xref: /linux/block/blk-core.c (revision 9a42891c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46 
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 
63 static DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 static struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 /**
98  * blk_queue_flag_test_and_set - atomically test and set a queue flag
99  * @flag: flag to be set
100  * @q: request queue
101  *
102  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103  * the flag was already set.
104  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 	return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110 
111 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
112 static const char *const blk_op_name[] = {
113 	REQ_OP_NAME(READ),
114 	REQ_OP_NAME(WRITE),
115 	REQ_OP_NAME(FLUSH),
116 	REQ_OP_NAME(DISCARD),
117 	REQ_OP_NAME(SECURE_ERASE),
118 	REQ_OP_NAME(ZONE_RESET),
119 	REQ_OP_NAME(ZONE_RESET_ALL),
120 	REQ_OP_NAME(ZONE_OPEN),
121 	REQ_OP_NAME(ZONE_CLOSE),
122 	REQ_OP_NAME(ZONE_FINISH),
123 	REQ_OP_NAME(ZONE_APPEND),
124 	REQ_OP_NAME(WRITE_ZEROES),
125 	REQ_OP_NAME(DRV_IN),
126 	REQ_OP_NAME(DRV_OUT),
127 };
128 #undef REQ_OP_NAME
129 
130 /**
131  * blk_op_str - Return string XXX in the REQ_OP_XXX.
132  * @op: REQ_OP_XXX.
133  *
134  * Description: Centralize block layer function to convert REQ_OP_XXX into
135  * string format. Useful in the debugging and tracing bio or request. For
136  * invalid REQ_OP_XXX it returns string "UNKNOWN".
137  */
blk_op_str(enum req_op op)138 inline const char *blk_op_str(enum req_op op)
139 {
140 	const char *op_str = "UNKNOWN";
141 
142 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
143 		op_str = blk_op_name[op];
144 
145 	return op_str;
146 }
147 EXPORT_SYMBOL_GPL(blk_op_str);
148 
149 static const struct {
150 	int		errno;
151 	const char	*name;
152 } blk_errors[] = {
153 	[BLK_STS_OK]		= { 0,		"" },
154 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
155 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
156 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
157 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
158 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
159 	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
160 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
161 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
162 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
163 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
164 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
165 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
166 
167 	/* device mapper special case, should not leak out: */
168 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
169 
170 	/* zone device specific errors */
171 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
172 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
173 
174 	/* Command duration limit device-side timeout */
175 	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
176 
177 	/* everything else not covered above: */
178 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
179 };
180 
errno_to_blk_status(int errno)181 blk_status_t errno_to_blk_status(int errno)
182 {
183 	int i;
184 
185 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
186 		if (blk_errors[i].errno == errno)
187 			return (__force blk_status_t)i;
188 	}
189 
190 	return BLK_STS_IOERR;
191 }
192 EXPORT_SYMBOL_GPL(errno_to_blk_status);
193 
blk_status_to_errno(blk_status_t status)194 int blk_status_to_errno(blk_status_t status)
195 {
196 	int idx = (__force int)status;
197 
198 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
199 		return -EIO;
200 	return blk_errors[idx].errno;
201 }
202 EXPORT_SYMBOL_GPL(blk_status_to_errno);
203 
blk_status_to_str(blk_status_t status)204 const char *blk_status_to_str(blk_status_t status)
205 {
206 	int idx = (__force int)status;
207 
208 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
209 		return "<null>";
210 	return blk_errors[idx].name;
211 }
212 EXPORT_SYMBOL_GPL(blk_status_to_str);
213 
214 /**
215  * blk_sync_queue - cancel any pending callbacks on a queue
216  * @q: the queue
217  *
218  * Description:
219  *     The block layer may perform asynchronous callback activity
220  *     on a queue, such as calling the unplug function after a timeout.
221  *     A block device may call blk_sync_queue to ensure that any
222  *     such activity is cancelled, thus allowing it to release resources
223  *     that the callbacks might use. The caller must already have made sure
224  *     that its ->submit_bio will not re-add plugging prior to calling
225  *     this function.
226  *
227  *     This function does not cancel any asynchronous activity arising
228  *     out of elevator or throttling code. That would require elevator_exit()
229  *     and blkcg_exit_queue() to be called with queue lock initialized.
230  *
231  */
blk_sync_queue(struct request_queue * q)232 void blk_sync_queue(struct request_queue *q)
233 {
234 	del_timer_sync(&q->timeout);
235 	cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238 
239 /**
240  * blk_set_pm_only - increment pm_only counter
241  * @q: request queue pointer
242  */
blk_set_pm_only(struct request_queue * q)243 void blk_set_pm_only(struct request_queue *q)
244 {
245 	atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248 
blk_clear_pm_only(struct request_queue * q)249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 	int pm_only;
252 
253 	pm_only = atomic_dec_return(&q->pm_only);
254 	WARN_ON_ONCE(pm_only < 0);
255 	if (pm_only == 0)
256 		wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259 
blk_free_queue_rcu(struct rcu_head * rcu_head)260 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
261 {
262 	struct request_queue *q = container_of(rcu_head,
263 			struct request_queue, rcu_head);
264 
265 	percpu_ref_exit(&q->q_usage_counter);
266 	kmem_cache_free(blk_requestq_cachep, q);
267 }
268 
blk_free_queue(struct request_queue * q)269 static void blk_free_queue(struct request_queue *q)
270 {
271 	blk_free_queue_stats(q->stats);
272 	if (queue_is_mq(q))
273 		blk_mq_release(q);
274 
275 	ida_free(&blk_queue_ida, q->id);
276 	call_rcu(&q->rcu_head, blk_free_queue_rcu);
277 }
278 
279 /**
280  * blk_put_queue - decrement the request_queue refcount
281  * @q: the request_queue structure to decrement the refcount for
282  *
283  * Decrements the refcount of the request_queue and free it when the refcount
284  * reaches 0.
285  */
blk_put_queue(struct request_queue * q)286 void blk_put_queue(struct request_queue *q)
287 {
288 	if (refcount_dec_and_test(&q->refs))
289 		blk_free_queue(q);
290 }
291 EXPORT_SYMBOL(blk_put_queue);
292 
blk_queue_start_drain(struct request_queue * q)293 void blk_queue_start_drain(struct request_queue *q)
294 {
295 	/*
296 	 * When queue DYING flag is set, we need to block new req
297 	 * entering queue, so we call blk_freeze_queue_start() to
298 	 * prevent I/O from crossing blk_queue_enter().
299 	 */
300 	blk_freeze_queue_start(q);
301 	if (queue_is_mq(q))
302 		blk_mq_wake_waiters(q);
303 	/* Make blk_queue_enter() reexamine the DYING flag. */
304 	wake_up_all(&q->mq_freeze_wq);
305 }
306 
307 /**
308  * blk_queue_enter() - try to increase q->q_usage_counter
309  * @q: request queue pointer
310  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
311  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)312 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
313 {
314 	const bool pm = flags & BLK_MQ_REQ_PM;
315 
316 	while (!blk_try_enter_queue(q, pm)) {
317 		if (flags & BLK_MQ_REQ_NOWAIT)
318 			return -EAGAIN;
319 
320 		/*
321 		 * read pair of barrier in blk_freeze_queue_start(), we need to
322 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
323 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
324 		 * following wait may never return if the two reads are
325 		 * reordered.
326 		 */
327 		smp_rmb();
328 		wait_event(q->mq_freeze_wq,
329 			   (!q->mq_freeze_depth &&
330 			    blk_pm_resume_queue(pm, q)) ||
331 			   blk_queue_dying(q));
332 		if (blk_queue_dying(q))
333 			return -ENODEV;
334 	}
335 
336 	return 0;
337 }
338 
__bio_queue_enter(struct request_queue * q,struct bio * bio)339 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
340 {
341 	while (!blk_try_enter_queue(q, false)) {
342 		struct gendisk *disk = bio->bi_bdev->bd_disk;
343 
344 		if (bio->bi_opf & REQ_NOWAIT) {
345 			if (test_bit(GD_DEAD, &disk->state))
346 				goto dead;
347 			bio_wouldblock_error(bio);
348 			return -EAGAIN;
349 		}
350 
351 		/*
352 		 * read pair of barrier in blk_freeze_queue_start(), we need to
353 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
354 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
355 		 * following wait may never return if the two reads are
356 		 * reordered.
357 		 */
358 		smp_rmb();
359 		wait_event(q->mq_freeze_wq,
360 			   (!q->mq_freeze_depth &&
361 			    blk_pm_resume_queue(false, q)) ||
362 			   test_bit(GD_DEAD, &disk->state));
363 		if (test_bit(GD_DEAD, &disk->state))
364 			goto dead;
365 	}
366 
367 	return 0;
368 dead:
369 	bio_io_error(bio);
370 	return -ENODEV;
371 }
372 
blk_queue_exit(struct request_queue * q)373 void blk_queue_exit(struct request_queue *q)
374 {
375 	percpu_ref_put(&q->q_usage_counter);
376 }
377 
blk_queue_usage_counter_release(struct percpu_ref * ref)378 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
379 {
380 	struct request_queue *q =
381 		container_of(ref, struct request_queue, q_usage_counter);
382 
383 	wake_up_all(&q->mq_freeze_wq);
384 }
385 
blk_rq_timed_out_timer(struct timer_list * t)386 static void blk_rq_timed_out_timer(struct timer_list *t)
387 {
388 	struct request_queue *q = from_timer(q, t, timeout);
389 
390 	kblockd_schedule_work(&q->timeout_work);
391 }
392 
blk_timeout_work(struct work_struct * work)393 static void blk_timeout_work(struct work_struct *work)
394 {
395 }
396 
blk_alloc_queue(struct queue_limits * lim,int node_id)397 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
398 {
399 	struct request_queue *q;
400 	int error;
401 
402 	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
403 				  node_id);
404 	if (!q)
405 		return ERR_PTR(-ENOMEM);
406 
407 	q->last_merge = NULL;
408 
409 	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
410 	if (q->id < 0) {
411 		error = q->id;
412 		goto fail_q;
413 	}
414 
415 	q->stats = blk_alloc_queue_stats();
416 	if (!q->stats) {
417 		error = -ENOMEM;
418 		goto fail_id;
419 	}
420 
421 	error = blk_set_default_limits(lim);
422 	if (error)
423 		goto fail_stats;
424 	q->limits = *lim;
425 
426 	q->node = node_id;
427 
428 	atomic_set(&q->nr_active_requests_shared_tags, 0);
429 
430 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
431 	INIT_WORK(&q->timeout_work, blk_timeout_work);
432 	INIT_LIST_HEAD(&q->icq_list);
433 
434 	refcount_set(&q->refs, 1);
435 	mutex_init(&q->debugfs_mutex);
436 	mutex_init(&q->sysfs_lock);
437 	mutex_init(&q->sysfs_dir_lock);
438 	mutex_init(&q->limits_lock);
439 	mutex_init(&q->rq_qos_mutex);
440 	spin_lock_init(&q->queue_lock);
441 
442 	init_waitqueue_head(&q->mq_freeze_wq);
443 	mutex_init(&q->mq_freeze_lock);
444 
445 	blkg_init_queue(q);
446 
447 	/*
448 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
449 	 * See blk_register_queue() for details.
450 	 */
451 	error = percpu_ref_init(&q->q_usage_counter,
452 				blk_queue_usage_counter_release,
453 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
454 	if (error)
455 		goto fail_stats;
456 
457 	q->nr_requests = BLKDEV_DEFAULT_RQ;
458 
459 	return q;
460 
461 fail_stats:
462 	blk_free_queue_stats(q->stats);
463 fail_id:
464 	ida_free(&blk_queue_ida, q->id);
465 fail_q:
466 	kmem_cache_free(blk_requestq_cachep, q);
467 	return ERR_PTR(error);
468 }
469 
470 /**
471  * blk_get_queue - increment the request_queue refcount
472  * @q: the request_queue structure to increment the refcount for
473  *
474  * Increment the refcount of the request_queue kobject.
475  *
476  * Context: Any context.
477  */
blk_get_queue(struct request_queue * q)478 bool blk_get_queue(struct request_queue *q)
479 {
480 	if (unlikely(blk_queue_dying(q)))
481 		return false;
482 	refcount_inc(&q->refs);
483 	return true;
484 }
485 EXPORT_SYMBOL(blk_get_queue);
486 
487 #ifdef CONFIG_FAIL_MAKE_REQUEST
488 
489 static DECLARE_FAULT_ATTR(fail_make_request);
490 
setup_fail_make_request(char * str)491 static int __init setup_fail_make_request(char *str)
492 {
493 	return setup_fault_attr(&fail_make_request, str);
494 }
495 __setup("fail_make_request=", setup_fail_make_request);
496 
should_fail_request(struct block_device * part,unsigned int bytes)497 bool should_fail_request(struct block_device *part, unsigned int bytes)
498 {
499 	return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
500 	       should_fail(&fail_make_request, bytes);
501 }
502 
fail_make_request_debugfs(void)503 static int __init fail_make_request_debugfs(void)
504 {
505 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
506 						NULL, &fail_make_request);
507 
508 	return PTR_ERR_OR_ZERO(dir);
509 }
510 
511 late_initcall(fail_make_request_debugfs);
512 #endif /* CONFIG_FAIL_MAKE_REQUEST */
513 
bio_check_ro(struct bio * bio)514 static inline void bio_check_ro(struct bio *bio)
515 {
516 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
517 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
518 			return;
519 
520 		if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
521 			return;
522 
523 		bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
524 
525 		/*
526 		 * Use ioctl to set underlying disk of raid/dm to read-only
527 		 * will trigger this.
528 		 */
529 		pr_warn("Trying to write to read-only block-device %pg\n",
530 			bio->bi_bdev);
531 	}
532 }
533 
should_fail_bio(struct bio * bio)534 static noinline int should_fail_bio(struct bio *bio)
535 {
536 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
537 		return -EIO;
538 	return 0;
539 }
540 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
541 
542 /*
543  * Check whether this bio extends beyond the end of the device or partition.
544  * This may well happen - the kernel calls bread() without checking the size of
545  * the device, e.g., when mounting a file system.
546  */
bio_check_eod(struct bio * bio)547 static inline int bio_check_eod(struct bio *bio)
548 {
549 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
550 	unsigned int nr_sectors = bio_sectors(bio);
551 
552 	if (nr_sectors &&
553 	    (nr_sectors > maxsector ||
554 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
555 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
556 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
557 				    current->comm, bio->bi_bdev, bio->bi_opf,
558 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
559 		return -EIO;
560 	}
561 	return 0;
562 }
563 
564 /*
565  * Remap block n of partition p to block n+start(p) of the disk.
566  */
blk_partition_remap(struct bio * bio)567 static int blk_partition_remap(struct bio *bio)
568 {
569 	struct block_device *p = bio->bi_bdev;
570 
571 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
572 		return -EIO;
573 	if (bio_sectors(bio)) {
574 		bio->bi_iter.bi_sector += p->bd_start_sect;
575 		trace_block_bio_remap(bio, p->bd_dev,
576 				      bio->bi_iter.bi_sector -
577 				      p->bd_start_sect);
578 	}
579 	bio_set_flag(bio, BIO_REMAPPED);
580 	return 0;
581 }
582 
583 /*
584  * Check write append to a zoned block device.
585  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)586 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
587 						 struct bio *bio)
588 {
589 	int nr_sectors = bio_sectors(bio);
590 
591 	/* Only applicable to zoned block devices */
592 	if (!bdev_is_zoned(bio->bi_bdev))
593 		return BLK_STS_NOTSUPP;
594 
595 	/* The bio sector must point to the start of a sequential zone */
596 	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
597 		return BLK_STS_IOERR;
598 
599 	/*
600 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
601 	 * split and could result in non-contiguous sectors being written in
602 	 * different zones.
603 	 */
604 	if (nr_sectors > q->limits.chunk_sectors)
605 		return BLK_STS_IOERR;
606 
607 	/* Make sure the BIO is small enough and will not get split */
608 	if (nr_sectors > queue_max_zone_append_sectors(q))
609 		return BLK_STS_IOERR;
610 
611 	bio->bi_opf |= REQ_NOMERGE;
612 
613 	return BLK_STS_OK;
614 }
615 
__submit_bio(struct bio * bio)616 static void __submit_bio(struct bio *bio)
617 {
618 	/* If plug is not used, add new plug here to cache nsecs time. */
619 	struct blk_plug plug;
620 
621 	if (unlikely(!blk_crypto_bio_prep(&bio)))
622 		return;
623 
624 	blk_start_plug(&plug);
625 
626 	if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
627 		blk_mq_submit_bio(bio);
628 	} else if (likely(bio_queue_enter(bio) == 0)) {
629 		struct gendisk *disk = bio->bi_bdev->bd_disk;
630 
631 		disk->fops->submit_bio(bio);
632 		blk_queue_exit(disk->queue);
633 	}
634 
635 	blk_finish_plug(&plug);
636 }
637 
638 /*
639  * The loop in this function may be a bit non-obvious, and so deserves some
640  * explanation:
641  *
642  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
643  *    that), so we have a list with a single bio.
644  *  - We pretend that we have just taken it off a longer list, so we assign
645  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
646  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
647  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
648  *    non-NULL value in bio_list and re-enter the loop from the top.
649  *  - In this case we really did just take the bio of the top of the list (no
650  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
651  *    again.
652  *
653  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
654  * bio_list_on_stack[1] contains bios that were submitted before the current
655  *	->submit_bio, but that haven't been processed yet.
656  */
__submit_bio_noacct(struct bio * bio)657 static void __submit_bio_noacct(struct bio *bio)
658 {
659 	struct bio_list bio_list_on_stack[2];
660 
661 	BUG_ON(bio->bi_next);
662 
663 	bio_list_init(&bio_list_on_stack[0]);
664 	current->bio_list = bio_list_on_stack;
665 
666 	do {
667 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
668 		struct bio_list lower, same;
669 
670 		/*
671 		 * Create a fresh bio_list for all subordinate requests.
672 		 */
673 		bio_list_on_stack[1] = bio_list_on_stack[0];
674 		bio_list_init(&bio_list_on_stack[0]);
675 
676 		__submit_bio(bio);
677 
678 		/*
679 		 * Sort new bios into those for a lower level and those for the
680 		 * same level.
681 		 */
682 		bio_list_init(&lower);
683 		bio_list_init(&same);
684 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
685 			if (q == bdev_get_queue(bio->bi_bdev))
686 				bio_list_add(&same, bio);
687 			else
688 				bio_list_add(&lower, bio);
689 
690 		/*
691 		 * Now assemble so we handle the lowest level first.
692 		 */
693 		bio_list_merge(&bio_list_on_stack[0], &lower);
694 		bio_list_merge(&bio_list_on_stack[0], &same);
695 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
696 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
697 
698 	current->bio_list = NULL;
699 }
700 
__submit_bio_noacct_mq(struct bio * bio)701 static void __submit_bio_noacct_mq(struct bio *bio)
702 {
703 	struct bio_list bio_list[2] = { };
704 
705 	current->bio_list = bio_list;
706 
707 	do {
708 		__submit_bio(bio);
709 	} while ((bio = bio_list_pop(&bio_list[0])));
710 
711 	current->bio_list = NULL;
712 }
713 
submit_bio_noacct_nocheck(struct bio * bio)714 void submit_bio_noacct_nocheck(struct bio *bio)
715 {
716 	blk_cgroup_bio_start(bio);
717 	blkcg_bio_issue_init(bio);
718 
719 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
720 		trace_block_bio_queue(bio);
721 		/*
722 		 * Now that enqueuing has been traced, we need to trace
723 		 * completion as well.
724 		 */
725 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
726 	}
727 
728 	/*
729 	 * We only want one ->submit_bio to be active at a time, else stack
730 	 * usage with stacked devices could be a problem.  Use current->bio_list
731 	 * to collect a list of requests submited by a ->submit_bio method while
732 	 * it is active, and then process them after it returned.
733 	 */
734 	if (current->bio_list)
735 		bio_list_add(&current->bio_list[0], bio);
736 	else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
737 		__submit_bio_noacct_mq(bio);
738 	else
739 		__submit_bio_noacct(bio);
740 }
741 
742 /**
743  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
744  * @bio:  The bio describing the location in memory and on the device.
745  *
746  * This is a version of submit_bio() that shall only be used for I/O that is
747  * resubmitted to lower level drivers by stacking block drivers.  All file
748  * systems and other upper level users of the block layer should use
749  * submit_bio() instead.
750  */
submit_bio_noacct(struct bio * bio)751 void submit_bio_noacct(struct bio *bio)
752 {
753 	struct block_device *bdev = bio->bi_bdev;
754 	struct request_queue *q = bdev_get_queue(bdev);
755 	blk_status_t status = BLK_STS_IOERR;
756 
757 	might_sleep();
758 
759 	/*
760 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
761 	 * if queue does not support NOWAIT.
762 	 */
763 	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
764 		goto not_supported;
765 
766 	if (should_fail_bio(bio))
767 		goto end_io;
768 	bio_check_ro(bio);
769 	if (!bio_flagged(bio, BIO_REMAPPED)) {
770 		if (unlikely(bio_check_eod(bio)))
771 			goto end_io;
772 		if (bdev_is_partition(bdev) &&
773 		    unlikely(blk_partition_remap(bio)))
774 			goto end_io;
775 	}
776 
777 	/*
778 	 * Filter flush bio's early so that bio based drivers without flush
779 	 * support don't have to worry about them.
780 	 */
781 	if (op_is_flush(bio->bi_opf)) {
782 		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
783 				 bio_op(bio) != REQ_OP_ZONE_APPEND))
784 			goto end_io;
785 		if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
786 			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
787 			if (!bio_sectors(bio)) {
788 				status = BLK_STS_OK;
789 				goto end_io;
790 			}
791 		}
792 	}
793 
794 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
795 		bio_clear_polled(bio);
796 
797 	switch (bio_op(bio)) {
798 	case REQ_OP_READ:
799 	case REQ_OP_WRITE:
800 		break;
801 	case REQ_OP_FLUSH:
802 		/*
803 		 * REQ_OP_FLUSH can't be submitted through bios, it is only
804 		 * synthetized in struct request by the flush state machine.
805 		 */
806 		goto not_supported;
807 	case REQ_OP_DISCARD:
808 		if (!bdev_max_discard_sectors(bdev))
809 			goto not_supported;
810 		break;
811 	case REQ_OP_SECURE_ERASE:
812 		if (!bdev_max_secure_erase_sectors(bdev))
813 			goto not_supported;
814 		break;
815 	case REQ_OP_ZONE_APPEND:
816 		status = blk_check_zone_append(q, bio);
817 		if (status != BLK_STS_OK)
818 			goto end_io;
819 		break;
820 	case REQ_OP_WRITE_ZEROES:
821 		if (!q->limits.max_write_zeroes_sectors)
822 			goto not_supported;
823 		break;
824 	case REQ_OP_ZONE_RESET:
825 	case REQ_OP_ZONE_OPEN:
826 	case REQ_OP_ZONE_CLOSE:
827 	case REQ_OP_ZONE_FINISH:
828 		if (!bdev_is_zoned(bio->bi_bdev))
829 			goto not_supported;
830 		break;
831 	case REQ_OP_ZONE_RESET_ALL:
832 		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
833 			goto not_supported;
834 		break;
835 	case REQ_OP_DRV_IN:
836 	case REQ_OP_DRV_OUT:
837 		/*
838 		 * Driver private operations are only used with passthrough
839 		 * requests.
840 		 */
841 		fallthrough;
842 	default:
843 		goto not_supported;
844 	}
845 
846 	if (blk_throtl_bio(bio))
847 		return;
848 	submit_bio_noacct_nocheck(bio);
849 	return;
850 
851 not_supported:
852 	status = BLK_STS_NOTSUPP;
853 end_io:
854 	bio->bi_status = status;
855 	bio_endio(bio);
856 }
857 EXPORT_SYMBOL(submit_bio_noacct);
858 
bio_set_ioprio(struct bio * bio)859 static void bio_set_ioprio(struct bio *bio)
860 {
861 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
862 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
863 		bio->bi_ioprio = get_current_ioprio();
864 	blkcg_set_ioprio(bio);
865 }
866 
867 /**
868  * submit_bio - submit a bio to the block device layer for I/O
869  * @bio: The &struct bio which describes the I/O
870  *
871  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
872  * fully set up &struct bio that describes the I/O that needs to be done.  The
873  * bio will be send to the device described by the bi_bdev field.
874  *
875  * The success/failure status of the request, along with notification of
876  * completion, is delivered asynchronously through the ->bi_end_io() callback
877  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
878  * been called.
879  */
submit_bio(struct bio * bio)880 void submit_bio(struct bio *bio)
881 {
882 	if (bio_op(bio) == REQ_OP_READ) {
883 		task_io_account_read(bio->bi_iter.bi_size);
884 		count_vm_events(PGPGIN, bio_sectors(bio));
885 	} else if (bio_op(bio) == REQ_OP_WRITE) {
886 		count_vm_events(PGPGOUT, bio_sectors(bio));
887 	}
888 
889 	bio_set_ioprio(bio);
890 	submit_bio_noacct(bio);
891 }
892 EXPORT_SYMBOL(submit_bio);
893 
894 /**
895  * bio_poll - poll for BIO completions
896  * @bio: bio to poll for
897  * @iob: batches of IO
898  * @flags: BLK_POLL_* flags that control the behavior
899  *
900  * Poll for completions on queue associated with the bio. Returns number of
901  * completed entries found.
902  *
903  * Note: the caller must either be the context that submitted @bio, or
904  * be in a RCU critical section to prevent freeing of @bio.
905  */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)906 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
907 {
908 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
909 	struct block_device *bdev;
910 	struct request_queue *q;
911 	int ret = 0;
912 
913 	bdev = READ_ONCE(bio->bi_bdev);
914 	if (!bdev)
915 		return 0;
916 
917 	q = bdev_get_queue(bdev);
918 	if (cookie == BLK_QC_T_NONE ||
919 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
920 		return 0;
921 
922 	blk_flush_plug(current->plug, false);
923 
924 	/*
925 	 * We need to be able to enter a frozen queue, similar to how
926 	 * timeouts also need to do that. If that is blocked, then we can
927 	 * have pending IO when a queue freeze is started, and then the
928 	 * wait for the freeze to finish will wait for polled requests to
929 	 * timeout as the poller is preventer from entering the queue and
930 	 * completing them. As long as we prevent new IO from being queued,
931 	 * that should be all that matters.
932 	 */
933 	if (!percpu_ref_tryget(&q->q_usage_counter))
934 		return 0;
935 	if (queue_is_mq(q)) {
936 		ret = blk_mq_poll(q, cookie, iob, flags);
937 	} else {
938 		struct gendisk *disk = q->disk;
939 
940 		if (disk && disk->fops->poll_bio)
941 			ret = disk->fops->poll_bio(bio, iob, flags);
942 	}
943 	blk_queue_exit(q);
944 	return ret;
945 }
946 EXPORT_SYMBOL_GPL(bio_poll);
947 
948 /*
949  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
950  * in iocb->private, and cleared before freeing the bio.
951  */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)952 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
953 		    unsigned int flags)
954 {
955 	struct bio *bio;
956 	int ret = 0;
957 
958 	/*
959 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
960 	 * point to a freshly allocated bio at this point.  If that happens
961 	 * we have a few cases to consider:
962 	 *
963 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
964 	 *     simply nothing in this case
965 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
966 	 *     this and return 0
967 	 *  3) the bio points to a poll capable device, including but not
968 	 *     limited to the one that the original bio pointed to.  In this
969 	 *     case we will call into the actual poll method and poll for I/O,
970 	 *     even if we don't need to, but it won't cause harm either.
971 	 *
972 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
973 	 * is still allocated. Because partitions hold a reference to the whole
974 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
975 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
976 	 * are still valid as well.
977 	 */
978 	rcu_read_lock();
979 	bio = READ_ONCE(kiocb->private);
980 	if (bio)
981 		ret = bio_poll(bio, iob, flags);
982 	rcu_read_unlock();
983 
984 	return ret;
985 }
986 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
987 
update_io_ticks(struct block_device * part,unsigned long now,bool end)988 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
989 {
990 	unsigned long stamp;
991 again:
992 	stamp = READ_ONCE(part->bd_stamp);
993 	if (unlikely(time_after(now, stamp)) &&
994 	    likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
995 	    (end || part_in_flight(part)))
996 		__part_stat_add(part, io_ticks, now - stamp);
997 
998 	if (bdev_is_partition(part)) {
999 		part = bdev_whole(part);
1000 		goto again;
1001 	}
1002 }
1003 
bdev_start_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)1004 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1005 				 unsigned long start_time)
1006 {
1007 	part_stat_lock();
1008 	update_io_ticks(bdev, start_time, false);
1009 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1010 	part_stat_unlock();
1011 
1012 	return start_time;
1013 }
1014 EXPORT_SYMBOL(bdev_start_io_acct);
1015 
1016 /**
1017  * bio_start_io_acct - start I/O accounting for bio based drivers
1018  * @bio:	bio to start account for
1019  *
1020  * Returns the start time that should be passed back to bio_end_io_acct().
1021  */
bio_start_io_acct(struct bio * bio)1022 unsigned long bio_start_io_acct(struct bio *bio)
1023 {
1024 	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1025 }
1026 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1027 
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned int sectors,unsigned long start_time)1028 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1029 		      unsigned int sectors, unsigned long start_time)
1030 {
1031 	const int sgrp = op_stat_group(op);
1032 	unsigned long now = READ_ONCE(jiffies);
1033 	unsigned long duration = now - start_time;
1034 
1035 	part_stat_lock();
1036 	update_io_ticks(bdev, now, true);
1037 	part_stat_inc(bdev, ios[sgrp]);
1038 	part_stat_add(bdev, sectors[sgrp], sectors);
1039 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1040 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1041 	part_stat_unlock();
1042 }
1043 EXPORT_SYMBOL(bdev_end_io_acct);
1044 
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1045 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1046 			      struct block_device *orig_bdev)
1047 {
1048 	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1049 }
1050 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1051 
1052 /**
1053  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1054  * @q : the queue of the device being checked
1055  *
1056  * Description:
1057  *    Check if underlying low-level drivers of a device are busy.
1058  *    If the drivers want to export their busy state, they must set own
1059  *    exporting function using blk_queue_lld_busy() first.
1060  *
1061  *    Basically, this function is used only by request stacking drivers
1062  *    to stop dispatching requests to underlying devices when underlying
1063  *    devices are busy.  This behavior helps more I/O merging on the queue
1064  *    of the request stacking driver and prevents I/O throughput regression
1065  *    on burst I/O load.
1066  *
1067  * Return:
1068  *    0 - Not busy (The request stacking driver should dispatch request)
1069  *    1 - Busy (The request stacking driver should stop dispatching request)
1070  */
blk_lld_busy(struct request_queue * q)1071 int blk_lld_busy(struct request_queue *q)
1072 {
1073 	if (queue_is_mq(q) && q->mq_ops->busy)
1074 		return q->mq_ops->busy(q);
1075 
1076 	return 0;
1077 }
1078 EXPORT_SYMBOL_GPL(blk_lld_busy);
1079 
kblockd_schedule_work(struct work_struct * work)1080 int kblockd_schedule_work(struct work_struct *work)
1081 {
1082 	return queue_work(kblockd_workqueue, work);
1083 }
1084 EXPORT_SYMBOL(kblockd_schedule_work);
1085 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1086 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1087 				unsigned long delay)
1088 {
1089 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1090 }
1091 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1092 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1093 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1094 {
1095 	struct task_struct *tsk = current;
1096 
1097 	/*
1098 	 * If this is a nested plug, don't actually assign it.
1099 	 */
1100 	if (tsk->plug)
1101 		return;
1102 
1103 	plug->cur_ktime = 0;
1104 	plug->mq_list = NULL;
1105 	plug->cached_rq = NULL;
1106 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1107 	plug->rq_count = 0;
1108 	plug->multiple_queues = false;
1109 	plug->has_elevator = false;
1110 	INIT_LIST_HEAD(&plug->cb_list);
1111 
1112 	/*
1113 	 * Store ordering should not be needed here, since a potential
1114 	 * preempt will imply a full memory barrier
1115 	 */
1116 	tsk->plug = plug;
1117 }
1118 
1119 /**
1120  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1121  * @plug:	The &struct blk_plug that needs to be initialized
1122  *
1123  * Description:
1124  *   blk_start_plug() indicates to the block layer an intent by the caller
1125  *   to submit multiple I/O requests in a batch.  The block layer may use
1126  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1127  *   is called.  However, the block layer may choose to submit requests
1128  *   before a call to blk_finish_plug() if the number of queued I/Os
1129  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1130  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1131  *   the task schedules (see below).
1132  *
1133  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1134  *   pending I/O should the task end up blocking between blk_start_plug() and
1135  *   blk_finish_plug(). This is important from a performance perspective, but
1136  *   also ensures that we don't deadlock. For instance, if the task is blocking
1137  *   for a memory allocation, memory reclaim could end up wanting to free a
1138  *   page belonging to that request that is currently residing in our private
1139  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1140  *   this kind of deadlock.
1141  */
blk_start_plug(struct blk_plug * plug)1142 void blk_start_plug(struct blk_plug *plug)
1143 {
1144 	blk_start_plug_nr_ios(plug, 1);
1145 }
1146 EXPORT_SYMBOL(blk_start_plug);
1147 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1148 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1149 {
1150 	LIST_HEAD(callbacks);
1151 
1152 	while (!list_empty(&plug->cb_list)) {
1153 		list_splice_init(&plug->cb_list, &callbacks);
1154 
1155 		while (!list_empty(&callbacks)) {
1156 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1157 							  struct blk_plug_cb,
1158 							  list);
1159 			list_del(&cb->list);
1160 			cb->callback(cb, from_schedule);
1161 		}
1162 	}
1163 }
1164 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1165 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1166 				      int size)
1167 {
1168 	struct blk_plug *plug = current->plug;
1169 	struct blk_plug_cb *cb;
1170 
1171 	if (!plug)
1172 		return NULL;
1173 
1174 	list_for_each_entry(cb, &plug->cb_list, list)
1175 		if (cb->callback == unplug && cb->data == data)
1176 			return cb;
1177 
1178 	/* Not currently on the callback list */
1179 	BUG_ON(size < sizeof(*cb));
1180 	cb = kzalloc(size, GFP_ATOMIC);
1181 	if (cb) {
1182 		cb->data = data;
1183 		cb->callback = unplug;
1184 		list_add(&cb->list, &plug->cb_list);
1185 	}
1186 	return cb;
1187 }
1188 EXPORT_SYMBOL(blk_check_plugged);
1189 
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1190 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1191 {
1192 	if (!list_empty(&plug->cb_list))
1193 		flush_plug_callbacks(plug, from_schedule);
1194 	blk_mq_flush_plug_list(plug, from_schedule);
1195 	/*
1196 	 * Unconditionally flush out cached requests, even if the unplug
1197 	 * event came from schedule. Since we know hold references to the
1198 	 * queue for cached requests, we don't want a blocked task holding
1199 	 * up a queue freeze/quiesce event.
1200 	 */
1201 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1202 		blk_mq_free_plug_rqs(plug);
1203 
1204 	plug->cur_ktime = 0;
1205 	current->flags &= ~PF_BLOCK_TS;
1206 }
1207 
1208 /**
1209  * blk_finish_plug - mark the end of a batch of submitted I/O
1210  * @plug:	The &struct blk_plug passed to blk_start_plug()
1211  *
1212  * Description:
1213  * Indicate that a batch of I/O submissions is complete.  This function
1214  * must be paired with an initial call to blk_start_plug().  The intent
1215  * is to allow the block layer to optimize I/O submission.  See the
1216  * documentation for blk_start_plug() for more information.
1217  */
blk_finish_plug(struct blk_plug * plug)1218 void blk_finish_plug(struct blk_plug *plug)
1219 {
1220 	if (plug == current->plug) {
1221 		__blk_flush_plug(plug, false);
1222 		current->plug = NULL;
1223 	}
1224 }
1225 EXPORT_SYMBOL(blk_finish_plug);
1226 
blk_io_schedule(void)1227 void blk_io_schedule(void)
1228 {
1229 	/* Prevent hang_check timer from firing at us during very long I/O */
1230 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1231 
1232 	if (timeout)
1233 		io_schedule_timeout(timeout);
1234 	else
1235 		io_schedule();
1236 }
1237 EXPORT_SYMBOL_GPL(blk_io_schedule);
1238 
blk_dev_init(void)1239 int __init blk_dev_init(void)
1240 {
1241 	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1242 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1243 			sizeof_field(struct request, cmd_flags));
1244 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1245 			sizeof_field(struct bio, bi_opf));
1246 
1247 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1248 	kblockd_workqueue = alloc_workqueue("kblockd",
1249 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1250 	if (!kblockd_workqueue)
1251 		panic("Failed to create kblockd\n");
1252 
1253 	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1254 
1255 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1256 
1257 	return 0;
1258 }
1259