xref: /linux/include/linux/bio.h (revision e8b4869b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 
15 struct queue_limits;
16 
bio_max_segs(unsigned int nr_segs)17 static inline unsigned int bio_max_segs(unsigned int nr_segs)
18 {
19 	return min(nr_segs, BIO_MAX_VECS);
20 }
21 
22 #define bio_prio(bio)			(bio)->bi_ioprio
23 #define bio_set_prio(bio, prio)		((bio)->bi_ioprio = prio)
24 
25 #define bio_iter_iovec(bio, iter)				\
26 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
27 
28 #define bio_iter_page(bio, iter)				\
29 	bvec_iter_page((bio)->bi_io_vec, (iter))
30 #define bio_iter_len(bio, iter)					\
31 	bvec_iter_len((bio)->bi_io_vec, (iter))
32 #define bio_iter_offset(bio, iter)				\
33 	bvec_iter_offset((bio)->bi_io_vec, (iter))
34 
35 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
36 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
37 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
38 
39 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
40 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
41 
42 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
43 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
44 
45 /*
46  * Return the data direction, READ or WRITE.
47  */
48 #define bio_data_dir(bio) \
49 	(op_is_write(bio_op(bio)) ? WRITE : READ)
50 
51 /*
52  * Check whether this bio carries any data or not. A NULL bio is allowed.
53  */
bio_has_data(struct bio * bio)54 static inline bool bio_has_data(struct bio *bio)
55 {
56 	if (bio &&
57 	    bio->bi_iter.bi_size &&
58 	    bio_op(bio) != REQ_OP_DISCARD &&
59 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
60 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
61 		return true;
62 
63 	return false;
64 }
65 
bio_no_advance_iter(const struct bio * bio)66 static inline bool bio_no_advance_iter(const struct bio *bio)
67 {
68 	return bio_op(bio) == REQ_OP_DISCARD ||
69 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
70 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
71 }
72 
bio_data(struct bio * bio)73 static inline void *bio_data(struct bio *bio)
74 {
75 	if (bio_has_data(bio))
76 		return page_address(bio_page(bio)) + bio_offset(bio);
77 
78 	return NULL;
79 }
80 
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)81 static inline bool bio_next_segment(const struct bio *bio,
82 				    struct bvec_iter_all *iter)
83 {
84 	if (iter->idx >= bio->bi_vcnt)
85 		return false;
86 
87 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
88 	return true;
89 }
90 
91 /*
92  * drivers should _never_ use the all version - the bio may have been split
93  * before it got to the driver and the driver won't own all of it
94  */
95 #define bio_for_each_segment_all(bvl, bio, iter) \
96 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
97 
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)98 static inline void bio_advance_iter(const struct bio *bio,
99 				    struct bvec_iter *iter, unsigned int bytes)
100 {
101 	iter->bi_sector += bytes >> 9;
102 
103 	if (bio_no_advance_iter(bio))
104 		iter->bi_size -= bytes;
105 	else
106 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
107 		/* TODO: It is reasonable to complete bio with error here. */
108 }
109 
110 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)111 static inline void bio_advance_iter_single(const struct bio *bio,
112 					   struct bvec_iter *iter,
113 					   unsigned int bytes)
114 {
115 	iter->bi_sector += bytes >> 9;
116 
117 	if (bio_no_advance_iter(bio))
118 		iter->bi_size -= bytes;
119 	else
120 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
121 }
122 
123 void __bio_advance(struct bio *, unsigned bytes);
124 
125 /**
126  * bio_advance - increment/complete a bio by some number of bytes
127  * @bio:	bio to advance
128  * @nbytes:	number of bytes to complete
129  *
130  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
131  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
132  * be updated on the last bvec as well.
133  *
134  * @bio will then represent the remaining, uncompleted portion of the io.
135  */
bio_advance(struct bio * bio,unsigned int nbytes)136 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
137 {
138 	if (nbytes == bio->bi_iter.bi_size) {
139 		bio->bi_iter.bi_size = 0;
140 		return;
141 	}
142 	__bio_advance(bio, nbytes);
143 }
144 
145 #define __bio_for_each_segment(bvl, bio, iter, start)			\
146 	for (iter = (start);						\
147 	     (iter).bi_size &&						\
148 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
149 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
150 
151 #define bio_for_each_segment(bvl, bio, iter)				\
152 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
153 
154 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
155 	for (iter = (start);						\
156 	     (iter).bi_size &&						\
157 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
158 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
159 
160 /* iterate over multi-page bvec */
161 #define bio_for_each_bvec(bvl, bio, iter)			\
162 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
163 
164 /*
165  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
166  * same reasons as bio_for_each_segment_all().
167  */
168 #define bio_for_each_bvec_all(bvl, bio, i)		\
169 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
170 	     i < (bio)->bi_vcnt; i++, bvl++)
171 
172 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
173 
bio_segments(struct bio * bio)174 static inline unsigned bio_segments(struct bio *bio)
175 {
176 	unsigned segs = 0;
177 	struct bio_vec bv;
178 	struct bvec_iter iter;
179 
180 	/*
181 	 * We special case discard/write same/write zeroes, because they
182 	 * interpret bi_size differently:
183 	 */
184 
185 	switch (bio_op(bio)) {
186 	case REQ_OP_DISCARD:
187 	case REQ_OP_SECURE_ERASE:
188 	case REQ_OP_WRITE_ZEROES:
189 		return 0;
190 	default:
191 		break;
192 	}
193 
194 	bio_for_each_segment(bv, bio, iter)
195 		segs++;
196 
197 	return segs;
198 }
199 
200 /*
201  * get a reference to a bio, so it won't disappear. the intended use is
202  * something like:
203  *
204  * bio_get(bio);
205  * submit_bio(rw, bio);
206  * if (bio->bi_flags ...)
207  *	do_something
208  * bio_put(bio);
209  *
210  * without the bio_get(), it could potentially complete I/O before submit_bio
211  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
212  * runs
213  */
bio_get(struct bio * bio)214 static inline void bio_get(struct bio *bio)
215 {
216 	bio->bi_flags |= (1 << BIO_REFFED);
217 	smp_mb__before_atomic();
218 	atomic_inc(&bio->__bi_cnt);
219 }
220 
bio_cnt_set(struct bio * bio,unsigned int count)221 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
222 {
223 	if (count != 1) {
224 		bio->bi_flags |= (1 << BIO_REFFED);
225 		smp_mb();
226 	}
227 	atomic_set(&bio->__bi_cnt, count);
228 }
229 
bio_flagged(struct bio * bio,unsigned int bit)230 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
231 {
232 	return bio->bi_flags & (1U << bit);
233 }
234 
bio_set_flag(struct bio * bio,unsigned int bit)235 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
236 {
237 	bio->bi_flags |= (1U << bit);
238 }
239 
bio_clear_flag(struct bio * bio,unsigned int bit)240 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
241 {
242 	bio->bi_flags &= ~(1U << bit);
243 }
244 
bio_first_bvec_all(struct bio * bio)245 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
246 {
247 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
248 	return bio->bi_io_vec;
249 }
250 
bio_first_page_all(struct bio * bio)251 static inline struct page *bio_first_page_all(struct bio *bio)
252 {
253 	return bio_first_bvec_all(bio)->bv_page;
254 }
255 
bio_first_folio_all(struct bio * bio)256 static inline struct folio *bio_first_folio_all(struct bio *bio)
257 {
258 	return page_folio(bio_first_page_all(bio));
259 }
260 
bio_last_bvec_all(struct bio * bio)261 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
262 {
263 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
264 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
265 }
266 
267 /**
268  * struct folio_iter - State for iterating all folios in a bio.
269  * @folio: The current folio we're iterating.  NULL after the last folio.
270  * @offset: The byte offset within the current folio.
271  * @length: The number of bytes in this iteration (will not cross folio
272  *	boundary).
273  */
274 struct folio_iter {
275 	struct folio *folio;
276 	size_t offset;
277 	size_t length;
278 	/* private: for use by the iterator */
279 	struct folio *_next;
280 	size_t _seg_count;
281 	int _i;
282 };
283 
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)284 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
285 				   int i)
286 {
287 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
288 
289 	if (unlikely(i >= bio->bi_vcnt)) {
290 		fi->folio = NULL;
291 		return;
292 	}
293 
294 	fi->folio = page_folio(bvec->bv_page);
295 	fi->offset = bvec->bv_offset +
296 			PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
297 	fi->_seg_count = bvec->bv_len;
298 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
299 	fi->_next = folio_next(fi->folio);
300 	fi->_i = i;
301 }
302 
bio_next_folio(struct folio_iter * fi,struct bio * bio)303 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
304 {
305 	fi->_seg_count -= fi->length;
306 	if (fi->_seg_count) {
307 		fi->folio = fi->_next;
308 		fi->offset = 0;
309 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
310 		fi->_next = folio_next(fi->folio);
311 	} else {
312 		bio_first_folio(fi, bio, fi->_i + 1);
313 	}
314 }
315 
316 /**
317  * bio_for_each_folio_all - Iterate over each folio in a bio.
318  * @fi: struct folio_iter which is updated for each folio.
319  * @bio: struct bio to iterate over.
320  */
321 #define bio_for_each_folio_all(fi, bio)				\
322 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
323 
324 enum bip_flags {
325 	BIP_BLOCK_INTEGRITY	= 1 << 0, /* block layer owns integrity data */
326 	BIP_MAPPED_INTEGRITY	= 1 << 1, /* ref tag has been remapped */
327 	BIP_CTRL_NOCHECK	= 1 << 2, /* disable HBA integrity checking */
328 	BIP_DISK_NOCHECK	= 1 << 3, /* disable disk integrity checking */
329 	BIP_IP_CHECKSUM		= 1 << 4, /* IP checksum */
330 	BIP_INTEGRITY_USER	= 1 << 5, /* Integrity payload is user address */
331 	BIP_COPY_USER		= 1 << 6, /* Kernel bounce buffer in use */
332 };
333 
334 /*
335  * bio integrity payload
336  */
337 struct bio_integrity_payload {
338 	struct bio		*bip_bio;	/* parent bio */
339 
340 	struct bvec_iter	bip_iter;
341 
342 	unsigned short		bip_vcnt;	/* # of integrity bio_vecs */
343 	unsigned short		bip_max_vcnt;	/* integrity bio_vec slots */
344 	unsigned short		bip_flags;	/* control flags */
345 
346 	struct bvec_iter	bio_iter;	/* for rewinding parent bio */
347 
348 	struct work_struct	bip_work;	/* I/O completion */
349 
350 	struct bio_vec		*bip_vec;
351 	struct bio_vec		bip_inline_vecs[];/* embedded bvec array */
352 };
353 
354 #if defined(CONFIG_BLK_DEV_INTEGRITY)
355 
bio_integrity(struct bio * bio)356 static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
357 {
358 	if (bio->bi_opf & REQ_INTEGRITY)
359 		return bio->bi_integrity;
360 
361 	return NULL;
362 }
363 
bio_integrity_flagged(struct bio * bio,enum bip_flags flag)364 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
365 {
366 	struct bio_integrity_payload *bip = bio_integrity(bio);
367 
368 	if (bip)
369 		return bip->bip_flags & flag;
370 
371 	return false;
372 }
373 
bip_get_seed(struct bio_integrity_payload * bip)374 static inline sector_t bip_get_seed(struct bio_integrity_payload *bip)
375 {
376 	return bip->bip_iter.bi_sector;
377 }
378 
bip_set_seed(struct bio_integrity_payload * bip,sector_t seed)379 static inline void bip_set_seed(struct bio_integrity_payload *bip,
380 				sector_t seed)
381 {
382 	bip->bip_iter.bi_sector = seed;
383 }
384 
385 #endif /* CONFIG_BLK_DEV_INTEGRITY */
386 
387 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
388 extern struct bio *bio_split(struct bio *bio, int sectors,
389 			     gfp_t gfp, struct bio_set *bs);
390 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
391 		unsigned *segs, struct bio_set *bs, unsigned max_bytes);
392 
393 /**
394  * bio_next_split - get next @sectors from a bio, splitting if necessary
395  * @bio:	bio to split
396  * @sectors:	number of sectors to split from the front of @bio
397  * @gfp:	gfp mask
398  * @bs:		bio set to allocate from
399  *
400  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
401  * than @sectors, returns the original bio unchanged.
402  */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)403 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
404 					 gfp_t gfp, struct bio_set *bs)
405 {
406 	if (sectors >= bio_sectors(bio))
407 		return bio;
408 
409 	return bio_split(bio, sectors, gfp, bs);
410 }
411 
412 enum {
413 	BIOSET_NEED_BVECS = BIT(0),
414 	BIOSET_NEED_RESCUER = BIT(1),
415 	BIOSET_PERCPU_CACHE = BIT(2),
416 };
417 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
418 extern void bioset_exit(struct bio_set *);
419 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
420 
421 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
422 			     blk_opf_t opf, gfp_t gfp_mask,
423 			     struct bio_set *bs);
424 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
425 extern void bio_put(struct bio *);
426 
427 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
428 		gfp_t gfp, struct bio_set *bs);
429 int bio_init_clone(struct block_device *bdev, struct bio *bio,
430 		struct bio *bio_src, gfp_t gfp);
431 
432 extern struct bio_set fs_bio_set;
433 
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)434 static inline struct bio *bio_alloc(struct block_device *bdev,
435 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
436 {
437 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
438 }
439 
440 void submit_bio(struct bio *bio);
441 
442 extern void bio_endio(struct bio *);
443 
bio_io_error(struct bio * bio)444 static inline void bio_io_error(struct bio *bio)
445 {
446 	bio->bi_status = BLK_STS_IOERR;
447 	bio_endio(bio);
448 }
449 
bio_wouldblock_error(struct bio * bio)450 static inline void bio_wouldblock_error(struct bio *bio)
451 {
452 	bio_set_flag(bio, BIO_QUIET);
453 	bio->bi_status = BLK_STS_AGAIN;
454 	bio_endio(bio);
455 }
456 
457 /*
458  * Calculate number of bvec segments that should be allocated to fit data
459  * pointed by @iter. If @iter is backed by bvec it's going to be reused
460  * instead of allocating a new one.
461  */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)462 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
463 {
464 	if (iov_iter_is_bvec(iter))
465 		return 0;
466 	return iov_iter_npages(iter, max_segs);
467 }
468 
469 struct request_queue;
470 
471 extern int submit_bio_wait(struct bio *bio);
472 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
473 	      unsigned short max_vecs, blk_opf_t opf);
474 extern void bio_uninit(struct bio *);
475 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
476 void bio_chain(struct bio *, struct bio *);
477 
478 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
479 			      unsigned off);
480 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
481 				size_t len, size_t off);
482 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
483 			   unsigned int, unsigned int);
484 int bio_add_zone_append_page(struct bio *bio, struct page *page,
485 			     unsigned int len, unsigned int offset);
486 void __bio_add_page(struct bio *bio, struct page *page,
487 		unsigned int len, unsigned int off);
488 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
489 			  size_t off);
490 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
491 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
492 void __bio_release_pages(struct bio *bio, bool mark_dirty);
493 extern void bio_set_pages_dirty(struct bio *bio);
494 extern void bio_check_pages_dirty(struct bio *bio);
495 
496 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
497 			       struct bio *src, struct bvec_iter *src_iter);
498 extern void bio_copy_data(struct bio *dst, struct bio *src);
499 extern void bio_free_pages(struct bio *bio);
500 void guard_bio_eod(struct bio *bio);
501 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
502 
zero_fill_bio(struct bio * bio)503 static inline void zero_fill_bio(struct bio *bio)
504 {
505 	zero_fill_bio_iter(bio, bio->bi_iter);
506 }
507 
bio_release_pages(struct bio * bio,bool mark_dirty)508 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
509 {
510 	if (bio_flagged(bio, BIO_PAGE_PINNED))
511 		__bio_release_pages(bio, mark_dirty);
512 }
513 
514 #define bio_dev(bio) \
515 	disk_devt((bio)->bi_bdev->bd_disk)
516 
517 #ifdef CONFIG_BLK_CGROUP
518 void bio_associate_blkg(struct bio *bio);
519 void bio_associate_blkg_from_css(struct bio *bio,
520 				 struct cgroup_subsys_state *css);
521 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
522 void blkcg_punt_bio_submit(struct bio *bio);
523 #else	/* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)524 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)525 static inline void bio_associate_blkg_from_css(struct bio *bio,
526 					       struct cgroup_subsys_state *css)
527 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)528 static inline void bio_clone_blkg_association(struct bio *dst,
529 					      struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)530 static inline void blkcg_punt_bio_submit(struct bio *bio)
531 {
532 	submit_bio(bio);
533 }
534 #endif	/* CONFIG_BLK_CGROUP */
535 
bio_set_dev(struct bio * bio,struct block_device * bdev)536 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
537 {
538 	bio_clear_flag(bio, BIO_REMAPPED);
539 	if (bio->bi_bdev != bdev)
540 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
541 	bio->bi_bdev = bdev;
542 	bio_associate_blkg(bio);
543 }
544 
545 /*
546  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
547  *
548  * A bio_list anchors a singly-linked list of bios chained through the bi_next
549  * member of the bio.  The bio_list also caches the last list member to allow
550  * fast access to the tail.
551  */
552 struct bio_list {
553 	struct bio *head;
554 	struct bio *tail;
555 };
556 
bio_list_empty(const struct bio_list * bl)557 static inline int bio_list_empty(const struct bio_list *bl)
558 {
559 	return bl->head == NULL;
560 }
561 
bio_list_init(struct bio_list * bl)562 static inline void bio_list_init(struct bio_list *bl)
563 {
564 	bl->head = bl->tail = NULL;
565 }
566 
567 #define BIO_EMPTY_LIST	{ NULL, NULL }
568 
569 #define bio_list_for_each(bio, bl) \
570 	for (bio = (bl)->head; bio; bio = bio->bi_next)
571 
bio_list_size(const struct bio_list * bl)572 static inline unsigned bio_list_size(const struct bio_list *bl)
573 {
574 	unsigned sz = 0;
575 	struct bio *bio;
576 
577 	bio_list_for_each(bio, bl)
578 		sz++;
579 
580 	return sz;
581 }
582 
bio_list_add(struct bio_list * bl,struct bio * bio)583 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
584 {
585 	bio->bi_next = NULL;
586 
587 	if (bl->tail)
588 		bl->tail->bi_next = bio;
589 	else
590 		bl->head = bio;
591 
592 	bl->tail = bio;
593 }
594 
bio_list_add_head(struct bio_list * bl,struct bio * bio)595 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
596 {
597 	bio->bi_next = bl->head;
598 
599 	bl->head = bio;
600 
601 	if (!bl->tail)
602 		bl->tail = bio;
603 }
604 
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)605 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
606 {
607 	if (!bl2->head)
608 		return;
609 
610 	if (bl->tail)
611 		bl->tail->bi_next = bl2->head;
612 	else
613 		bl->head = bl2->head;
614 
615 	bl->tail = bl2->tail;
616 }
617 
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)618 static inline void bio_list_merge_init(struct bio_list *bl,
619 		struct bio_list *bl2)
620 {
621 	bio_list_merge(bl, bl2);
622 	bio_list_init(bl2);
623 }
624 
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)625 static inline void bio_list_merge_head(struct bio_list *bl,
626 				       struct bio_list *bl2)
627 {
628 	if (!bl2->head)
629 		return;
630 
631 	if (bl->head)
632 		bl2->tail->bi_next = bl->head;
633 	else
634 		bl->tail = bl2->tail;
635 
636 	bl->head = bl2->head;
637 }
638 
bio_list_peek(struct bio_list * bl)639 static inline struct bio *bio_list_peek(struct bio_list *bl)
640 {
641 	return bl->head;
642 }
643 
bio_list_pop(struct bio_list * bl)644 static inline struct bio *bio_list_pop(struct bio_list *bl)
645 {
646 	struct bio *bio = bl->head;
647 
648 	if (bio) {
649 		bl->head = bl->head->bi_next;
650 		if (!bl->head)
651 			bl->tail = NULL;
652 
653 		bio->bi_next = NULL;
654 	}
655 
656 	return bio;
657 }
658 
bio_list_get(struct bio_list * bl)659 static inline struct bio *bio_list_get(struct bio_list *bl)
660 {
661 	struct bio *bio = bl->head;
662 
663 	bl->head = bl->tail = NULL;
664 
665 	return bio;
666 }
667 
668 /*
669  * Increment chain count for the bio. Make sure the CHAIN flag update
670  * is visible before the raised count.
671  */
bio_inc_remaining(struct bio * bio)672 static inline void bio_inc_remaining(struct bio *bio)
673 {
674 	bio_set_flag(bio, BIO_CHAIN);
675 	smp_mb__before_atomic();
676 	atomic_inc(&bio->__bi_remaining);
677 }
678 
679 /*
680  * bio_set is used to allow other portions of the IO system to
681  * allocate their own private memory pools for bio and iovec structures.
682  * These memory pools in turn all allocate from the bio_slab
683  * and the bvec_slabs[].
684  */
685 #define BIO_POOL_SIZE 2
686 
687 struct bio_set {
688 	struct kmem_cache *bio_slab;
689 	unsigned int front_pad;
690 
691 	/*
692 	 * per-cpu bio alloc cache
693 	 */
694 	struct bio_alloc_cache __percpu *cache;
695 
696 	mempool_t bio_pool;
697 	mempool_t bvec_pool;
698 #if defined(CONFIG_BLK_DEV_INTEGRITY)
699 	mempool_t bio_integrity_pool;
700 	mempool_t bvec_integrity_pool;
701 #endif
702 
703 	unsigned int back_pad;
704 	/*
705 	 * Deadlock avoidance for stacking block drivers: see comments in
706 	 * bio_alloc_bioset() for details
707 	 */
708 	spinlock_t		rescue_lock;
709 	struct bio_list		rescue_list;
710 	struct work_struct	rescue_work;
711 	struct workqueue_struct	*rescue_workqueue;
712 
713 	/*
714 	 * Hot un-plug notifier for the per-cpu cache, if used
715 	 */
716 	struct hlist_node cpuhp_dead;
717 };
718 
bioset_initialized(struct bio_set * bs)719 static inline bool bioset_initialized(struct bio_set *bs)
720 {
721 	return bs->bio_slab != NULL;
722 }
723 
724 #if defined(CONFIG_BLK_DEV_INTEGRITY)
725 
726 #define bip_for_each_vec(bvl, bip, iter)				\
727 	for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter)
728 
729 #define bio_for_each_integrity_vec(_bvl, _bio, _iter)			\
730 	for_each_bio(_bio)						\
731 		bip_for_each_vec(_bvl, _bio->bi_integrity, _iter)
732 
733 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t len, u32 seed);
734 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
735 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
736 extern bool bio_integrity_prep(struct bio *);
737 extern void bio_integrity_advance(struct bio *, unsigned int);
738 extern void bio_integrity_trim(struct bio *);
739 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t);
740 extern int bioset_integrity_create(struct bio_set *, int);
741 extern void bioset_integrity_free(struct bio_set *);
742 extern void bio_integrity_init(void);
743 
744 #else /* CONFIG_BLK_DEV_INTEGRITY */
745 
bio_integrity(struct bio * bio)746 static inline void *bio_integrity(struct bio *bio)
747 {
748 	return NULL;
749 }
750 
bioset_integrity_create(struct bio_set * bs,int pool_size)751 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size)
752 {
753 	return 0;
754 }
755 
bioset_integrity_free(struct bio_set * bs)756 static inline void bioset_integrity_free (struct bio_set *bs)
757 {
758 	return;
759 }
760 
bio_integrity_prep(struct bio * bio)761 static inline bool bio_integrity_prep(struct bio *bio)
762 {
763 	return true;
764 }
765 
bio_integrity_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp_mask)766 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
767 				      gfp_t gfp_mask)
768 {
769 	return 0;
770 }
771 
bio_integrity_advance(struct bio * bio,unsigned int bytes_done)772 static inline void bio_integrity_advance(struct bio *bio,
773 					 unsigned int bytes_done)
774 {
775 	return;
776 }
777 
bio_integrity_trim(struct bio * bio)778 static inline void bio_integrity_trim(struct bio *bio)
779 {
780 	return;
781 }
782 
bio_integrity_init(void)783 static inline void bio_integrity_init(void)
784 {
785 	return;
786 }
787 
bio_integrity_flagged(struct bio * bio,enum bip_flags flag)788 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
789 {
790 	return false;
791 }
792 
bio_integrity_alloc(struct bio * bio,gfp_t gfp,unsigned int nr)793 static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
794 								unsigned int nr)
795 {
796 	return ERR_PTR(-EINVAL);
797 }
798 
bio_integrity_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)799 static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
800 					unsigned int len, unsigned int offset)
801 {
802 	return 0;
803 }
804 
bio_integrity_map_user(struct bio * bio,void __user * ubuf,ssize_t len,u32 seed)805 static inline int bio_integrity_map_user(struct bio *bio, void __user *ubuf,
806 					 ssize_t len, u32 seed)
807 {
808 	return -EINVAL;
809 }
810 
811 #endif /* CONFIG_BLK_DEV_INTEGRITY */
812 
813 /*
814  * Mark a bio as polled. Note that for async polled IO, the caller must
815  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
816  * We cannot block waiting for requests on polled IO, as those completions
817  * must be found by the caller. This is different than IRQ driven IO, where
818  * it's safe to wait for IO to complete.
819  */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)820 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
821 {
822 	bio->bi_opf |= REQ_POLLED;
823 	if (kiocb->ki_flags & IOCB_NOWAIT)
824 		bio->bi_opf |= REQ_NOWAIT;
825 }
826 
bio_clear_polled(struct bio * bio)827 static inline void bio_clear_polled(struct bio *bio)
828 {
829 	bio->bi_opf &= ~REQ_POLLED;
830 }
831 
832 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
833 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
834 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
835 
836 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
837 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
838 
839 #endif /* __LINUX_BIO_H */
840