xref: /linux/block/blk-zoned.c (revision 29459c3e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Zoned block device handling
4  *
5  * Copyright (c) 2015, Hannes Reinecke
6  * Copyright (c) 2015, SUSE Linux GmbH
7  *
8  * Copyright (c) 2016, Damien Le Moal
9  * Copyright (c) 2016, Western Digital
10  * Copyright (c) 2024, Western Digital Corporation or its affiliates.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/mm.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/mm.h>
20 #include <linux/spinlock.h>
21 #include <linux/atomic.h>
22 #include <linux/mempool.h>
23 
24 #include "blk.h"
25 #include "blk-mq-sched.h"
26 #include "blk-mq-debugfs.h"
27 
28 #define ZONE_COND_NAME(name) [BLK_ZONE_COND_##name] = #name
29 static const char *const zone_cond_name[] = {
30 	ZONE_COND_NAME(NOT_WP),
31 	ZONE_COND_NAME(EMPTY),
32 	ZONE_COND_NAME(IMP_OPEN),
33 	ZONE_COND_NAME(EXP_OPEN),
34 	ZONE_COND_NAME(CLOSED),
35 	ZONE_COND_NAME(READONLY),
36 	ZONE_COND_NAME(FULL),
37 	ZONE_COND_NAME(OFFLINE),
38 };
39 #undef ZONE_COND_NAME
40 
41 /*
42  * Per-zone write plug.
43  * @node: hlist_node structure for managing the plug using a hash table.
44  * @link: To list the plug in the zone write plug error list of the disk.
45  * @ref: Zone write plug reference counter. A zone write plug reference is
46  *       always at least 1 when the plug is hashed in the disk plug hash table.
47  *       The reference is incremented whenever a new BIO needing plugging is
48  *       submitted and when a function needs to manipulate a plug. The
49  *       reference count is decremented whenever a plugged BIO completes and
50  *       when a function that referenced the plug returns. The initial
51  *       reference is dropped whenever the zone of the zone write plug is reset,
52  *       finished and when the zone becomes full (last write BIO to the zone
53  *       completes).
54  * @lock: Spinlock to atomically manipulate the plug.
55  * @flags: Flags indicating the plug state.
56  * @zone_no: The number of the zone the plug is managing.
57  * @wp_offset: The zone write pointer location relative to the start of the zone
58  *             as a number of 512B sectors.
59  * @bio_list: The list of BIOs that are currently plugged.
60  * @bio_work: Work struct to handle issuing of plugged BIOs
61  * @rcu_head: RCU head to free zone write plugs with an RCU grace period.
62  * @disk: The gendisk the plug belongs to.
63  */
64 struct blk_zone_wplug {
65 	struct hlist_node	node;
66 	struct list_head	link;
67 	atomic_t		ref;
68 	spinlock_t		lock;
69 	unsigned int		flags;
70 	unsigned int		zone_no;
71 	unsigned int		wp_offset;
72 	struct bio_list		bio_list;
73 	struct work_struct	bio_work;
74 	struct rcu_head		rcu_head;
75 	struct gendisk		*disk;
76 };
77 
78 /*
79  * Zone write plug flags bits:
80  *  - BLK_ZONE_WPLUG_PLUGGED: Indicates that the zone write plug is plugged,
81  *    that is, that write BIOs are being throttled due to a write BIO already
82  *    being executed or the zone write plug bio list is not empty.
83  *  - BLK_ZONE_WPLUG_ERROR: Indicates that a write error happened which will be
84  *    recovered with a report zone to update the zone write pointer offset.
85  *  - BLK_ZONE_WPLUG_UNHASHED: Indicates that the zone write plug was removed
86  *    from the disk hash table and that the initial reference to the zone
87  *    write plug set when the plug was first added to the hash table has been
88  *    dropped. This flag is set when a zone is reset, finished or become full,
89  *    to prevent new references to the zone write plug to be taken for
90  *    newly incoming BIOs. A zone write plug flagged with this flag will be
91  *    freed once all remaining references from BIOs or functions are dropped.
92  */
93 #define BLK_ZONE_WPLUG_PLUGGED		(1U << 0)
94 #define BLK_ZONE_WPLUG_ERROR		(1U << 1)
95 #define BLK_ZONE_WPLUG_UNHASHED		(1U << 2)
96 
97 #define BLK_ZONE_WPLUG_BUSY	(BLK_ZONE_WPLUG_PLUGGED | BLK_ZONE_WPLUG_ERROR)
98 
99 /**
100  * blk_zone_cond_str - Return string XXX in BLK_ZONE_COND_XXX.
101  * @zone_cond: BLK_ZONE_COND_XXX.
102  *
103  * Description: Centralize block layer function to convert BLK_ZONE_COND_XXX
104  * into string format. Useful in the debugging and tracing zone conditions. For
105  * invalid BLK_ZONE_COND_XXX it returns string "UNKNOWN".
106  */
blk_zone_cond_str(enum blk_zone_cond zone_cond)107 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond)
108 {
109 	static const char *zone_cond_str = "UNKNOWN";
110 
111 	if (zone_cond < ARRAY_SIZE(zone_cond_name) && zone_cond_name[zone_cond])
112 		zone_cond_str = zone_cond_name[zone_cond];
113 
114 	return zone_cond_str;
115 }
116 EXPORT_SYMBOL_GPL(blk_zone_cond_str);
117 
118 /**
119  * bdev_nr_zones - Get number of zones
120  * @bdev:	Target device
121  *
122  * Return the total number of zones of a zoned block device.  For a block
123  * device without zone capabilities, the number of zones is always 0.
124  */
bdev_nr_zones(struct block_device * bdev)125 unsigned int bdev_nr_zones(struct block_device *bdev)
126 {
127 	sector_t zone_sectors = bdev_zone_sectors(bdev);
128 
129 	if (!bdev_is_zoned(bdev))
130 		return 0;
131 	return (bdev_nr_sectors(bdev) + zone_sectors - 1) >>
132 		ilog2(zone_sectors);
133 }
134 EXPORT_SYMBOL_GPL(bdev_nr_zones);
135 
136 /**
137  * blkdev_report_zones - Get zones information
138  * @bdev:	Target block device
139  * @sector:	Sector from which to report zones
140  * @nr_zones:	Maximum number of zones to report
141  * @cb:		Callback function called for each reported zone
142  * @data:	Private data for the callback
143  *
144  * Description:
145  *    Get zone information starting from the zone containing @sector for at most
146  *    @nr_zones, and call @cb for each zone reported by the device.
147  *    To report all zones in a device starting from @sector, the BLK_ALL_ZONES
148  *    constant can be passed to @nr_zones.
149  *    Returns the number of zones reported by the device, or a negative errno
150  *    value in case of failure.
151  *
152  *    Note: The caller must use memalloc_noXX_save/restore() calls to control
153  *    memory allocations done within this function.
154  */
blkdev_report_zones(struct block_device * bdev,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)155 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
156 			unsigned int nr_zones, report_zones_cb cb, void *data)
157 {
158 	struct gendisk *disk = bdev->bd_disk;
159 	sector_t capacity = get_capacity(disk);
160 
161 	if (!bdev_is_zoned(bdev) || WARN_ON_ONCE(!disk->fops->report_zones))
162 		return -EOPNOTSUPP;
163 
164 	if (!nr_zones || sector >= capacity)
165 		return 0;
166 
167 	return disk->fops->report_zones(disk, sector, nr_zones, cb, data);
168 }
169 EXPORT_SYMBOL_GPL(blkdev_report_zones);
170 
blk_alloc_zone_bitmap(int node,unsigned int nr_zones)171 static inline unsigned long *blk_alloc_zone_bitmap(int node,
172 						   unsigned int nr_zones)
173 {
174 	return kcalloc_node(BITS_TO_LONGS(nr_zones), sizeof(unsigned long),
175 			    GFP_NOIO, node);
176 }
177 
blk_zone_need_reset_cb(struct blk_zone * zone,unsigned int idx,void * data)178 static int blk_zone_need_reset_cb(struct blk_zone *zone, unsigned int idx,
179 				  void *data)
180 {
181 	/*
182 	 * For an all-zones reset, ignore conventional, empty, read-only
183 	 * and offline zones.
184 	 */
185 	switch (zone->cond) {
186 	case BLK_ZONE_COND_NOT_WP:
187 	case BLK_ZONE_COND_EMPTY:
188 	case BLK_ZONE_COND_READONLY:
189 	case BLK_ZONE_COND_OFFLINE:
190 		return 0;
191 	default:
192 		set_bit(idx, (unsigned long *)data);
193 		return 0;
194 	}
195 }
196 
blkdev_zone_reset_all_emulated(struct block_device * bdev)197 static int blkdev_zone_reset_all_emulated(struct block_device *bdev)
198 {
199 	struct gendisk *disk = bdev->bd_disk;
200 	sector_t capacity = bdev_nr_sectors(bdev);
201 	sector_t zone_sectors = bdev_zone_sectors(bdev);
202 	unsigned long *need_reset;
203 	struct bio *bio = NULL;
204 	sector_t sector = 0;
205 	int ret;
206 
207 	need_reset = blk_alloc_zone_bitmap(disk->queue->node, disk->nr_zones);
208 	if (!need_reset)
209 		return -ENOMEM;
210 
211 	ret = disk->fops->report_zones(disk, 0, disk->nr_zones,
212 				       blk_zone_need_reset_cb, need_reset);
213 	if (ret < 0)
214 		goto out_free_need_reset;
215 
216 	ret = 0;
217 	while (sector < capacity) {
218 		if (!test_bit(disk_zone_no(disk, sector), need_reset)) {
219 			sector += zone_sectors;
220 			continue;
221 		}
222 
223 		bio = blk_next_bio(bio, bdev, 0, REQ_OP_ZONE_RESET | REQ_SYNC,
224 				   GFP_KERNEL);
225 		bio->bi_iter.bi_sector = sector;
226 		sector += zone_sectors;
227 
228 		/* This may take a while, so be nice to others */
229 		cond_resched();
230 	}
231 
232 	if (bio) {
233 		ret = submit_bio_wait(bio);
234 		bio_put(bio);
235 	}
236 
237 out_free_need_reset:
238 	kfree(need_reset);
239 	return ret;
240 }
241 
blkdev_zone_reset_all(struct block_device * bdev)242 static int blkdev_zone_reset_all(struct block_device *bdev)
243 {
244 	struct bio bio;
245 
246 	bio_init(&bio, bdev, NULL, 0, REQ_OP_ZONE_RESET_ALL | REQ_SYNC);
247 	return submit_bio_wait(&bio);
248 }
249 
250 /**
251  * blkdev_zone_mgmt - Execute a zone management operation on a range of zones
252  * @bdev:	Target block device
253  * @op:		Operation to be performed on the zones
254  * @sector:	Start sector of the first zone to operate on
255  * @nr_sectors:	Number of sectors, should be at least the length of one zone and
256  *		must be zone size aligned.
257  *
258  * Description:
259  *    Perform the specified operation on the range of zones specified by
260  *    @sector..@sector+@nr_sectors. Specifying the entire disk sector range
261  *    is valid, but the specified range should not contain conventional zones.
262  *    The operation to execute on each zone can be a zone reset, open, close
263  *    or finish request.
264  */
blkdev_zone_mgmt(struct block_device * bdev,enum req_op op,sector_t sector,sector_t nr_sectors)265 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
266 		     sector_t sector, sector_t nr_sectors)
267 {
268 	struct request_queue *q = bdev_get_queue(bdev);
269 	sector_t zone_sectors = bdev_zone_sectors(bdev);
270 	sector_t capacity = bdev_nr_sectors(bdev);
271 	sector_t end_sector = sector + nr_sectors;
272 	struct bio *bio = NULL;
273 	int ret = 0;
274 
275 	if (!bdev_is_zoned(bdev))
276 		return -EOPNOTSUPP;
277 
278 	if (bdev_read_only(bdev))
279 		return -EPERM;
280 
281 	if (!op_is_zone_mgmt(op))
282 		return -EOPNOTSUPP;
283 
284 	if (end_sector <= sector || end_sector > capacity)
285 		/* Out of range */
286 		return -EINVAL;
287 
288 	/* Check alignment (handle eventual smaller last zone) */
289 	if (!bdev_is_zone_start(bdev, sector))
290 		return -EINVAL;
291 
292 	if (!bdev_is_zone_start(bdev, nr_sectors) && end_sector != capacity)
293 		return -EINVAL;
294 
295 	/*
296 	 * In the case of a zone reset operation over all zones,
297 	 * REQ_OP_ZONE_RESET_ALL can be used with devices supporting this
298 	 * command. For other devices, we emulate this command behavior by
299 	 * identifying the zones needing a reset.
300 	 */
301 	if (op == REQ_OP_ZONE_RESET && sector == 0 && nr_sectors == capacity) {
302 		if (!blk_queue_zone_resetall(q))
303 			return blkdev_zone_reset_all_emulated(bdev);
304 		return blkdev_zone_reset_all(bdev);
305 	}
306 
307 	while (sector < end_sector) {
308 		bio = blk_next_bio(bio, bdev, 0, op | REQ_SYNC, GFP_KERNEL);
309 		bio->bi_iter.bi_sector = sector;
310 		sector += zone_sectors;
311 
312 		/* This may take a while, so be nice to others */
313 		cond_resched();
314 	}
315 
316 	ret = submit_bio_wait(bio);
317 	bio_put(bio);
318 
319 	return ret;
320 }
321 EXPORT_SYMBOL_GPL(blkdev_zone_mgmt);
322 
323 struct zone_report_args {
324 	struct blk_zone __user *zones;
325 };
326 
blkdev_copy_zone_to_user(struct blk_zone * zone,unsigned int idx,void * data)327 static int blkdev_copy_zone_to_user(struct blk_zone *zone, unsigned int idx,
328 				    void *data)
329 {
330 	struct zone_report_args *args = data;
331 
332 	if (copy_to_user(&args->zones[idx], zone, sizeof(struct blk_zone)))
333 		return -EFAULT;
334 	return 0;
335 }
336 
337 /*
338  * BLKREPORTZONE ioctl processing.
339  * Called from blkdev_ioctl.
340  */
blkdev_report_zones_ioctl(struct block_device * bdev,unsigned int cmd,unsigned long arg)341 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
342 		unsigned long arg)
343 {
344 	void __user *argp = (void __user *)arg;
345 	struct zone_report_args args;
346 	struct blk_zone_report rep;
347 	int ret;
348 
349 	if (!argp)
350 		return -EINVAL;
351 
352 	if (!bdev_is_zoned(bdev))
353 		return -ENOTTY;
354 
355 	if (copy_from_user(&rep, argp, sizeof(struct blk_zone_report)))
356 		return -EFAULT;
357 
358 	if (!rep.nr_zones)
359 		return -EINVAL;
360 
361 	args.zones = argp + sizeof(struct blk_zone_report);
362 	ret = blkdev_report_zones(bdev, rep.sector, rep.nr_zones,
363 				  blkdev_copy_zone_to_user, &args);
364 	if (ret < 0)
365 		return ret;
366 
367 	rep.nr_zones = ret;
368 	rep.flags = BLK_ZONE_REP_CAPACITY;
369 	if (copy_to_user(argp, &rep, sizeof(struct blk_zone_report)))
370 		return -EFAULT;
371 	return 0;
372 }
373 
blkdev_truncate_zone_range(struct block_device * bdev,blk_mode_t mode,const struct blk_zone_range * zrange)374 static int blkdev_truncate_zone_range(struct block_device *bdev,
375 		blk_mode_t mode, const struct blk_zone_range *zrange)
376 {
377 	loff_t start, end;
378 
379 	if (zrange->sector + zrange->nr_sectors <= zrange->sector ||
380 	    zrange->sector + zrange->nr_sectors > get_capacity(bdev->bd_disk))
381 		/* Out of range */
382 		return -EINVAL;
383 
384 	start = zrange->sector << SECTOR_SHIFT;
385 	end = ((zrange->sector + zrange->nr_sectors) << SECTOR_SHIFT) - 1;
386 
387 	return truncate_bdev_range(bdev, mode, start, end);
388 }
389 
390 /*
391  * BLKRESETZONE, BLKOPENZONE, BLKCLOSEZONE and BLKFINISHZONE ioctl processing.
392  * Called from blkdev_ioctl.
393  */
blkdev_zone_mgmt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)394 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
395 			   unsigned int cmd, unsigned long arg)
396 {
397 	void __user *argp = (void __user *)arg;
398 	struct blk_zone_range zrange;
399 	enum req_op op;
400 	int ret;
401 
402 	if (!argp)
403 		return -EINVAL;
404 
405 	if (!bdev_is_zoned(bdev))
406 		return -ENOTTY;
407 
408 	if (!(mode & BLK_OPEN_WRITE))
409 		return -EBADF;
410 
411 	if (copy_from_user(&zrange, argp, sizeof(struct blk_zone_range)))
412 		return -EFAULT;
413 
414 	switch (cmd) {
415 	case BLKRESETZONE:
416 		op = REQ_OP_ZONE_RESET;
417 
418 		/* Invalidate the page cache, including dirty pages. */
419 		filemap_invalidate_lock(bdev->bd_mapping);
420 		ret = blkdev_truncate_zone_range(bdev, mode, &zrange);
421 		if (ret)
422 			goto fail;
423 		break;
424 	case BLKOPENZONE:
425 		op = REQ_OP_ZONE_OPEN;
426 		break;
427 	case BLKCLOSEZONE:
428 		op = REQ_OP_ZONE_CLOSE;
429 		break;
430 	case BLKFINISHZONE:
431 		op = REQ_OP_ZONE_FINISH;
432 		break;
433 	default:
434 		return -ENOTTY;
435 	}
436 
437 	ret = blkdev_zone_mgmt(bdev, op, zrange.sector, zrange.nr_sectors);
438 
439 fail:
440 	if (cmd == BLKRESETZONE)
441 		filemap_invalidate_unlock(bdev->bd_mapping);
442 
443 	return ret;
444 }
445 
disk_zone_is_conv(struct gendisk * disk,sector_t sector)446 static inline bool disk_zone_is_conv(struct gendisk *disk, sector_t sector)
447 {
448 	if (!disk->conv_zones_bitmap)
449 		return false;
450 	return test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
451 }
452 
disk_zone_is_last(struct gendisk * disk,struct blk_zone * zone)453 static bool disk_zone_is_last(struct gendisk *disk, struct blk_zone *zone)
454 {
455 	return zone->start + zone->len >= get_capacity(disk);
456 }
457 
disk_zone_is_full(struct gendisk * disk,unsigned int zno,unsigned int offset_in_zone)458 static bool disk_zone_is_full(struct gendisk *disk,
459 			      unsigned int zno, unsigned int offset_in_zone)
460 {
461 	if (zno < disk->nr_zones - 1)
462 		return offset_in_zone >= disk->zone_capacity;
463 	return offset_in_zone >= disk->last_zone_capacity;
464 }
465 
disk_zone_wplug_is_full(struct gendisk * disk,struct blk_zone_wplug * zwplug)466 static bool disk_zone_wplug_is_full(struct gendisk *disk,
467 				    struct blk_zone_wplug *zwplug)
468 {
469 	return disk_zone_is_full(disk, zwplug->zone_no, zwplug->wp_offset);
470 }
471 
disk_insert_zone_wplug(struct gendisk * disk,struct blk_zone_wplug * zwplug)472 static bool disk_insert_zone_wplug(struct gendisk *disk,
473 				   struct blk_zone_wplug *zwplug)
474 {
475 	struct blk_zone_wplug *zwplg;
476 	unsigned long flags;
477 	unsigned int idx =
478 		hash_32(zwplug->zone_no, disk->zone_wplugs_hash_bits);
479 
480 	/*
481 	 * Add the new zone write plug to the hash table, but carefully as we
482 	 * are racing with other submission context, so we may already have a
483 	 * zone write plug for the same zone.
484 	 */
485 	spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
486 	hlist_for_each_entry_rcu(zwplg, &disk->zone_wplugs_hash[idx], node) {
487 		if (zwplg->zone_no == zwplug->zone_no) {
488 			spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
489 			return false;
490 		}
491 	}
492 	hlist_add_head_rcu(&zwplug->node, &disk->zone_wplugs_hash[idx]);
493 	spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
494 
495 	return true;
496 }
497 
disk_get_zone_wplug(struct gendisk * disk,sector_t sector)498 static struct blk_zone_wplug *disk_get_zone_wplug(struct gendisk *disk,
499 						  sector_t sector)
500 {
501 	unsigned int zno = disk_zone_no(disk, sector);
502 	unsigned int idx = hash_32(zno, disk->zone_wplugs_hash_bits);
503 	struct blk_zone_wplug *zwplug;
504 
505 	rcu_read_lock();
506 
507 	hlist_for_each_entry_rcu(zwplug, &disk->zone_wplugs_hash[idx], node) {
508 		if (zwplug->zone_no == zno &&
509 		    atomic_inc_not_zero(&zwplug->ref)) {
510 			rcu_read_unlock();
511 			return zwplug;
512 		}
513 	}
514 
515 	rcu_read_unlock();
516 
517 	return NULL;
518 }
519 
disk_free_zone_wplug_rcu(struct rcu_head * rcu_head)520 static void disk_free_zone_wplug_rcu(struct rcu_head *rcu_head)
521 {
522 	struct blk_zone_wplug *zwplug =
523 		container_of(rcu_head, struct blk_zone_wplug, rcu_head);
524 
525 	mempool_free(zwplug, zwplug->disk->zone_wplugs_pool);
526 }
527 
disk_put_zone_wplug(struct blk_zone_wplug * zwplug)528 static inline void disk_put_zone_wplug(struct blk_zone_wplug *zwplug)
529 {
530 	if (atomic_dec_and_test(&zwplug->ref)) {
531 		WARN_ON_ONCE(!bio_list_empty(&zwplug->bio_list));
532 		WARN_ON_ONCE(!list_empty(&zwplug->link));
533 		WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_UNHASHED));
534 
535 		call_rcu(&zwplug->rcu_head, disk_free_zone_wplug_rcu);
536 	}
537 }
538 
disk_should_remove_zone_wplug(struct gendisk * disk,struct blk_zone_wplug * zwplug)539 static inline bool disk_should_remove_zone_wplug(struct gendisk *disk,
540 						 struct blk_zone_wplug *zwplug)
541 {
542 	/* If the zone write plug was already removed, we are done. */
543 	if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED)
544 		return false;
545 
546 	/* If the zone write plug is still busy, it cannot be removed. */
547 	if (zwplug->flags & BLK_ZONE_WPLUG_BUSY)
548 		return false;
549 
550 	/*
551 	 * Completions of BIOs with blk_zone_write_plug_bio_endio() may
552 	 * happen after handling a request completion with
553 	 * blk_zone_write_plug_finish_request() (e.g. with split BIOs
554 	 * that are chained). In such case, disk_zone_wplug_unplug_bio()
555 	 * should not attempt to remove the zone write plug until all BIO
556 	 * completions are seen. Check by looking at the zone write plug
557 	 * reference count, which is 2 when the plug is unused (one reference
558 	 * taken when the plug was allocated and another reference taken by the
559 	 * caller context).
560 	 */
561 	if (atomic_read(&zwplug->ref) > 2)
562 		return false;
563 
564 	/* We can remove zone write plugs for zones that are empty or full. */
565 	return !zwplug->wp_offset || disk_zone_wplug_is_full(disk, zwplug);
566 }
567 
disk_remove_zone_wplug(struct gendisk * disk,struct blk_zone_wplug * zwplug)568 static void disk_remove_zone_wplug(struct gendisk *disk,
569 				   struct blk_zone_wplug *zwplug)
570 {
571 	unsigned long flags;
572 
573 	/* If the zone write plug was already removed, we have nothing to do. */
574 	if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED)
575 		return;
576 
577 	/*
578 	 * Mark the zone write plug as unhashed and drop the extra reference we
579 	 * took when the plug was inserted in the hash table.
580 	 */
581 	zwplug->flags |= BLK_ZONE_WPLUG_UNHASHED;
582 	spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
583 	hlist_del_init_rcu(&zwplug->node);
584 	spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
585 	disk_put_zone_wplug(zwplug);
586 }
587 
588 static void blk_zone_wplug_bio_work(struct work_struct *work);
589 
590 /*
591  * Get a reference on the write plug for the zone containing @sector.
592  * If the plug does not exist, it is allocated and hashed.
593  * Return a pointer to the zone write plug with the plug spinlock held.
594  */
disk_get_and_lock_zone_wplug(struct gendisk * disk,sector_t sector,gfp_t gfp_mask,unsigned long * flags)595 static struct blk_zone_wplug *disk_get_and_lock_zone_wplug(struct gendisk *disk,
596 					sector_t sector, gfp_t gfp_mask,
597 					unsigned long *flags)
598 {
599 	unsigned int zno = disk_zone_no(disk, sector);
600 	struct blk_zone_wplug *zwplug;
601 
602 again:
603 	zwplug = disk_get_zone_wplug(disk, sector);
604 	if (zwplug) {
605 		/*
606 		 * Check that a BIO completion or a zone reset or finish
607 		 * operation has not already removed the zone write plug from
608 		 * the hash table and dropped its reference count. In such case,
609 		 * we need to get a new plug so start over from the beginning.
610 		 */
611 		spin_lock_irqsave(&zwplug->lock, *flags);
612 		if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) {
613 			spin_unlock_irqrestore(&zwplug->lock, *flags);
614 			disk_put_zone_wplug(zwplug);
615 			goto again;
616 		}
617 		return zwplug;
618 	}
619 
620 	/*
621 	 * Allocate and initialize a zone write plug with an extra reference
622 	 * so that it is not freed when the zone write plug becomes idle without
623 	 * the zone being full.
624 	 */
625 	zwplug = mempool_alloc(disk->zone_wplugs_pool, gfp_mask);
626 	if (!zwplug)
627 		return NULL;
628 
629 	INIT_HLIST_NODE(&zwplug->node);
630 	INIT_LIST_HEAD(&zwplug->link);
631 	atomic_set(&zwplug->ref, 2);
632 	spin_lock_init(&zwplug->lock);
633 	zwplug->flags = 0;
634 	zwplug->zone_no = zno;
635 	zwplug->wp_offset = sector & (disk->queue->limits.chunk_sectors - 1);
636 	bio_list_init(&zwplug->bio_list);
637 	INIT_WORK(&zwplug->bio_work, blk_zone_wplug_bio_work);
638 	zwplug->disk = disk;
639 
640 	spin_lock_irqsave(&zwplug->lock, *flags);
641 
642 	/*
643 	 * Insert the new zone write plug in the hash table. This can fail only
644 	 * if another context already inserted a plug. Retry from the beginning
645 	 * in such case.
646 	 */
647 	if (!disk_insert_zone_wplug(disk, zwplug)) {
648 		spin_unlock_irqrestore(&zwplug->lock, *flags);
649 		mempool_free(zwplug, disk->zone_wplugs_pool);
650 		goto again;
651 	}
652 
653 	return zwplug;
654 }
655 
blk_zone_wplug_bio_io_error(struct blk_zone_wplug * zwplug,struct bio * bio)656 static inline void blk_zone_wplug_bio_io_error(struct blk_zone_wplug *zwplug,
657 					       struct bio *bio)
658 {
659 	struct request_queue *q = zwplug->disk->queue;
660 
661 	bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING);
662 	bio_io_error(bio);
663 	disk_put_zone_wplug(zwplug);
664 	blk_queue_exit(q);
665 }
666 
667 /*
668  * Abort (fail) all plugged BIOs of a zone write plug.
669  */
disk_zone_wplug_abort(struct blk_zone_wplug * zwplug)670 static void disk_zone_wplug_abort(struct blk_zone_wplug *zwplug)
671 {
672 	struct bio *bio;
673 
674 	while ((bio = bio_list_pop(&zwplug->bio_list)))
675 		blk_zone_wplug_bio_io_error(zwplug, bio);
676 }
677 
678 /*
679  * Abort (fail) all plugged BIOs of a zone write plug that are not aligned
680  * with the assumed write pointer location of the zone when the BIO will
681  * be unplugged.
682  */
disk_zone_wplug_abort_unaligned(struct gendisk * disk,struct blk_zone_wplug * zwplug)683 static void disk_zone_wplug_abort_unaligned(struct gendisk *disk,
684 					    struct blk_zone_wplug *zwplug)
685 {
686 	unsigned int wp_offset = zwplug->wp_offset;
687 	struct bio_list bl = BIO_EMPTY_LIST;
688 	struct bio *bio;
689 
690 	while ((bio = bio_list_pop(&zwplug->bio_list))) {
691 		if (disk_zone_is_full(disk, zwplug->zone_no, wp_offset) ||
692 		    (bio_op(bio) != REQ_OP_ZONE_APPEND &&
693 		     bio_offset_from_zone_start(bio) != wp_offset)) {
694 			blk_zone_wplug_bio_io_error(zwplug, bio);
695 			continue;
696 		}
697 
698 		wp_offset += bio_sectors(bio);
699 		bio_list_add(&bl, bio);
700 	}
701 
702 	bio_list_merge(&zwplug->bio_list, &bl);
703 }
704 
disk_zone_wplug_set_error(struct gendisk * disk,struct blk_zone_wplug * zwplug)705 static inline void disk_zone_wplug_set_error(struct gendisk *disk,
706 					     struct blk_zone_wplug *zwplug)
707 {
708 	unsigned long flags;
709 
710 	if (zwplug->flags & BLK_ZONE_WPLUG_ERROR)
711 		return;
712 
713 	/*
714 	 * At this point, we already have a reference on the zone write plug.
715 	 * However, since we are going to add the plug to the disk zone write
716 	 * plugs work list, increase its reference count. This reference will
717 	 * be dropped in disk_zone_wplugs_work() once the error state is
718 	 * handled, or in disk_zone_wplug_clear_error() if the zone is reset or
719 	 * finished.
720 	 */
721 	zwplug->flags |= BLK_ZONE_WPLUG_ERROR;
722 	atomic_inc(&zwplug->ref);
723 
724 	spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
725 	list_add_tail(&zwplug->link, &disk->zone_wplugs_err_list);
726 	spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
727 }
728 
disk_zone_wplug_clear_error(struct gendisk * disk,struct blk_zone_wplug * zwplug)729 static inline void disk_zone_wplug_clear_error(struct gendisk *disk,
730 					       struct blk_zone_wplug *zwplug)
731 {
732 	unsigned long flags;
733 
734 	if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR))
735 		return;
736 
737 	/*
738 	 * We are racing with the error handling work which drops the reference
739 	 * on the zone write plug after handling the error state. So remove the
740 	 * plug from the error list and drop its reference count only if the
741 	 * error handling has not yet started, that is, if the zone write plug
742 	 * is still listed.
743 	 */
744 	spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
745 	if (!list_empty(&zwplug->link)) {
746 		list_del_init(&zwplug->link);
747 		zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR;
748 		disk_put_zone_wplug(zwplug);
749 	}
750 	spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
751 }
752 
753 /*
754  * Set a zone write plug write pointer offset to either 0 (zone reset case)
755  * or to the zone size (zone finish case). This aborts all plugged BIOs, which
756  * is fine to do as doing a zone reset or zone finish while writes are in-flight
757  * is a mistake from the user which will most likely cause all plugged BIOs to
758  * fail anyway.
759  */
disk_zone_wplug_set_wp_offset(struct gendisk * disk,struct blk_zone_wplug * zwplug,unsigned int wp_offset)760 static void disk_zone_wplug_set_wp_offset(struct gendisk *disk,
761 					  struct blk_zone_wplug *zwplug,
762 					  unsigned int wp_offset)
763 {
764 	unsigned long flags;
765 
766 	spin_lock_irqsave(&zwplug->lock, flags);
767 
768 	/*
769 	 * Make sure that a BIO completion or another zone reset or finish
770 	 * operation has not already removed the plug from the hash table.
771 	 */
772 	if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) {
773 		spin_unlock_irqrestore(&zwplug->lock, flags);
774 		return;
775 	}
776 
777 	/* Update the zone write pointer and abort all plugged BIOs. */
778 	zwplug->wp_offset = wp_offset;
779 	disk_zone_wplug_abort(zwplug);
780 
781 	/*
782 	 * Updating the write pointer offset puts back the zone
783 	 * in a good state. So clear the error flag and decrement the
784 	 * error count if we were in error state.
785 	 */
786 	disk_zone_wplug_clear_error(disk, zwplug);
787 
788 	/*
789 	 * The zone write plug now has no BIO plugged: remove it from the
790 	 * hash table so that it cannot be seen. The plug will be freed
791 	 * when the last reference is dropped.
792 	 */
793 	if (disk_should_remove_zone_wplug(disk, zwplug))
794 		disk_remove_zone_wplug(disk, zwplug);
795 
796 	spin_unlock_irqrestore(&zwplug->lock, flags);
797 }
798 
blk_zone_wplug_handle_reset_or_finish(struct bio * bio,unsigned int wp_offset)799 static bool blk_zone_wplug_handle_reset_or_finish(struct bio *bio,
800 						  unsigned int wp_offset)
801 {
802 	struct gendisk *disk = bio->bi_bdev->bd_disk;
803 	sector_t sector = bio->bi_iter.bi_sector;
804 	struct blk_zone_wplug *zwplug;
805 
806 	/* Conventional zones cannot be reset nor finished. */
807 	if (disk_zone_is_conv(disk, sector)) {
808 		bio_io_error(bio);
809 		return true;
810 	}
811 
812 	/*
813 	 * If we have a zone write plug, set its write pointer offset to 0
814 	 * (reset case) or to the zone size (finish case). This will abort all
815 	 * BIOs plugged for the target zone. It is fine as resetting or
816 	 * finishing zones while writes are still in-flight will result in the
817 	 * writes failing anyway.
818 	 */
819 	zwplug = disk_get_zone_wplug(disk, sector);
820 	if (zwplug) {
821 		disk_zone_wplug_set_wp_offset(disk, zwplug, wp_offset);
822 		disk_put_zone_wplug(zwplug);
823 	}
824 
825 	return false;
826 }
827 
blk_zone_wplug_handle_reset_all(struct bio * bio)828 static bool blk_zone_wplug_handle_reset_all(struct bio *bio)
829 {
830 	struct gendisk *disk = bio->bi_bdev->bd_disk;
831 	struct blk_zone_wplug *zwplug;
832 	sector_t sector;
833 
834 	/*
835 	 * Set the write pointer offset of all zone write plugs to 0. This will
836 	 * abort all plugged BIOs. It is fine as resetting zones while writes
837 	 * are still in-flight will result in the writes failing anyway.
838 	 */
839 	for (sector = 0; sector < get_capacity(disk);
840 	     sector += disk->queue->limits.chunk_sectors) {
841 		zwplug = disk_get_zone_wplug(disk, sector);
842 		if (zwplug) {
843 			disk_zone_wplug_set_wp_offset(disk, zwplug, 0);
844 			disk_put_zone_wplug(zwplug);
845 		}
846 	}
847 
848 	return false;
849 }
850 
blk_zone_wplug_add_bio(struct blk_zone_wplug * zwplug,struct bio * bio,unsigned int nr_segs)851 static inline void blk_zone_wplug_add_bio(struct blk_zone_wplug *zwplug,
852 					  struct bio *bio, unsigned int nr_segs)
853 {
854 	/*
855 	 * Grab an extra reference on the BIO request queue usage counter.
856 	 * This reference will be reused to submit a request for the BIO for
857 	 * blk-mq devices and dropped when the BIO is failed and after
858 	 * it is issued in the case of BIO-based devices.
859 	 */
860 	percpu_ref_get(&bio->bi_bdev->bd_disk->queue->q_usage_counter);
861 
862 	/*
863 	 * The BIO is being plugged and thus will have to wait for the on-going
864 	 * write and for all other writes already plugged. So polling makes
865 	 * no sense.
866 	 */
867 	bio_clear_polled(bio);
868 
869 	/*
870 	 * Reuse the poll cookie field to store the number of segments when
871 	 * split to the hardware limits.
872 	 */
873 	bio->__bi_nr_segments = nr_segs;
874 
875 	/*
876 	 * We always receive BIOs after they are split and ready to be issued.
877 	 * The block layer passes the parts of a split BIO in order, and the
878 	 * user must also issue write sequentially. So simply add the new BIO
879 	 * at the tail of the list to preserve the sequential write order.
880 	 */
881 	bio_list_add(&zwplug->bio_list, bio);
882 }
883 
884 /*
885  * Called from bio_attempt_back_merge() when a BIO was merged with a request.
886  */
blk_zone_write_plug_bio_merged(struct bio * bio)887 void blk_zone_write_plug_bio_merged(struct bio *bio)
888 {
889 	struct blk_zone_wplug *zwplug;
890 	unsigned long flags;
891 
892 	/*
893 	 * If the BIO was already plugged, then we were called through
894 	 * blk_zone_write_plug_init_request() -> blk_attempt_bio_merge().
895 	 * For this case, we already hold a reference on the zone write plug for
896 	 * the BIO and blk_zone_write_plug_init_request() will handle the
897 	 * zone write pointer offset update.
898 	 */
899 	if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING))
900 		return;
901 
902 	bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING);
903 
904 	/*
905 	 * Get a reference on the zone write plug of the target zone and advance
906 	 * the zone write pointer offset. Given that this is a merge, we already
907 	 * have at least one request and one BIO referencing the zone write
908 	 * plug. So this should not fail.
909 	 */
910 	zwplug = disk_get_zone_wplug(bio->bi_bdev->bd_disk,
911 				     bio->bi_iter.bi_sector);
912 	if (WARN_ON_ONCE(!zwplug))
913 		return;
914 
915 	spin_lock_irqsave(&zwplug->lock, flags);
916 	zwplug->wp_offset += bio_sectors(bio);
917 	spin_unlock_irqrestore(&zwplug->lock, flags);
918 }
919 
920 /*
921  * Attempt to merge plugged BIOs with a newly prepared request for a BIO that
922  * already went through zone write plugging (either a new BIO or one that was
923  * unplugged).
924  */
blk_zone_write_plug_init_request(struct request * req)925 void blk_zone_write_plug_init_request(struct request *req)
926 {
927 	sector_t req_back_sector = blk_rq_pos(req) + blk_rq_sectors(req);
928 	struct request_queue *q = req->q;
929 	struct gendisk *disk = q->disk;
930 	struct blk_zone_wplug *zwplug =
931 		disk_get_zone_wplug(disk, blk_rq_pos(req));
932 	unsigned long flags;
933 	struct bio *bio;
934 
935 	if (WARN_ON_ONCE(!zwplug))
936 		return;
937 
938 	/*
939 	 * Indicate that completion of this request needs to be handled with
940 	 * blk_zone_write_plug_finish_request(), which will drop the reference
941 	 * on the zone write plug we took above on entry to this function.
942 	 */
943 	req->rq_flags |= RQF_ZONE_WRITE_PLUGGING;
944 
945 	if (blk_queue_nomerges(q))
946 		return;
947 
948 	/*
949 	 * Walk through the list of plugged BIOs to check if they can be merged
950 	 * into the back of the request.
951 	 */
952 	spin_lock_irqsave(&zwplug->lock, flags);
953 	while (!disk_zone_wplug_is_full(disk, zwplug)) {
954 		bio = bio_list_peek(&zwplug->bio_list);
955 		if (!bio)
956 			break;
957 
958 		if (bio->bi_iter.bi_sector != req_back_sector ||
959 		    !blk_rq_merge_ok(req, bio))
960 			break;
961 
962 		WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE_ZEROES &&
963 			     !bio->__bi_nr_segments);
964 
965 		bio_list_pop(&zwplug->bio_list);
966 		if (bio_attempt_back_merge(req, bio, bio->__bi_nr_segments) !=
967 		    BIO_MERGE_OK) {
968 			bio_list_add_head(&zwplug->bio_list, bio);
969 			break;
970 		}
971 
972 		/*
973 		 * Drop the extra reference on the queue usage we got when
974 		 * plugging the BIO and advance the write pointer offset.
975 		 */
976 		blk_queue_exit(q);
977 		zwplug->wp_offset += bio_sectors(bio);
978 
979 		req_back_sector += bio_sectors(bio);
980 	}
981 	spin_unlock_irqrestore(&zwplug->lock, flags);
982 }
983 
984 /*
985  * Check and prepare a BIO for submission by incrementing the write pointer
986  * offset of its zone write plug and changing zone append operations into
987  * regular write when zone append emulation is needed.
988  */
blk_zone_wplug_prepare_bio(struct blk_zone_wplug * zwplug,struct bio * bio)989 static bool blk_zone_wplug_prepare_bio(struct blk_zone_wplug *zwplug,
990 				       struct bio *bio)
991 {
992 	struct gendisk *disk = bio->bi_bdev->bd_disk;
993 
994 	/*
995 	 * Check that the user is not attempting to write to a full zone.
996 	 * We know such BIO will fail, and that would potentially overflow our
997 	 * write pointer offset beyond the end of the zone.
998 	 */
999 	if (disk_zone_wplug_is_full(disk, zwplug))
1000 		goto err;
1001 
1002 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1003 		/*
1004 		 * Use a regular write starting at the current write pointer.
1005 		 * Similarly to native zone append operations, do not allow
1006 		 * merging.
1007 		 */
1008 		bio->bi_opf &= ~REQ_OP_MASK;
1009 		bio->bi_opf |= REQ_OP_WRITE | REQ_NOMERGE;
1010 		bio->bi_iter.bi_sector += zwplug->wp_offset;
1011 
1012 		/*
1013 		 * Remember that this BIO is in fact a zone append operation
1014 		 * so that we can restore its operation code on completion.
1015 		 */
1016 		bio_set_flag(bio, BIO_EMULATES_ZONE_APPEND);
1017 	} else {
1018 		/*
1019 		 * Check for non-sequential writes early because we avoid a
1020 		 * whole lot of error handling trouble if we don't send it off
1021 		 * to the driver.
1022 		 */
1023 		if (bio_offset_from_zone_start(bio) != zwplug->wp_offset)
1024 			goto err;
1025 	}
1026 
1027 	/* Advance the zone write pointer offset. */
1028 	zwplug->wp_offset += bio_sectors(bio);
1029 
1030 	return true;
1031 
1032 err:
1033 	/* We detected an invalid write BIO: schedule error recovery. */
1034 	disk_zone_wplug_set_error(disk, zwplug);
1035 	kblockd_schedule_work(&disk->zone_wplugs_work);
1036 	return false;
1037 }
1038 
blk_zone_wplug_handle_write(struct bio * bio,unsigned int nr_segs)1039 static bool blk_zone_wplug_handle_write(struct bio *bio, unsigned int nr_segs)
1040 {
1041 	struct gendisk *disk = bio->bi_bdev->bd_disk;
1042 	sector_t sector = bio->bi_iter.bi_sector;
1043 	struct blk_zone_wplug *zwplug;
1044 	gfp_t gfp_mask = GFP_NOIO;
1045 	unsigned long flags;
1046 
1047 	/*
1048 	 * BIOs must be fully contained within a zone so that we use the correct
1049 	 * zone write plug for the entire BIO. For blk-mq devices, the block
1050 	 * layer should already have done any splitting required to ensure this
1051 	 * and this BIO should thus not be straddling zone boundaries. For
1052 	 * BIO-based devices, it is the responsibility of the driver to split
1053 	 * the bio before submitting it.
1054 	 */
1055 	if (WARN_ON_ONCE(bio_straddles_zones(bio))) {
1056 		bio_io_error(bio);
1057 		return true;
1058 	}
1059 
1060 	/* Conventional zones do not need write plugging. */
1061 	if (disk_zone_is_conv(disk, sector)) {
1062 		/* Zone append to conventional zones is not allowed. */
1063 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1064 			bio_io_error(bio);
1065 			return true;
1066 		}
1067 		return false;
1068 	}
1069 
1070 	if (bio->bi_opf & REQ_NOWAIT)
1071 		gfp_mask = GFP_NOWAIT;
1072 
1073 	zwplug = disk_get_and_lock_zone_wplug(disk, sector, gfp_mask, &flags);
1074 	if (!zwplug) {
1075 		bio_io_error(bio);
1076 		return true;
1077 	}
1078 
1079 	/* Indicate that this BIO is being handled using zone write plugging. */
1080 	bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING);
1081 
1082 	/*
1083 	 * If the zone is already plugged or has a pending error, add the BIO
1084 	 * to the plug BIO list. Otherwise, plug and let the BIO execute.
1085 	 */
1086 	if (zwplug->flags & BLK_ZONE_WPLUG_BUSY)
1087 		goto plug;
1088 
1089 	/*
1090 	 * If an error is detected when preparing the BIO, add it to the BIO
1091 	 * list so that error recovery can deal with it.
1092 	 */
1093 	if (!blk_zone_wplug_prepare_bio(zwplug, bio))
1094 		goto plug;
1095 
1096 	zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED;
1097 
1098 	spin_unlock_irqrestore(&zwplug->lock, flags);
1099 
1100 	return false;
1101 
1102 plug:
1103 	zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED;
1104 	blk_zone_wplug_add_bio(zwplug, bio, nr_segs);
1105 
1106 	spin_unlock_irqrestore(&zwplug->lock, flags);
1107 
1108 	return true;
1109 }
1110 
1111 /**
1112  * blk_zone_plug_bio - Handle a zone write BIO with zone write plugging
1113  * @bio: The BIO being submitted
1114  * @nr_segs: The number of physical segments of @bio
1115  *
1116  * Handle write, write zeroes and zone append operations requiring emulation
1117  * using zone write plugging.
1118  *
1119  * Return true whenever @bio execution needs to be delayed through the zone
1120  * write plug. Otherwise, return false to let the submission path process
1121  * @bio normally.
1122  */
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)1123 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
1124 {
1125 	struct block_device *bdev = bio->bi_bdev;
1126 
1127 	if (!bdev->bd_disk->zone_wplugs_hash)
1128 		return false;
1129 
1130 	/*
1131 	 * If the BIO already has the plugging flag set, then it was already
1132 	 * handled through this path and this is a submission from the zone
1133 	 * plug bio submit work.
1134 	 */
1135 	if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING))
1136 		return false;
1137 
1138 	/*
1139 	 * We do not need to do anything special for empty flush BIOs, e.g
1140 	 * BIOs such as issued by blkdev_issue_flush(). The is because it is
1141 	 * the responsibility of the user to first wait for the completion of
1142 	 * write operations for flush to have any effect on the persistence of
1143 	 * the written data.
1144 	 */
1145 	if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
1146 		return false;
1147 
1148 	/*
1149 	 * Regular writes and write zeroes need to be handled through the target
1150 	 * zone write plug. This includes writes with REQ_FUA | REQ_PREFLUSH
1151 	 * which may need to go through the flush machinery depending on the
1152 	 * target device capabilities. Plugging such writes is fine as the flush
1153 	 * machinery operates at the request level, below the plug, and
1154 	 * completion of the flush sequence will go through the regular BIO
1155 	 * completion, which will handle zone write plugging.
1156 	 * Zone append operations for devices that requested emulation must
1157 	 * also be plugged so that these BIOs can be changed into regular
1158 	 * write BIOs.
1159 	 * Zone reset, reset all and finish commands need special treatment
1160 	 * to correctly track the write pointer offset of zones. These commands
1161 	 * are not plugged as we do not need serialization with write
1162 	 * operations. It is the responsibility of the user to not issue reset
1163 	 * and finish commands when write operations are in flight.
1164 	 */
1165 	switch (bio_op(bio)) {
1166 	case REQ_OP_ZONE_APPEND:
1167 		if (!bdev_emulates_zone_append(bdev))
1168 			return false;
1169 		fallthrough;
1170 	case REQ_OP_WRITE:
1171 	case REQ_OP_WRITE_ZEROES:
1172 		return blk_zone_wplug_handle_write(bio, nr_segs);
1173 	case REQ_OP_ZONE_RESET:
1174 		return blk_zone_wplug_handle_reset_or_finish(bio, 0);
1175 	case REQ_OP_ZONE_FINISH:
1176 		return blk_zone_wplug_handle_reset_or_finish(bio,
1177 						bdev_zone_sectors(bdev));
1178 	case REQ_OP_ZONE_RESET_ALL:
1179 		return blk_zone_wplug_handle_reset_all(bio);
1180 	default:
1181 		return false;
1182 	}
1183 
1184 	return false;
1185 }
1186 EXPORT_SYMBOL_GPL(blk_zone_plug_bio);
1187 
disk_zone_wplug_schedule_bio_work(struct gendisk * disk,struct blk_zone_wplug * zwplug)1188 static void disk_zone_wplug_schedule_bio_work(struct gendisk *disk,
1189 					      struct blk_zone_wplug *zwplug)
1190 {
1191 	/*
1192 	 * Take a reference on the zone write plug and schedule the submission
1193 	 * of the next plugged BIO. blk_zone_wplug_bio_work() will release the
1194 	 * reference we take here.
1195 	 */
1196 	WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_PLUGGED));
1197 	atomic_inc(&zwplug->ref);
1198 	queue_work(disk->zone_wplugs_wq, &zwplug->bio_work);
1199 }
1200 
disk_zone_wplug_unplug_bio(struct gendisk * disk,struct blk_zone_wplug * zwplug)1201 static void disk_zone_wplug_unplug_bio(struct gendisk *disk,
1202 				       struct blk_zone_wplug *zwplug)
1203 {
1204 	unsigned long flags;
1205 
1206 	spin_lock_irqsave(&zwplug->lock, flags);
1207 
1208 	/*
1209 	 * If we had an error, schedule error recovery. The recovery work
1210 	 * will restart submission of plugged BIOs.
1211 	 */
1212 	if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) {
1213 		spin_unlock_irqrestore(&zwplug->lock, flags);
1214 		kblockd_schedule_work(&disk->zone_wplugs_work);
1215 		return;
1216 	}
1217 
1218 	/* Schedule submission of the next plugged BIO if we have one. */
1219 	if (!bio_list_empty(&zwplug->bio_list)) {
1220 		disk_zone_wplug_schedule_bio_work(disk, zwplug);
1221 		spin_unlock_irqrestore(&zwplug->lock, flags);
1222 		return;
1223 	}
1224 
1225 	zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED;
1226 
1227 	/*
1228 	 * If the zone is full (it was fully written or finished, or empty
1229 	 * (it was reset), remove its zone write plug from the hash table.
1230 	 */
1231 	if (disk_should_remove_zone_wplug(disk, zwplug))
1232 		disk_remove_zone_wplug(disk, zwplug);
1233 
1234 	spin_unlock_irqrestore(&zwplug->lock, flags);
1235 }
1236 
blk_zone_write_plug_bio_endio(struct bio * bio)1237 void blk_zone_write_plug_bio_endio(struct bio *bio)
1238 {
1239 	struct gendisk *disk = bio->bi_bdev->bd_disk;
1240 	struct blk_zone_wplug *zwplug =
1241 		disk_get_zone_wplug(disk, bio->bi_iter.bi_sector);
1242 	unsigned long flags;
1243 
1244 	if (WARN_ON_ONCE(!zwplug))
1245 		return;
1246 
1247 	/* Make sure we do not see this BIO again by clearing the plug flag. */
1248 	bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING);
1249 
1250 	/*
1251 	 * If this is a regular write emulating a zone append operation,
1252 	 * restore the original operation code.
1253 	 */
1254 	if (bio_flagged(bio, BIO_EMULATES_ZONE_APPEND)) {
1255 		bio->bi_opf &= ~REQ_OP_MASK;
1256 		bio->bi_opf |= REQ_OP_ZONE_APPEND;
1257 	}
1258 
1259 	/*
1260 	 * If the BIO failed, mark the plug as having an error to trigger
1261 	 * recovery.
1262 	 */
1263 	if (bio->bi_status != BLK_STS_OK) {
1264 		spin_lock_irqsave(&zwplug->lock, flags);
1265 		disk_zone_wplug_set_error(disk, zwplug);
1266 		spin_unlock_irqrestore(&zwplug->lock, flags);
1267 	}
1268 
1269 	/* Drop the reference we took when the BIO was issued. */
1270 	disk_put_zone_wplug(zwplug);
1271 
1272 	/*
1273 	 * For BIO-based devices, blk_zone_write_plug_finish_request()
1274 	 * is not called. So we need to schedule execution of the next
1275 	 * plugged BIO here.
1276 	 */
1277 	if (bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
1278 		disk_zone_wplug_unplug_bio(disk, zwplug);
1279 
1280 	/* Drop the reference we took when entering this function. */
1281 	disk_put_zone_wplug(zwplug);
1282 }
1283 
blk_zone_write_plug_finish_request(struct request * req)1284 void blk_zone_write_plug_finish_request(struct request *req)
1285 {
1286 	struct gendisk *disk = req->q->disk;
1287 	struct blk_zone_wplug *zwplug;
1288 
1289 	zwplug = disk_get_zone_wplug(disk, req->__sector);
1290 	if (WARN_ON_ONCE(!zwplug))
1291 		return;
1292 
1293 	req->rq_flags &= ~RQF_ZONE_WRITE_PLUGGING;
1294 
1295 	/*
1296 	 * Drop the reference we took when the request was initialized in
1297 	 * blk_zone_write_plug_init_request().
1298 	 */
1299 	disk_put_zone_wplug(zwplug);
1300 
1301 	disk_zone_wplug_unplug_bio(disk, zwplug);
1302 
1303 	/* Drop the reference we took when entering this function. */
1304 	disk_put_zone_wplug(zwplug);
1305 }
1306 
blk_zone_wplug_bio_work(struct work_struct * work)1307 static void blk_zone_wplug_bio_work(struct work_struct *work)
1308 {
1309 	struct blk_zone_wplug *zwplug =
1310 		container_of(work, struct blk_zone_wplug, bio_work);
1311 	struct block_device *bdev;
1312 	unsigned long flags;
1313 	struct bio *bio;
1314 
1315 	/*
1316 	 * Submit the next plugged BIO. If we do not have any, clear
1317 	 * the plugged flag.
1318 	 */
1319 	spin_lock_irqsave(&zwplug->lock, flags);
1320 
1321 	bio = bio_list_pop(&zwplug->bio_list);
1322 	if (!bio) {
1323 		zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED;
1324 		spin_unlock_irqrestore(&zwplug->lock, flags);
1325 		goto put_zwplug;
1326 	}
1327 
1328 	if (!blk_zone_wplug_prepare_bio(zwplug, bio)) {
1329 		/* Error recovery will decide what to do with the BIO. */
1330 		bio_list_add_head(&zwplug->bio_list, bio);
1331 		spin_unlock_irqrestore(&zwplug->lock, flags);
1332 		goto put_zwplug;
1333 	}
1334 
1335 	spin_unlock_irqrestore(&zwplug->lock, flags);
1336 
1337 	bdev = bio->bi_bdev;
1338 	submit_bio_noacct_nocheck(bio);
1339 
1340 	/*
1341 	 * blk-mq devices will reuse the extra reference on the request queue
1342 	 * usage counter we took when the BIO was plugged, but the submission
1343 	 * path for BIO-based devices will not do that. So drop this extra
1344 	 * reference here.
1345 	 */
1346 	if (bdev_test_flag(bdev, BD_HAS_SUBMIT_BIO))
1347 		blk_queue_exit(bdev->bd_disk->queue);
1348 
1349 put_zwplug:
1350 	/* Drop the reference we took in disk_zone_wplug_schedule_bio_work(). */
1351 	disk_put_zone_wplug(zwplug);
1352 }
1353 
blk_zone_wp_offset(struct blk_zone * zone)1354 static unsigned int blk_zone_wp_offset(struct blk_zone *zone)
1355 {
1356 	switch (zone->cond) {
1357 	case BLK_ZONE_COND_IMP_OPEN:
1358 	case BLK_ZONE_COND_EXP_OPEN:
1359 	case BLK_ZONE_COND_CLOSED:
1360 		return zone->wp - zone->start;
1361 	case BLK_ZONE_COND_FULL:
1362 		return zone->len;
1363 	case BLK_ZONE_COND_EMPTY:
1364 		return 0;
1365 	case BLK_ZONE_COND_NOT_WP:
1366 	case BLK_ZONE_COND_OFFLINE:
1367 	case BLK_ZONE_COND_READONLY:
1368 	default:
1369 		/*
1370 		 * Conventional, offline and read-only zones do not have a valid
1371 		 * write pointer.
1372 		 */
1373 		return UINT_MAX;
1374 	}
1375 }
1376 
blk_zone_wplug_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)1377 static int blk_zone_wplug_report_zone_cb(struct blk_zone *zone,
1378 					 unsigned int idx, void *data)
1379 {
1380 	struct blk_zone *zonep = data;
1381 
1382 	*zonep = *zone;
1383 	return 0;
1384 }
1385 
disk_zone_wplug_handle_error(struct gendisk * disk,struct blk_zone_wplug * zwplug)1386 static void disk_zone_wplug_handle_error(struct gendisk *disk,
1387 					 struct blk_zone_wplug *zwplug)
1388 {
1389 	sector_t zone_start_sector =
1390 		bdev_zone_sectors(disk->part0) * zwplug->zone_no;
1391 	unsigned int noio_flag;
1392 	struct blk_zone zone;
1393 	unsigned long flags;
1394 	int ret;
1395 
1396 	/* Get the current zone information from the device. */
1397 	noio_flag = memalloc_noio_save();
1398 	ret = disk->fops->report_zones(disk, zone_start_sector, 1,
1399 				       blk_zone_wplug_report_zone_cb, &zone);
1400 	memalloc_noio_restore(noio_flag);
1401 
1402 	spin_lock_irqsave(&zwplug->lock, flags);
1403 
1404 	/*
1405 	 * A zone reset or finish may have cleared the error already. In such
1406 	 * case, do nothing as the report zones may have seen the "old" write
1407 	 * pointer value before the reset/finish operation completed.
1408 	 */
1409 	if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR))
1410 		goto unlock;
1411 
1412 	zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR;
1413 
1414 	if (ret != 1) {
1415 		/*
1416 		 * We failed to get the zone information, meaning that something
1417 		 * is likely really wrong with the device. Abort all remaining
1418 		 * plugged BIOs as otherwise we could endup waiting forever on
1419 		 * plugged BIOs to complete if there is a queue freeze on-going.
1420 		 */
1421 		disk_zone_wplug_abort(zwplug);
1422 		goto unplug;
1423 	}
1424 
1425 	/* Update the zone write pointer offset. */
1426 	zwplug->wp_offset = blk_zone_wp_offset(&zone);
1427 	disk_zone_wplug_abort_unaligned(disk, zwplug);
1428 
1429 	/* Restart BIO submission if we still have any BIO left. */
1430 	if (!bio_list_empty(&zwplug->bio_list)) {
1431 		disk_zone_wplug_schedule_bio_work(disk, zwplug);
1432 		goto unlock;
1433 	}
1434 
1435 unplug:
1436 	zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED;
1437 	if (disk_should_remove_zone_wplug(disk, zwplug))
1438 		disk_remove_zone_wplug(disk, zwplug);
1439 
1440 unlock:
1441 	spin_unlock_irqrestore(&zwplug->lock, flags);
1442 }
1443 
disk_zone_wplugs_work(struct work_struct * work)1444 static void disk_zone_wplugs_work(struct work_struct *work)
1445 {
1446 	struct gendisk *disk =
1447 		container_of(work, struct gendisk, zone_wplugs_work);
1448 	struct blk_zone_wplug *zwplug;
1449 	unsigned long flags;
1450 
1451 	spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
1452 
1453 	while (!list_empty(&disk->zone_wplugs_err_list)) {
1454 		zwplug = list_first_entry(&disk->zone_wplugs_err_list,
1455 					  struct blk_zone_wplug, link);
1456 		list_del_init(&zwplug->link);
1457 		spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
1458 
1459 		disk_zone_wplug_handle_error(disk, zwplug);
1460 		disk_put_zone_wplug(zwplug);
1461 
1462 		spin_lock_irqsave(&disk->zone_wplugs_lock, flags);
1463 	}
1464 
1465 	spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags);
1466 }
1467 
disk_zone_wplugs_hash_size(struct gendisk * disk)1468 static inline unsigned int disk_zone_wplugs_hash_size(struct gendisk *disk)
1469 {
1470 	return 1U << disk->zone_wplugs_hash_bits;
1471 }
1472 
disk_init_zone_resources(struct gendisk * disk)1473 void disk_init_zone_resources(struct gendisk *disk)
1474 {
1475 	spin_lock_init(&disk->zone_wplugs_lock);
1476 	INIT_LIST_HEAD(&disk->zone_wplugs_err_list);
1477 	INIT_WORK(&disk->zone_wplugs_work, disk_zone_wplugs_work);
1478 }
1479 
1480 /*
1481  * For the size of a disk zone write plug hash table, use the size of the
1482  * zone write plug mempool, which is the maximum of the disk open zones and
1483  * active zones limits. But do not exceed 4KB (512 hlist head entries), that is,
1484  * 9 bits. For a disk that has no limits, mempool size defaults to 128.
1485  */
1486 #define BLK_ZONE_WPLUG_MAX_HASH_BITS		9
1487 #define BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE	128
1488 
disk_alloc_zone_resources(struct gendisk * disk,unsigned int pool_size)1489 static int disk_alloc_zone_resources(struct gendisk *disk,
1490 				     unsigned int pool_size)
1491 {
1492 	unsigned int i;
1493 
1494 	disk->zone_wplugs_hash_bits =
1495 		min(ilog2(pool_size) + 1, BLK_ZONE_WPLUG_MAX_HASH_BITS);
1496 
1497 	disk->zone_wplugs_hash =
1498 		kcalloc(disk_zone_wplugs_hash_size(disk),
1499 			sizeof(struct hlist_head), GFP_KERNEL);
1500 	if (!disk->zone_wplugs_hash)
1501 		return -ENOMEM;
1502 
1503 	for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++)
1504 		INIT_HLIST_HEAD(&disk->zone_wplugs_hash[i]);
1505 
1506 	disk->zone_wplugs_pool = mempool_create_kmalloc_pool(pool_size,
1507 						sizeof(struct blk_zone_wplug));
1508 	if (!disk->zone_wplugs_pool)
1509 		goto free_hash;
1510 
1511 	disk->zone_wplugs_wq =
1512 		alloc_workqueue("%s_zwplugs", WQ_MEM_RECLAIM | WQ_HIGHPRI,
1513 				pool_size, disk->disk_name);
1514 	if (!disk->zone_wplugs_wq)
1515 		goto destroy_pool;
1516 
1517 	return 0;
1518 
1519 destroy_pool:
1520 	mempool_destroy(disk->zone_wplugs_pool);
1521 	disk->zone_wplugs_pool = NULL;
1522 free_hash:
1523 	kfree(disk->zone_wplugs_hash);
1524 	disk->zone_wplugs_hash = NULL;
1525 	disk->zone_wplugs_hash_bits = 0;
1526 	return -ENOMEM;
1527 }
1528 
disk_destroy_zone_wplugs_hash_table(struct gendisk * disk)1529 static void disk_destroy_zone_wplugs_hash_table(struct gendisk *disk)
1530 {
1531 	struct blk_zone_wplug *zwplug;
1532 	unsigned int i;
1533 
1534 	if (!disk->zone_wplugs_hash)
1535 		return;
1536 
1537 	/* Free all the zone write plugs we have. */
1538 	for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) {
1539 		while (!hlist_empty(&disk->zone_wplugs_hash[i])) {
1540 			zwplug = hlist_entry(disk->zone_wplugs_hash[i].first,
1541 					     struct blk_zone_wplug, node);
1542 			atomic_inc(&zwplug->ref);
1543 			disk_remove_zone_wplug(disk, zwplug);
1544 			disk_put_zone_wplug(zwplug);
1545 		}
1546 	}
1547 
1548 	kfree(disk->zone_wplugs_hash);
1549 	disk->zone_wplugs_hash = NULL;
1550 	disk->zone_wplugs_hash_bits = 0;
1551 }
1552 
disk_free_zone_resources(struct gendisk * disk)1553 void disk_free_zone_resources(struct gendisk *disk)
1554 {
1555 	cancel_work_sync(&disk->zone_wplugs_work);
1556 
1557 	if (disk->zone_wplugs_wq) {
1558 		destroy_workqueue(disk->zone_wplugs_wq);
1559 		disk->zone_wplugs_wq = NULL;
1560 	}
1561 
1562 	disk_destroy_zone_wplugs_hash_table(disk);
1563 
1564 	/*
1565 	 * Wait for the zone write plugs to be RCU-freed before
1566 	 * destorying the mempool.
1567 	 */
1568 	rcu_barrier();
1569 
1570 	mempool_destroy(disk->zone_wplugs_pool);
1571 	disk->zone_wplugs_pool = NULL;
1572 
1573 	kfree(disk->conv_zones_bitmap);
1574 	disk->conv_zones_bitmap = NULL;
1575 	disk->zone_capacity = 0;
1576 	disk->last_zone_capacity = 0;
1577 	disk->nr_zones = 0;
1578 }
1579 
disk_need_zone_resources(struct gendisk * disk)1580 static inline bool disk_need_zone_resources(struct gendisk *disk)
1581 {
1582 	/*
1583 	 * All mq zoned devices need zone resources so that the block layer
1584 	 * can automatically handle write BIO plugging. BIO-based device drivers
1585 	 * (e.g. DM devices) are normally responsible for handling zone write
1586 	 * ordering and do not need zone resources, unless the driver requires
1587 	 * zone append emulation.
1588 	 */
1589 	return queue_is_mq(disk->queue) ||
1590 		queue_emulates_zone_append(disk->queue);
1591 }
1592 
disk_revalidate_zone_resources(struct gendisk * disk,unsigned int nr_zones)1593 static int disk_revalidate_zone_resources(struct gendisk *disk,
1594 					  unsigned int nr_zones)
1595 {
1596 	struct queue_limits *lim = &disk->queue->limits;
1597 	unsigned int pool_size;
1598 
1599 	if (!disk_need_zone_resources(disk))
1600 		return 0;
1601 
1602 	/*
1603 	 * If the device has no limit on the maximum number of open and active
1604 	 * zones, use BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE.
1605 	 */
1606 	pool_size = max(lim->max_open_zones, lim->max_active_zones);
1607 	if (!pool_size)
1608 		pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_zones);
1609 
1610 	if (!disk->zone_wplugs_hash)
1611 		return disk_alloc_zone_resources(disk, pool_size);
1612 
1613 	return 0;
1614 }
1615 
1616 struct blk_revalidate_zone_args {
1617 	struct gendisk	*disk;
1618 	unsigned long	*conv_zones_bitmap;
1619 	unsigned int	nr_zones;
1620 	unsigned int	zone_capacity;
1621 	unsigned int	last_zone_capacity;
1622 	sector_t	sector;
1623 };
1624 
1625 /*
1626  * Update the disk zone resources information and device queue limits.
1627  * The disk queue is frozen when this is executed.
1628  */
disk_update_zone_resources(struct gendisk * disk,struct blk_revalidate_zone_args * args)1629 static int disk_update_zone_resources(struct gendisk *disk,
1630 				      struct blk_revalidate_zone_args *args)
1631 {
1632 	struct request_queue *q = disk->queue;
1633 	unsigned int nr_seq_zones, nr_conv_zones = 0;
1634 	unsigned int pool_size;
1635 	struct queue_limits lim;
1636 
1637 	disk->nr_zones = args->nr_zones;
1638 	disk->zone_capacity = args->zone_capacity;
1639 	disk->last_zone_capacity = args->last_zone_capacity;
1640 	swap(disk->conv_zones_bitmap, args->conv_zones_bitmap);
1641 	if (disk->conv_zones_bitmap)
1642 		nr_conv_zones = bitmap_weight(disk->conv_zones_bitmap,
1643 					      disk->nr_zones);
1644 	if (nr_conv_zones >= disk->nr_zones) {
1645 		pr_warn("%s: Invalid number of conventional zones %u / %u\n",
1646 			disk->disk_name, nr_conv_zones, disk->nr_zones);
1647 		return -ENODEV;
1648 	}
1649 
1650 	if (!disk->zone_wplugs_pool)
1651 		return 0;
1652 
1653 	/*
1654 	 * If the device has no limit on the maximum number of open and active
1655 	 * zones, set its max open zone limit to the mempool size to indicate
1656 	 * to the user that there is a potential performance impact due to
1657 	 * dynamic zone write plug allocation when simultaneously writing to
1658 	 * more zones than the size of the mempool.
1659 	 */
1660 	lim = queue_limits_start_update(q);
1661 
1662 	nr_seq_zones = disk->nr_zones - nr_conv_zones;
1663 	pool_size = max(lim.max_open_zones, lim.max_active_zones);
1664 	if (!pool_size)
1665 		pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_seq_zones);
1666 
1667 	mempool_resize(disk->zone_wplugs_pool, pool_size);
1668 
1669 	if (!lim.max_open_zones && !lim.max_active_zones) {
1670 		if (pool_size < nr_seq_zones)
1671 			lim.max_open_zones = pool_size;
1672 		else
1673 			lim.max_open_zones = 0;
1674 	}
1675 
1676 	return queue_limits_commit_update(q, &lim);
1677 }
1678 
blk_revalidate_conv_zone(struct blk_zone * zone,unsigned int idx,struct blk_revalidate_zone_args * args)1679 static int blk_revalidate_conv_zone(struct blk_zone *zone, unsigned int idx,
1680 				    struct blk_revalidate_zone_args *args)
1681 {
1682 	struct gendisk *disk = args->disk;
1683 	struct request_queue *q = disk->queue;
1684 
1685 	if (zone->capacity != zone->len) {
1686 		pr_warn("%s: Invalid conventional zone capacity\n",
1687 			disk->disk_name);
1688 		return -ENODEV;
1689 	}
1690 
1691 	if (disk_zone_is_last(disk, zone))
1692 		args->last_zone_capacity = zone->capacity;
1693 
1694 	if (!disk_need_zone_resources(disk))
1695 		return 0;
1696 
1697 	if (!args->conv_zones_bitmap) {
1698 		args->conv_zones_bitmap =
1699 			blk_alloc_zone_bitmap(q->node, args->nr_zones);
1700 		if (!args->conv_zones_bitmap)
1701 			return -ENOMEM;
1702 	}
1703 
1704 	set_bit(idx, args->conv_zones_bitmap);
1705 
1706 	return 0;
1707 }
1708 
blk_revalidate_seq_zone(struct blk_zone * zone,unsigned int idx,struct blk_revalidate_zone_args * args)1709 static int blk_revalidate_seq_zone(struct blk_zone *zone, unsigned int idx,
1710 				   struct blk_revalidate_zone_args *args)
1711 {
1712 	struct gendisk *disk = args->disk;
1713 	struct blk_zone_wplug *zwplug;
1714 	unsigned int wp_offset;
1715 	unsigned long flags;
1716 
1717 	/*
1718 	 * Remember the capacity of the first sequential zone and check
1719 	 * if it is constant for all zones, ignoring the last zone as it can be
1720 	 * smaller.
1721 	 */
1722 	if (!args->zone_capacity)
1723 		args->zone_capacity = zone->capacity;
1724 	if (disk_zone_is_last(disk, zone)) {
1725 		args->last_zone_capacity = zone->capacity;
1726 	} else if (zone->capacity != args->zone_capacity) {
1727 		pr_warn("%s: Invalid variable zone capacity\n",
1728 			disk->disk_name);
1729 		return -ENODEV;
1730 	}
1731 
1732 	/*
1733 	 * We need to track the write pointer of all zones that are not
1734 	 * empty nor full. So make sure we have a zone write plug for
1735 	 * such zone if the device has a zone write plug hash table.
1736 	 */
1737 	if (!disk->zone_wplugs_hash)
1738 		return 0;
1739 
1740 	wp_offset = blk_zone_wp_offset(zone);
1741 	if (!wp_offset || wp_offset >= zone->capacity)
1742 		return 0;
1743 
1744 	zwplug = disk_get_and_lock_zone_wplug(disk, zone->wp, GFP_NOIO, &flags);
1745 	if (!zwplug)
1746 		return -ENOMEM;
1747 	spin_unlock_irqrestore(&zwplug->lock, flags);
1748 	disk_put_zone_wplug(zwplug);
1749 
1750 	return 0;
1751 }
1752 
1753 /*
1754  * Helper function to check the validity of zones of a zoned block device.
1755  */
blk_revalidate_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)1756 static int blk_revalidate_zone_cb(struct blk_zone *zone, unsigned int idx,
1757 				  void *data)
1758 {
1759 	struct blk_revalidate_zone_args *args = data;
1760 	struct gendisk *disk = args->disk;
1761 	sector_t zone_sectors = disk->queue->limits.chunk_sectors;
1762 	int ret;
1763 
1764 	/* Check for bad zones and holes in the zone report */
1765 	if (zone->start != args->sector) {
1766 		pr_warn("%s: Zone gap at sectors %llu..%llu\n",
1767 			disk->disk_name, args->sector, zone->start);
1768 		return -ENODEV;
1769 	}
1770 
1771 	if (zone->start >= get_capacity(disk) || !zone->len) {
1772 		pr_warn("%s: Invalid zone start %llu, length %llu\n",
1773 			disk->disk_name, zone->start, zone->len);
1774 		return -ENODEV;
1775 	}
1776 
1777 	/*
1778 	 * All zones must have the same size, with the exception on an eventual
1779 	 * smaller last zone.
1780 	 */
1781 	if (!disk_zone_is_last(disk, zone)) {
1782 		if (zone->len != zone_sectors) {
1783 			pr_warn("%s: Invalid zoned device with non constant zone size\n",
1784 				disk->disk_name);
1785 			return -ENODEV;
1786 		}
1787 	} else if (zone->len > zone_sectors) {
1788 		pr_warn("%s: Invalid zoned device with larger last zone size\n",
1789 			disk->disk_name);
1790 		return -ENODEV;
1791 	}
1792 
1793 	if (!zone->capacity || zone->capacity > zone->len) {
1794 		pr_warn("%s: Invalid zone capacity\n",
1795 			disk->disk_name);
1796 		return -ENODEV;
1797 	}
1798 
1799 	/* Check zone type */
1800 	switch (zone->type) {
1801 	case BLK_ZONE_TYPE_CONVENTIONAL:
1802 		ret = blk_revalidate_conv_zone(zone, idx, args);
1803 		break;
1804 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1805 		ret = blk_revalidate_seq_zone(zone, idx, args);
1806 		break;
1807 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1808 	default:
1809 		pr_warn("%s: Invalid zone type 0x%x at sectors %llu\n",
1810 			disk->disk_name, (int)zone->type, zone->start);
1811 		ret = -ENODEV;
1812 	}
1813 
1814 	if (!ret)
1815 		args->sector += zone->len;
1816 
1817 	return ret;
1818 }
1819 
1820 /**
1821  * blk_revalidate_disk_zones - (re)allocate and initialize zone write plugs
1822  * @disk:	Target disk
1823  *
1824  * Helper function for low-level device drivers to check, (re) allocate and
1825  * initialize resources used for managing zoned disks. This function should
1826  * normally be called by blk-mq based drivers when a zoned gendisk is probed
1827  * and when the zone configuration of the gendisk changes (e.g. after a format).
1828  * Before calling this function, the device driver must already have set the
1829  * device zone size (chunk_sector limit) and the max zone append limit.
1830  * BIO based drivers can also use this function as long as the device queue
1831  * can be safely frozen.
1832  */
blk_revalidate_disk_zones(struct gendisk * disk)1833 int blk_revalidate_disk_zones(struct gendisk *disk)
1834 {
1835 	struct request_queue *q = disk->queue;
1836 	sector_t zone_sectors = q->limits.chunk_sectors;
1837 	sector_t capacity = get_capacity(disk);
1838 	struct blk_revalidate_zone_args args = { };
1839 	unsigned int noio_flag;
1840 	int ret = -ENOMEM;
1841 
1842 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1843 		return -EIO;
1844 
1845 	if (!capacity)
1846 		return -ENODEV;
1847 
1848 	/*
1849 	 * Checks that the device driver indicated a valid zone size and that
1850 	 * the max zone append limit is set.
1851 	 */
1852 	if (!zone_sectors || !is_power_of_2(zone_sectors)) {
1853 		pr_warn("%s: Invalid non power of two zone size (%llu)\n",
1854 			disk->disk_name, zone_sectors);
1855 		return -ENODEV;
1856 	}
1857 
1858 	if (!queue_max_zone_append_sectors(q)) {
1859 		pr_warn("%s: Invalid 0 maximum zone append limit\n",
1860 			disk->disk_name);
1861 		return -ENODEV;
1862 	}
1863 
1864 	/*
1865 	 * Ensure that all memory allocations in this context are done as if
1866 	 * GFP_NOIO was specified.
1867 	 */
1868 	args.disk = disk;
1869 	args.nr_zones = (capacity + zone_sectors - 1) >> ilog2(zone_sectors);
1870 	noio_flag = memalloc_noio_save();
1871 	ret = disk_revalidate_zone_resources(disk, args.nr_zones);
1872 	if (ret) {
1873 		memalloc_noio_restore(noio_flag);
1874 		return ret;
1875 	}
1876 	ret = disk->fops->report_zones(disk, 0, UINT_MAX,
1877 				       blk_revalidate_zone_cb, &args);
1878 	if (!ret) {
1879 		pr_warn("%s: No zones reported\n", disk->disk_name);
1880 		ret = -ENODEV;
1881 	}
1882 	memalloc_noio_restore(noio_flag);
1883 
1884 	/*
1885 	 * If zones where reported, make sure that the entire disk capacity
1886 	 * has been checked.
1887 	 */
1888 	if (ret > 0 && args.sector != capacity) {
1889 		pr_warn("%s: Missing zones from sector %llu\n",
1890 			disk->disk_name, args.sector);
1891 		ret = -ENODEV;
1892 	}
1893 
1894 	/*
1895 	 * Set the new disk zone parameters only once the queue is frozen and
1896 	 * all I/Os are completed.
1897 	 */
1898 	blk_mq_freeze_queue(q);
1899 	if (ret > 0)
1900 		ret = disk_update_zone_resources(disk, &args);
1901 	else
1902 		pr_warn("%s: failed to revalidate zones\n", disk->disk_name);
1903 	if (ret)
1904 		disk_free_zone_resources(disk);
1905 	blk_mq_unfreeze_queue(q);
1906 
1907 	kfree(args.conv_zones_bitmap);
1908 
1909 	return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(blk_revalidate_disk_zones);
1912 
1913 #ifdef CONFIG_BLK_DEBUG_FS
1914 
queue_zone_wplugs_show(void * data,struct seq_file * m)1915 int queue_zone_wplugs_show(void *data, struct seq_file *m)
1916 {
1917 	struct request_queue *q = data;
1918 	struct gendisk *disk = q->disk;
1919 	struct blk_zone_wplug *zwplug;
1920 	unsigned int zwp_wp_offset, zwp_flags;
1921 	unsigned int zwp_zone_no, zwp_ref;
1922 	unsigned int zwp_bio_list_size, i;
1923 	unsigned long flags;
1924 
1925 	if (!disk->zone_wplugs_hash)
1926 		return 0;
1927 
1928 	rcu_read_lock();
1929 	for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) {
1930 		hlist_for_each_entry_rcu(zwplug,
1931 					 &disk->zone_wplugs_hash[i], node) {
1932 			spin_lock_irqsave(&zwplug->lock, flags);
1933 			zwp_zone_no = zwplug->zone_no;
1934 			zwp_flags = zwplug->flags;
1935 			zwp_ref = atomic_read(&zwplug->ref);
1936 			zwp_wp_offset = zwplug->wp_offset;
1937 			zwp_bio_list_size = bio_list_size(&zwplug->bio_list);
1938 			spin_unlock_irqrestore(&zwplug->lock, flags);
1939 
1940 			seq_printf(m, "%u 0x%x %u %u %u\n",
1941 				   zwp_zone_no, zwp_flags, zwp_ref,
1942 				   zwp_wp_offset, zwp_bio_list_size);
1943 		}
1944 	}
1945 	rcu_read_unlock();
1946 
1947 	return 0;
1948 }
1949 
1950 #endif
1951