xref: /qemu/block/block-copy.c (revision 0fd05c8d)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "block/block_int-io.h"
21 #include "block/dirty-bitmap.h"
22 #include "block/reqlist.h"
23 #include "sysemu/block-backend.h"
24 #include "qemu/units.h"
25 #include "qemu/co-shared-resource.h"
26 #include "qemu/coroutine.h"
27 #include "qemu/ratelimit.h"
28 #include "block/aio_task.h"
29 #include "qemu/error-report.h"
30 #include "qemu/memalign.h"
31 
32 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
33 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
34 #define BLOCK_COPY_MAX_MEM (128 * MiB)
35 #define BLOCK_COPY_MAX_WORKERS 64
36 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
37 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
38 
39 typedef enum {
40     COPY_READ_WRITE_CLUSTER,
41     COPY_READ_WRITE,
42     COPY_WRITE_ZEROES,
43     COPY_RANGE_SMALL,
44     COPY_RANGE_FULL
45 } BlockCopyMethod;
46 
47 static coroutine_fn int block_copy_task_entry(AioTask *task);
48 
49 typedef struct BlockCopyCallState {
50     /* Fields initialized in block_copy_async() and never changed. */
51     BlockCopyState *s;
52     int64_t offset;
53     int64_t bytes;
54     int max_workers;
55     int64_t max_chunk;
56     bool ignore_ratelimit;
57     BlockCopyAsyncCallbackFunc cb;
58     void *cb_opaque;
59     /* Coroutine where async block-copy is running */
60     Coroutine *co;
61 
62     /* Fields whose state changes throughout the execution */
63     bool finished; /* atomic */
64     QemuCoSleep sleep; /* TODO: protect API with a lock */
65     bool cancelled; /* atomic */
66     /* To reference all call states from BlockCopyState */
67     QLIST_ENTRY(BlockCopyCallState) list;
68 
69     /*
70      * Fields that report information about return values and errors.
71      * Protected by lock in BlockCopyState.
72      */
73     bool error_is_read;
74     /*
75      * @ret is set concurrently by tasks under mutex. Only set once by first
76      * failed task (and untouched if no task failed).
77      * After finishing (call_state->finished is true), it is not modified
78      * anymore and may be safely read without mutex.
79      */
80     int ret;
81 } BlockCopyCallState;
82 
83 typedef struct BlockCopyTask {
84     AioTask task;
85 
86     /*
87      * Fields initialized in block_copy_task_create()
88      * and never changed.
89      */
90     BlockCopyState *s;
91     BlockCopyCallState *call_state;
92     /*
93      * @method can also be set again in the while loop of
94      * block_copy_dirty_clusters(), but it is never accessed concurrently
95      * because the only other function that reads it is
96      * block_copy_task_entry() and it is invoked afterwards in the same
97      * iteration.
98      */
99     BlockCopyMethod method;
100 
101     /*
102      * Generally, req is protected by lock in BlockCopyState, Still req.offset
103      * is only set on task creation, so may be read concurrently after creation.
104      * req.bytes is changed at most once, and need only protecting the case of
105      * parallel read while updating @bytes value in block_copy_task_shrink().
106      */
107     BlockReq req;
108 } BlockCopyTask;
109 
task_end(BlockCopyTask * task)110 static int64_t task_end(BlockCopyTask *task)
111 {
112     return task->req.offset + task->req.bytes;
113 }
114 
115 typedef struct BlockCopyState {
116     /*
117      * BdrvChild objects are not owned or managed by block-copy. They are
118      * provided by block-copy user and user is responsible for appropriate
119      * permissions on these children.
120      */
121     BdrvChild *source;
122     BdrvChild *target;
123 
124     /*
125      * Fields initialized in block_copy_state_new()
126      * and never changed.
127      */
128     int64_t cluster_size;
129     int64_t max_transfer;
130     uint64_t len;
131     BdrvRequestFlags write_flags;
132 
133     /*
134      * Fields whose state changes throughout the execution
135      * Protected by lock.
136      */
137     CoMutex lock;
138     int64_t in_flight_bytes;
139     BlockCopyMethod method;
140     bool discard_source;
141     BlockReqList reqs;
142     QLIST_HEAD(, BlockCopyCallState) calls;
143     /*
144      * skip_unallocated:
145      *
146      * Used by sync=top jobs, which first scan the source node for unallocated
147      * areas and clear them in the copy_bitmap.  During this process, the bitmap
148      * is thus not fully initialized: It may still have bits set for areas that
149      * are unallocated and should actually not be copied.
150      *
151      * This is indicated by skip_unallocated.
152      *
153      * In this case, block_copy() will query the source’s allocation status,
154      * skip unallocated regions, clear them in the copy_bitmap, and invoke
155      * block_copy_reset_unallocated() every time it does.
156      */
157     bool skip_unallocated; /* atomic */
158     /* State fields that use a thread-safe API */
159     BdrvDirtyBitmap *copy_bitmap;
160     ProgressMeter *progress;
161     SharedResource *mem;
162     RateLimit rate_limit;
163 } BlockCopyState;
164 
165 /* Called with lock held */
block_copy_chunk_size(BlockCopyState * s)166 static int64_t block_copy_chunk_size(BlockCopyState *s)
167 {
168     switch (s->method) {
169     case COPY_READ_WRITE_CLUSTER:
170         return s->cluster_size;
171     case COPY_READ_WRITE:
172     case COPY_RANGE_SMALL:
173         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
174                    s->max_transfer);
175     case COPY_RANGE_FULL:
176         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
177                    s->max_transfer);
178     default:
179         /* Cannot have COPY_WRITE_ZEROES here.  */
180         abort();
181     }
182 }
183 
184 /*
185  * Search for the first dirty area in offset/bytes range and create task at
186  * the beginning of it.
187  */
188 static coroutine_fn BlockCopyTask *
block_copy_task_create(BlockCopyState * s,BlockCopyCallState * call_state,int64_t offset,int64_t bytes)189 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
190                        int64_t offset, int64_t bytes)
191 {
192     BlockCopyTask *task;
193     int64_t max_chunk;
194 
195     QEMU_LOCK_GUARD(&s->lock);
196     max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
197     if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
198                                            offset, offset + bytes,
199                                            max_chunk, &offset, &bytes))
200     {
201         return NULL;
202     }
203 
204     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
205     bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
206 
207     /* region is dirty, so no existent tasks possible in it */
208     assert(!reqlist_find_conflict(&s->reqs, offset, bytes));
209 
210     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
211     s->in_flight_bytes += bytes;
212 
213     task = g_new(BlockCopyTask, 1);
214     *task = (BlockCopyTask) {
215         .task.func = block_copy_task_entry,
216         .s = s,
217         .call_state = call_state,
218         .method = s->method,
219     };
220     reqlist_init_req(&s->reqs, &task->req, offset, bytes);
221 
222     return task;
223 }
224 
225 /*
226  * block_copy_task_shrink
227  *
228  * Drop the tail of the task to be handled later. Set dirty bits back and
229  * wake up all tasks waiting for us (may be some of them are not intersecting
230  * with shrunk task)
231  */
block_copy_task_shrink(BlockCopyTask * task,int64_t new_bytes)232 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
233                                                 int64_t new_bytes)
234 {
235     QEMU_LOCK_GUARD(&task->s->lock);
236     if (new_bytes == task->req.bytes) {
237         return;
238     }
239 
240     assert(new_bytes > 0 && new_bytes < task->req.bytes);
241 
242     task->s->in_flight_bytes -= task->req.bytes - new_bytes;
243     bdrv_set_dirty_bitmap(task->s->copy_bitmap,
244                           task->req.offset + new_bytes,
245                           task->req.bytes - new_bytes);
246 
247     reqlist_shrink_req(&task->req, new_bytes);
248 }
249 
block_copy_task_end(BlockCopyTask * task,int ret)250 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
251 {
252     QEMU_LOCK_GUARD(&task->s->lock);
253     task->s->in_flight_bytes -= task->req.bytes;
254     if (ret < 0) {
255         bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset,
256                               task->req.bytes);
257     }
258     if (task->s->progress) {
259         progress_set_remaining(task->s->progress,
260                                bdrv_get_dirty_count(task->s->copy_bitmap) +
261                                task->s->in_flight_bytes);
262     }
263     reqlist_remove_req(&task->req);
264 }
265 
block_copy_state_free(BlockCopyState * s)266 void block_copy_state_free(BlockCopyState *s)
267 {
268     if (!s) {
269         return;
270     }
271 
272     ratelimit_destroy(&s->rate_limit);
273     bdrv_release_dirty_bitmap(s->copy_bitmap);
274     shres_destroy(s->mem);
275     g_free(s);
276 }
277 
block_copy_max_transfer(BdrvChild * source,BdrvChild * target)278 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
279 {
280     return MIN_NON_ZERO(INT_MAX,
281                         MIN_NON_ZERO(source->bs->bl.max_transfer,
282                                      target->bs->bl.max_transfer));
283 }
284 
block_copy_set_copy_opts(BlockCopyState * s,bool use_copy_range,bool compress)285 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
286                               bool compress)
287 {
288     /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
289     s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
290         (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
291 
292     if (s->max_transfer < s->cluster_size) {
293         /*
294          * copy_range does not respect max_transfer. We don't want to bother
295          * with requests smaller than block-copy cluster size, so fallback to
296          * buffered copying (read and write respect max_transfer on their
297          * behalf).
298          */
299         s->method = COPY_READ_WRITE_CLUSTER;
300     } else if (compress) {
301         /* Compression supports only cluster-size writes and no copy-range. */
302         s->method = COPY_READ_WRITE_CLUSTER;
303     } else {
304         /*
305          * If copy range enabled, start with COPY_RANGE_SMALL, until first
306          * successful copy_range (look at block_copy_do_copy).
307          */
308         s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
309     }
310 }
311 
block_copy_calculate_cluster_size(BlockDriverState * target,Error ** errp)312 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
313                                                  Error **errp)
314 {
315     int ret;
316     BlockDriverInfo bdi;
317     bool target_does_cow;
318 
319     GLOBAL_STATE_CODE();
320     GRAPH_RDLOCK_GUARD_MAINLOOP();
321 
322     target_does_cow = bdrv_backing_chain_next(target);
323 
324     /*
325      * If there is no backing file on the target, we cannot rely on COW if our
326      * backup cluster size is smaller than the target cluster size. Even for
327      * targets with a backing file, try to avoid COW if possible.
328      */
329     ret = bdrv_get_info(target, &bdi);
330     if (ret == -ENOTSUP && !target_does_cow) {
331         /* Cluster size is not defined */
332         warn_report("The target block device doesn't provide "
333                     "information about the block size and it doesn't have a "
334                     "backing file. The default block size of %u bytes is "
335                     "used. If the actual block size of the target exceeds "
336                     "this default, the backup may be unusable",
337                     BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
338         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
339     } else if (ret < 0 && !target_does_cow) {
340         error_setg_errno(errp, -ret,
341             "Couldn't determine the cluster size of the target image, "
342             "which has no backing file");
343         error_append_hint(errp,
344             "Aborting, since this may create an unusable destination image\n");
345         return ret;
346     } else if (ret < 0 && target_does_cow) {
347         /* Not fatal; just trudge on ahead. */
348         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
349     }
350 
351     return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
352 }
353 
block_copy_state_new(BdrvChild * source,BdrvChild * target,BlockDriverState * copy_bitmap_bs,const BdrvDirtyBitmap * bitmap,bool discard_source,Error ** errp)354 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
355                                      BlockDriverState *copy_bitmap_bs,
356                                      const BdrvDirtyBitmap *bitmap,
357                                      bool discard_source,
358                                      Error **errp)
359 {
360     ERRP_GUARD();
361     BlockCopyState *s;
362     int64_t cluster_size;
363     BdrvDirtyBitmap *copy_bitmap;
364     bool is_fleecing;
365 
366     GLOBAL_STATE_CODE();
367 
368     cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
369     if (cluster_size < 0) {
370         return NULL;
371     }
372 
373     copy_bitmap = bdrv_create_dirty_bitmap(copy_bitmap_bs, cluster_size, NULL,
374                                            errp);
375     if (!copy_bitmap) {
376         return NULL;
377     }
378     bdrv_disable_dirty_bitmap(copy_bitmap);
379     if (bitmap) {
380         if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) {
381             error_prepend(errp, "Failed to merge bitmap '%s' to internal "
382                           "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap));
383             bdrv_release_dirty_bitmap(copy_bitmap);
384             return NULL;
385         }
386     } else {
387         bdrv_set_dirty_bitmap(copy_bitmap, 0,
388                               bdrv_dirty_bitmap_size(copy_bitmap));
389     }
390 
391     /*
392      * If source is in backing chain of target assume that target is going to be
393      * used for "image fleecing", i.e. it should represent a kind of snapshot of
394      * source at backup-start point in time. And target is going to be read by
395      * somebody (for example, used as NBD export) during backup job.
396      *
397      * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
398      * intersection of backup writes and third party reads from target,
399      * otherwise reading from target we may occasionally read already updated by
400      * guest data.
401      *
402      * For more information see commit f8d59dfb40bb and test
403      * tests/qemu-iotests/222
404      */
405     bdrv_graph_rdlock_main_loop();
406     is_fleecing = bdrv_chain_contains(target->bs, source->bs);
407     bdrv_graph_rdunlock_main_loop();
408 
409     s = g_new(BlockCopyState, 1);
410     *s = (BlockCopyState) {
411         .source = source,
412         .target = target,
413         .copy_bitmap = copy_bitmap,
414         .cluster_size = cluster_size,
415         .len = bdrv_dirty_bitmap_size(copy_bitmap),
416         .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
417         .mem = shres_create(BLOCK_COPY_MAX_MEM),
418         .max_transfer = QEMU_ALIGN_DOWN(
419                                     block_copy_max_transfer(source, target),
420                                     cluster_size),
421     };
422 
423     s->discard_source = discard_source;
424     block_copy_set_copy_opts(s, false, false);
425 
426     ratelimit_init(&s->rate_limit);
427     qemu_co_mutex_init(&s->lock);
428     QLIST_INIT(&s->reqs);
429     QLIST_INIT(&s->calls);
430 
431     return s;
432 }
433 
434 /* Only set before running the job, no need for locking. */
block_copy_set_progress_meter(BlockCopyState * s,ProgressMeter * pm)435 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
436 {
437     s->progress = pm;
438 }
439 
440 /*
441  * Takes ownership of @task
442  *
443  * If pool is NULL directly run the task, otherwise schedule it into the pool.
444  *
445  * Returns: task.func return code if pool is NULL
446  *          otherwise -ECANCELED if pool status is bad
447  *          otherwise 0 (successfully scheduled)
448  */
block_copy_task_run(AioTaskPool * pool,BlockCopyTask * task)449 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
450                                             BlockCopyTask *task)
451 {
452     if (!pool) {
453         int ret = task->task.func(&task->task);
454 
455         g_free(task);
456         return ret;
457     }
458 
459     aio_task_pool_wait_slot(pool);
460     if (aio_task_pool_status(pool) < 0) {
461         co_put_to_shres(task->s->mem, task->req.bytes);
462         block_copy_task_end(task, -ECANCELED);
463         g_free(task);
464         return -ECANCELED;
465     }
466 
467     aio_task_pool_start_task(pool, &task->task);
468 
469     return 0;
470 }
471 
472 /*
473  * block_copy_do_copy
474  *
475  * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
476  * s->len only to cover last cluster when s->len is not aligned to clusters.
477  *
478  * No sync here: neither bitmap nor intersecting requests handling, only copy.
479  *
480  * @method is an in-out argument, so that copy_range can be either extended to
481  * a full-size buffer or disabled if the copy_range attempt fails.  The output
482  * value of @method should be used for subsequent tasks.
483  * Returns 0 on success.
484  */
485 static int coroutine_fn GRAPH_RDLOCK
block_copy_do_copy(BlockCopyState * s,int64_t offset,int64_t bytes,BlockCopyMethod * method,bool * error_is_read)486 block_copy_do_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
487                    BlockCopyMethod *method, bool *error_is_read)
488 {
489     int ret;
490     int64_t nbytes = MIN(offset + bytes, s->len) - offset;
491     void *bounce_buffer = NULL;
492 
493     assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
494     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
495     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
496     assert(offset < s->len);
497     assert(offset + bytes <= s->len ||
498            offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
499     assert(nbytes < INT_MAX);
500 
501     switch (*method) {
502     case COPY_WRITE_ZEROES:
503         ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
504                                     ~BDRV_REQ_WRITE_COMPRESSED);
505         if (ret < 0) {
506             trace_block_copy_write_zeroes_fail(s, offset, ret);
507             *error_is_read = false;
508         }
509         return ret;
510 
511     case COPY_RANGE_SMALL:
512     case COPY_RANGE_FULL:
513         ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
514                                  0, s->write_flags);
515         if (ret >= 0) {
516             /* Successful copy-range, increase chunk size.  */
517             *method = COPY_RANGE_FULL;
518             return 0;
519         }
520 
521         trace_block_copy_copy_range_fail(s, offset, ret);
522         *method = COPY_READ_WRITE;
523         /* Fall through to read+write with allocated buffer */
524 
525     case COPY_READ_WRITE_CLUSTER:
526     case COPY_READ_WRITE:
527         /*
528          * In case of failed copy_range request above, we may proceed with
529          * buffered request larger than BLOCK_COPY_MAX_BUFFER.
530          * Still, further requests will be properly limited, so don't care too
531          * much. Moreover the most likely case (copy_range is unsupported for
532          * the configuration, so the very first copy_range request fails)
533          * is handled by setting large copy_size only after first successful
534          * copy_range.
535          */
536 
537         bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
538 
539         ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
540         if (ret < 0) {
541             trace_block_copy_read_fail(s, offset, ret);
542             *error_is_read = true;
543             goto out;
544         }
545 
546         ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
547                              s->write_flags);
548         if (ret < 0) {
549             trace_block_copy_write_fail(s, offset, ret);
550             *error_is_read = false;
551             goto out;
552         }
553 
554     out:
555         qemu_vfree(bounce_buffer);
556         break;
557 
558     default:
559         abort();
560     }
561 
562     return ret;
563 }
564 
block_copy_task_entry(AioTask * task)565 static coroutine_fn int block_copy_task_entry(AioTask *task)
566 {
567     BlockCopyTask *t = container_of(task, BlockCopyTask, task);
568     BlockCopyState *s = t->s;
569     bool error_is_read = false;
570     BlockCopyMethod method = t->method;
571     int ret;
572 
573     WITH_GRAPH_RDLOCK_GUARD() {
574         ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method,
575                                  &error_is_read);
576     }
577 
578     WITH_QEMU_LOCK_GUARD(&s->lock) {
579         if (s->method == t->method) {
580             s->method = method;
581         }
582 
583         if (ret < 0) {
584             if (!t->call_state->ret) {
585                 t->call_state->ret = ret;
586                 t->call_state->error_is_read = error_is_read;
587             }
588         } else if (s->progress) {
589             progress_work_done(s->progress, t->req.bytes);
590         }
591     }
592     co_put_to_shres(s->mem, t->req.bytes);
593     block_copy_task_end(t, ret);
594 
595     if (s->discard_source && ret == 0) {
596         int64_t nbytes =
597             MIN(t->req.offset + t->req.bytes, s->len) - t->req.offset;
598         bdrv_co_pdiscard(s->source, t->req.offset, nbytes);
599     }
600 
601     return ret;
602 }
603 
604 static coroutine_fn GRAPH_RDLOCK
block_copy_block_status(BlockCopyState * s,int64_t offset,int64_t bytes,int64_t * pnum)605 int block_copy_block_status(BlockCopyState *s, int64_t offset, int64_t bytes,
606                             int64_t *pnum)
607 {
608     int64_t num;
609     BlockDriverState *base;
610     int ret;
611 
612     if (qatomic_read(&s->skip_unallocated)) {
613         base = bdrv_backing_chain_next(s->source->bs);
614     } else {
615         base = NULL;
616     }
617 
618     ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num,
619                                      NULL, NULL);
620     if (ret < 0 || num < s->cluster_size) {
621         /*
622          * On error or if failed to obtain large enough chunk just fallback to
623          * copy one cluster.
624          */
625         num = s->cluster_size;
626         ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
627     } else if (offset + num == s->len) {
628         num = QEMU_ALIGN_UP(num, s->cluster_size);
629     } else {
630         num = QEMU_ALIGN_DOWN(num, s->cluster_size);
631     }
632 
633     *pnum = num;
634     return ret;
635 }
636 
637 /*
638  * Check if the cluster starting at offset is allocated or not.
639  * return via pnum the number of contiguous clusters sharing this allocation.
640  */
641 static int coroutine_fn GRAPH_RDLOCK
block_copy_is_cluster_allocated(BlockCopyState * s,int64_t offset,int64_t * pnum)642 block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
643                                 int64_t *pnum)
644 {
645     BlockDriverState *bs = s->source->bs;
646     int64_t count, total_count = 0;
647     int64_t bytes = s->len - offset;
648     int ret;
649 
650     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
651 
652     while (true) {
653         /* protected in backup_run() */
654         ret = bdrv_co_is_allocated(bs, offset, bytes, &count);
655         if (ret < 0) {
656             return ret;
657         }
658 
659         total_count += count;
660 
661         if (ret || count == 0) {
662             /*
663              * ret: partial segment(s) are considered allocated.
664              * otherwise: unallocated tail is treated as an entire segment.
665              */
666             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
667             return ret;
668         }
669 
670         /* Unallocated segment(s) with uncertain following segment(s) */
671         if (total_count >= s->cluster_size) {
672             *pnum = total_count / s->cluster_size;
673             return 0;
674         }
675 
676         offset += count;
677         bytes -= count;
678     }
679 }
680 
block_copy_reset(BlockCopyState * s,int64_t offset,int64_t bytes)681 void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes)
682 {
683     QEMU_LOCK_GUARD(&s->lock);
684 
685     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
686     if (s->progress) {
687         progress_set_remaining(s->progress,
688                                bdrv_get_dirty_count(s->copy_bitmap) +
689                                s->in_flight_bytes);
690     }
691 }
692 
693 /*
694  * Reset bits in copy_bitmap starting at offset if they represent unallocated
695  * data in the image. May reset subsequent contiguous bits.
696  * @return 0 when the cluster at @offset was unallocated,
697  *         1 otherwise, and -ret on error.
698  */
block_copy_reset_unallocated(BlockCopyState * s,int64_t offset,int64_t * count)699 int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s,
700                                                   int64_t offset,
701                                                   int64_t *count)
702 {
703     int ret;
704     int64_t clusters, bytes;
705 
706     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
707     if (ret < 0) {
708         return ret;
709     }
710 
711     bytes = clusters * s->cluster_size;
712 
713     if (!ret) {
714         block_copy_reset(s, offset, bytes);
715     }
716 
717     *count = bytes;
718     return ret;
719 }
720 
721 /*
722  * block_copy_dirty_clusters
723  *
724  * Copy dirty clusters in @offset/@bytes range.
725  * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
726  * clusters found and -errno on failure.
727  */
728 static int coroutine_fn GRAPH_RDLOCK
block_copy_dirty_clusters(BlockCopyCallState * call_state)729 block_copy_dirty_clusters(BlockCopyCallState *call_state)
730 {
731     BlockCopyState *s = call_state->s;
732     int64_t offset = call_state->offset;
733     int64_t bytes = call_state->bytes;
734 
735     int ret = 0;
736     bool found_dirty = false;
737     int64_t end = offset + bytes;
738     AioTaskPool *aio = NULL;
739 
740     /*
741      * block_copy() user is responsible for keeping source and target in same
742      * aio context
743      */
744     assert(bdrv_get_aio_context(s->source->bs) ==
745            bdrv_get_aio_context(s->target->bs));
746 
747     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
748     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
749 
750     while (bytes && aio_task_pool_status(aio) == 0 &&
751            !qatomic_read(&call_state->cancelled)) {
752         BlockCopyTask *task;
753         int64_t status_bytes;
754 
755         task = block_copy_task_create(s, call_state, offset, bytes);
756         if (!task) {
757             /* No more dirty bits in the bitmap */
758             trace_block_copy_skip_range(s, offset, bytes);
759             break;
760         }
761         if (task->req.offset > offset) {
762             trace_block_copy_skip_range(s, offset, task->req.offset - offset);
763         }
764 
765         found_dirty = true;
766 
767         ret = block_copy_block_status(s, task->req.offset, task->req.bytes,
768                                       &status_bytes);
769         assert(ret >= 0); /* never fail */
770         if (status_bytes < task->req.bytes) {
771             block_copy_task_shrink(task, status_bytes);
772         }
773         if (qatomic_read(&s->skip_unallocated) &&
774             !(ret & BDRV_BLOCK_ALLOCATED)) {
775             block_copy_task_end(task, 0);
776             trace_block_copy_skip_range(s, task->req.offset, task->req.bytes);
777             offset = task_end(task);
778             bytes = end - offset;
779             g_free(task);
780             continue;
781         }
782         if (ret & BDRV_BLOCK_ZERO) {
783             task->method = COPY_WRITE_ZEROES;
784         }
785 
786         if (!call_state->ignore_ratelimit) {
787             uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
788             if (ns > 0) {
789                 block_copy_task_end(task, -EAGAIN);
790                 g_free(task);
791                 qemu_co_sleep_ns_wakeable(&call_state->sleep,
792                                           QEMU_CLOCK_REALTIME, ns);
793                 continue;
794             }
795         }
796 
797         ratelimit_calculate_delay(&s->rate_limit, task->req.bytes);
798 
799         trace_block_copy_process(s, task->req.offset);
800 
801         co_get_from_shres(s->mem, task->req.bytes);
802 
803         offset = task_end(task);
804         bytes = end - offset;
805 
806         if (!aio && bytes) {
807             aio = aio_task_pool_new(call_state->max_workers);
808         }
809 
810         ret = block_copy_task_run(aio, task);
811         if (ret < 0) {
812             goto out;
813         }
814     }
815 
816 out:
817     if (aio) {
818         aio_task_pool_wait_all(aio);
819 
820         /*
821          * We are not really interested in -ECANCELED returned from
822          * block_copy_task_run. If it fails, it means some task already failed
823          * for real reason, let's return first failure.
824          * Still, assert that we don't rewrite failure by success.
825          *
826          * Note: ret may be positive here because of block-status result.
827          */
828         assert(ret >= 0 || aio_task_pool_status(aio) < 0);
829         ret = aio_task_pool_status(aio);
830 
831         aio_task_pool_free(aio);
832     }
833 
834     return ret < 0 ? ret : found_dirty;
835 }
836 
block_copy_kick(BlockCopyCallState * call_state)837 void block_copy_kick(BlockCopyCallState *call_state)
838 {
839     qemu_co_sleep_wake(&call_state->sleep);
840 }
841 
842 /*
843  * block_copy_common
844  *
845  * Copy requested region, accordingly to dirty bitmap.
846  * Collaborate with parallel block_copy requests: if they succeed it will help
847  * us. If they fail, we will retry not-copied regions. So, if we return error,
848  * it means that some I/O operation failed in context of _this_ block_copy call,
849  * not some parallel operation.
850  */
851 static int coroutine_fn GRAPH_RDLOCK
block_copy_common(BlockCopyCallState * call_state)852 block_copy_common(BlockCopyCallState *call_state)
853 {
854     int ret;
855     BlockCopyState *s = call_state->s;
856 
857     qemu_co_mutex_lock(&s->lock);
858     QLIST_INSERT_HEAD(&s->calls, call_state, list);
859     qemu_co_mutex_unlock(&s->lock);
860 
861     do {
862         ret = block_copy_dirty_clusters(call_state);
863 
864         if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
865             WITH_QEMU_LOCK_GUARD(&s->lock) {
866                 /*
867                  * Check that there is no task we still need to
868                  * wait to complete
869                  */
870                 ret = reqlist_wait_one(&s->reqs, call_state->offset,
871                                        call_state->bytes, &s->lock);
872                 if (ret == 0) {
873                     /*
874                      * No pending tasks, but check again the bitmap in this
875                      * same critical section, since a task might have failed
876                      * between this and the critical section in
877                      * block_copy_dirty_clusters().
878                      *
879                      * reqlist_wait_one return value 0 also means that it
880                      * didn't release the lock. So, we are still in the same
881                      * critical section, not interrupted by any concurrent
882                      * access to state.
883                      */
884                     ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
885                                                        call_state->offset,
886                                                        call_state->bytes) >= 0;
887                 }
888             }
889         }
890 
891         /*
892          * We retry in two cases:
893          * 1. Some progress done
894          *    Something was copied, which means that there were yield points
895          *    and some new dirty bits may have appeared (due to failed parallel
896          *    block-copy requests).
897          * 2. We have waited for some intersecting block-copy request
898          *    It may have failed and produced new dirty bits.
899          */
900     } while (ret > 0 && !qatomic_read(&call_state->cancelled));
901 
902     qatomic_store_release(&call_state->finished, true);
903 
904     if (call_state->cb) {
905         call_state->cb(call_state->cb_opaque);
906     }
907 
908     qemu_co_mutex_lock(&s->lock);
909     QLIST_REMOVE(call_state, list);
910     qemu_co_mutex_unlock(&s->lock);
911 
912     return ret;
913 }
914 
block_copy_async_co_entry(void * opaque)915 static void coroutine_fn block_copy_async_co_entry(void *opaque)
916 {
917     GRAPH_RDLOCK_GUARD();
918     block_copy_common(opaque);
919 }
920 
block_copy(BlockCopyState * s,int64_t start,int64_t bytes,bool ignore_ratelimit,uint64_t timeout_ns,BlockCopyAsyncCallbackFunc cb,void * cb_opaque)921 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
922                             bool ignore_ratelimit, uint64_t timeout_ns,
923                             BlockCopyAsyncCallbackFunc cb,
924                             void *cb_opaque)
925 {
926     int ret;
927     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
928 
929     *call_state = (BlockCopyCallState) {
930         .s = s,
931         .offset = start,
932         .bytes = bytes,
933         .ignore_ratelimit = ignore_ratelimit,
934         .max_workers = BLOCK_COPY_MAX_WORKERS,
935         .cb = cb,
936         .cb_opaque = cb_opaque,
937     };
938 
939     ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns,
940                           g_free);
941     if (ret < 0) {
942         assert(ret == -ETIMEDOUT);
943         block_copy_call_cancel(call_state);
944         /* call_state will be freed by running coroutine. */
945         return ret;
946     }
947 
948     ret = call_state->ret;
949     g_free(call_state);
950 
951     return ret;
952 }
953 
block_copy_async(BlockCopyState * s,int64_t offset,int64_t bytes,int max_workers,int64_t max_chunk,BlockCopyAsyncCallbackFunc cb,void * cb_opaque)954 BlockCopyCallState *block_copy_async(BlockCopyState *s,
955                                      int64_t offset, int64_t bytes,
956                                      int max_workers, int64_t max_chunk,
957                                      BlockCopyAsyncCallbackFunc cb,
958                                      void *cb_opaque)
959 {
960     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
961 
962     *call_state = (BlockCopyCallState) {
963         .s = s,
964         .offset = offset,
965         .bytes = bytes,
966         .max_workers = max_workers,
967         .max_chunk = max_chunk,
968         .cb = cb,
969         .cb_opaque = cb_opaque,
970 
971         .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
972     };
973 
974     qemu_coroutine_enter(call_state->co);
975 
976     return call_state;
977 }
978 
block_copy_call_free(BlockCopyCallState * call_state)979 void block_copy_call_free(BlockCopyCallState *call_state)
980 {
981     if (!call_state) {
982         return;
983     }
984 
985     assert(qatomic_read(&call_state->finished));
986     g_free(call_state);
987 }
988 
block_copy_call_finished(BlockCopyCallState * call_state)989 bool block_copy_call_finished(BlockCopyCallState *call_state)
990 {
991     return qatomic_read(&call_state->finished);
992 }
993 
block_copy_call_succeeded(BlockCopyCallState * call_state)994 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
995 {
996     return qatomic_load_acquire(&call_state->finished) &&
997            !qatomic_read(&call_state->cancelled) &&
998            call_state->ret == 0;
999 }
1000 
block_copy_call_failed(BlockCopyCallState * call_state)1001 bool block_copy_call_failed(BlockCopyCallState *call_state)
1002 {
1003     return qatomic_load_acquire(&call_state->finished) &&
1004            !qatomic_read(&call_state->cancelled) &&
1005            call_state->ret < 0;
1006 }
1007 
block_copy_call_cancelled(BlockCopyCallState * call_state)1008 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
1009 {
1010     return qatomic_read(&call_state->cancelled);
1011 }
1012 
block_copy_call_status(BlockCopyCallState * call_state,bool * error_is_read)1013 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
1014 {
1015     assert(qatomic_load_acquire(&call_state->finished));
1016     if (error_is_read) {
1017         *error_is_read = call_state->error_is_read;
1018     }
1019     return call_state->ret;
1020 }
1021 
1022 /*
1023  * Note that cancelling and finishing are racy.
1024  * User can cancel a block-copy that is already finished.
1025  */
block_copy_call_cancel(BlockCopyCallState * call_state)1026 void block_copy_call_cancel(BlockCopyCallState *call_state)
1027 {
1028     qatomic_set(&call_state->cancelled, true);
1029     block_copy_kick(call_state);
1030 }
1031 
block_copy_dirty_bitmap(BlockCopyState * s)1032 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1033 {
1034     return s->copy_bitmap;
1035 }
1036 
block_copy_cluster_size(BlockCopyState * s)1037 int64_t block_copy_cluster_size(BlockCopyState *s)
1038 {
1039     return s->cluster_size;
1040 }
1041 
block_copy_set_skip_unallocated(BlockCopyState * s,bool skip)1042 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1043 {
1044     qatomic_set(&s->skip_unallocated, skip);
1045 }
1046 
block_copy_set_speed(BlockCopyState * s,uint64_t speed)1047 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1048 {
1049     ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1050 
1051     /*
1052      * Note: it's good to kick all call states from here, but it should be done
1053      * only from a coroutine, to not crash if s->calls list changed while
1054      * entering one call. So for now, the only user of this function kicks its
1055      * only one call_state by hand.
1056      */
1057 }
1058