xref: /linux/kernel/bpf/cgroup.c (revision eb166e52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <linux/bpf_lsm.h>
18 #include <linux/bpf_verifier.h>
19 #include <net/sock.h>
20 #include <net/bpf_sk_storage.h>
21 
22 #include "../cgroup/cgroup-internal.h"
23 
24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
25 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
26 
27 /* __always_inline is necessary to prevent indirect call through run_prog
28  * function pointer.
29  */
30 static __always_inline int
bpf_prog_run_array_cg(const struct cgroup_bpf * cgrp,enum cgroup_bpf_attach_type atype,const void * ctx,bpf_prog_run_fn run_prog,int retval,u32 * ret_flags)31 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp,
32 		      enum cgroup_bpf_attach_type atype,
33 		      const void *ctx, bpf_prog_run_fn run_prog,
34 		      int retval, u32 *ret_flags)
35 {
36 	const struct bpf_prog_array_item *item;
37 	const struct bpf_prog *prog;
38 	const struct bpf_prog_array *array;
39 	struct bpf_run_ctx *old_run_ctx;
40 	struct bpf_cg_run_ctx run_ctx;
41 	u32 func_ret;
42 
43 	run_ctx.retval = retval;
44 	migrate_disable();
45 	rcu_read_lock();
46 	array = rcu_dereference(cgrp->effective[atype]);
47 	item = &array->items[0];
48 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
49 	while ((prog = READ_ONCE(item->prog))) {
50 		run_ctx.prog_item = item;
51 		func_ret = run_prog(prog, ctx);
52 		if (ret_flags) {
53 			*(ret_flags) |= (func_ret >> 1);
54 			func_ret &= 1;
55 		}
56 		if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval))
57 			run_ctx.retval = -EPERM;
58 		item++;
59 	}
60 	bpf_reset_run_ctx(old_run_ctx);
61 	rcu_read_unlock();
62 	migrate_enable();
63 	return run_ctx.retval;
64 }
65 
__cgroup_bpf_run_lsm_sock(const void * ctx,const struct bpf_insn * insn)66 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx,
67 				       const struct bpf_insn *insn)
68 {
69 	const struct bpf_prog *shim_prog;
70 	struct sock *sk;
71 	struct cgroup *cgrp;
72 	int ret = 0;
73 	u64 *args;
74 
75 	args = (u64 *)ctx;
76 	sk = (void *)(unsigned long)args[0];
77 	/*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
78 	shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
79 
80 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
81 	if (likely(cgrp))
82 		ret = bpf_prog_run_array_cg(&cgrp->bpf,
83 					    shim_prog->aux->cgroup_atype,
84 					    ctx, bpf_prog_run, 0, NULL);
85 	return ret;
86 }
87 
__cgroup_bpf_run_lsm_socket(const void * ctx,const struct bpf_insn * insn)88 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx,
89 					 const struct bpf_insn *insn)
90 {
91 	const struct bpf_prog *shim_prog;
92 	struct socket *sock;
93 	struct cgroup *cgrp;
94 	int ret = 0;
95 	u64 *args;
96 
97 	args = (u64 *)ctx;
98 	sock = (void *)(unsigned long)args[0];
99 	/*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
100 	shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
101 
102 	cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data);
103 	if (likely(cgrp))
104 		ret = bpf_prog_run_array_cg(&cgrp->bpf,
105 					    shim_prog->aux->cgroup_atype,
106 					    ctx, bpf_prog_run, 0, NULL);
107 	return ret;
108 }
109 
__cgroup_bpf_run_lsm_current(const void * ctx,const struct bpf_insn * insn)110 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx,
111 					  const struct bpf_insn *insn)
112 {
113 	const struct bpf_prog *shim_prog;
114 	struct cgroup *cgrp;
115 	int ret = 0;
116 
117 	/*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
118 	shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
119 
120 	/* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */
121 	cgrp = task_dfl_cgroup(current);
122 	if (likely(cgrp))
123 		ret = bpf_prog_run_array_cg(&cgrp->bpf,
124 					    shim_prog->aux->cgroup_atype,
125 					    ctx, bpf_prog_run, 0, NULL);
126 	return ret;
127 }
128 
129 #ifdef CONFIG_BPF_LSM
130 struct cgroup_lsm_atype {
131 	u32 attach_btf_id;
132 	int refcnt;
133 };
134 
135 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM];
136 
137 static enum cgroup_bpf_attach_type
bpf_cgroup_atype_find(enum bpf_attach_type attach_type,u32 attach_btf_id)138 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
139 {
140 	int i;
141 
142 	lockdep_assert_held(&cgroup_mutex);
143 
144 	if (attach_type != BPF_LSM_CGROUP)
145 		return to_cgroup_bpf_attach_type(attach_type);
146 
147 	for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
148 		if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id)
149 			return CGROUP_LSM_START + i;
150 
151 	for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
152 		if (cgroup_lsm_atype[i].attach_btf_id == 0)
153 			return CGROUP_LSM_START + i;
154 
155 	return -E2BIG;
156 
157 }
158 
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)159 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype)
160 {
161 	int i = cgroup_atype - CGROUP_LSM_START;
162 
163 	lockdep_assert_held(&cgroup_mutex);
164 
165 	WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id &&
166 		     cgroup_lsm_atype[i].attach_btf_id != attach_btf_id);
167 
168 	cgroup_lsm_atype[i].attach_btf_id = attach_btf_id;
169 	cgroup_lsm_atype[i].refcnt++;
170 }
171 
bpf_cgroup_atype_put(int cgroup_atype)172 void bpf_cgroup_atype_put(int cgroup_atype)
173 {
174 	int i = cgroup_atype - CGROUP_LSM_START;
175 
176 	cgroup_lock();
177 	if (--cgroup_lsm_atype[i].refcnt <= 0)
178 		cgroup_lsm_atype[i].attach_btf_id = 0;
179 	WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0);
180 	cgroup_unlock();
181 }
182 #else
183 static enum cgroup_bpf_attach_type
bpf_cgroup_atype_find(enum bpf_attach_type attach_type,u32 attach_btf_id)184 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
185 {
186 	if (attach_type != BPF_LSM_CGROUP)
187 		return to_cgroup_bpf_attach_type(attach_type);
188 	return -EOPNOTSUPP;
189 }
190 #endif /* CONFIG_BPF_LSM */
191 
cgroup_bpf_offline(struct cgroup * cgrp)192 void cgroup_bpf_offline(struct cgroup *cgrp)
193 {
194 	cgroup_get(cgrp);
195 	percpu_ref_kill(&cgrp->bpf.refcnt);
196 }
197 
bpf_cgroup_storages_free(struct bpf_cgroup_storage * storages[])198 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
199 {
200 	enum bpf_cgroup_storage_type stype;
201 
202 	for_each_cgroup_storage_type(stype)
203 		bpf_cgroup_storage_free(storages[stype]);
204 }
205 
bpf_cgroup_storages_alloc(struct bpf_cgroup_storage * storages[],struct bpf_cgroup_storage * new_storages[],enum bpf_attach_type type,struct bpf_prog * prog,struct cgroup * cgrp)206 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
207 				     struct bpf_cgroup_storage *new_storages[],
208 				     enum bpf_attach_type type,
209 				     struct bpf_prog *prog,
210 				     struct cgroup *cgrp)
211 {
212 	enum bpf_cgroup_storage_type stype;
213 	struct bpf_cgroup_storage_key key;
214 	struct bpf_map *map;
215 
216 	key.cgroup_inode_id = cgroup_id(cgrp);
217 	key.attach_type = type;
218 
219 	for_each_cgroup_storage_type(stype) {
220 		map = prog->aux->cgroup_storage[stype];
221 		if (!map)
222 			continue;
223 
224 		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
225 		if (storages[stype])
226 			continue;
227 
228 		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
229 		if (IS_ERR(storages[stype])) {
230 			bpf_cgroup_storages_free(new_storages);
231 			return -ENOMEM;
232 		}
233 
234 		new_storages[stype] = storages[stype];
235 	}
236 
237 	return 0;
238 }
239 
bpf_cgroup_storages_assign(struct bpf_cgroup_storage * dst[],struct bpf_cgroup_storage * src[])240 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
241 				       struct bpf_cgroup_storage *src[])
242 {
243 	enum bpf_cgroup_storage_type stype;
244 
245 	for_each_cgroup_storage_type(stype)
246 		dst[stype] = src[stype];
247 }
248 
bpf_cgroup_storages_link(struct bpf_cgroup_storage * storages[],struct cgroup * cgrp,enum bpf_attach_type attach_type)249 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
250 				     struct cgroup *cgrp,
251 				     enum bpf_attach_type attach_type)
252 {
253 	enum bpf_cgroup_storage_type stype;
254 
255 	for_each_cgroup_storage_type(stype)
256 		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
257 }
258 
259 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
260  * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
261  * doesn't free link memory, which will eventually be done by bpf_link's
262  * release() callback, when its last FD is closed.
263  */
bpf_cgroup_link_auto_detach(struct bpf_cgroup_link * link)264 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
265 {
266 	cgroup_put(link->cgroup);
267 	link->cgroup = NULL;
268 }
269 
270 /**
271  * cgroup_bpf_release() - put references of all bpf programs and
272  *                        release all cgroup bpf data
273  * @work: work structure embedded into the cgroup to modify
274  */
cgroup_bpf_release(struct work_struct * work)275 static void cgroup_bpf_release(struct work_struct *work)
276 {
277 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
278 					       bpf.release_work);
279 	struct bpf_prog_array *old_array;
280 	struct list_head *storages = &cgrp->bpf.storages;
281 	struct bpf_cgroup_storage *storage, *stmp;
282 
283 	unsigned int atype;
284 
285 	cgroup_lock();
286 
287 	for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
288 		struct hlist_head *progs = &cgrp->bpf.progs[atype];
289 		struct bpf_prog_list *pl;
290 		struct hlist_node *pltmp;
291 
292 		hlist_for_each_entry_safe(pl, pltmp, progs, node) {
293 			hlist_del(&pl->node);
294 			if (pl->prog) {
295 				if (pl->prog->expected_attach_type == BPF_LSM_CGROUP)
296 					bpf_trampoline_unlink_cgroup_shim(pl->prog);
297 				bpf_prog_put(pl->prog);
298 			}
299 			if (pl->link) {
300 				if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP)
301 					bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog);
302 				bpf_cgroup_link_auto_detach(pl->link);
303 			}
304 			kfree(pl);
305 			static_branch_dec(&cgroup_bpf_enabled_key[atype]);
306 		}
307 		old_array = rcu_dereference_protected(
308 				cgrp->bpf.effective[atype],
309 				lockdep_is_held(&cgroup_mutex));
310 		bpf_prog_array_free(old_array);
311 	}
312 
313 	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
314 		bpf_cgroup_storage_unlink(storage);
315 		bpf_cgroup_storage_free(storage);
316 	}
317 
318 	cgroup_unlock();
319 
320 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
321 		cgroup_bpf_put(p);
322 
323 	percpu_ref_exit(&cgrp->bpf.refcnt);
324 	cgroup_put(cgrp);
325 }
326 
327 /**
328  * cgroup_bpf_release_fn() - callback used to schedule releasing
329  *                           of bpf cgroup data
330  * @ref: percpu ref counter structure
331  */
cgroup_bpf_release_fn(struct percpu_ref * ref)332 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
333 {
334 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
335 
336 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
337 	queue_work(system_wq, &cgrp->bpf.release_work);
338 }
339 
340 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
341  * link or direct prog.
342  */
prog_list_prog(struct bpf_prog_list * pl)343 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
344 {
345 	if (pl->prog)
346 		return pl->prog;
347 	if (pl->link)
348 		return pl->link->link.prog;
349 	return NULL;
350 }
351 
352 /* count number of elements in the list.
353  * it's slow but the list cannot be long
354  */
prog_list_length(struct hlist_head * head)355 static u32 prog_list_length(struct hlist_head *head)
356 {
357 	struct bpf_prog_list *pl;
358 	u32 cnt = 0;
359 
360 	hlist_for_each_entry(pl, head, node) {
361 		if (!prog_list_prog(pl))
362 			continue;
363 		cnt++;
364 	}
365 	return cnt;
366 }
367 
368 /* if parent has non-overridable prog attached,
369  * disallow attaching new programs to the descendent cgroup.
370  * if parent has overridable or multi-prog, allow attaching
371  */
hierarchy_allows_attach(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)372 static bool hierarchy_allows_attach(struct cgroup *cgrp,
373 				    enum cgroup_bpf_attach_type atype)
374 {
375 	struct cgroup *p;
376 
377 	p = cgroup_parent(cgrp);
378 	if (!p)
379 		return true;
380 	do {
381 		u32 flags = p->bpf.flags[atype];
382 		u32 cnt;
383 
384 		if (flags & BPF_F_ALLOW_MULTI)
385 			return true;
386 		cnt = prog_list_length(&p->bpf.progs[atype]);
387 		WARN_ON_ONCE(cnt > 1);
388 		if (cnt == 1)
389 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
390 		p = cgroup_parent(p);
391 	} while (p);
392 	return true;
393 }
394 
395 /* compute a chain of effective programs for a given cgroup:
396  * start from the list of programs in this cgroup and add
397  * all parent programs.
398  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
399  * to programs in this cgroup
400  */
compute_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array ** array)401 static int compute_effective_progs(struct cgroup *cgrp,
402 				   enum cgroup_bpf_attach_type atype,
403 				   struct bpf_prog_array **array)
404 {
405 	struct bpf_prog_array_item *item;
406 	struct bpf_prog_array *progs;
407 	struct bpf_prog_list *pl;
408 	struct cgroup *p = cgrp;
409 	int cnt = 0;
410 
411 	/* count number of effective programs by walking parents */
412 	do {
413 		if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
414 			cnt += prog_list_length(&p->bpf.progs[atype]);
415 		p = cgroup_parent(p);
416 	} while (p);
417 
418 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
419 	if (!progs)
420 		return -ENOMEM;
421 
422 	/* populate the array with effective progs */
423 	cnt = 0;
424 	p = cgrp;
425 	do {
426 		if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
427 			continue;
428 
429 		hlist_for_each_entry(pl, &p->bpf.progs[atype], node) {
430 			if (!prog_list_prog(pl))
431 				continue;
432 
433 			item = &progs->items[cnt];
434 			item->prog = prog_list_prog(pl);
435 			bpf_cgroup_storages_assign(item->cgroup_storage,
436 						   pl->storage);
437 			cnt++;
438 		}
439 	} while ((p = cgroup_parent(p)));
440 
441 	*array = progs;
442 	return 0;
443 }
444 
activate_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array * old_array)445 static void activate_effective_progs(struct cgroup *cgrp,
446 				     enum cgroup_bpf_attach_type atype,
447 				     struct bpf_prog_array *old_array)
448 {
449 	old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
450 					lockdep_is_held(&cgroup_mutex));
451 	/* free prog array after grace period, since __cgroup_bpf_run_*()
452 	 * might be still walking the array
453 	 */
454 	bpf_prog_array_free(old_array);
455 }
456 
457 /**
458  * cgroup_bpf_inherit() - inherit effective programs from parent
459  * @cgrp: the cgroup to modify
460  */
cgroup_bpf_inherit(struct cgroup * cgrp)461 int cgroup_bpf_inherit(struct cgroup *cgrp)
462 {
463 /* has to use marco instead of const int, since compiler thinks
464  * that array below is variable length
465  */
466 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
467 	struct bpf_prog_array *arrays[NR] = {};
468 	struct cgroup *p;
469 	int ret, i;
470 
471 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
472 			      GFP_KERNEL);
473 	if (ret)
474 		return ret;
475 
476 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
477 		cgroup_bpf_get(p);
478 
479 	for (i = 0; i < NR; i++)
480 		INIT_HLIST_HEAD(&cgrp->bpf.progs[i]);
481 
482 	INIT_LIST_HEAD(&cgrp->bpf.storages);
483 
484 	for (i = 0; i < NR; i++)
485 		if (compute_effective_progs(cgrp, i, &arrays[i]))
486 			goto cleanup;
487 
488 	for (i = 0; i < NR; i++)
489 		activate_effective_progs(cgrp, i, arrays[i]);
490 
491 	return 0;
492 cleanup:
493 	for (i = 0; i < NR; i++)
494 		bpf_prog_array_free(arrays[i]);
495 
496 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
497 		cgroup_bpf_put(p);
498 
499 	percpu_ref_exit(&cgrp->bpf.refcnt);
500 
501 	return -ENOMEM;
502 }
503 
update_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)504 static int update_effective_progs(struct cgroup *cgrp,
505 				  enum cgroup_bpf_attach_type atype)
506 {
507 	struct cgroup_subsys_state *css;
508 	int err;
509 
510 	/* allocate and recompute effective prog arrays */
511 	css_for_each_descendant_pre(css, &cgrp->self) {
512 		struct cgroup *desc = container_of(css, struct cgroup, self);
513 
514 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
515 			continue;
516 
517 		err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
518 		if (err)
519 			goto cleanup;
520 	}
521 
522 	/* all allocations were successful. Activate all prog arrays */
523 	css_for_each_descendant_pre(css, &cgrp->self) {
524 		struct cgroup *desc = container_of(css, struct cgroup, self);
525 
526 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
527 			if (unlikely(desc->bpf.inactive)) {
528 				bpf_prog_array_free(desc->bpf.inactive);
529 				desc->bpf.inactive = NULL;
530 			}
531 			continue;
532 		}
533 
534 		activate_effective_progs(desc, atype, desc->bpf.inactive);
535 		desc->bpf.inactive = NULL;
536 	}
537 
538 	return 0;
539 
540 cleanup:
541 	/* oom while computing effective. Free all computed effective arrays
542 	 * since they were not activated
543 	 */
544 	css_for_each_descendant_pre(css, &cgrp->self) {
545 		struct cgroup *desc = container_of(css, struct cgroup, self);
546 
547 		bpf_prog_array_free(desc->bpf.inactive);
548 		desc->bpf.inactive = NULL;
549 	}
550 
551 	return err;
552 }
553 
554 #define BPF_CGROUP_MAX_PROGS 64
555 
find_attach_entry(struct hlist_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,struct bpf_prog * replace_prog,bool allow_multi)556 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs,
557 					       struct bpf_prog *prog,
558 					       struct bpf_cgroup_link *link,
559 					       struct bpf_prog *replace_prog,
560 					       bool allow_multi)
561 {
562 	struct bpf_prog_list *pl;
563 
564 	/* single-attach case */
565 	if (!allow_multi) {
566 		if (hlist_empty(progs))
567 			return NULL;
568 		return hlist_entry(progs->first, typeof(*pl), node);
569 	}
570 
571 	hlist_for_each_entry(pl, progs, node) {
572 		if (prog && pl->prog == prog && prog != replace_prog)
573 			/* disallow attaching the same prog twice */
574 			return ERR_PTR(-EINVAL);
575 		if (link && pl->link == link)
576 			/* disallow attaching the same link twice */
577 			return ERR_PTR(-EINVAL);
578 	}
579 
580 	/* direct prog multi-attach w/ replacement case */
581 	if (replace_prog) {
582 		hlist_for_each_entry(pl, progs, node) {
583 			if (pl->prog == replace_prog)
584 				/* a match found */
585 				return pl;
586 		}
587 		/* prog to replace not found for cgroup */
588 		return ERR_PTR(-ENOENT);
589 	}
590 
591 	return NULL;
592 }
593 
594 /**
595  * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
596  *                         propagate the change to descendants
597  * @cgrp: The cgroup which descendants to traverse
598  * @prog: A program to attach
599  * @link: A link to attach
600  * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
601  * @type: Type of attach operation
602  * @flags: Option flags
603  *
604  * Exactly one of @prog or @link can be non-null.
605  * Must be called with cgroup_mutex held.
606  */
__cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)607 static int __cgroup_bpf_attach(struct cgroup *cgrp,
608 			       struct bpf_prog *prog, struct bpf_prog *replace_prog,
609 			       struct bpf_cgroup_link *link,
610 			       enum bpf_attach_type type, u32 flags)
611 {
612 	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
613 	struct bpf_prog *old_prog = NULL;
614 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
615 	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
616 	struct bpf_prog *new_prog = prog ? : link->link.prog;
617 	enum cgroup_bpf_attach_type atype;
618 	struct bpf_prog_list *pl;
619 	struct hlist_head *progs;
620 	int err;
621 
622 	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
623 	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
624 		/* invalid combination */
625 		return -EINVAL;
626 	if (link && (prog || replace_prog))
627 		/* only either link or prog/replace_prog can be specified */
628 		return -EINVAL;
629 	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
630 		/* replace_prog implies BPF_F_REPLACE, and vice versa */
631 		return -EINVAL;
632 
633 	atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id);
634 	if (atype < 0)
635 		return -EINVAL;
636 
637 	progs = &cgrp->bpf.progs[atype];
638 
639 	if (!hierarchy_allows_attach(cgrp, atype))
640 		return -EPERM;
641 
642 	if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
643 		/* Disallow attaching non-overridable on top
644 		 * of existing overridable in this cgroup.
645 		 * Disallow attaching multi-prog if overridable or none
646 		 */
647 		return -EPERM;
648 
649 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
650 		return -E2BIG;
651 
652 	pl = find_attach_entry(progs, prog, link, replace_prog,
653 			       flags & BPF_F_ALLOW_MULTI);
654 	if (IS_ERR(pl))
655 		return PTR_ERR(pl);
656 
657 	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
658 				      prog ? : link->link.prog, cgrp))
659 		return -ENOMEM;
660 
661 	if (pl) {
662 		old_prog = pl->prog;
663 	} else {
664 		struct hlist_node *last = NULL;
665 
666 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
667 		if (!pl) {
668 			bpf_cgroup_storages_free(new_storage);
669 			return -ENOMEM;
670 		}
671 		if (hlist_empty(progs))
672 			hlist_add_head(&pl->node, progs);
673 		else
674 			hlist_for_each(last, progs) {
675 				if (last->next)
676 					continue;
677 				hlist_add_behind(&pl->node, last);
678 				break;
679 			}
680 	}
681 
682 	pl->prog = prog;
683 	pl->link = link;
684 	bpf_cgroup_storages_assign(pl->storage, storage);
685 	cgrp->bpf.flags[atype] = saved_flags;
686 
687 	if (type == BPF_LSM_CGROUP) {
688 		err = bpf_trampoline_link_cgroup_shim(new_prog, atype);
689 		if (err)
690 			goto cleanup;
691 	}
692 
693 	err = update_effective_progs(cgrp, atype);
694 	if (err)
695 		goto cleanup_trampoline;
696 
697 	if (old_prog) {
698 		if (type == BPF_LSM_CGROUP)
699 			bpf_trampoline_unlink_cgroup_shim(old_prog);
700 		bpf_prog_put(old_prog);
701 	} else {
702 		static_branch_inc(&cgroup_bpf_enabled_key[atype]);
703 	}
704 	bpf_cgroup_storages_link(new_storage, cgrp, type);
705 	return 0;
706 
707 cleanup_trampoline:
708 	if (type == BPF_LSM_CGROUP)
709 		bpf_trampoline_unlink_cgroup_shim(new_prog);
710 
711 cleanup:
712 	if (old_prog) {
713 		pl->prog = old_prog;
714 		pl->link = NULL;
715 	}
716 	bpf_cgroup_storages_free(new_storage);
717 	if (!old_prog) {
718 		hlist_del(&pl->node);
719 		kfree(pl);
720 	}
721 	return err;
722 }
723 
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)724 static int cgroup_bpf_attach(struct cgroup *cgrp,
725 			     struct bpf_prog *prog, struct bpf_prog *replace_prog,
726 			     struct bpf_cgroup_link *link,
727 			     enum bpf_attach_type type,
728 			     u32 flags)
729 {
730 	int ret;
731 
732 	cgroup_lock();
733 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
734 	cgroup_unlock();
735 	return ret;
736 }
737 
738 /* Swap updated BPF program for given link in effective program arrays across
739  * all descendant cgroups. This function is guaranteed to succeed.
740  */
replace_effective_prog(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_cgroup_link * link)741 static void replace_effective_prog(struct cgroup *cgrp,
742 				   enum cgroup_bpf_attach_type atype,
743 				   struct bpf_cgroup_link *link)
744 {
745 	struct bpf_prog_array_item *item;
746 	struct cgroup_subsys_state *css;
747 	struct bpf_prog_array *progs;
748 	struct bpf_prog_list *pl;
749 	struct hlist_head *head;
750 	struct cgroup *cg;
751 	int pos;
752 
753 	css_for_each_descendant_pre(css, &cgrp->self) {
754 		struct cgroup *desc = container_of(css, struct cgroup, self);
755 
756 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
757 			continue;
758 
759 		/* find position of link in effective progs array */
760 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
761 			if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
762 				continue;
763 
764 			head = &cg->bpf.progs[atype];
765 			hlist_for_each_entry(pl, head, node) {
766 				if (!prog_list_prog(pl))
767 					continue;
768 				if (pl->link == link)
769 					goto found;
770 				pos++;
771 			}
772 		}
773 found:
774 		BUG_ON(!cg);
775 		progs = rcu_dereference_protected(
776 				desc->bpf.effective[atype],
777 				lockdep_is_held(&cgroup_mutex));
778 		item = &progs->items[pos];
779 		WRITE_ONCE(item->prog, link->link.prog);
780 	}
781 }
782 
783 /**
784  * __cgroup_bpf_replace() - Replace link's program and propagate the change
785  *                          to descendants
786  * @cgrp: The cgroup which descendants to traverse
787  * @link: A link for which to replace BPF program
788  * @new_prog: &struct bpf_prog for the target BPF program with its refcnt
789  *            incremented
790  *
791  * Must be called with cgroup_mutex held.
792  */
__cgroup_bpf_replace(struct cgroup * cgrp,struct bpf_cgroup_link * link,struct bpf_prog * new_prog)793 static int __cgroup_bpf_replace(struct cgroup *cgrp,
794 				struct bpf_cgroup_link *link,
795 				struct bpf_prog *new_prog)
796 {
797 	enum cgroup_bpf_attach_type atype;
798 	struct bpf_prog *old_prog;
799 	struct bpf_prog_list *pl;
800 	struct hlist_head *progs;
801 	bool found = false;
802 
803 	atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id);
804 	if (atype < 0)
805 		return -EINVAL;
806 
807 	progs = &cgrp->bpf.progs[atype];
808 
809 	if (link->link.prog->type != new_prog->type)
810 		return -EINVAL;
811 
812 	hlist_for_each_entry(pl, progs, node) {
813 		if (pl->link == link) {
814 			found = true;
815 			break;
816 		}
817 	}
818 	if (!found)
819 		return -ENOENT;
820 
821 	old_prog = xchg(&link->link.prog, new_prog);
822 	replace_effective_prog(cgrp, atype, link);
823 	bpf_prog_put(old_prog);
824 	return 0;
825 }
826 
cgroup_bpf_replace(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)827 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
828 			      struct bpf_prog *old_prog)
829 {
830 	struct bpf_cgroup_link *cg_link;
831 	int ret;
832 
833 	cg_link = container_of(link, struct bpf_cgroup_link, link);
834 
835 	cgroup_lock();
836 	/* link might have been auto-released by dying cgroup, so fail */
837 	if (!cg_link->cgroup) {
838 		ret = -ENOLINK;
839 		goto out_unlock;
840 	}
841 	if (old_prog && link->prog != old_prog) {
842 		ret = -EPERM;
843 		goto out_unlock;
844 	}
845 	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
846 out_unlock:
847 	cgroup_unlock();
848 	return ret;
849 }
850 
find_detach_entry(struct hlist_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,bool allow_multi)851 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs,
852 					       struct bpf_prog *prog,
853 					       struct bpf_cgroup_link *link,
854 					       bool allow_multi)
855 {
856 	struct bpf_prog_list *pl;
857 
858 	if (!allow_multi) {
859 		if (hlist_empty(progs))
860 			/* report error when trying to detach and nothing is attached */
861 			return ERR_PTR(-ENOENT);
862 
863 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
864 		 * allow detaching with invalid FD (prog==NULL) in legacy mode
865 		 */
866 		return hlist_entry(progs->first, typeof(*pl), node);
867 	}
868 
869 	if (!prog && !link)
870 		/* to detach MULTI prog the user has to specify valid FD
871 		 * of the program or link to be detached
872 		 */
873 		return ERR_PTR(-EINVAL);
874 
875 	/* find the prog or link and detach it */
876 	hlist_for_each_entry(pl, progs, node) {
877 		if (pl->prog == prog && pl->link == link)
878 			return pl;
879 	}
880 	return ERR_PTR(-ENOENT);
881 }
882 
883 /**
884  * purge_effective_progs() - After compute_effective_progs fails to alloc new
885  *                           cgrp->bpf.inactive table we can recover by
886  *                           recomputing the array in place.
887  *
888  * @cgrp: The cgroup which descendants to travers
889  * @prog: A program to detach or NULL
890  * @link: A link to detach or NULL
891  * @atype: Type of detach operation
892  */
purge_effective_progs(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_cgroup_link * link,enum cgroup_bpf_attach_type atype)893 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog,
894 				  struct bpf_cgroup_link *link,
895 				  enum cgroup_bpf_attach_type atype)
896 {
897 	struct cgroup_subsys_state *css;
898 	struct bpf_prog_array *progs;
899 	struct bpf_prog_list *pl;
900 	struct hlist_head *head;
901 	struct cgroup *cg;
902 	int pos;
903 
904 	/* recompute effective prog array in place */
905 	css_for_each_descendant_pre(css, &cgrp->self) {
906 		struct cgroup *desc = container_of(css, struct cgroup, self);
907 
908 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
909 			continue;
910 
911 		/* find position of link or prog in effective progs array */
912 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
913 			if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
914 				continue;
915 
916 			head = &cg->bpf.progs[atype];
917 			hlist_for_each_entry(pl, head, node) {
918 				if (!prog_list_prog(pl))
919 					continue;
920 				if (pl->prog == prog && pl->link == link)
921 					goto found;
922 				pos++;
923 			}
924 		}
925 
926 		/* no link or prog match, skip the cgroup of this layer */
927 		continue;
928 found:
929 		progs = rcu_dereference_protected(
930 				desc->bpf.effective[atype],
931 				lockdep_is_held(&cgroup_mutex));
932 
933 		/* Remove the program from the array */
934 		WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos),
935 			  "Failed to purge a prog from array at index %d", pos);
936 	}
937 }
938 
939 /**
940  * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
941  *                         propagate the change to descendants
942  * @cgrp: The cgroup which descendants to traverse
943  * @prog: A program to detach or NULL
944  * @link: A link to detach or NULL
945  * @type: Type of detach operation
946  *
947  * At most one of @prog or @link can be non-NULL.
948  * Must be called with cgroup_mutex held.
949  */
__cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_cgroup_link * link,enum bpf_attach_type type)950 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
951 			       struct bpf_cgroup_link *link, enum bpf_attach_type type)
952 {
953 	enum cgroup_bpf_attach_type atype;
954 	struct bpf_prog *old_prog;
955 	struct bpf_prog_list *pl;
956 	struct hlist_head *progs;
957 	u32 attach_btf_id = 0;
958 	u32 flags;
959 
960 	if (prog)
961 		attach_btf_id = prog->aux->attach_btf_id;
962 	if (link)
963 		attach_btf_id = link->link.prog->aux->attach_btf_id;
964 
965 	atype = bpf_cgroup_atype_find(type, attach_btf_id);
966 	if (atype < 0)
967 		return -EINVAL;
968 
969 	progs = &cgrp->bpf.progs[atype];
970 	flags = cgrp->bpf.flags[atype];
971 
972 	if (prog && link)
973 		/* only one of prog or link can be specified */
974 		return -EINVAL;
975 
976 	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
977 	if (IS_ERR(pl))
978 		return PTR_ERR(pl);
979 
980 	/* mark it deleted, so it's ignored while recomputing effective */
981 	old_prog = pl->prog;
982 	pl->prog = NULL;
983 	pl->link = NULL;
984 
985 	if (update_effective_progs(cgrp, atype)) {
986 		/* if update effective array failed replace the prog with a dummy prog*/
987 		pl->prog = old_prog;
988 		pl->link = link;
989 		purge_effective_progs(cgrp, old_prog, link, atype);
990 	}
991 
992 	/* now can actually delete it from this cgroup list */
993 	hlist_del(&pl->node);
994 
995 	kfree(pl);
996 	if (hlist_empty(progs))
997 		/* last program was detached, reset flags to zero */
998 		cgrp->bpf.flags[atype] = 0;
999 	if (old_prog) {
1000 		if (type == BPF_LSM_CGROUP)
1001 			bpf_trampoline_unlink_cgroup_shim(old_prog);
1002 		bpf_prog_put(old_prog);
1003 	}
1004 	static_branch_dec(&cgroup_bpf_enabled_key[atype]);
1005 	return 0;
1006 }
1007 
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)1008 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
1009 			     enum bpf_attach_type type)
1010 {
1011 	int ret;
1012 
1013 	cgroup_lock();
1014 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
1015 	cgroup_unlock();
1016 	return ret;
1017 }
1018 
1019 /* Must be called with cgroup_mutex held to avoid races. */
__cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)1020 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
1021 			      union bpf_attr __user *uattr)
1022 {
1023 	__u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags);
1024 	bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE;
1025 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
1026 	enum bpf_attach_type type = attr->query.attach_type;
1027 	enum cgroup_bpf_attach_type from_atype, to_atype;
1028 	enum cgroup_bpf_attach_type atype;
1029 	struct bpf_prog_array *effective;
1030 	int cnt, ret = 0, i;
1031 	int total_cnt = 0;
1032 	u32 flags;
1033 
1034 	if (effective_query && prog_attach_flags)
1035 		return -EINVAL;
1036 
1037 	if (type == BPF_LSM_CGROUP) {
1038 		if (!effective_query && attr->query.prog_cnt &&
1039 		    prog_ids && !prog_attach_flags)
1040 			return -EINVAL;
1041 
1042 		from_atype = CGROUP_LSM_START;
1043 		to_atype = CGROUP_LSM_END;
1044 		flags = 0;
1045 	} else {
1046 		from_atype = to_cgroup_bpf_attach_type(type);
1047 		if (from_atype < 0)
1048 			return -EINVAL;
1049 		to_atype = from_atype;
1050 		flags = cgrp->bpf.flags[from_atype];
1051 	}
1052 
1053 	for (atype = from_atype; atype <= to_atype; atype++) {
1054 		if (effective_query) {
1055 			effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
1056 							      lockdep_is_held(&cgroup_mutex));
1057 			total_cnt += bpf_prog_array_length(effective);
1058 		} else {
1059 			total_cnt += prog_list_length(&cgrp->bpf.progs[atype]);
1060 		}
1061 	}
1062 
1063 	/* always output uattr->query.attach_flags as 0 during effective query */
1064 	flags = effective_query ? 0 : flags;
1065 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
1066 		return -EFAULT;
1067 	if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt)))
1068 		return -EFAULT;
1069 	if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt)
1070 		/* return early if user requested only program count + flags */
1071 		return 0;
1072 
1073 	if (attr->query.prog_cnt < total_cnt) {
1074 		total_cnt = attr->query.prog_cnt;
1075 		ret = -ENOSPC;
1076 	}
1077 
1078 	for (atype = from_atype; atype <= to_atype && total_cnt; atype++) {
1079 		if (effective_query) {
1080 			effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
1081 							      lockdep_is_held(&cgroup_mutex));
1082 			cnt = min_t(int, bpf_prog_array_length(effective), total_cnt);
1083 			ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
1084 		} else {
1085 			struct hlist_head *progs;
1086 			struct bpf_prog_list *pl;
1087 			struct bpf_prog *prog;
1088 			u32 id;
1089 
1090 			progs = &cgrp->bpf.progs[atype];
1091 			cnt = min_t(int, prog_list_length(progs), total_cnt);
1092 			i = 0;
1093 			hlist_for_each_entry(pl, progs, node) {
1094 				prog = prog_list_prog(pl);
1095 				id = prog->aux->id;
1096 				if (copy_to_user(prog_ids + i, &id, sizeof(id)))
1097 					return -EFAULT;
1098 				if (++i == cnt)
1099 					break;
1100 			}
1101 
1102 			if (prog_attach_flags) {
1103 				flags = cgrp->bpf.flags[atype];
1104 
1105 				for (i = 0; i < cnt; i++)
1106 					if (copy_to_user(prog_attach_flags + i,
1107 							 &flags, sizeof(flags)))
1108 						return -EFAULT;
1109 				prog_attach_flags += cnt;
1110 			}
1111 		}
1112 
1113 		prog_ids += cnt;
1114 		total_cnt -= cnt;
1115 	}
1116 	return ret;
1117 }
1118 
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)1119 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
1120 			    union bpf_attr __user *uattr)
1121 {
1122 	int ret;
1123 
1124 	cgroup_lock();
1125 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
1126 	cgroup_unlock();
1127 	return ret;
1128 }
1129 
cgroup_bpf_prog_attach(const union bpf_attr * attr,enum bpf_prog_type ptype,struct bpf_prog * prog)1130 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
1131 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
1132 {
1133 	struct bpf_prog *replace_prog = NULL;
1134 	struct cgroup *cgrp;
1135 	int ret;
1136 
1137 	cgrp = cgroup_get_from_fd(attr->target_fd);
1138 	if (IS_ERR(cgrp))
1139 		return PTR_ERR(cgrp);
1140 
1141 	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
1142 	    (attr->attach_flags & BPF_F_REPLACE)) {
1143 		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
1144 		if (IS_ERR(replace_prog)) {
1145 			cgroup_put(cgrp);
1146 			return PTR_ERR(replace_prog);
1147 		}
1148 	}
1149 
1150 	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
1151 				attr->attach_type, attr->attach_flags);
1152 
1153 	if (replace_prog)
1154 		bpf_prog_put(replace_prog);
1155 	cgroup_put(cgrp);
1156 	return ret;
1157 }
1158 
cgroup_bpf_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)1159 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
1160 {
1161 	struct bpf_prog *prog;
1162 	struct cgroup *cgrp;
1163 	int ret;
1164 
1165 	cgrp = cgroup_get_from_fd(attr->target_fd);
1166 	if (IS_ERR(cgrp))
1167 		return PTR_ERR(cgrp);
1168 
1169 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
1170 	if (IS_ERR(prog))
1171 		prog = NULL;
1172 
1173 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
1174 	if (prog)
1175 		bpf_prog_put(prog);
1176 
1177 	cgroup_put(cgrp);
1178 	return ret;
1179 }
1180 
bpf_cgroup_link_release(struct bpf_link * link)1181 static void bpf_cgroup_link_release(struct bpf_link *link)
1182 {
1183 	struct bpf_cgroup_link *cg_link =
1184 		container_of(link, struct bpf_cgroup_link, link);
1185 	struct cgroup *cg;
1186 
1187 	/* link might have been auto-detached by dying cgroup already,
1188 	 * in that case our work is done here
1189 	 */
1190 	if (!cg_link->cgroup)
1191 		return;
1192 
1193 	cgroup_lock();
1194 
1195 	/* re-check cgroup under lock again */
1196 	if (!cg_link->cgroup) {
1197 		cgroup_unlock();
1198 		return;
1199 	}
1200 
1201 	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
1202 				    cg_link->type));
1203 	if (cg_link->type == BPF_LSM_CGROUP)
1204 		bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog);
1205 
1206 	cg = cg_link->cgroup;
1207 	cg_link->cgroup = NULL;
1208 
1209 	cgroup_unlock();
1210 
1211 	cgroup_put(cg);
1212 }
1213 
bpf_cgroup_link_dealloc(struct bpf_link * link)1214 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
1215 {
1216 	struct bpf_cgroup_link *cg_link =
1217 		container_of(link, struct bpf_cgroup_link, link);
1218 
1219 	kfree(cg_link);
1220 }
1221 
bpf_cgroup_link_detach(struct bpf_link * link)1222 static int bpf_cgroup_link_detach(struct bpf_link *link)
1223 {
1224 	bpf_cgroup_link_release(link);
1225 
1226 	return 0;
1227 }
1228 
bpf_cgroup_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)1229 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
1230 					struct seq_file *seq)
1231 {
1232 	struct bpf_cgroup_link *cg_link =
1233 		container_of(link, struct bpf_cgroup_link, link);
1234 	u64 cg_id = 0;
1235 
1236 	cgroup_lock();
1237 	if (cg_link->cgroup)
1238 		cg_id = cgroup_id(cg_link->cgroup);
1239 	cgroup_unlock();
1240 
1241 	seq_printf(seq,
1242 		   "cgroup_id:\t%llu\n"
1243 		   "attach_type:\t%d\n",
1244 		   cg_id,
1245 		   cg_link->type);
1246 }
1247 
bpf_cgroup_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)1248 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
1249 					  struct bpf_link_info *info)
1250 {
1251 	struct bpf_cgroup_link *cg_link =
1252 		container_of(link, struct bpf_cgroup_link, link);
1253 	u64 cg_id = 0;
1254 
1255 	cgroup_lock();
1256 	if (cg_link->cgroup)
1257 		cg_id = cgroup_id(cg_link->cgroup);
1258 	cgroup_unlock();
1259 
1260 	info->cgroup.cgroup_id = cg_id;
1261 	info->cgroup.attach_type = cg_link->type;
1262 	return 0;
1263 }
1264 
1265 static const struct bpf_link_ops bpf_cgroup_link_lops = {
1266 	.release = bpf_cgroup_link_release,
1267 	.dealloc = bpf_cgroup_link_dealloc,
1268 	.detach = bpf_cgroup_link_detach,
1269 	.update_prog = cgroup_bpf_replace,
1270 	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
1271 	.fill_link_info = bpf_cgroup_link_fill_link_info,
1272 };
1273 
cgroup_bpf_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)1274 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
1275 {
1276 	struct bpf_link_primer link_primer;
1277 	struct bpf_cgroup_link *link;
1278 	struct cgroup *cgrp;
1279 	int err;
1280 
1281 	if (attr->link_create.flags)
1282 		return -EINVAL;
1283 
1284 	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
1285 	if (IS_ERR(cgrp))
1286 		return PTR_ERR(cgrp);
1287 
1288 	link = kzalloc(sizeof(*link), GFP_USER);
1289 	if (!link) {
1290 		err = -ENOMEM;
1291 		goto out_put_cgroup;
1292 	}
1293 	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
1294 		      prog);
1295 	link->cgroup = cgrp;
1296 	link->type = attr->link_create.attach_type;
1297 
1298 	err = bpf_link_prime(&link->link, &link_primer);
1299 	if (err) {
1300 		kfree(link);
1301 		goto out_put_cgroup;
1302 	}
1303 
1304 	err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
1305 				link->type, BPF_F_ALLOW_MULTI);
1306 	if (err) {
1307 		bpf_link_cleanup(&link_primer);
1308 		goto out_put_cgroup;
1309 	}
1310 
1311 	return bpf_link_settle(&link_primer);
1312 
1313 out_put_cgroup:
1314 	cgroup_put(cgrp);
1315 	return err;
1316 }
1317 
cgroup_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)1318 int cgroup_bpf_prog_query(const union bpf_attr *attr,
1319 			  union bpf_attr __user *uattr)
1320 {
1321 	struct cgroup *cgrp;
1322 	int ret;
1323 
1324 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
1325 	if (IS_ERR(cgrp))
1326 		return PTR_ERR(cgrp);
1327 
1328 	ret = cgroup_bpf_query(cgrp, attr, uattr);
1329 
1330 	cgroup_put(cgrp);
1331 	return ret;
1332 }
1333 
1334 /**
1335  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
1336  * @sk: The socket sending or receiving traffic
1337  * @skb: The skb that is being sent or received
1338  * @atype: The type of program to be executed
1339  *
1340  * If no socket is passed, or the socket is not of type INET or INET6,
1341  * this function does nothing and returns 0.
1342  *
1343  * The program type passed in via @type must be suitable for network
1344  * filtering. No further check is performed to assert that.
1345  *
1346  * For egress packets, this function can return:
1347  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
1348  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
1349  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
1350  *				  to call cwr
1351  *   -err			- drop packet
1352  *
1353  * For ingress packets, this function will return -EPERM if any
1354  * attached program was found and if it returned != 1 during execution.
1355  * Otherwise 0 is returned.
1356  */
__cgroup_bpf_run_filter_skb(struct sock * sk,struct sk_buff * skb,enum cgroup_bpf_attach_type atype)1357 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1358 				struct sk_buff *skb,
1359 				enum cgroup_bpf_attach_type atype)
1360 {
1361 	unsigned int offset = -skb_network_offset(skb);
1362 	struct sock *save_sk;
1363 	void *saved_data_end;
1364 	struct cgroup *cgrp;
1365 	int ret;
1366 
1367 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1368 		return 0;
1369 
1370 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1371 	save_sk = skb->sk;
1372 	skb->sk = sk;
1373 	__skb_push(skb, offset);
1374 
1375 	/* compute pointers for the bpf prog */
1376 	bpf_compute_and_save_data_end(skb, &saved_data_end);
1377 
1378 	if (atype == CGROUP_INET_EGRESS) {
1379 		u32 flags = 0;
1380 		bool cn;
1381 
1382 		ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb,
1383 					    __bpf_prog_run_save_cb, 0, &flags);
1384 
1385 		/* Return values of CGROUP EGRESS BPF programs are:
1386 		 *   0: drop packet
1387 		 *   1: keep packet
1388 		 *   2: drop packet and cn
1389 		 *   3: keep packet and cn
1390 		 *
1391 		 * The returned value is then converted to one of the NET_XMIT
1392 		 * or an error code that is then interpreted as drop packet
1393 		 * (and no cn):
1394 		 *   0: NET_XMIT_SUCCESS  skb should be transmitted
1395 		 *   1: NET_XMIT_DROP     skb should be dropped and cn
1396 		 *   2: NET_XMIT_CN       skb should be transmitted and cn
1397 		 *   3: -err              skb should be dropped
1398 		 */
1399 
1400 		cn = flags & BPF_RET_SET_CN;
1401 		if (ret && !IS_ERR_VALUE((long)ret))
1402 			ret = -EFAULT;
1403 		if (!ret)
1404 			ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS);
1405 		else
1406 			ret = (cn ? NET_XMIT_DROP : ret);
1407 	} else {
1408 		ret = bpf_prog_run_array_cg(&cgrp->bpf, atype,
1409 					    skb, __bpf_prog_run_save_cb, 0,
1410 					    NULL);
1411 		if (ret && !IS_ERR_VALUE((long)ret))
1412 			ret = -EFAULT;
1413 	}
1414 	bpf_restore_data_end(skb, saved_data_end);
1415 	__skb_pull(skb, offset);
1416 	skb->sk = save_sk;
1417 
1418 	return ret;
1419 }
1420 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1421 
1422 /**
1423  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1424  * @sk: sock structure to manipulate
1425  * @atype: The type of program to be executed
1426  *
1427  * socket is passed is expected to be of type INET or INET6.
1428  *
1429  * The program type passed in via @type must be suitable for sock
1430  * filtering. No further check is performed to assert that.
1431  *
1432  * This function will return %-EPERM if any if an attached program was found
1433  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1434  */
__cgroup_bpf_run_filter_sk(struct sock * sk,enum cgroup_bpf_attach_type atype)1435 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1436 			       enum cgroup_bpf_attach_type atype)
1437 {
1438 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1439 
1440 	return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0,
1441 				     NULL);
1442 }
1443 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1444 
1445 /**
1446  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1447  *                                       provided by user sockaddr
1448  * @sk: sock struct that will use sockaddr
1449  * @uaddr: sockaddr struct provided by user
1450  * @uaddrlen: Pointer to the size of the sockaddr struct provided by user. It is
1451  *            read-only for AF_INET[6] uaddr but can be modified for AF_UNIX
1452  *            uaddr.
1453  * @atype: The type of program to be executed
1454  * @t_ctx: Pointer to attach type specific context
1455  * @flags: Pointer to u32 which contains higher bits of BPF program
1456  *         return value (OR'ed together).
1457  *
1458  * socket is expected to be of type INET, INET6 or UNIX.
1459  *
1460  * This function will return %-EPERM if an attached program is found and
1461  * returned value != 1 during execution. In all other cases, 0 is returned.
1462  */
__cgroup_bpf_run_filter_sock_addr(struct sock * sk,struct sockaddr * uaddr,int * uaddrlen,enum cgroup_bpf_attach_type atype,void * t_ctx,u32 * flags)1463 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1464 				      struct sockaddr *uaddr,
1465 				      int *uaddrlen,
1466 				      enum cgroup_bpf_attach_type atype,
1467 				      void *t_ctx,
1468 				      u32 *flags)
1469 {
1470 	struct bpf_sock_addr_kern ctx = {
1471 		.sk = sk,
1472 		.uaddr = uaddr,
1473 		.t_ctx = t_ctx,
1474 	};
1475 	struct sockaddr_storage unspec;
1476 	struct cgroup *cgrp;
1477 	int ret;
1478 
1479 	/* Check socket family since not all sockets represent network
1480 	 * endpoint (e.g. AF_UNIX).
1481 	 */
1482 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6 &&
1483 	    sk->sk_family != AF_UNIX)
1484 		return 0;
1485 
1486 	if (!ctx.uaddr) {
1487 		memset(&unspec, 0, sizeof(unspec));
1488 		ctx.uaddr = (struct sockaddr *)&unspec;
1489 		ctx.uaddrlen = 0;
1490 	} else {
1491 		ctx.uaddrlen = *uaddrlen;
1492 	}
1493 
1494 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1495 	ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run,
1496 				    0, flags);
1497 
1498 	if (!ret && uaddr)
1499 		*uaddrlen = ctx.uaddrlen;
1500 
1501 	return ret;
1502 }
1503 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1504 
1505 /**
1506  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1507  * @sk: socket to get cgroup from
1508  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1509  * sk with connection information (IP addresses, etc.) May not contain
1510  * cgroup info if it is a req sock.
1511  * @atype: The type of program to be executed
1512  *
1513  * socket passed is expected to be of type INET or INET6.
1514  *
1515  * The program type passed in via @type must be suitable for sock_ops
1516  * filtering. No further check is performed to assert that.
1517  *
1518  * This function will return %-EPERM if any if an attached program was found
1519  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1520  */
__cgroup_bpf_run_filter_sock_ops(struct sock * sk,struct bpf_sock_ops_kern * sock_ops,enum cgroup_bpf_attach_type atype)1521 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1522 				     struct bpf_sock_ops_kern *sock_ops,
1523 				     enum cgroup_bpf_attach_type atype)
1524 {
1525 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1526 
1527 	return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run,
1528 				     0, NULL);
1529 }
1530 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1531 
__cgroup_bpf_check_dev_permission(short dev_type,u32 major,u32 minor,short access,enum cgroup_bpf_attach_type atype)1532 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1533 				      short access, enum cgroup_bpf_attach_type atype)
1534 {
1535 	struct cgroup *cgrp;
1536 	struct bpf_cgroup_dev_ctx ctx = {
1537 		.access_type = (access << 16) | dev_type,
1538 		.major = major,
1539 		.minor = minor,
1540 	};
1541 	int ret;
1542 
1543 	rcu_read_lock();
1544 	cgrp = task_dfl_cgroup(current);
1545 	ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
1546 				    NULL);
1547 	rcu_read_unlock();
1548 
1549 	return ret;
1550 }
1551 
BPF_CALL_2(bpf_get_local_storage,struct bpf_map *,map,u64,flags)1552 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
1553 {
1554 	/* flags argument is not used now,
1555 	 * but provides an ability to extend the API.
1556 	 * verifier checks that its value is correct.
1557 	 */
1558 	enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
1559 	struct bpf_cgroup_storage *storage;
1560 	struct bpf_cg_run_ctx *ctx;
1561 	void *ptr;
1562 
1563 	/* get current cgroup storage from BPF run context */
1564 	ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1565 	storage = ctx->prog_item->cgroup_storage[stype];
1566 
1567 	if (stype == BPF_CGROUP_STORAGE_SHARED)
1568 		ptr = &READ_ONCE(storage->buf)->data[0];
1569 	else
1570 		ptr = this_cpu_ptr(storage->percpu_buf);
1571 
1572 	return (unsigned long)ptr;
1573 }
1574 
1575 const struct bpf_func_proto bpf_get_local_storage_proto = {
1576 	.func		= bpf_get_local_storage,
1577 	.gpl_only	= false,
1578 	.ret_type	= RET_PTR_TO_MAP_VALUE,
1579 	.arg1_type	= ARG_CONST_MAP_PTR,
1580 	.arg2_type	= ARG_ANYTHING,
1581 };
1582 
BPF_CALL_0(bpf_get_retval)1583 BPF_CALL_0(bpf_get_retval)
1584 {
1585 	struct bpf_cg_run_ctx *ctx =
1586 		container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1587 
1588 	return ctx->retval;
1589 }
1590 
1591 const struct bpf_func_proto bpf_get_retval_proto = {
1592 	.func		= bpf_get_retval,
1593 	.gpl_only	= false,
1594 	.ret_type	= RET_INTEGER,
1595 };
1596 
BPF_CALL_1(bpf_set_retval,int,retval)1597 BPF_CALL_1(bpf_set_retval, int, retval)
1598 {
1599 	struct bpf_cg_run_ctx *ctx =
1600 		container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1601 
1602 	ctx->retval = retval;
1603 	return 0;
1604 }
1605 
1606 const struct bpf_func_proto bpf_set_retval_proto = {
1607 	.func		= bpf_set_retval,
1608 	.gpl_only	= false,
1609 	.ret_type	= RET_INTEGER,
1610 	.arg1_type	= ARG_ANYTHING,
1611 };
1612 
1613 static const struct bpf_func_proto *
cgroup_dev_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1614 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1615 {
1616 	const struct bpf_func_proto *func_proto;
1617 
1618 	func_proto = cgroup_common_func_proto(func_id, prog);
1619 	if (func_proto)
1620 		return func_proto;
1621 
1622 	func_proto = cgroup_current_func_proto(func_id, prog);
1623 	if (func_proto)
1624 		return func_proto;
1625 
1626 	switch (func_id) {
1627 	case BPF_FUNC_perf_event_output:
1628 		return &bpf_event_output_data_proto;
1629 	default:
1630 		return bpf_base_func_proto(func_id, prog);
1631 	}
1632 }
1633 
cgroup_dev_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1634 static bool cgroup_dev_is_valid_access(int off, int size,
1635 				       enum bpf_access_type type,
1636 				       const struct bpf_prog *prog,
1637 				       struct bpf_insn_access_aux *info)
1638 {
1639 	const int size_default = sizeof(__u32);
1640 
1641 	if (type == BPF_WRITE)
1642 		return false;
1643 
1644 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1645 		return false;
1646 	/* The verifier guarantees that size > 0. */
1647 	if (off % size != 0)
1648 		return false;
1649 
1650 	switch (off) {
1651 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1652 		bpf_ctx_record_field_size(info, size_default);
1653 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1654 			return false;
1655 		break;
1656 	default:
1657 		if (size != size_default)
1658 			return false;
1659 	}
1660 
1661 	return true;
1662 }
1663 
1664 const struct bpf_prog_ops cg_dev_prog_ops = {
1665 };
1666 
1667 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1668 	.get_func_proto		= cgroup_dev_func_proto,
1669 	.is_valid_access	= cgroup_dev_is_valid_access,
1670 };
1671 
1672 /**
1673  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1674  *
1675  * @head: sysctl table header
1676  * @table: sysctl table
1677  * @write: sysctl is being read (= 0) or written (= 1)
1678  * @buf: pointer to buffer (in and out)
1679  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1680  *	result is size of @new_buf if program set new value, initial value
1681  *	otherwise
1682  * @ppos: value-result argument: value is position at which read from or write
1683  *	to sysctl is happening, result is new position if program overrode it,
1684  *	initial value otherwise
1685  * @atype: type of program to be executed
1686  *
1687  * Program is run when sysctl is being accessed, either read or written, and
1688  * can allow or deny such access.
1689  *
1690  * This function will return %-EPERM if an attached program is found and
1691  * returned value != 1 during execution. In all other cases 0 is returned.
1692  */
__cgroup_bpf_run_filter_sysctl(struct ctl_table_header * head,struct ctl_table * table,int write,char ** buf,size_t * pcount,loff_t * ppos,enum cgroup_bpf_attach_type atype)1693 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1694 				   struct ctl_table *table, int write,
1695 				   char **buf, size_t *pcount, loff_t *ppos,
1696 				   enum cgroup_bpf_attach_type atype)
1697 {
1698 	struct bpf_sysctl_kern ctx = {
1699 		.head = head,
1700 		.table = table,
1701 		.write = write,
1702 		.ppos = ppos,
1703 		.cur_val = NULL,
1704 		.cur_len = PAGE_SIZE,
1705 		.new_val = NULL,
1706 		.new_len = 0,
1707 		.new_updated = 0,
1708 	};
1709 	struct cgroup *cgrp;
1710 	loff_t pos = 0;
1711 	int ret;
1712 
1713 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1714 	if (!ctx.cur_val ||
1715 	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1716 		/* Let BPF program decide how to proceed. */
1717 		ctx.cur_len = 0;
1718 	}
1719 
1720 	if (write && *buf && *pcount) {
1721 		/* BPF program should be able to override new value with a
1722 		 * buffer bigger than provided by user.
1723 		 */
1724 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1725 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1726 		if (ctx.new_val) {
1727 			memcpy(ctx.new_val, *buf, ctx.new_len);
1728 		} else {
1729 			/* Let BPF program decide how to proceed. */
1730 			ctx.new_len = 0;
1731 		}
1732 	}
1733 
1734 	rcu_read_lock();
1735 	cgrp = task_dfl_cgroup(current);
1736 	ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
1737 				    NULL);
1738 	rcu_read_unlock();
1739 
1740 	kfree(ctx.cur_val);
1741 
1742 	if (ret == 1 && ctx.new_updated) {
1743 		kfree(*buf);
1744 		*buf = ctx.new_val;
1745 		*pcount = ctx.new_len;
1746 	} else {
1747 		kfree(ctx.new_val);
1748 	}
1749 
1750 	return ret;
1751 }
1752 
1753 #ifdef CONFIG_NET
sockopt_alloc_buf(struct bpf_sockopt_kern * ctx,int max_optlen,struct bpf_sockopt_buf * buf)1754 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1755 			     struct bpf_sockopt_buf *buf)
1756 {
1757 	if (unlikely(max_optlen < 0))
1758 		return -EINVAL;
1759 
1760 	if (unlikely(max_optlen > PAGE_SIZE)) {
1761 		/* We don't expose optvals that are greater than PAGE_SIZE
1762 		 * to the BPF program.
1763 		 */
1764 		max_optlen = PAGE_SIZE;
1765 	}
1766 
1767 	if (max_optlen <= sizeof(buf->data)) {
1768 		/* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1769 		 * bytes avoid the cost of kzalloc.
1770 		 */
1771 		ctx->optval = buf->data;
1772 		ctx->optval_end = ctx->optval + max_optlen;
1773 		return max_optlen;
1774 	}
1775 
1776 	ctx->optval = kzalloc(max_optlen, GFP_USER);
1777 	if (!ctx->optval)
1778 		return -ENOMEM;
1779 
1780 	ctx->optval_end = ctx->optval + max_optlen;
1781 
1782 	return max_optlen;
1783 }
1784 
sockopt_free_buf(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1785 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1786 			     struct bpf_sockopt_buf *buf)
1787 {
1788 	if (ctx->optval == buf->data)
1789 		return;
1790 	kfree(ctx->optval);
1791 }
1792 
sockopt_buf_allocated(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1793 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1794 				  struct bpf_sockopt_buf *buf)
1795 {
1796 	return ctx->optval != buf->data;
1797 }
1798 
__cgroup_bpf_run_filter_setsockopt(struct sock * sk,int * level,int * optname,sockptr_t optval,int * optlen,char ** kernel_optval)1799 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1800 				       int *optname, sockptr_t optval,
1801 				       int *optlen, char **kernel_optval)
1802 {
1803 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1804 	struct bpf_sockopt_buf buf = {};
1805 	struct bpf_sockopt_kern ctx = {
1806 		.sk = sk,
1807 		.level = *level,
1808 		.optname = *optname,
1809 	};
1810 	int ret, max_optlen;
1811 
1812 	/* Allocate a bit more than the initial user buffer for
1813 	 * BPF program. The canonical use case is overriding
1814 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1815 	 */
1816 	max_optlen = max_t(int, 16, *optlen);
1817 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1818 	if (max_optlen < 0)
1819 		return max_optlen;
1820 
1821 	ctx.optlen = *optlen;
1822 
1823 	if (copy_from_sockptr(ctx.optval, optval,
1824 			      min(*optlen, max_optlen))) {
1825 		ret = -EFAULT;
1826 		goto out;
1827 	}
1828 
1829 	lock_sock(sk);
1830 	ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT,
1831 				    &ctx, bpf_prog_run, 0, NULL);
1832 	release_sock(sk);
1833 
1834 	if (ret)
1835 		goto out;
1836 
1837 	if (ctx.optlen == -1) {
1838 		/* optlen set to -1, bypass kernel */
1839 		ret = 1;
1840 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1841 		/* optlen is out of bounds */
1842 		if (*optlen > PAGE_SIZE && ctx.optlen >= 0) {
1843 			pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
1844 				     ctx.optlen, max_optlen);
1845 			ret = 0;
1846 			goto out;
1847 		}
1848 		ret = -EFAULT;
1849 	} else {
1850 		/* optlen within bounds, run kernel handler */
1851 		ret = 0;
1852 
1853 		/* export any potential modifications */
1854 		*level = ctx.level;
1855 		*optname = ctx.optname;
1856 
1857 		/* optlen == 0 from BPF indicates that we should
1858 		 * use original userspace data.
1859 		 */
1860 		if (ctx.optlen != 0) {
1861 			*optlen = ctx.optlen;
1862 			/* We've used bpf_sockopt_kern->buf as an intermediary
1863 			 * storage, but the BPF program indicates that we need
1864 			 * to pass this data to the kernel setsockopt handler.
1865 			 * No way to export on-stack buf, have to allocate a
1866 			 * new buffer.
1867 			 */
1868 			if (!sockopt_buf_allocated(&ctx, &buf)) {
1869 				void *p = kmalloc(ctx.optlen, GFP_USER);
1870 
1871 				if (!p) {
1872 					ret = -ENOMEM;
1873 					goto out;
1874 				}
1875 				memcpy(p, ctx.optval, ctx.optlen);
1876 				*kernel_optval = p;
1877 			} else {
1878 				*kernel_optval = ctx.optval;
1879 			}
1880 			/* export and don't free sockopt buf */
1881 			return 0;
1882 		}
1883 	}
1884 
1885 out:
1886 	sockopt_free_buf(&ctx, &buf);
1887 	return ret;
1888 }
1889 
__cgroup_bpf_run_filter_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen,int max_optlen,int retval)1890 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1891 				       int optname, sockptr_t optval,
1892 				       sockptr_t optlen, int max_optlen,
1893 				       int retval)
1894 {
1895 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1896 	struct bpf_sockopt_buf buf = {};
1897 	struct bpf_sockopt_kern ctx = {
1898 		.sk = sk,
1899 		.level = level,
1900 		.optname = optname,
1901 		.current_task = current,
1902 	};
1903 	int orig_optlen;
1904 	int ret;
1905 
1906 	orig_optlen = max_optlen;
1907 	ctx.optlen = max_optlen;
1908 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1909 	if (max_optlen < 0)
1910 		return max_optlen;
1911 
1912 	if (!retval) {
1913 		/* If kernel getsockopt finished successfully,
1914 		 * copy whatever was returned to the user back
1915 		 * into our temporary buffer. Set optlen to the
1916 		 * one that kernel returned as well to let
1917 		 * BPF programs inspect the value.
1918 		 */
1919 		if (copy_from_sockptr(&ctx.optlen, optlen,
1920 				      sizeof(ctx.optlen))) {
1921 			ret = -EFAULT;
1922 			goto out;
1923 		}
1924 
1925 		if (ctx.optlen < 0) {
1926 			ret = -EFAULT;
1927 			goto out;
1928 		}
1929 		orig_optlen = ctx.optlen;
1930 
1931 		if (copy_from_sockptr(ctx.optval, optval,
1932 				      min(ctx.optlen, max_optlen))) {
1933 			ret = -EFAULT;
1934 			goto out;
1935 		}
1936 	}
1937 
1938 	lock_sock(sk);
1939 	ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
1940 				    &ctx, bpf_prog_run, retval, NULL);
1941 	release_sock(sk);
1942 
1943 	if (ret < 0)
1944 		goto out;
1945 
1946 	if (!sockptr_is_null(optval) &&
1947 	    (ctx.optlen > max_optlen || ctx.optlen < 0)) {
1948 		if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) {
1949 			pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
1950 				     ctx.optlen, max_optlen);
1951 			ret = retval;
1952 			goto out;
1953 		}
1954 		ret = -EFAULT;
1955 		goto out;
1956 	}
1957 
1958 	if (ctx.optlen != 0) {
1959 		if (!sockptr_is_null(optval) &&
1960 		    copy_to_sockptr(optval, ctx.optval, ctx.optlen)) {
1961 			ret = -EFAULT;
1962 			goto out;
1963 		}
1964 		if (copy_to_sockptr(optlen, &ctx.optlen, sizeof(ctx.optlen))) {
1965 			ret = -EFAULT;
1966 			goto out;
1967 		}
1968 	}
1969 
1970 out:
1971 	sockopt_free_buf(&ctx, &buf);
1972 	return ret;
1973 }
1974 
__cgroup_bpf_run_filter_getsockopt_kern(struct sock * sk,int level,int optname,void * optval,int * optlen,int retval)1975 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1976 					    int optname, void *optval,
1977 					    int *optlen, int retval)
1978 {
1979 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1980 	struct bpf_sockopt_kern ctx = {
1981 		.sk = sk,
1982 		.level = level,
1983 		.optname = optname,
1984 		.optlen = *optlen,
1985 		.optval = optval,
1986 		.optval_end = optval + *optlen,
1987 		.current_task = current,
1988 	};
1989 	int ret;
1990 
1991 	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1992 	 * user data back into BPF buffer when reval != 0. This is
1993 	 * done as an optimization to avoid extra copy, assuming
1994 	 * kernel won't populate the data in case of an error.
1995 	 * Here we always pass the data and memset() should
1996 	 * be called if that data shouldn't be "exported".
1997 	 */
1998 
1999 	ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
2000 				    &ctx, bpf_prog_run, retval, NULL);
2001 	if (ret < 0)
2002 		return ret;
2003 
2004 	if (ctx.optlen > *optlen)
2005 		return -EFAULT;
2006 
2007 	/* BPF programs can shrink the buffer, export the modifications.
2008 	 */
2009 	if (ctx.optlen != 0)
2010 		*optlen = ctx.optlen;
2011 
2012 	return ret;
2013 }
2014 #endif
2015 
sysctl_cpy_dir(const struct ctl_dir * dir,char ** bufp,size_t * lenp)2016 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
2017 			      size_t *lenp)
2018 {
2019 	ssize_t tmp_ret = 0, ret;
2020 
2021 	if (dir->header.parent) {
2022 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
2023 		if (tmp_ret < 0)
2024 			return tmp_ret;
2025 	}
2026 
2027 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
2028 	if (ret < 0)
2029 		return ret;
2030 	*bufp += ret;
2031 	*lenp -= ret;
2032 	ret += tmp_ret;
2033 
2034 	/* Avoid leading slash. */
2035 	if (!ret)
2036 		return ret;
2037 
2038 	tmp_ret = strscpy(*bufp, "/", *lenp);
2039 	if (tmp_ret < 0)
2040 		return tmp_ret;
2041 	*bufp += tmp_ret;
2042 	*lenp -= tmp_ret;
2043 
2044 	return ret + tmp_ret;
2045 }
2046 
BPF_CALL_4(bpf_sysctl_get_name,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len,u64,flags)2047 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
2048 	   size_t, buf_len, u64, flags)
2049 {
2050 	ssize_t tmp_ret = 0, ret;
2051 
2052 	if (!buf)
2053 		return -EINVAL;
2054 
2055 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
2056 		if (!ctx->head)
2057 			return -EINVAL;
2058 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
2059 		if (tmp_ret < 0)
2060 			return tmp_ret;
2061 	}
2062 
2063 	ret = strscpy(buf, ctx->table->procname, buf_len);
2064 
2065 	return ret < 0 ? ret : tmp_ret + ret;
2066 }
2067 
2068 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
2069 	.func		= bpf_sysctl_get_name,
2070 	.gpl_only	= false,
2071 	.ret_type	= RET_INTEGER,
2072 	.arg1_type	= ARG_PTR_TO_CTX,
2073 	.arg2_type	= ARG_PTR_TO_MEM,
2074 	.arg3_type	= ARG_CONST_SIZE,
2075 	.arg4_type	= ARG_ANYTHING,
2076 };
2077 
copy_sysctl_value(char * dst,size_t dst_len,char * src,size_t src_len)2078 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
2079 			     size_t src_len)
2080 {
2081 	if (!dst)
2082 		return -EINVAL;
2083 
2084 	if (!dst_len)
2085 		return -E2BIG;
2086 
2087 	if (!src || !src_len) {
2088 		memset(dst, 0, dst_len);
2089 		return -EINVAL;
2090 	}
2091 
2092 	memcpy(dst, src, min(dst_len, src_len));
2093 
2094 	if (dst_len > src_len) {
2095 		memset(dst + src_len, '\0', dst_len - src_len);
2096 		return src_len;
2097 	}
2098 
2099 	dst[dst_len - 1] = '\0';
2100 
2101 	return -E2BIG;
2102 }
2103 
BPF_CALL_3(bpf_sysctl_get_current_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)2104 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
2105 	   char *, buf, size_t, buf_len)
2106 {
2107 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
2108 }
2109 
2110 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
2111 	.func		= bpf_sysctl_get_current_value,
2112 	.gpl_only	= false,
2113 	.ret_type	= RET_INTEGER,
2114 	.arg1_type	= ARG_PTR_TO_CTX,
2115 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2116 	.arg3_type	= ARG_CONST_SIZE,
2117 };
2118 
BPF_CALL_3(bpf_sysctl_get_new_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)2119 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
2120 	   size_t, buf_len)
2121 {
2122 	if (!ctx->write) {
2123 		if (buf && buf_len)
2124 			memset(buf, '\0', buf_len);
2125 		return -EINVAL;
2126 	}
2127 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
2128 }
2129 
2130 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
2131 	.func		= bpf_sysctl_get_new_value,
2132 	.gpl_only	= false,
2133 	.ret_type	= RET_INTEGER,
2134 	.arg1_type	= ARG_PTR_TO_CTX,
2135 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2136 	.arg3_type	= ARG_CONST_SIZE,
2137 };
2138 
BPF_CALL_3(bpf_sysctl_set_new_value,struct bpf_sysctl_kern *,ctx,const char *,buf,size_t,buf_len)2139 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
2140 	   const char *, buf, size_t, buf_len)
2141 {
2142 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
2143 		return -EINVAL;
2144 
2145 	if (buf_len > PAGE_SIZE - 1)
2146 		return -E2BIG;
2147 
2148 	memcpy(ctx->new_val, buf, buf_len);
2149 	ctx->new_len = buf_len;
2150 	ctx->new_updated = 1;
2151 
2152 	return 0;
2153 }
2154 
2155 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
2156 	.func		= bpf_sysctl_set_new_value,
2157 	.gpl_only	= false,
2158 	.ret_type	= RET_INTEGER,
2159 	.arg1_type	= ARG_PTR_TO_CTX,
2160 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
2161 	.arg3_type	= ARG_CONST_SIZE,
2162 };
2163 
2164 static const struct bpf_func_proto *
sysctl_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2165 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2166 {
2167 	const struct bpf_func_proto *func_proto;
2168 
2169 	func_proto = cgroup_common_func_proto(func_id, prog);
2170 	if (func_proto)
2171 		return func_proto;
2172 
2173 	func_proto = cgroup_current_func_proto(func_id, prog);
2174 	if (func_proto)
2175 		return func_proto;
2176 
2177 	switch (func_id) {
2178 	case BPF_FUNC_sysctl_get_name:
2179 		return &bpf_sysctl_get_name_proto;
2180 	case BPF_FUNC_sysctl_get_current_value:
2181 		return &bpf_sysctl_get_current_value_proto;
2182 	case BPF_FUNC_sysctl_get_new_value:
2183 		return &bpf_sysctl_get_new_value_proto;
2184 	case BPF_FUNC_sysctl_set_new_value:
2185 		return &bpf_sysctl_set_new_value_proto;
2186 	case BPF_FUNC_ktime_get_coarse_ns:
2187 		return &bpf_ktime_get_coarse_ns_proto;
2188 	case BPF_FUNC_perf_event_output:
2189 		return &bpf_event_output_data_proto;
2190 	default:
2191 		return bpf_base_func_proto(func_id, prog);
2192 	}
2193 }
2194 
sysctl_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2195 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
2196 				   const struct bpf_prog *prog,
2197 				   struct bpf_insn_access_aux *info)
2198 {
2199 	const int size_default = sizeof(__u32);
2200 
2201 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
2202 		return false;
2203 
2204 	switch (off) {
2205 	case bpf_ctx_range(struct bpf_sysctl, write):
2206 		if (type != BPF_READ)
2207 			return false;
2208 		bpf_ctx_record_field_size(info, size_default);
2209 		return bpf_ctx_narrow_access_ok(off, size, size_default);
2210 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
2211 		if (type == BPF_READ) {
2212 			bpf_ctx_record_field_size(info, size_default);
2213 			return bpf_ctx_narrow_access_ok(off, size, size_default);
2214 		} else {
2215 			return size == size_default;
2216 		}
2217 	default:
2218 		return false;
2219 	}
2220 }
2221 
sysctl_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2222 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
2223 				     const struct bpf_insn *si,
2224 				     struct bpf_insn *insn_buf,
2225 				     struct bpf_prog *prog, u32 *target_size)
2226 {
2227 	struct bpf_insn *insn = insn_buf;
2228 	u32 read_size;
2229 
2230 	switch (si->off) {
2231 	case offsetof(struct bpf_sysctl, write):
2232 		*insn++ = BPF_LDX_MEM(
2233 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
2234 			bpf_target_off(struct bpf_sysctl_kern, write,
2235 				       sizeof_field(struct bpf_sysctl_kern,
2236 						    write),
2237 				       target_size));
2238 		break;
2239 	case offsetof(struct bpf_sysctl, file_pos):
2240 		/* ppos is a pointer so it should be accessed via indirect
2241 		 * loads and stores. Also for stores additional temporary
2242 		 * register is used since neither src_reg nor dst_reg can be
2243 		 * overridden.
2244 		 */
2245 		if (type == BPF_WRITE) {
2246 			int treg = BPF_REG_9;
2247 
2248 			if (si->src_reg == treg || si->dst_reg == treg)
2249 				--treg;
2250 			if (si->src_reg == treg || si->dst_reg == treg)
2251 				--treg;
2252 			*insn++ = BPF_STX_MEM(
2253 				BPF_DW, si->dst_reg, treg,
2254 				offsetof(struct bpf_sysctl_kern, tmp_reg));
2255 			*insn++ = BPF_LDX_MEM(
2256 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
2257 				treg, si->dst_reg,
2258 				offsetof(struct bpf_sysctl_kern, ppos));
2259 			*insn++ = BPF_RAW_INSN(
2260 				BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32),
2261 				treg, si->src_reg,
2262 				bpf_ctx_narrow_access_offset(
2263 					0, sizeof(u32), sizeof(loff_t)),
2264 				si->imm);
2265 			*insn++ = BPF_LDX_MEM(
2266 				BPF_DW, treg, si->dst_reg,
2267 				offsetof(struct bpf_sysctl_kern, tmp_reg));
2268 		} else {
2269 			*insn++ = BPF_LDX_MEM(
2270 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
2271 				si->dst_reg, si->src_reg,
2272 				offsetof(struct bpf_sysctl_kern, ppos));
2273 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
2274 			*insn++ = BPF_LDX_MEM(
2275 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
2276 				bpf_ctx_narrow_access_offset(
2277 					0, read_size, sizeof(loff_t)));
2278 		}
2279 		*target_size = sizeof(u32);
2280 		break;
2281 	}
2282 
2283 	return insn - insn_buf;
2284 }
2285 
2286 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
2287 	.get_func_proto		= sysctl_func_proto,
2288 	.is_valid_access	= sysctl_is_valid_access,
2289 	.convert_ctx_access	= sysctl_convert_ctx_access,
2290 };
2291 
2292 const struct bpf_prog_ops cg_sysctl_prog_ops = {
2293 };
2294 
2295 #ifdef CONFIG_NET
BPF_CALL_1(bpf_get_netns_cookie_sockopt,struct bpf_sockopt_kern *,ctx)2296 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
2297 {
2298 	const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
2299 
2300 	return net->net_cookie;
2301 }
2302 
2303 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
2304 	.func		= bpf_get_netns_cookie_sockopt,
2305 	.gpl_only	= false,
2306 	.ret_type	= RET_INTEGER,
2307 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
2308 };
2309 #endif
2310 
2311 static const struct bpf_func_proto *
cg_sockopt_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2312 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2313 {
2314 	const struct bpf_func_proto *func_proto;
2315 
2316 	func_proto = cgroup_common_func_proto(func_id, prog);
2317 	if (func_proto)
2318 		return func_proto;
2319 
2320 	func_proto = cgroup_current_func_proto(func_id, prog);
2321 	if (func_proto)
2322 		return func_proto;
2323 
2324 	switch (func_id) {
2325 #ifdef CONFIG_NET
2326 	case BPF_FUNC_get_netns_cookie:
2327 		return &bpf_get_netns_cookie_sockopt_proto;
2328 	case BPF_FUNC_sk_storage_get:
2329 		return &bpf_sk_storage_get_proto;
2330 	case BPF_FUNC_sk_storage_delete:
2331 		return &bpf_sk_storage_delete_proto;
2332 	case BPF_FUNC_setsockopt:
2333 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
2334 			return &bpf_sk_setsockopt_proto;
2335 		return NULL;
2336 	case BPF_FUNC_getsockopt:
2337 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
2338 			return &bpf_sk_getsockopt_proto;
2339 		return NULL;
2340 #endif
2341 #ifdef CONFIG_INET
2342 	case BPF_FUNC_tcp_sock:
2343 		return &bpf_tcp_sock_proto;
2344 #endif
2345 	case BPF_FUNC_perf_event_output:
2346 		return &bpf_event_output_data_proto;
2347 	default:
2348 		return bpf_base_func_proto(func_id, prog);
2349 	}
2350 }
2351 
cg_sockopt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2352 static bool cg_sockopt_is_valid_access(int off, int size,
2353 				       enum bpf_access_type type,
2354 				       const struct bpf_prog *prog,
2355 				       struct bpf_insn_access_aux *info)
2356 {
2357 	const int size_default = sizeof(__u32);
2358 
2359 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
2360 		return false;
2361 
2362 	if (off % size != 0)
2363 		return false;
2364 
2365 	if (type == BPF_WRITE) {
2366 		switch (off) {
2367 		case offsetof(struct bpf_sockopt, retval):
2368 			if (size != size_default)
2369 				return false;
2370 			return prog->expected_attach_type ==
2371 				BPF_CGROUP_GETSOCKOPT;
2372 		case offsetof(struct bpf_sockopt, optname):
2373 			fallthrough;
2374 		case offsetof(struct bpf_sockopt, level):
2375 			if (size != size_default)
2376 				return false;
2377 			return prog->expected_attach_type ==
2378 				BPF_CGROUP_SETSOCKOPT;
2379 		case offsetof(struct bpf_sockopt, optlen):
2380 			return size == size_default;
2381 		default:
2382 			return false;
2383 		}
2384 	}
2385 
2386 	switch (off) {
2387 	case offsetof(struct bpf_sockopt, sk):
2388 		if (size != sizeof(__u64))
2389 			return false;
2390 		info->reg_type = PTR_TO_SOCKET;
2391 		break;
2392 	case offsetof(struct bpf_sockopt, optval):
2393 		if (size != sizeof(__u64))
2394 			return false;
2395 		info->reg_type = PTR_TO_PACKET;
2396 		break;
2397 	case offsetof(struct bpf_sockopt, optval_end):
2398 		if (size != sizeof(__u64))
2399 			return false;
2400 		info->reg_type = PTR_TO_PACKET_END;
2401 		break;
2402 	case offsetof(struct bpf_sockopt, retval):
2403 		if (size != size_default)
2404 			return false;
2405 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
2406 	default:
2407 		if (size != size_default)
2408 			return false;
2409 		break;
2410 	}
2411 	return true;
2412 }
2413 
2414 #define CG_SOCKOPT_READ_FIELD(F)					\
2415 	BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),	\
2416 		    si->dst_reg, si->src_reg,				\
2417 		    offsetof(struct bpf_sockopt_kern, F))
2418 
2419 #define CG_SOCKOPT_WRITE_FIELD(F)					\
2420 	BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) |	\
2421 		      BPF_MEM | BPF_CLASS(si->code)),			\
2422 		     si->dst_reg, si->src_reg,				\
2423 		     offsetof(struct bpf_sockopt_kern, F),		\
2424 		     si->imm)
2425 
cg_sockopt_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2426 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
2427 					 const struct bpf_insn *si,
2428 					 struct bpf_insn *insn_buf,
2429 					 struct bpf_prog *prog,
2430 					 u32 *target_size)
2431 {
2432 	struct bpf_insn *insn = insn_buf;
2433 
2434 	switch (si->off) {
2435 	case offsetof(struct bpf_sockopt, sk):
2436 		*insn++ = CG_SOCKOPT_READ_FIELD(sk);
2437 		break;
2438 	case offsetof(struct bpf_sockopt, level):
2439 		if (type == BPF_WRITE)
2440 			*insn++ = CG_SOCKOPT_WRITE_FIELD(level);
2441 		else
2442 			*insn++ = CG_SOCKOPT_READ_FIELD(level);
2443 		break;
2444 	case offsetof(struct bpf_sockopt, optname):
2445 		if (type == BPF_WRITE)
2446 			*insn++ = CG_SOCKOPT_WRITE_FIELD(optname);
2447 		else
2448 			*insn++ = CG_SOCKOPT_READ_FIELD(optname);
2449 		break;
2450 	case offsetof(struct bpf_sockopt, optlen):
2451 		if (type == BPF_WRITE)
2452 			*insn++ = CG_SOCKOPT_WRITE_FIELD(optlen);
2453 		else
2454 			*insn++ = CG_SOCKOPT_READ_FIELD(optlen);
2455 		break;
2456 	case offsetof(struct bpf_sockopt, retval):
2457 		BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0);
2458 
2459 		if (type == BPF_WRITE) {
2460 			int treg = BPF_REG_9;
2461 
2462 			if (si->src_reg == treg || si->dst_reg == treg)
2463 				--treg;
2464 			if (si->src_reg == treg || si->dst_reg == treg)
2465 				--treg;
2466 			*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg,
2467 					      offsetof(struct bpf_sockopt_kern, tmp_reg));
2468 			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
2469 					      treg, si->dst_reg,
2470 					      offsetof(struct bpf_sockopt_kern, current_task));
2471 			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
2472 					      treg, treg,
2473 					      offsetof(struct task_struct, bpf_ctx));
2474 			*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM |
2475 					       BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
2476 					       treg, si->src_reg,
2477 					       offsetof(struct bpf_cg_run_ctx, retval),
2478 					       si->imm);
2479 			*insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg,
2480 					      offsetof(struct bpf_sockopt_kern, tmp_reg));
2481 		} else {
2482 			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
2483 					      si->dst_reg, si->src_reg,
2484 					      offsetof(struct bpf_sockopt_kern, current_task));
2485 			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
2486 					      si->dst_reg, si->dst_reg,
2487 					      offsetof(struct task_struct, bpf_ctx));
2488 			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
2489 					      si->dst_reg, si->dst_reg,
2490 					      offsetof(struct bpf_cg_run_ctx, retval));
2491 		}
2492 		break;
2493 	case offsetof(struct bpf_sockopt, optval):
2494 		*insn++ = CG_SOCKOPT_READ_FIELD(optval);
2495 		break;
2496 	case offsetof(struct bpf_sockopt, optval_end):
2497 		*insn++ = CG_SOCKOPT_READ_FIELD(optval_end);
2498 		break;
2499 	}
2500 
2501 	return insn - insn_buf;
2502 }
2503 
cg_sockopt_get_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)2504 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
2505 				   bool direct_write,
2506 				   const struct bpf_prog *prog)
2507 {
2508 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
2509 	 */
2510 	return 0;
2511 }
2512 
2513 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2514 	.get_func_proto		= cg_sockopt_func_proto,
2515 	.is_valid_access	= cg_sockopt_is_valid_access,
2516 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
2517 	.gen_prologue		= cg_sockopt_get_prologue,
2518 };
2519 
2520 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2521 };
2522 
2523 /* Common helpers for cgroup hooks. */
2524 const struct bpf_func_proto *
cgroup_common_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2525 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2526 {
2527 	switch (func_id) {
2528 	case BPF_FUNC_get_local_storage:
2529 		return &bpf_get_local_storage_proto;
2530 	case BPF_FUNC_get_retval:
2531 		switch (prog->expected_attach_type) {
2532 		case BPF_CGROUP_INET_INGRESS:
2533 		case BPF_CGROUP_INET_EGRESS:
2534 		case BPF_CGROUP_SOCK_OPS:
2535 		case BPF_CGROUP_UDP4_RECVMSG:
2536 		case BPF_CGROUP_UDP6_RECVMSG:
2537 		case BPF_CGROUP_UNIX_RECVMSG:
2538 		case BPF_CGROUP_INET4_GETPEERNAME:
2539 		case BPF_CGROUP_INET6_GETPEERNAME:
2540 		case BPF_CGROUP_UNIX_GETPEERNAME:
2541 		case BPF_CGROUP_INET4_GETSOCKNAME:
2542 		case BPF_CGROUP_INET6_GETSOCKNAME:
2543 		case BPF_CGROUP_UNIX_GETSOCKNAME:
2544 			return NULL;
2545 		default:
2546 			return &bpf_get_retval_proto;
2547 		}
2548 	case BPF_FUNC_set_retval:
2549 		switch (prog->expected_attach_type) {
2550 		case BPF_CGROUP_INET_INGRESS:
2551 		case BPF_CGROUP_INET_EGRESS:
2552 		case BPF_CGROUP_SOCK_OPS:
2553 		case BPF_CGROUP_UDP4_RECVMSG:
2554 		case BPF_CGROUP_UDP6_RECVMSG:
2555 		case BPF_CGROUP_UNIX_RECVMSG:
2556 		case BPF_CGROUP_INET4_GETPEERNAME:
2557 		case BPF_CGROUP_INET6_GETPEERNAME:
2558 		case BPF_CGROUP_UNIX_GETPEERNAME:
2559 		case BPF_CGROUP_INET4_GETSOCKNAME:
2560 		case BPF_CGROUP_INET6_GETSOCKNAME:
2561 		case BPF_CGROUP_UNIX_GETSOCKNAME:
2562 			return NULL;
2563 		default:
2564 			return &bpf_set_retval_proto;
2565 		}
2566 	default:
2567 		return NULL;
2568 	}
2569 }
2570 
2571 /* Common helpers for cgroup hooks with valid process context. */
2572 const struct bpf_func_proto *
cgroup_current_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2573 cgroup_current_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2574 {
2575 	switch (func_id) {
2576 	case BPF_FUNC_get_current_uid_gid:
2577 		return &bpf_get_current_uid_gid_proto;
2578 	case BPF_FUNC_get_current_comm:
2579 		return &bpf_get_current_comm_proto;
2580 #ifdef CONFIG_CGROUP_NET_CLASSID
2581 	case BPF_FUNC_get_cgroup_classid:
2582 		return &bpf_get_cgroup_classid_curr_proto;
2583 #endif
2584 	default:
2585 		return NULL;
2586 	}
2587 }
2588