock_intent(&b->c.lock);
299
300 trans_for_each_path(trans, path, i)
301 if (path->l[level].b == b) {
302 btree_node_unlock(trans, path, level);
303 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
304 }
305 }
306
__bch2_btree_node_alloc(struct btree_trans * trans,struct disk_reservation * res,struct closure * cl,bool interior_node,unsigned flags)307 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
308 struct disk_reservation *res,
309 struct closure *cl,
310 bool interior_node,
311 unsigned flags)
312 {
313 struct bch_fs *c = trans->c;
314 struct write_point *wp;
315 struct btree *b;
316 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
317 struct open_buckets obs = { .nr = 0 };
318 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
319 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
320 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
321 ? BTREE_NODE_RESERVE
322 : 0;
323 int ret;
324
325 b = bch2_btree_node_mem_alloc(trans, interior_node);
326 if (IS_ERR(b))
327 return b;
328
329 BUG_ON(b->ob.nr);
330
331 mutex_lock(&c->btree_reserve_cache_lock);
332 if (c->btree_reserve_cache_nr > nr_reserve) {
333 struct btree_alloc *a =
334 &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
335
336 obs = a->ob;
337 bkey_copy(&tmp.k, &a->k);
338 mutex_unlock(&c->btree_reserve_cache_lock);
339 goto out;
340 }
341 mutex_unlock(&c->btree_reserve_cache_lock);
342 retry:
343 ret = bch2_alloc_sectors_start_trans(trans,
344 c->opts.metadata_target ?:
345 c->opts.foreground_target,
346 0,
347 writepoint_ptr(&c->btree_write_point),
348 &devs_have,
349 res->nr_replicas,
350 min(res->nr_replicas,
351 c->opts.metadata_replicas_required),
352 watermark, 0, cl, &wp);
353 if (unlikely(ret))
354 goto err;
355
356 if (wp->sectors_free < btree_sectors(c)) {
357 struct open_bucket *ob;
358 unsigned i;
359
360 open_bucket_for_each(c, &wp->ptrs, ob, i)
361 if (ob->sectors_free < btree_sectors(c))
362 ob->sectors_free = 0;
363
364 bch2_alloc_sectors_done(c, wp);
365 goto retry;
366 }
367
368 bkey_btree_ptr_v2_init(&tmp.k);
369 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
370
371 bch2_open_bucket_get(c, wp, &obs);
372 bch2_alloc_sectors_done(c, wp);
373 out:
374 bkey_copy(&b->key, &tmp.k);
375 b->ob = obs;
376 six_unlock_write(&b->c.lock);
377 six_unlock_intent(&b->c.lock);
378
379 return b;
380 err:
381 bch2_btree_node_to_freelist(c, b);
382 return ERR_PTR(ret);
383 }
384
bch2_btree_node_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)385 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
386 struct btree_trans *trans,
387 unsigned level)
388 {
389 struct bch_fs *c = as->c;
390 struct btree *b;
391 struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
392 int ret;
393
394 BUG_ON(level >= BTREE_MAX_DEPTH);
395 BUG_ON(!p->nr);
396
397 b = p->b[--p->nr];
398
399 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
400 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
401
402 set_btree_node_accessed(b);
403 set_btree_node_dirty_acct(c, b);
404 set_btree_node_need_write(b);
405
406 bch2_bset_init_first(b, &b->data->keys);
407 b->c.level = level;
408 b->c.btree_id = as->btree_id;
409 b->version_ondisk = c->sb.version;
410
411 memset(&b->nr, 0, sizeof(b->nr));
412 b->data->magic = cpu_to_le64(bset_magic(c));
413 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
414 b->data->flags = 0;
415 SET_BTREE_NODE_ID(b->data, as->btree_id);
416 SET_BTREE_NODE_LEVEL(b->data, level);
417
418 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
419 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
420
421 bp->v.mem_ptr = 0;
422 bp->v.seq = b->data->keys.seq;
423 bp->v.sectors_written = 0;
424 }
425
426 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
427
428 bch2_btree_build_aux_trees(b);
429
430 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
431 BUG_ON(ret);
432
433 trace_and_count(c, btree_node_alloc, trans, b);
434 bch2_increment_clock(c, btree_sectors(c), WRITE);
435 return b;
436 }
437
btree_set_min(struct btree * b,struct bpos pos)438 static void btree_set_min(struct btree *b, struct bpos pos)
439 {
440 if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
441 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
442 b->data->min_key = pos;
443 }
444
btree_set_max(struct btree * b,struct bpos pos)445 static void btree_set_max(struct btree *b, struct bpos pos)
446 {
447 b->key.k.p = pos;
448 b->data->max_key = pos;
449 }
450
bch2_btree_node_alloc_replacement(struct btree_update * as,struct btree_trans * trans,struct btree * b)451 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
452 struct btree_trans *trans,
453 struct btree *b)
454 {
455 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
456 struct bkey_format format = bch2_btree_calc_format(b);
457
458 /*
459 * The keys might expand with the new format - if they wouldn't fit in
460 * the btree node anymore, use the old format for now:
461 */
462 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
463 format = b->format;
464
465 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
466
467 btree_set_min(n, b->data->min_key);
468 btree_set_max(n, b->data->max_key);
469
470 n->data->format = format;
471 btree_node_set_format(n, format);
472
473 bch2_btree_sort_into(as->c, n, b);
474
475 btree_node_reset_sib_u64s(n);
476 return n;
477 }
478
__btree_root_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)479 static struct btree *__btree_root_alloc(struct btree_update *as,
480 struct btree_trans *trans, unsigned level)
481 {
482 struct btree *b = bch2_btree_node_alloc(as, trans, level);
483
484 btree_set_min(b, POS_MIN);
485 btree_set_max(b, SPOS_MAX);
486 b->data->format = bch2_btree_calc_format(b);
487
488 btree_node_set_format(b, b->data->format);
489 bch2_btree_build_aux_trees(b);
490
491 return b;
492 }
493
bch2_btree_reserve_put(struct btree_update * as,struct btree_trans * trans)494 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
495 {
496 struct bch_fs *c = as->c;
497 struct prealloc_nodes *p;
498
499 for (p = as->prealloc_nodes;
500 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
501 p++) {
502 while (p->nr) {
503 struct btree *b = p->b[--p->nr];
504
505 mutex_lock(&c->btree_reserve_cache_lock);
506
507 if (c->btree_reserve_cache_nr <
508 ARRAY_SIZE(c->btree_reserve_cache)) {
509 struct btree_alloc *a =
510 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
511
512 a->ob = b->ob;
513 b->ob.nr = 0;
514 bkey_copy(&a->k, &b->key);
515 } else {
516 bch2_open_buckets_put(c, &b->ob);
517 }
518
519 mutex_unlock(&c->btree_reserve_cache_lock);
520
521 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
522 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
523 __btree_node_free(trans, b);
524 six_unlock_write(&b->c.lock);
525 six_unlock_intent(&b->c.lock);
526 }
527 }
528 }
529
bch2_btree_reserve_get(struct btree_trans * trans,struct btree_update * as,unsigned nr_nodes[2],unsigned flags,struct closure * cl)530 static int bch2_btree_reserve_get(struct btree_trans *trans,
531 struct btree_update *as,
532 unsigned nr_nodes[2],
533 unsigned flags,
534 struct closure *cl)
535 {
536 struct btree *b;
537 unsigned interior;
538 int ret = 0;
539
540 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
541
542 /*
543 * Protects reaping from the btree node cache and using the btree node
544 * open bucket reserve:
545 */
546 ret = bch2_btree_cache_cannibalize_lock(trans, cl);
547 if (ret)
548 return ret;
549
550 for (interior = 0; interior < 2; interior++) {
551 struct prealloc_nodes *p = as->prealloc_nodes + interior;
552
553 while (p->nr < nr_nodes[interior]) {
554 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
555 interior, flags);
556 if (IS_ERR(b)) {
557 ret = PTR_ERR(b);
558 goto err;
559 }
560
561 p->b[p->nr++] = b;
562 }
563 }
564 err:
565 bch2_btree_cache_cannibalize_unlock(trans);
566 return ret;
567 }
568
569 /* Asynchronous interior node update machinery */
570
bch2_btree_update_free(struct btree_update * as,struct btree_trans * trans)571 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
572 {
573 struct bch_fs *c = as->c;
574
575 if (as->took_gc_lock)
576 up_read(&c->gc_lock);
577 as->took_gc_lock = false;
578
579 bch2_journal_pin_drop(&c->journal, &as->journal);
580 bch2_journal_pin_flush(&c->journal, &as->journal);
581 bch2_disk_reservation_put(c, &as->disk_res);
582 bch2_btree_reserve_put(as, trans);
583
584 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
585 as->start_time);
586
587 mutex_lock(&c->btree_interior_update_lock);
588 list_del(&as->unwritten_list);
589 list_del(&as->list);
590
591 closure_debug_destroy(&as->cl);
592 mempool_free(as, &c->btree_interior_update_pool);
593
594 /*
595 * Have to do the wakeup with btree_interior_update_lock still held,
596 * since being on btree_interior_update_list is our ref on @c:
597 */
598 closure_wake_up(&c->btree_interior_update_wait);
599
600 mutex_unlock(&c->btree_interior_update_lock);
601 }
602
btree_update_add_key(struct btree_update * as,struct keylist * keys,struct btree * b)603 static void btree_update_add_key(struct btree_update *as,
604 struct keylist *keys, struct btree *b)
605 {
606 struct bkey_i *k = &b->key;
607
608 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
609 ARRAY_SIZE(as->_old_keys));
610
611 bkey_copy(keys->top, k);
612 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
613
614 bch2_keylist_push(keys);
615 }
616
btree_update_new_nodes_marked_sb(struct btree_update * as)617 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
618 {
619 for_each_keylist_key(&as->new_keys, k)
620 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
621 return false;
622 return true;
623 }
624
btree_update_new_nodes_mark_sb(struct btree_update * as)625 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
626 {
627 struct bch_fs *c = as->c;
628
629 mutex_lock(&c->sb_lock);
630 for_each_keylist_key(&as->new_keys, k)
631 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
632
633 bch2_write_super(c);
634 mutex_unlock(&c->sb_lock);
635 }
636
637 /*
638 * The transactional part of an interior btree node update, where we journal the
639 * update we did to the interior node and update alloc info:
640 */
btree_update_nodes_written_trans(struct btree_trans * trans,struct btree_update * as)641 static int btree_update_nodes_written_trans(struct btree_trans *trans,
642 struct btree_update *as)
643 {
644 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
645 int ret = PTR_ERR_OR_ZERO(e);
646 if (ret)
647 return ret;
648
649 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
650
651 trans->journal_pin = &as->journal;
652
653 for_each_keylist_key(&as->old_keys, k) {
654 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
655
656 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
657 BTREE_TRIGGER_transactional);
658 if (ret)
659 return ret;
660 }
661
662 for_each_keylist_key(&as->new_keys, k) {
663 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
664
665 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
666 BTREE_TRIGGER_transactional);
667 if (ret)
668 return ret;
669 }
670
671 return 0;
672 }
673
btree_update_nodes_written(struct btree_update * as)674 static void btree_update_nodes_written(struct btree_update *as)
675 {
676 struct bch_fs *c = as->c;
677 struct btree *b;
678 struct btree_trans *trans = bch2_trans_get(c);
679 u64 journal_seq = 0;
680 unsigned i;
681 int ret;
682
683 /*
684 * If we're already in an error state, it might be because a btree node
685 * was never written, and we might be trying to free that same btree
686 * node here, but it won't have been marked as allocated and we'll see
687 * spurious disk usage inconsistencies in the transactional part below
688 * if we don't skip it:
689 */
690 ret = bch2_journal_error(&c->journal);
691 if (ret)
692 goto err;
693
694 if (!btree_update_new_nodes_marked_sb(as))
695 btree_update_new_nodes_mark_sb(as);
696
697 /*
698 * Wait for any in flight writes to finish before we free the old nodes
699 * on disk:
700 */
701 for (i = 0; i < as->nr_old_nodes; i++) {
702 __le64 seq;
703
704 b = as->old_nodes[i];
705
706 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
707 seq = b->data ? b->data->keys.seq : 0;
708 six_unlock_read(&b->c.lock);
709
710 if (seq == as->old_nodes_seq[i])
711 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
712 TASK_UNINTERRUPTIBLE);
713 }
714
715 /*
716 * We did an update to a parent node where the pointers we added pointed
717 * to child nodes that weren't written yet: now, the child nodes have
718 * been written so we can write out the update to the interior node.
719 */
720
721 /*
722 * We can't call into journal reclaim here: we'd block on the journal
723 * reclaim lock, but we may need to release the open buckets we have
724 * pinned in order for other btree updates to make forward progress, and
725 * journal reclaim does btree updates when flushing bkey_cached entries,
726 * which may require allocations as well.
727 */
728 ret = commit_do(trans, &as->disk_res, &journal_seq,
729 BCH_WATERMARK_interior_updates|
730 BCH_TRANS_COMMIT_no_enospc|
731 BCH_TRANS_COMMIT_no_check_rw|
732 BCH_TRANS_COMMIT_journal_reclaim,
733 btree_update_nodes_written_trans(trans, as));
734 bch2_trans_unlock(trans);
735
736 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
737 "%s", bch2_err_str(ret));
738 err:
739 /*
740 * Ensure transaction is unlocked before using btree_node_lock_nopath()
741 * (the use of which is always suspect, we need to work on removing this
742 * in the future)
743 *
744 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
745 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
746 * rarely end up with a locked path besides the one we have here:
747 */
748 bch2_trans_unlock(trans);
749 bch2_trans_begin(trans);
750
751 /*
752 * We have to be careful because another thread might be getting ready
753 * to free as->b and calling btree_update_reparent() on us - we'll
754 * recheck under btree_update_lock below:
755 */
756 b = READ_ONCE(as->b);
757 if (b) {
758 /*
759 * @b is the node we did the final insert into:
760 *
761 * On failure to get a journal reservation, we still have to
762 * unblock the write and allow most of the write path to happen
763 * so that shutdown works, but the i->journal_seq mechanism
764 * won't work to prevent the btree write from being visible (we
765 * didn't get a journal sequence number) - instead
766 * __bch2_btree_node_write() doesn't do the actual write if
767 * we're in journal error state:
768 */
769
770 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
771 as->btree_id, b->c.level, b->key.k.p);
772 struct btree_path *path = trans->paths + path_idx;
773 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
774 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
775 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
776 path->l[b->c.level].b = b;
777
778 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
779
780 mutex_lock(&c->btree_interior_update_lock);
781
782 list_del(&as->write_blocked_list);
783 if (list_empty(&b->write_blocked))
784 clear_btree_node_write_blocked(b);
785
786 /*
787 * Node might have been freed, recheck under
788 * btree_interior_update_lock:
789 */
790 if (as->b == b) {
791 BUG_ON(!b->c.level);
792 BUG_ON(!btree_node_dirty(b));
793
794 if (!ret) {
795 struct bset *last = btree_bset_last(b);
796
797 last->journal_seq = cpu_to_le64(
798 max(journal_seq,
799 le64_to_cpu(last->journal_seq)));
800
801 bch2_btree_add_journal_pin(c, b, journal_seq);
802 } else {
803 /*
804 * If we didn't get a journal sequence number we
805 * can't write this btree node, because recovery
806 * won't know to ignore this write:
807 */
808 set_btree_node_never_write(b);
809 }
810 }
811
812 mutex_unlock(&c->btree_interior_update_lock);
813
814 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
815 six_unlock_write(&b->c.lock);
816
817 btree_node_write_if_need(c, b, SIX_LOCK_intent);
818 btree_node_unlock(trans, path, b->c.level);
819 bch2_path_put(trans, path_idx, true);
820 }
821
822 bch2_journal_pin_drop(&c->journal, &as->journal);
823
824 mutex_lock(&c->btree_interior_update_lock);
825 for (i = 0; i < as->nr_new_nodes; i++) {
826 b = as->new_nodes[i];
827
828 BUG_ON(b->will_make_reachable != (unsigned long) as);
829 b->will_make_reachable = 0;
830 clear_btree_node_will_make_reachable(b);
831 }
832 mutex_unlock(&c->btree_interior_update_lock);
833
834 for (i = 0; i < as->nr_new_nodes; i++) {
835 b = as->new_nodes[i];
836
837 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
838 btree_node_write_if_need(c, b, SIX_LOCK_read);
839 six_unlock_read(&b->c.lock);
840 }
841
842 for (i = 0; i < as->nr_open_buckets; i++)
843 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
844
845 bch2_btree_update_free(as, trans);
846 bch2_trans_put(trans);
847 }
848
btree_interior_update_work(struct work_struct * work)849 static void btree_interior_update_work(struct work_struct *work)
850 {
851 struct bch_fs *c =
852 container_of(work, struct bch_fs, btree_interior_update_work);
853 struct btree_update *as;
854
855 while (1) {
856 mutex_lock(&c->btree_interior_update_lock);
857 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
858 struct btree_update, unwritten_list);
859 if (as && !as->nodes_written)
860 as = NULL;
861 mutex_unlock(&c->btree_interior_update_lock);
862
863 if (!as)
864 break;
865
866 btree_update_nodes_written(as);
867 }
868 }
869
CLOSURE_CALLBACK(btree_update_set_nodes_written)870 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
871 {
872 closure_type(as, struct btree_update, cl);
873 struct bch_fs *c = as->c;
874
875 mutex_lock(&c->btree_interior_update_lock);
876 as->nodes_written = true;
877 mutex_unlock(&c->btree_interior_update_lock);
878
879 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
880 }
881
882 /*
883 * We're updating @b with pointers to nodes that haven't finished writing yet:
884 * block @b from being written until @as completes
885 */
btree_update_updated_node(struct btree_update * as,struct btree * b)886 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
887 {
888 struct bch_fs *c = as->c;
889
890 BUG_ON(as->mode != BTREE_UPDATE_none);
891 BUG_ON(as->update_level_end < b->c.level);
892 BUG_ON(!btree_node_dirty(b));
893 BUG_ON(!b->c.level);
894
895 mutex_lock(&c->btree_interior_update_lock);
896 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
897
898 as->mode = BTREE_UPDATE_node;
899 as->b = b;
900 as->update_level_end = b->c.level;
901
902 set_btree_node_write_blocked(b);
903 list_add(&as->write_blocked_list, &b->write_blocked);
904
905 mutex_unlock(&c->btree_interior_update_lock);
906 }
907
bch2_update_reparent_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)908 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
909 struct journal_entry_pin *_pin, u64 seq)
910 {
911 return 0;
912 }
913
btree_update_reparent(struct btree_update * as,struct btree_update * child)914 static void btree_update_reparent(struct btree_update *as,
915 struct btree_update *child)
916 {
917 struct bch_fs *c = as->c;
918
919 lockdep_assert_held(&c->btree_interior_update_lock);
920
921 child->b = NULL;
922 child->mode = BTREE_UPDATE_update;
923
924 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
925 bch2_update_reparent_journal_pin_flush);
926 }
927
btree_update_updated_root(struct btree_update * as,struct btree * b)928 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
929 {
930 struct bkey_i *insert = &b->key;
931 struct bch_fs *c = as->c;
932
933 BUG_ON(as->mode != BTREE_UPDATE_none);
934
935 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
936 ARRAY_SIZE(as->journal_entries));
937
938 as->journal_u64s +=
939 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
940 BCH_JSET_ENTRY_btree_root,
941 b->c.btree_id, b->c.level,
942 insert, insert->k.u64s);
943
944 mutex_lock(&c->btree_interior_update_lock);
945 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
946
947 as->mode = BTREE_UPDATE_root;
948 mutex_unlock(&c->btree_interior_update_lock);
949 }
950
951 /*
952 * bch2_btree_update_add_new_node:
953 *
954 * This causes @as to wait on @b to be written, before it gets to
955 * bch2_btree_update_nodes_written
956 *
957 * Additionally, it sets b->will_make_reachable to prevent any additional writes
958 * to @b from happening besides the first until @b is reachable on disk
959 *
960 * And it adds @b to the list of @as's new nodes, so that we can update sector
961 * counts in bch2_btree_update_nodes_written:
962 */
bch2_btree_update_add_new_node(struct btree_update * as,struct btree * b)963 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
964 {
965 struct bch_fs *c = as->c;
966
967 closure_get(&as->cl);
968
969 mutex_lock(&c->btree_interior_update_lock);
970 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
971 BUG_ON(b->will_make_reachable);
972
973 as->new_nodes[as->nr_new_nodes++] = b;
974 b->will_make_reachable = 1UL|(unsigned long) as;
975 set_btree_node_will_make_reachable(b);
976
977 mutex_unlock(&c->btree_interior_update_lock);
978
979 btree_update_add_key(as, &as->new_keys, b);
980
981 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
982 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
983 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
984
985 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
986 cpu_to_le16(sectors);
987 }
988 }
989
990 /*
991 * returns true if @b was a new node
992 */
btree_update_drop_new_node(struct bch_fs * c,struct btree * b)993 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
994 {
995 struct btree_update *as;
996 unsigned long v;
997 unsigned i;
998
999 mutex_lock(&c->btree_interior_update_lock);
1000 /*
1001 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
1002 * dropped when it gets written by bch2_btree_complete_write - the
1003 * xchg() is for synchronization with bch2_btree_complete_write:
1004 */
1005 v = xchg(&b->will_make_reachable, 0);
1006 clear_btree_node_will_make_reachable(b);
1007 as = (struct btree_update *) (v & ~1UL);
1008
1009 if (!as) {
1010 mutex_unlock(&c->btree_interior_update_lock);
1011 return;
1012 }
1013
1014 for (i = 0; i < as->nr_new_nodes; i++)
1015 if (as->new_nodes[i] == b)
1016 goto found;
1017
1018 BUG();
1019 found:
1020 array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1021 mutex_unlock(&c->btree_interior_update_lock);
1022
1023 if (v & 1)
1024 closure_put(&as->cl);
1025 }
1026
bch2_btree_update_get_open_buckets(struct btree_update * as,struct btree * b)1027 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1028 {
1029 while (b->ob.nr)
1030 as->open_buckets[as->nr_open_buckets++] =
1031 b->ob.v[--b->ob.nr];
1032 }
1033
bch2_btree_update_will_free_node_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)1034 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1035 struct journal_entry_pin *_pin, u64 seq)
1036 {
1037 return 0;
1038 }
1039
1040 /*
1041 * @b is being split/rewritten: it may have pointers to not-yet-written btree
1042 * nodes and thus outstanding btree_updates - redirect @b's
1043 * btree_updates to point to this btree_update:
1044 */
bch2_btree_interior_update_will_free_node(struct btree_update * as,struct btree * b)1045 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1046 struct btree *b)
1047 {
1048 struct bch_fs *c = as->c;
1049 struct btree_update *p, *n;
1050 struct btree_write *w;
1051
1052 set_btree_node_dying(b);
1053
1054 if (btree_node_fake(b))
1055 return;
1056
1057 mutex_lock(&c->btree_interior_update_lock);
1058
1059 /*
1060 * Does this node have any btree_update operations preventing
1061 * it from being written?
1062 *
1063 * If so, redirect them to point to this btree_update: we can
1064 * write out our new nodes, but we won't make them visible until those
1065 * operations complete
1066 */
1067 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1068 list_del_init(&p->write_blocked_list);
1069 btree_update_reparent(as, p);
1070
1071 /*
1072 * for flush_held_btree_writes() waiting on updates to flush or
1073 * nodes to be writeable:
1074 */
1075 closure_wake_up(&c->btree_interior_update_wait);
1076 }
1077
1078 clear_btree_node_dirty_acct(c, b);
1079 clear_btree_node_need_write(b);
1080 clear_btree_node_write_blocked(b);
1081
1082 /*
1083 * Does this node have unwritten data that has a pin on the journal?
1084 *
1085 * If so, transfer that pin to the btree_update operation -
1086 * note that if we're freeing multiple nodes, we only need to keep the
1087 * oldest pin of any of the nodes we're freeing. We'll release the pin
1088 * when the new nodes are persistent and reachable on disk:
1089 */
1090 w = btree_current_write(b);
1091 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1092 bch2_btree_update_will_free_node_journal_pin_flush);
1093 bch2_journal_pin_drop(&c->journal, &w->journal);
1094
1095 w = btree_prev_write(b);
1096 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1097 bch2_btree_update_will_free_node_journal_pin_flush);
1098 bch2_journal_pin_drop(&c->journal, &w->journal);
1099
1100 mutex_unlock(&c->btree_interior_update_lock);
1101
1102 /*
1103 * Is this a node that isn't reachable on disk yet?
1104 *
1105 * Nodes that aren't reachable yet have writes blocked until they're
1106 * reachable - now that we've cancelled any pending writes and moved
1107 * things waiting on that write to wait on this update, we can drop this
1108 * node from the list of nodes that the other update is making
1109 * reachable, prior to freeing it:
1110 */
1111 btree_update_drop_new_node(c, b);
1112
1113 btree_update_add_key(as, &as->old_keys, b);
1114
1115 as->old_nodes[as->nr_old_nodes] = b;
1116 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1117 as->nr_old_nodes++;
1118 }
1119
bch2_btree_update_done(struct btree_update * as,struct btree_trans * trans)1120 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1121 {
1122 struct bch_fs *c = as->c;
1123 u64 start_time = as->start_time;
1124
1125 BUG_ON(as->mode == BTREE_UPDATE_none);
1126
1127 if (as->took_gc_lock)
1128 up_read(&as->c->gc_lock);
1129 as->took_gc_lock = false;
1130
1131 bch2_btree_reserve_put(as, trans);
1132
1133 continue_at(&as->cl, btree_update_set_nodes_written,
1134 as->c->btree_interior_update_worker);
1135
1136 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1137 start_time);
1138 }
1139
1140 static struct btree_update *
bch2_btree_update_start(struct btree_trans * trans,struct btree_path * path,unsigned level_start,bool split,unsigned flags)1141 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1142 unsigned level_start, bool split, unsigned flags)
1143 {
1144 struct bch_fs *c = trans->c;
1145 struct btree_update *as;
1146 u64 start_time = local_clock();
1147 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1148 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1149 unsigned nr_nodes[2] = { 0, 0 };
1150 unsigned level_end = level_start;
1151 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1152 int ret = 0;
1153 u32 restart_count = trans->restart_count;
1154
1155 BUG_ON(!path->should_be_locked);
1156
1157 if (watermark == BCH_WATERMARK_copygc)
1158 watermark = BCH_WATERMARK_btree_copygc;
1159 if (watermark < BCH_WATERMARK_btree)
1160 watermark = BCH_WATERMARK_btree;
1161
1162 flags &= ~BCH_WATERMARK_MASK;
1163 flags |= watermark;
1164
1165 if (watermark < BCH_WATERMARK_reclaim &&
1166 test_bit(JOURNAL_space_low, &c->journal.flags)) {
1167 if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1168 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1169
1170 ret = drop_locks_do(trans,
1171 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1172 if (ret)
1173 return ERR_PTR(ret);
1174 }
1175
1176 while (1) {
1177 nr_nodes[!!level_end] += 1 + split;
1178 level_end++;
1179
1180 ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1181 if (ret)
1182 return ERR_PTR(ret);
1183
1184 if (!btree_path_node(path, level_end)) {
1185 /* Allocating new root? */
1186 nr_nodes[1] += split;
1187 level_end = BTREE_MAX_DEPTH;
1188 break;
1189 }
1190
1191 /*
1192 * Always check for space for two keys, even if we won't have to
1193 * split at prior level - it might have been a merge instead:
1194 */
1195 if (bch2_btree_node_insert_fits(path->l[level_end].b,
1196 BKEY_BTREE_PTR_U64s_MAX * 2))
1197 break;
1198
1199 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1200 }
1201
1202 if (!down_read_trylock(&c->gc_lock)) {
1203 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1204 if (ret) {
1205 up_read(&c->gc_lock);
1206 return ERR_PTR(ret);
1207 }
1208 }
1209
1210 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1211 memset(as, 0, sizeof(*as));
1212 closure_init(&as->cl, NULL);
1213 as->c = c;
1214 as->start_time = start_time;
1215 as->ip_started = _RET_IP_;
1216 as->mode = BTREE_UPDATE_none;
1217 as->flags = flags;
1218 as->took_gc_lock = true;
1219 as->btree_id = path->btree_id;
1220 as->update_level_start = level_start;
1221 as->update_level_end = level_end;
1222 INIT_LIST_HEAD(&as->list);
1223 INIT_LIST_HEAD(&as->unwritten_list);
1224 INIT_LIST_HEAD(&as->write_blocked_list);
1225 bch2_keylist_init(&as->old_keys, as->_old_keys);
1226 bch2_keylist_init(&as->new_keys, as->_new_keys);
1227 bch2_keylist_init(&as->parent_keys, as->inline_keys);
1228
1229 mutex_lock(&c->btree_interior_update_lock);
1230 list_add_tail(&as->list, &c->btree_interior_update_list);
1231 mutex_unlock(&c->btree_interior_update_lock);
1232
1233 /*
1234 * We don't want to allocate if we're in an error state, that can cause
1235 * deadlock on emergency shutdown due to open buckets getting stuck in
1236 * the btree_reserve_cache after allocator shutdown has cleared it out.
1237 * This check needs to come after adding us to the btree_interior_update
1238 * list but before calling bch2_btree_reserve_get, to synchronize with
1239 * __bch2_fs_read_only().
1240 */
1241 ret = bch2_journal_error(&c->journal);
1242 if (ret)
1243 goto err;
1244
1245 ret = bch2_disk_reservation_get(c, &as->disk_res,
1246 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1247 c->opts.metadata_replicas,
1248 disk_res_flags);
1249 if (ret)
1250 goto err;
1251
1252 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1253 if (bch2_err_matches(ret, ENOSPC) ||
1254 bch2_err_matches(ret, ENOMEM)) {
1255 struct closure cl;
1256
1257 /*
1258 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1259 * flag
1260 */
1261 if (bch2_err_matches(ret, ENOSPC) &&
1262 (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1263 watermark < BCH_WATERMARK_reclaim) {
1264 ret = -BCH_ERR_journal_reclaim_would_deadlock;
1265 goto err;
1266 }
1267
1268 closure_init_stack(&cl);
1269
1270 do {
1271 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1272
1273 bch2_trans_unlock(trans);
1274 bch2_wait_on_allocator(c, &cl);
1275 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1276 }
1277
1278 if (ret) {
1279 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1280 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1281 goto err;
1282 }
1283
1284 ret = bch2_trans_relock(trans);
1285 if (ret)
1286 goto err;
1287
1288 bch2_trans_verify_not_restarted(trans, restart_count);
1289 return as;
1290 err:
1291 bch2_btree_update_free(as, trans);
1292 if (!bch2_err_matches(ret, ENOSPC) &&
1293 !bch2_err_matches(ret, EROFS) &&
1294 ret != -BCH_ERR_journal_reclaim_would_deadlock)
1295 bch_err_fn_ratelimited(c, ret);
1296 return ERR_PTR(ret);
1297 }
1298
1299 /* Btree root updates: */
1300
bch2_btree_set_root_inmem(struct bch_fs * c,struct btree * b)1301 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1302 {
1303 /* Root nodes cannot be reaped */
1304 mutex_lock(&c->btree_cache.lock);
1305 list_del_init(&b->list);
1306 mutex_unlock(&c->btree_cache.lock);
1307
1308 mutex_lock(&c->btree_root_lock);
1309 bch2_btree_id_root(c, b->c.btree_id)->b = b;
1310 mutex_unlock(&c->btree_root_lock);
1311
1312 bch2_recalc_btree_reserve(c);
1313 }
1314
bch2_btree_set_root(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,bool nofail)1315 static int bch2_btree_set_root(struct btree_update *as,
1316 struct btree_trans *trans,
1317 struct btree_path *path,
1318 struct btree *b,
1319 bool nofail)
1320 {
1321 struct bch_fs *c = as->c;
1322
1323 trace_and_count(c, btree_node_set_root, trans, b);
1324
1325 struct btree *old = btree_node_root(c, b);
1326
1327 /*
1328 * Ensure no one is using the old root while we switch to the
1329 * new root:
1330 */
1331 if (nofail) {
1332 bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1333 } else {
1334 int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1335 if (ret)
1336 return ret;
1337 }
1338
1339 bch2_btree_set_root_inmem(c, b);
1340
1341 btree_update_updated_root(as, b);
1342
1343 /*
1344 * Unlock old root after new root is visible:
1345 *
1346 * The new root isn't persistent, but that's ok: we still have
1347 * an intent lock on the new root, and any updates that would
1348 * depend on the new root would have to update the new root.
1349 */
1350 bch2_btree_node_unlock_write(trans, path, old);
1351 return 0;
1352 }
1353
1354 /* Interior node updates: */
1355
bch2_insert_fixup_btree_ptr(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter * node_iter,struct bkey_i * insert)1356 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1357 struct btree_trans *trans,
1358 struct btree_path *path,
1359 struct btree *b,
1360 struct btree_node_iter *node_iter,
1361 struct bkey_i *insert)
1362 {
1363 struct bch_fs *c = as->c;
1364 struct bkey_packed *k;
1365 struct printbuf buf = PRINTBUF;
1366 unsigned long old, new;
1367
1368 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1369 !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1370
1371 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1372 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1373
1374 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert),
1375 btree_node_type(b), BCH_VALIDATE_write) ?:
1376 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), BCH_VALIDATE_write)) {
1377 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1378 dump_stack();
1379 }
1380
1381 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1382 ARRAY_SIZE(as->journal_entries));
1383
1384 as->journal_u64s +=
1385 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1386 BCH_JSET_ENTRY_btree_keys,
1387 b->c.btree_id, b->c.level,
1388 insert, insert->k.u64s);
1389
1390 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1391 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1392 bch2_btree_node_iter_advance(node_iter, b);
1393
1394 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1395 set_btree_node_dirty_acct(c, b);
1396
1397 old = READ_ONCE(b->flags);
1398 do {
1399 new = old;
1400
1401 new &= ~BTREE_WRITE_TYPE_MASK;
1402 new |= BTREE_WRITE_interior;
1403 new |= 1 << BTREE_NODE_need_write;
1404 } while (!try_cmpxchg(&b->flags, &old, new));
1405
1406 printbuf_exit(&buf);
1407 }
1408
1409 static void
bch2_btree_insert_keys_interior(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter node_iter,struct keylist * keys)1410 bch2_btree_insert_keys_interior(struct btree_update *as,
1411 struct btree_trans *trans,
1412 struct btree_path *path,
1413 struct btree *b,
1414 struct btree_node_iter node_iter,
1415 struct keylist *keys)
1416 {
1417 struct bkey_i *insert = bch2_keylist_front(keys);
1418 struct bkey_packed *k;
1419
1420 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1421
1422 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1423 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1424 ;
1425
1426 while (!bch2_keylist_empty(keys)) {
1427 insert = bch2_keylist_front(keys);
1428
1429 if (bpos_gt(insert->k.p, b->key.k.p))
1430 break;
1431
1432 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1433 bch2_keylist_pop_front(keys);
1434 }
1435 }
1436
1437 /*
1438 * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1439 * node)
1440 */
__btree_split_node(struct btree_update * as,struct btree_trans * trans,struct btree * b,struct btree * n[2])1441 static void __btree_split_node(struct btree_update *as,
1442 struct btree_trans *trans,
1443 struct btree *b,
1444 struct btree *n[2])
1445 {
1446 struct bkey_packed *k;
1447 struct bpos n1_pos = POS_MIN;
1448 struct btree_node_iter iter;
1449 struct bset *bsets[2];
1450 struct bkey_format_state format[2];
1451 struct bkey_packed *out[2];
1452 struct bkey uk;
1453 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1454 struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1455 int i;
1456
1457 memset(&nr_keys, 0, sizeof(nr_keys));
1458
1459 for (i = 0; i < 2; i++) {
1460 BUG_ON(n[i]->nsets != 1);
1461
1462 bsets[i] = btree_bset_first(n[i]);
1463 out[i] = bsets[i]->start;
1464
1465 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1466 bch2_bkey_format_init(&format[i]);
1467 }
1468
1469 u64s = 0;
1470 for_each_btree_node_key(b, k, &iter) {
1471 if (bkey_deleted(k))
1472 continue;
1473
1474 uk = bkey_unpack_key(b, k);
1475
1476 if (b->c.level &&
1477 u64s < n1_u64s &&
1478 u64s + k->u64s >= n1_u64s &&
1479 bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p))
1480 n1_u64s += k->u64s;
1481
1482 i = u64s >= n1_u64s;
1483 u64s += k->u64s;
1484 if (!i)
1485 n1_pos = uk.p;
1486 bch2_bkey_format_add_key(&format[i], &uk);
1487
1488 nr_keys[i].nr_keys++;
1489 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1490 }
1491
1492 btree_set_min(n[0], b->data->min_key);
1493 btree_set_max(n[0], n1_pos);
1494 btree_set_min(n[1], bpos_successor(n1_pos));
1495 btree_set_max(n[1], b->data->max_key);
1496
1497 for (i = 0; i < 2; i++) {
1498 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1499 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1500
1501 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1502
1503 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1504 nr_keys[i].val_u64s;
1505 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1506 n[i]->data->format = b->format;
1507
1508 btree_node_set_format(n[i], n[i]->data->format);
1509 }
1510
1511 u64s = 0;
1512 for_each_btree_node_key(b, k, &iter) {
1513 if (bkey_deleted(k))
1514 continue;
1515
1516 i = u64s >= n1_u64s;
1517 u64s += k->u64s;
1518
1519 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1520 ? &b->format: &bch2_bkey_format_current, k))
1521 out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1522 else
1523 bch2_bkey_unpack(b, (void *) out[i], k);
1524
1525 out[i]->needs_whiteout = false;
1526
1527 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1528 out[i] = bkey_p_next(out[i]);
1529 }
1530
1531 for (i = 0; i < 2; i++) {
1532 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1533
1534 BUG_ON(!bsets[i]->u64s);
1535
1536 set_btree_bset_end(n[i], n[i]->set);
1537
1538 btree_node_reset_sib_u64s(n[i]);
1539
1540 bch2_verify_btree_nr_keys(n[i]);
1541
1542 BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1543 }
1544 }
1545
1546 /*
1547 * For updates to interior nodes, we've got to do the insert before we split
1548 * because the stuff we're inserting has to be inserted atomically. Post split,
1549 * the keys might have to go in different nodes and the split would no longer be
1550 * atomic.
1551 *
1552 * Worse, if the insert is from btree node coalescing, if we do the insert after
1553 * we do the split (and pick the pivot) - the pivot we pick might be between
1554 * nodes that were coalesced, and thus in the middle of a child node post
1555 * coalescing:
1556 */
btree_split_insert_keys(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1557 static void btree_split_insert_keys(struct btree_update *as,
1558 struct btree_trans *trans,
1559 btree_path_idx_t path_idx,
1560 struct btree *b,
1561 struct keylist *keys)
1562 {
1563 struct btree_path *path = trans->paths + path_idx;
1564
1565 if (!bch2_keylist_empty(keys) &&
1566 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1567 struct btree_node_iter node_iter;
1568
1569 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1570
1571 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1572
1573 BUG_ON(bch2_btree_node_check_topology(trans, b));
1574 }
1575 }
1576
btree_split(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path,struct btree * b,struct keylist * keys)1577 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1578 btree_path_idx_t path, struct btree *b,
1579 struct keylist *keys)
1580 {
1581 struct bch_fs *c = as->c;
1582 struct btree *parent = btree_node_parent(trans->paths + path, b);
1583 struct btree *n1, *n2 = NULL, *n3 = NULL;
1584 btree_path_idx_t path1 = 0, path2 = 0;
1585 u64 start_time = local_clock();
1586 int ret = 0;
1587
1588 bch2_verify_btree_nr_keys(b);
1589 BUG_ON(!parent && (b != btree_node_root(c, b)));
1590 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1591
1592 ret = bch2_btree_node_check_topology(trans, b);
1593 if (ret)
1594 return ret;
1595
1596 bch2_btree_interior_update_will_free_node(as, b);
1597
1598 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1599 struct btree *n[2];
1600
1601 trace_and_count(c, btree_node_split, trans, b);
1602
1603 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1604 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1605
1606 __btree_split_node(as, trans, b, n);
1607
1608 if (keys) {
1609 btree_split_insert_keys(as, trans, path, n1, keys);
1610 btree_split_insert_keys(as, trans, path, n2, keys);
1611 BUG_ON(!bch2_keylist_empty(keys));
1612 }
1613
1614 bch2_btree_build_aux_trees(n2);
1615 bch2_btree_build_aux_trees(n1);
1616
1617 bch2_btree_update_add_new_node(as, n1);
1618 bch2_btree_update_add_new_node(as, n2);
1619 six_unlock_write(&n2->c.lock);
1620 six_unlock_write(&n1->c.lock);
1621
1622 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1623 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1624 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1625 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1626
1627 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1628 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1629 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1630 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1631
1632 /*
1633 * Note that on recursive parent_keys == keys, so we
1634 * can't start adding new keys to parent_keys before emptying it
1635 * out (which we did with btree_split_insert_keys() above)
1636 */
1637 bch2_keylist_add(&as->parent_keys, &n1->key);
1638 bch2_keylist_add(&as->parent_keys, &n2->key);
1639
1640 if (!parent) {
1641 /* Depth increases, make a new root */
1642 n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1643
1644 bch2_btree_update_add_new_node(as, n3);
1645 six_unlock_write(&n3->c.lock);
1646
1647 trans->paths[path2].locks_want++;
1648 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1649 six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1650 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1651 bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1652
1653 n3->sib_u64s[0] = U16_MAX;
1654 n3->sib_u64s[1] = U16_MAX;
1655
1656 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1657 }
1658 } else {
1659 trace_and_count(c, btree_node_compact, trans, b);
1660
1661 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1662
1663 if (keys) {
1664 btree_split_insert_keys(as, trans, path, n1, keys);
1665 BUG_ON(!bch2_keylist_empty(keys));
1666 }
1667
1668 bch2_btree_build_aux_trees(n1);
1669 bch2_btree_update_add_new_node(as, n1);
1670 six_unlock_write(&n1->c.lock);
1671
1672 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1673 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1674 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1675 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1676
1677 if (parent)
1678 bch2_keylist_add(&as->parent_keys, &n1->key);
1679 }
1680
1681 /* New nodes all written, now make them visible: */
1682
1683 if (parent) {
1684 /* Split a non root node */
1685 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1686 } else if (n3) {
1687 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1688 } else {
1689 /* Root filled up but didn't need to be split */
1690 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1691 }
1692
1693 if (ret)
1694 goto err;
1695
1696 if (n3) {
1697 bch2_btree_update_get_open_buckets(as, n3);
1698 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1699 }
1700 if (n2) {
1701 bch2_btree_update_get_open_buckets(as, n2);
1702 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1703 }
1704 bch2_btree_update_get_open_buckets(as, n1);
1705 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1706
1707 /*
1708 * The old node must be freed (in memory) _before_ unlocking the new
1709 * nodes - else another thread could re-acquire a read lock on the old
1710 * node after another thread has locked and updated the new node, thus
1711 * seeing stale data:
1712 */
1713 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1714
1715 if (n3)
1716 bch2_trans_node_add(trans, trans->paths + path, n3);
1717 if (n2)
1718 bch2_trans_node_add(trans, trans->paths + path2, n2);
1719 bch2_trans_node_add(trans, trans->paths + path1, n1);
1720
1721 if (n3)
1722 six_unlock_intent(&n3->c.lock);
1723 if (n2)
1724 six_unlock_intent(&n2->c.lock);
1725 six_unlock_intent(&n1->c.lock);
1726 out:
1727 if (path2) {
1728 __bch2_btree_path_unlock(trans, trans->paths + path2);
1729 bch2_path_put(trans, path2, true);
1730 }
1731 if (path1) {
1732 __bch2_btree_path_unlock(trans, trans->paths + path1);
1733 bch2_path_put(trans, path1, true);
1734 }
1735
1736 bch2_trans_verify_locks(trans);
1737
1738 bch2_time_stats_update(&c->times[n2
1739 ? BCH_TIME_btree_node_split
1740 : BCH_TIME_btree_node_compact],
1741 start_time);
1742 return ret;
1743 err:
1744 if (n3)
1745 bch2_btree_node_free_never_used(as, trans, n3);
1746 if (n2)
1747 bch2_btree_node_free_never_used(as, trans, n2);
1748 bch2_btree_node_free_never_used(as, trans, n1);
1749 goto out;
1750 }
1751
1752 /**
1753 * bch2_btree_insert_node - insert bkeys into a given btree node
1754 *
1755 * @as: btree_update object
1756 * @trans: btree_trans object
1757 * @path_idx: path that points to current node
1758 * @b: node to insert keys into
1759 * @keys: list of keys to insert
1760 *
1761 * Returns: 0 on success, typically transaction restart error on failure
1762 *
1763 * Inserts as many keys as it can into a given btree node, splitting it if full.
1764 * If a split occurred, this function will return early. This can only happen
1765 * for leaf nodes -- inserts into interior nodes have to be atomic.
1766 */
bch2_btree_insert_node(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1767 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1768 btree_path_idx_t path_idx, struct btree *b,
1769 struct keylist *keys)
1770 {
1771 struct bch_fs *c = as->c;
1772 struct btree_path *path = trans->paths + path_idx, *linked;
1773 unsigned i;
1774 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1775 int old_live_u64s = b->nr.live_u64s;
1776 int live_u64s_added, u64s_added;
1777 int ret;
1778
1779 lockdep_assert_held(&c->gc_lock);
1780 BUG_ON(!btree_node_intent_locked(path, b->c.level));
1781 BUG_ON(!b->c.level);
1782 BUG_ON(!as || as->b);
1783 bch2_verify_keylist_sorted(keys);
1784
1785 ret = bch2_btree_node_lock_write(trans, path, &b->c);
1786 if (ret)
1787 return ret;
1788
1789 bch2_btree_node_prep_for_write(trans, path, b);
1790
1791 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1792 bch2_btree_node_unlock_write(trans, path, b);
1793 goto split;
1794 }
1795
1796 ret = bch2_btree_node_check_topology(trans, b);
1797 if (ret) {
1798 bch2_btree_node_unlock_write(trans, path, b);
1799 return ret;
1800 }
1801
1802 bch2_btree_insert_keys_interior(as, trans, path, b,
1803 path->l[b->c.level].iter, keys);
1804
1805 trans_for_each_path_with_node(trans, b, linked, i)
1806 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1807
1808 bch2_trans_verify_paths(trans);
1809
1810 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1811 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1812
1813 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1814 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1815 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1816 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1817
1818 if (u64s_added > live_u64s_added &&
1819 bch2_maybe_compact_whiteouts(c, b))
1820 bch2_trans_node_reinit_iter(trans, b);
1821
1822 btree_update_updated_node(as, b);
1823 bch2_btree_node_unlock_write(trans, path, b);
1824
1825 BUG_ON(bch2_btree_node_check_topology(trans, b));
1826 return 0;
1827 split:
1828 /*
1829 * We could attempt to avoid the transaction restart, by calling
1830 * bch2_btree_path_upgrade() and allocating more nodes:
1831 */
1832 if (b->c.level >= as->update_level_end) {
1833 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1834 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1835 }
1836
1837 return btree_split(as, trans, path_idx, b, keys);
1838 }
1839
bch2_btree_split_leaf(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1840 int bch2_btree_split_leaf(struct btree_trans *trans,
1841 btree_path_idx_t path,
1842 unsigned flags)
1843 {
1844 /* btree_split & merge may both cause paths array to be reallocated */
1845 struct btree *b = path_l(trans->paths + path)->b;
1846 struct btree_update *as;
1847 unsigned l;
1848 int ret = 0;
1849
1850 as = bch2_btree_update_start(trans, trans->paths + path,
1851 trans->paths[path].level,
1852 true, flags);
1853 if (IS_ERR(as))
1854 return PTR_ERR(as);
1855
1856 ret = btree_split(as, trans, path, b, NULL);
1857 if (ret) {
1858 bch2_btree_update_free(as, trans);
1859 return ret;
1860 }
1861
1862 bch2_btree_update_done(as, trans);
1863
1864 for (l = trans->paths[path].level + 1;
1865 btree_node_intent_locked(&trans->paths[path], l) && !ret;
1866 l++)
1867 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1868
1869 return ret;
1870 }
1871
__btree_increase_depth(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx)1872 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1873 btree_path_idx_t path_idx)
1874 {
1875 struct bch_fs *c = as->c;
1876 struct btree_path *path = trans->paths + path_idx;
1877 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1878
1879 BUG_ON(!btree_node_locked(path, b->c.level));
1880
1881 n = __btree_root_alloc(as, trans, b->c.level + 1);
1882
1883 bch2_btree_update_add_new_node(as, n);
1884 six_unlock_write(&n->c.lock);
1885
1886 path->locks_want++;
1887 BUG_ON(btree_node_locked(path, n->c.level));
1888 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1889 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1890 bch2_btree_path_level_init(trans, path, n);
1891
1892 n->sib_u64s[0] = U16_MAX;
1893 n->sib_u64s[1] = U16_MAX;
1894
1895 bch2_keylist_add(&as->parent_keys, &b->key);
1896 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1897
1898 int ret = bch2_btree_set_root(as, trans, path, n, true);
1899 BUG_ON(ret);
1900
1901 bch2_btree_update_get_open_buckets(as, n);
1902 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1903 bch2_trans_node_add(trans, path, n);
1904 six_unlock_intent(&n->c.lock);
1905
1906 mutex_lock(&c->btree_cache.lock);
1907 list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1908 mutex_unlock(&c->btree_cache.lock);
1909
1910 bch2_trans_verify_locks(trans);
1911 }
1912
bch2_btree_increase_depth(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1913 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1914 {
1915 struct bch_fs *c = trans->c;
1916 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1917
1918 if (btree_node_fake(b))
1919 return bch2_btree_split_leaf(trans, path, flags);
1920
1921 struct btree_update *as =
1922 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1923 if (IS_ERR(as))
1924 return PTR_ERR(as);
1925
1926 __btree_increase_depth(as, trans, path);
1927 bch2_btree_update_done(as, trans);
1928 return 0;
1929 }
1930
__bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags,enum btree_node_sibling sib)1931 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1932 btree_path_idx_t path,
1933 unsigned level,
1934 unsigned flags,
1935 enum btree_node_sibling sib)
1936 {
1937 struct bch_fs *c = trans->c;
1938 struct btree_update *as;
1939 struct bkey_format_state new_s;
1940 struct bkey_format new_f;
1941 struct bkey_i delete;
1942 struct btree *b, *m, *n, *prev, *next, *parent;
1943 struct bpos sib_pos;
1944 size_t sib_u64s;
1945 enum btree_id btree = trans->paths[path].btree_id;
1946 btree_path_idx_t sib_path = 0, new_path = 0;
1947 u64 start_time = local_clock();
1948 int ret = 0;
1949
1950 bch2_trans_verify_not_in_restart(trans);
1951 bch2_trans_verify_not_unlocked(trans);
1952 BUG_ON(!trans->paths[path].should_be_locked);
1953 BUG_ON(!btree_node_locked(&trans->paths[path], level));
1954
1955 /*
1956 * Work around a deadlock caused by the btree write buffer not doing
1957 * merges and leaving tons of merges for us to do - we really don't need
1958 * to be doing merges at all from the interior update path, and if the
1959 * interior update path is generating too many new interior updates we
1960 * deadlock:
1961 */
1962 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1963 return 0;
1964
1965 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1966 flags &= ~BCH_WATERMARK_MASK;
1967 flags |= BCH_WATERMARK_btree;
1968 flags |= BCH_TRANS_COMMIT_journal_reclaim;
1969 }
1970
1971 b = trans->paths[path].l[level].b;
1972
1973 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1974 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1975 b->sib_u64s[sib] = U16_MAX;
1976 return 0;
1977 }
1978
1979 sib_pos = sib == btree_prev_sib
1980 ? bpos_predecessor(b->data->min_key)
1981 : bpos_successor(b->data->max_key);
1982
1983 sib_path = bch2_path_get(trans, btree, sib_pos,
1984 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
1985 ret = bch2_btree_path_traverse(trans, sib_path, false);
1986 if (ret)
1987 goto err;
1988
1989 btree_path_set_should_be_locked(trans, trans->paths + sib_path);
1990
1991 m = trans->paths[sib_path].l[level].b;
1992
1993 if (btree_node_parent(trans->paths + path, b) !=
1994 btree_node_parent(trans->paths + sib_path, m)) {
1995 b->sib_u64s[sib] = U16_MAX;
1996 goto out;
1997 }
1998
1999 if (sib == btree_prev_sib) {
2000 prev = m;
2001 next = b;
2002 } else {
2003 prev = b;
2004 next = m;
2005 }
2006
2007 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2008 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2009
2010 bch2_bpos_to_text(&buf1, prev->data->max_key);
2011 bch2_bpos_to_text(&buf2, next->data->min_key);
2012 bch_err(c,
2013 "%s(): btree topology error:\n"
2014 " prev ends at %s\n"
2015 " next starts at %s",
2016 __func__, buf1.buf, buf2.buf);
2017 printbuf_exit(&buf1);
2018 printbuf_exit(&buf2);
2019 ret = bch2_topology_error(c);
2020 goto err;
2021 }
2022
2023 bch2_bkey_format_init(&new_s);
2024 bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2025 __bch2_btree_calc_format(&new_s, prev);
2026 __bch2_btree_calc_format(&new_s, next);
2027 bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2028 new_f = bch2_bkey_format_done(&new_s);
2029
2030 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2031 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2032
2033 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2034 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2035 sib_u64s /= 2;
2036 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2037 }
2038
2039 sib_u64s = min(sib_u64s, btree_max_u64s(c));
2040 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2041 b->sib_u64s[sib] = sib_u64s;
2042
2043 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2044 goto out;
2045
2046 parent = btree_node_parent(trans->paths + path, b);
2047 as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2048 BCH_TRANS_COMMIT_no_enospc|flags);
2049 ret = PTR_ERR_OR_ZERO(as);
2050 if (ret)
2051 goto err;
2052
2053 trace_and_count(c, btree_node_merge, trans, b);
2054
2055 bch2_btree_interior_update_will_free_node(as, b);
2056 bch2_btree_interior_update_will_free_node(as, m);
2057
2058 n = bch2_btree_node_alloc(as, trans, b->c.level);
2059
2060 SET_BTREE_NODE_SEQ(n->data,
2061 max(BTREE_NODE_SEQ(b->data),
2062 BTREE_NODE_SEQ(m->data)) + 1);
2063
2064 btree_set_min(n, prev->data->min_key);
2065 btree_set_max(n, next->data->max_key);
2066
2067 n->data->format = new_f;
2068 btree_node_set_format(n, new_f);
2069
2070 bch2_btree_sort_into(c, n, prev);
2071 bch2_btree_sort_into(c, n, next);
2072
2073 bch2_btree_build_aux_trees(n);
2074 bch2_btree_update_add_new_node(as, n);
2075 six_unlock_write(&n->c.lock);
2076
2077 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2078 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2079 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2080 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2081
2082 bkey_init(&delete.k);
2083 delete.k.p = prev->key.k.p;
2084 bch2_keylist_add(&as->parent_keys, &delete);
2085 bch2_keylist_add(&as->parent_keys, &n->key);
2086
2087 bch2_trans_verify_paths(trans);
2088
2089 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2090 if (ret)
2091 goto err_free_update;
2092
2093 bch2_trans_verify_paths(trans);
2094
2095 bch2_btree_update_get_open_buckets(as, n);
2096 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2097
2098 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2099 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2100
2101 bch2_trans_node_add(trans, trans->paths + path, n);
2102
2103 bch2_trans_verify_paths(trans);
2104
2105 six_unlock_intent(&n->c.lock);
2106
2107 bch2_btree_update_done(as, trans);
2108
2109 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2110 out:
2111 err:
2112 if (new_path)
2113 bch2_path_put(trans, new_path, true);
2114 bch2_path_put(trans, sib_path, true);
2115 bch2_trans_verify_locks(trans);
2116 if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2117 ret = 0;
2118 if (!ret)
2119 ret = bch2_trans_relock(trans);
2120 return ret;
2121 err_free_update:
2122 bch2_btree_node_free_never_used(as, trans, n);
2123 bch2_btree_update_free(as, trans);
2124 goto out;
2125 }
2126
bch2_btree_node_rewrite(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,unsigned flags)2127 int bch2_btree_node_rewrite(struct btree_trans *trans,
2128 struct btree_iter *iter,
2129 struct btree *b,
2130 unsigned flags)
2131 {
2132 struct bch_fs *c = trans->c;
2133 struct btree *n, *parent;
2134 struct btree_update *as;
2135 btree_path_idx_t new_path = 0;
2136 int ret;
2137
2138 flags |= BCH_TRANS_COMMIT_no_enospc;
2139
2140 struct btree_path *path = btree_iter_path(trans, iter);
2141 parent = btree_node_parent(path, b);
2142 as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2143 ret = PTR_ERR_OR_ZERO(as);
2144 if (ret)
2145 goto out;
2146
2147 bch2_btree_interior_update_will_free_node(as, b);
2148
2149 n = bch2_btree_node_alloc_replacement(as, trans, b);
2150
2151 bch2_btree_build_aux_trees(n);
2152 bch2_btree_update_add_new_node(as, n);
2153 six_unlock_write(&n->c.lock);
2154
2155 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2156 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2157 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2158 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2159
2160 trace_and_count(c, btree_node_rewrite, trans, b);
2161
2162 if (parent) {
2163 bch2_keylist_add(&as->parent_keys, &n->key);
2164 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2165 } else {
2166 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2167 }
2168
2169 if (ret)
2170 goto err;
2171
2172 bch2_btree_update_get_open_buckets(as, n);
2173 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2174
2175 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2176
2177 bch2_trans_node_add(trans, trans->paths + iter->path, n);
2178 six_unlock_intent(&n->c.lock);
2179
2180 bch2_btree_update_done(as, trans);
2181 out:
2182 if (new_path)
2183 bch2_path_put(trans, new_path, true);
2184 bch2_trans_downgrade(trans);
2185 return ret;
2186 err:
2187 bch2_btree_node_free_never_used(as, trans, n);
2188 bch2_btree_update_free(as, trans);
2189 goto out;
2190 }
2191
2192 struct async_btree_rewrite {
2193 struct bch_fs *c;
2194 struct work_struct work;
2195 struct list_head list;
2196 enum btree_id btree_id;
2197 unsigned level;
2198 struct bpos pos;
2199 __le64 seq;
2200 };
2201
async_btree_node_rewrite_trans(struct btree_trans * trans,struct async_btree_rewrite * a)2202 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2203 struct async_btree_rewrite *a)
2204 {
2205 struct bch_fs *c = trans->c;
2206 struct btree_iter iter;
2207 struct btree *b;
2208 int ret;
2209
2210 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2211 BTREE_MAX_DEPTH, a->level, 0);
2212 b = bch2_btree_iter_peek_node(&iter);
2213 ret = PTR_ERR_OR_ZERO(b);
2214 if (ret)
2215 goto out;
2216
2217 if (!b || b->data->keys.seq != a->seq) {
2218 struct printbuf buf = PRINTBUF;
2219
2220 if (b)
2221 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2222 else
2223 prt_str(&buf, "(null");
2224 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2225 __func__, a->seq, buf.buf);
2226 printbuf_exit(&buf);
2227 goto out;
2228 }
2229
2230 ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2231 out:
2232 bch2_trans_iter_exit(trans, &iter);
2233
2234 return ret;
2235 }
2236
async_btree_node_rewrite_work(struct work_struct * work)2237 static void async_btree_node_rewrite_work(struct work_struct *work)
2238 {
2239 struct async_btree_rewrite *a =
2240 container_of(work, struct async_btree_rewrite, work);
2241 struct bch_fs *c = a->c;
2242
2243 int ret = bch2_trans_do(c, async_btree_node_rewrite_trans(trans, a));
2244 bch_err_fn_ratelimited(c, ret);
2245 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2246 kfree(a);
2247 }
2248
bch2_btree_node_rewrite_async(struct bch_fs * c,struct btree * b)2249 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2250 {
2251 struct async_btree_rewrite *a;
2252 int ret;
2253
2254 a = kmalloc(sizeof(*a), GFP_NOFS);
2255 if (!a) {
2256 bch_err(c, "%s: error allocating memory", __func__);
2257 return;
2258 }
2259
2260 a->c = c;
2261 a->btree_id = b->c.btree_id;
2262 a->level = b->c.level;
2263 a->pos = b->key.k.p;
2264 a->seq = b->data->keys.seq;
2265 INIT_WORK(&a->work, async_btree_node_rewrite_work);
2266
2267 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2268 mutex_lock(&c->pending_node_rewrites_lock);
2269 list_add(&a->list, &c->pending_node_rewrites);
2270 mutex_unlock(&c->pending_node_rewrites_lock);
2271 return;
2272 }
2273
2274 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2275 if (test_bit(BCH_FS_started, &c->flags)) {
2276 bch_err(c, "%s: error getting c->writes ref", __func__);
2277 kfree(a);
2278 return;
2279 }
2280
2281 ret = bch2_fs_read_write_early(c);
2282 bch_err_msg(c, ret, "going read-write");
2283 if (ret) {
2284 kfree(a);
2285 return;
2286 }
2287
2288 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2289 }
2290
2291 queue_work(c->btree_node_rewrite_worker, &a->work);
2292 }
2293
bch2_do_pending_node_rewrites(struct bch_fs * c)2294 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2295 {
2296 struct async_btree_rewrite *a, *n;
2297
2298 mutex_lock(&c->pending_node_rewrites_lock);
2299 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2300 list_del(&a->list);
2301
2302 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2303 queue_work(c->btree_node_rewrite_worker, &a->work);
2304 }
2305 mutex_unlock(&c->pending_node_rewrites_lock);
2306 }
2307
bch2_free_pending_node_rewrites(struct bch_fs * c)2308 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2309 {
2310 struct async_btree_rewrite *a, *n;
2311
2312 mutex_lock(&c->pending_node_rewrites_lock);
2313 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2314 list_del(&a->list);
2315
2316 kfree(a);
2317 }
2318 mutex_unlock(&c->pending_node_rewrites_lock);
2319 }
2320
__bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct btree * new_hash,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2321 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2322 struct btree_iter *iter,
2323 struct btree *b, struct btree *new_hash,
2324 struct bkey_i *new_key,
2325 unsigned commit_flags,
2326 bool skip_triggers)
2327 {
2328 struct bch_fs *c = trans->c;
2329 struct btree_iter iter2 = { NULL };
2330 struct btree *parent;
2331 int ret;
2332
2333 if (!skip_triggers) {
2334 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2335 bkey_i_to_s_c(&b->key),
2336 BTREE_TRIGGER_transactional) ?:
2337 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2338 bkey_i_to_s(new_key),
2339 BTREE_TRIGGER_transactional);
2340 if (ret)
2341 return ret;
2342 }
2343
2344 if (new_hash) {
2345 bkey_copy(&new_hash->key, new_key);
2346 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2347 new_hash, b->c.level, b->c.btree_id);
2348 BUG_ON(ret);
2349 }
2350
2351 parent = btree_node_parent(btree_iter_path(trans, iter), b);
2352 if (parent) {
2353 bch2_trans_copy_iter(&iter2, iter);
2354
2355 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2356 iter2.flags & BTREE_ITER_intent,
2357 _THIS_IP_);
2358
2359 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2360 BUG_ON(path2->level != b->c.level);
2361 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2362
2363 btree_path_set_level_up(trans, path2);
2364
2365 trans->paths_sorted = false;
2366
2367 ret = bch2_btree_iter_traverse(&iter2) ?:
2368 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2369 if (ret)
2370 goto err;
2371 } else {
2372 BUG_ON(btree_node_root(c, b) != b);
2373
2374 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2375 jset_u64s(new_key->k.u64s));
2376 ret = PTR_ERR_OR_ZERO(e);
2377 if (ret)
2378 return ret;
2379
2380 journal_entry_set(e,
2381 BCH_JSET_ENTRY_btree_root,
2382 b->c.btree_id, b->c.level,
2383 new_key, new_key->k.u64s);
2384 }
2385
2386 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2387 if (ret)
2388 goto err;
2389
2390 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2391
2392 if (new_hash) {
2393 mutex_lock(&c->btree_cache.lock);
2394 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2395 bch2_btree_node_hash_remove(&c->btree_cache, b);
2396
2397 bkey_copy(&b->key, new_key);
2398 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2399 BUG_ON(ret);
2400 mutex_unlock(&c->btree_cache.lock);
2401 } else {
2402 bkey_copy(&b->key, new_key);
2403 }
2404
2405 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2406 out:
2407 bch2_trans_iter_exit(trans, &iter2);
2408 return ret;
2409 err:
2410 if (new_hash) {
2411 mutex_lock(&c->btree_cache.lock);
2412 bch2_btree_node_hash_remove(&c->btree_cache, b);
2413 mutex_unlock(&c->btree_cache.lock);
2414 }
2415 goto out;
2416 }
2417
bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2418 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2419 struct btree *b, struct bkey_i *new_key,
2420 unsigned commit_flags, bool skip_triggers)
2421 {
2422 struct bch_fs *c = trans->c;
2423 struct btree *new_hash = NULL;
2424 struct btree_path *path = btree_iter_path(trans, iter);
2425 struct closure cl;
2426 int ret = 0;
2427
2428 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2429 if (ret)
2430 return ret;
2431
2432 closure_init_stack(&cl);
2433
2434 /*
2435 * check btree_ptr_hash_val() after @b is locked by
2436 * btree_iter_traverse():
2437 */
2438 if (btree_ptr_hash_val(new_key) != b->hash_val) {
2439 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2440 if (ret) {
2441 ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2442 if (ret)
2443 return ret;
2444 }
2445
2446 new_hash = bch2_btree_node_mem_alloc(trans, false);
2447 ret = PTR_ERR_OR_ZERO(new_hash);
2448 if (ret)
2449 goto err;
2450 }
2451
2452 path->intent_ref++;
2453 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2454 commit_flags, skip_triggers);
2455 --path->intent_ref;
2456
2457 if (new_hash)
2458 bch2_btree_node_to_freelist(c, new_hash);
2459 err:
2460 closure_sync(&cl);
2461 bch2_btree_cache_cannibalize_unlock(trans);
2462 return ret;
2463 }
2464
bch2_btree_node_update_key_get_iter(struct btree_trans * trans,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2465 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2466 struct btree *b, struct bkey_i *new_key,
2467 unsigned commit_flags, bool skip_triggers)
2468 {
2469 struct btree_iter iter;
2470 int ret;
2471
2472 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2473 BTREE_MAX_DEPTH, b->c.level,
2474 BTREE_ITER_intent);
2475 ret = bch2_btree_iter_traverse(&iter);
2476 if (ret)
2477 goto out;
2478
2479 /* has node been freed? */
2480 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2481 /* node has been freed: */
2482 BUG_ON(!btree_node_dying(b));
2483 goto out;
2484 }
2485
2486 BUG_ON(!btree_node_hashed(b));
2487
2488 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2489 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2490
2491 ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2492 commit_flags, skip_triggers);
2493 out:
2494 bch2_trans_iter_exit(trans, &iter);
2495 return ret;
2496 }
2497
2498 /* Init code: */
2499
2500 /*
2501 * Only for filesystem bringup, when first reading the btree roots or allocating
2502 * btree roots when initializing a new filesystem:
2503 */
bch2_btree_set_root_for_read(struct bch_fs * c,struct btree * b)2504 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2505 {
2506 BUG_ON(btree_node_root(c, b));
2507
2508 bch2_btree_set_root_inmem(c, b);
2509 }
2510
bch2_btree_root_alloc_fake_trans(struct btree_trans * trans,enum btree_id id,unsigned level)2511 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2512 {
2513 struct bch_fs *c = trans->c;
2514 struct closure cl;
2515 struct btree *b;
2516 int ret;
2517
2518 closure_init_stack(&cl);
2519
2520 do {
2521 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2522 closure_sync(&cl);
2523 } while (ret);
2524
2525 b = bch2_btree_node_mem_alloc(trans, false);
2526 bch2_btree_cache_cannibalize_unlock(trans);
2527
2528 ret = PTR_ERR_OR_ZERO(b);
2529 if (ret)
2530 return ret;
2531
2532 set_btree_node_fake(b);
2533 set_btree_node_need_rewrite(b);
2534 b->c.level = level;
2535 b->c.btree_id = id;
2536
2537 bkey_btree_ptr_init(&b->key);
2538 b->key.k.p = SPOS_MAX;
2539 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2540
2541 bch2_bset_init_first(b, &b->data->keys);
2542 bch2_btree_build_aux_trees(b);
2543
2544 b->data->flags = 0;
2545 btree_set_min(b, POS_MIN);
2546 btree_set_max(b, SPOS_MAX);
2547 b->data->format = bch2_btree_calc_format(b);
2548 btree_node_set_format(b, b->data->format);
2549
2550 ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2551 b->c.level, b->c.btree_id);
2552 BUG_ON(ret);
2553
2554 bch2_btree_set_root_inmem(c, b);
2555
2556 six_unlock_write(&b->c.lock);
2557 six_unlock_intent(&b->c.lock);
2558 return 0;
2559 }
2560
bch2_btree_root_alloc_fake(struct bch_fs * c,enum btree_id id,unsigned level)2561 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2562 {
2563 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2564 }
2565
bch2_btree_update_to_text(struct printbuf * out,struct btree_update * as)2566 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2567 {
2568 prt_printf(out, "%ps: ", (void *) as->ip_started);
2569 bch2_trans_commit_flags_to_text(out, as->flags);
2570
2571 prt_printf(out, " btree=%s l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2572 bch2_btree_id_str(as->btree_id),
2573 as->update_level_start,
2574 as->update_level_end,
2575 bch2_btree_update_modes[as->mode],
2576 as->nodes_written,
2577 closure_nr_remaining(&as->cl),
2578 as->journal.seq);
2579 }
2580
bch2_btree_updates_to_text(struct printbuf * out,struct bch_fs * c)2581 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2582 {
2583 struct btree_update *as;
2584
2585 mutex_lock(&c->btree_interior_update_lock);
2586 list_for_each_entry(as, &c->btree_interior_update_list, list)
2587 bch2_btree_update_to_text(out, as);
2588 mutex_unlock(&c->btree_interior_update_lock);
2589 }
2590
bch2_btree_interior_updates_pending(struct bch_fs * c)2591 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2592 {
2593 bool ret;
2594
2595 mutex_lock(&c->btree_interior_update_lock);
2596 ret = !list_empty(&c->btree_interior_update_list);
2597 mutex_unlock(&c->btree_interior_update_lock);
2598
2599 return ret;
2600 }
2601
bch2_btree_interior_updates_flush(struct bch_fs * c)2602 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2603 {
2604 bool ret = bch2_btree_interior_updates_pending(c);
2605
2606 if (ret)
2607 closure_wait_event(&c->btree_interior_update_wait,
2608 !bch2_btree_interior_updates_pending(c));
2609 return ret;
2610 }
2611
bch2_journal_entry_to_btree_root(struct bch_fs * c,struct jset_entry * entry)2612 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2613 {
2614 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2615
2616 mutex_lock(&c->btree_root_lock);
2617
2618 r->level = entry->level;
2619 r->alive = true;
2620 bkey_copy(&r->key, (struct bkey_i *) entry->start);
2621
2622 mutex_unlock(&c->btree_root_lock);
2623 }
2624
2625 struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs * c,struct jset_entry * end,unsigned long skip)2626 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2627 struct jset_entry *end,
2628 unsigned long skip)
2629 {
2630 unsigned i;
2631
2632 mutex_lock(&c->btree_root_lock);
2633
2634 for (i = 0; i < btree_id_nr_alive(c); i++) {
2635 struct btree_root *r = bch2_btree_id_root(c, i);
2636
2637 if (r->alive && !test_bit(i, &skip)) {
2638 journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2639 i, r->level, &r->key, r->key.k.u64s);
2640 end = vstruct_next(end);
2641 }
2642 }
2643
2644 mutex_unlock(&c->btree_root_lock);
2645
2646 return end;
2647 }
2648
bch2_btree_alloc_to_text(struct printbuf * out,struct bch_fs * c,struct btree_alloc * a)2649 static void bch2_btree_alloc_to_text(struct printbuf *out,
2650 struct bch_fs *c,
2651 struct btree_alloc *a)
2652 {
2653 printbuf_indent_add(out, 2);
2654 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2655 prt_newline(out);
2656
2657 struct open_bucket *ob;
2658 unsigned i;
2659 open_bucket_for_each(c, &a->ob, ob, i)
2660 bch2_open_bucket_to_text(out, c, ob);
2661
2662 printbuf_indent_sub(out, 2);
2663 }
2664
bch2_btree_reserve_cache_to_text(struct printbuf * out,struct bch_fs * c)2665 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2666 {
2667 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2668 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2669 }
2670
bch2_fs_btree_interior_update_exit(struct bch_fs * c)2671 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2672 {
2673 if (c->btree_node_rewrite_worker)
2674 destroy_workqueue(c->btree_node_rewrite_worker);
2675 if (c->btree_interior_update_worker)
2676 destroy_workqueue(c->btree_interior_update_worker);
2677 mempool_exit(&c->btree_interior_update_pool);
2678 }
2679
bch2_fs_btree_interior_update_init_early(struct bch_fs * c)2680 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2681 {
2682 mutex_init(&c->btree_reserve_cache_lock);
2683 INIT_LIST_HEAD(&c->btree_interior_update_list);
2684 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2685 mutex_init(&c->btree_interior_update_lock);
2686 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2687
2688 INIT_LIST_HEAD(&c->pending_node_rewrites);
2689 mutex_init(&c->pending_node_rewrites_lock);
2690 }
2691
bch2_fs_btree_interior_update_init(struct bch_fs * c)2692 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2693 {
2694 c->btree_interior_update_worker =
2695 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2696 if (!c->btree_interior_update_worker)
2697 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2698
2699 c->btree_node_rewrite_worker =
2700 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2701 if (!c->btree_node_rewrite_worker)
2702 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2703
2704 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2705 sizeof(struct btree_update)))
2706 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2707
2708 return 0;
2709 }
2710