1 /*	$NetBSD: if_upgt.c,v 1.16 2016/05/26 05:04:46 ozaki-r Exp $	*/
2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.16 2016/05/26 05:04:46 ozaki-r Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/intr.h>
37 
38 #include <net/bpf.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_ether.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 
46 #include <net80211/ieee80211_var.h>
47 #include <net80211/ieee80211_radiotap.h>
48 
49 #include <dev/firmload.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54 #include <dev/usb/usbdivar.h>
55 #include <dev/usb/usbdevs.h>
56 
57 #include <dev/usb/if_upgtvar.h>
58 
59 /*
60  * Driver for the USB PrismGT devices.
61  *
62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
64  *
65  * TODO's:
66  * - Fix MONITOR mode (MAC filter).
67  * - Add HOSTAP mode.
68  * - Add IBSS mode.
69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70  *
71  * Parts of this driver has been influenced by reading the p54u driver
72  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
73  * Sebastien Bourdeauducq <lekernel@prism54.org>.
74  */
75 
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82 
83 /*
84  * Prototypes.
85  */
86 static int	upgt_match(device_t, cfdata_t, void *);
87 static void	upgt_attach(device_t, device_t, void *);
88 static int	upgt_detach(device_t, int);
89 static int	upgt_activate(device_t, devact_t);
90 
91 static void	upgt_attach_hook(device_t);
92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int	upgt_device_init(struct upgt_softc *);
94 static int	upgt_mem_init(struct upgt_softc *);
95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int	upgt_fw_alloc(struct upgt_softc *);
98 static void	upgt_fw_free(struct upgt_softc *);
99 static int	upgt_fw_verify(struct upgt_softc *);
100 static int	upgt_fw_load(struct upgt_softc *);
101 static int	upgt_fw_copy(char *, char *, int);
102 static int	upgt_eeprom_read(struct upgt_softc *);
103 static int	upgt_eeprom_parse(struct upgt_softc *);
104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108 
109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
110 static int	upgt_init(struct ifnet *);
111 static void	upgt_stop(struct upgt_softc *);
112 static int	upgt_media_change(struct ifnet *);
113 static void	upgt_newassoc(struct ieee80211_node *, int);
114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 		    int);
116 static void	upgt_newstate_task(void *);
117 static void	upgt_next_scan(void *);
118 static void	upgt_start(struct ifnet *);
119 static void	upgt_watchdog(struct ifnet *);
120 static void	upgt_tx_task(void *);
121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void	upgt_setup_rates(struct upgt_softc *);
125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
128 static void	upgt_set_led(struct upgt_softc *, int);
129 static void	upgt_set_led_blink(void *);
130 static int	upgt_get_stats(struct upgt_softc *);
131 
132 static int	upgt_alloc_tx(struct upgt_softc *);
133 static int	upgt_alloc_rx(struct upgt_softc *);
134 static int	upgt_alloc_cmd(struct upgt_softc *);
135 static void	upgt_free_tx(struct upgt_softc *);
136 static void	upgt_free_rx(struct upgt_softc *);
137 static void	upgt_free_cmd(struct upgt_softc *);
138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 		    struct usbd_pipe *, uint32_t *, int);
140 
141 #if 0
142 static void	upgt_hexdump(void *, int);
143 #endif
144 static uint32_t	upgt_crc32_le(const void *, size_t);
145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
146 
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
149 
150 static const struct usb_devno upgt_devs_1[] = {
151 	/* version 1 devices */
152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
153 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
154 };
155 
156 static const struct usb_devno upgt_devs_2[] = {
157 	/* version 2 devices */
158 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
159 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
160 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
162 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
163 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
164 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
166 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
167 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
168 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
170 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
171 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
172 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
173 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
174 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
175 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
176 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
177 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
178 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
179 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
181 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
182 };
183 
184 static int
firmware_load(const char * dname,const char * iname,uint8_t ** ucodep,size_t * sizep)185 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
186     size_t *sizep)
187 {
188 	firmware_handle_t fh;
189 	int error;
190 
191 	if ((error = firmware_open(dname, iname, &fh)) != 0)
192 		return error;
193 	*sizep = firmware_get_size(fh);
194 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
195 		firmware_close(fh);
196 		return ENOMEM;
197 	}
198 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
199 		firmware_free(*ucodep, *sizep);
200 	firmware_close(fh);
201 
202 	return error;
203 }
204 
205 static int
upgt_match(device_t parent,cfdata_t match,void * aux)206 upgt_match(device_t parent, cfdata_t match, void *aux)
207 {
208 	struct usb_attach_arg *uaa = aux;
209 
210 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
211 		return UMATCH_VENDOR_PRODUCT;
212 
213 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
214 		return UMATCH_VENDOR_PRODUCT;
215 
216 	return UMATCH_NONE;
217 }
218 
219 static void
upgt_attach(device_t parent,device_t self,void * aux)220 upgt_attach(device_t parent, device_t self, void *aux)
221 {
222 	struct upgt_softc *sc = device_private(self);
223 	struct usb_attach_arg *uaa = aux;
224 	usb_interface_descriptor_t *id;
225 	usb_endpoint_descriptor_t *ed;
226 	usbd_status error;
227 	char *devinfop;
228 	int i;
229 
230 	aprint_naive("\n");
231 	aprint_normal("\n");
232 
233 	/*
234 	 * Attach USB device.
235 	 */
236 	sc->sc_dev = self;
237 	sc->sc_udev = uaa->uaa_device;
238 
239 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
240 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
241 	usbd_devinfo_free(devinfop);
242 
243 	/* check device type */
244 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
245 		return;
246 
247 	/* set configuration number */
248 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
249 	if (error != 0) {
250 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
251 		    ", err=%s\n", usbd_errstr(error));
252 		return;
253 	}
254 
255 	/* get the first interface handle */
256 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
257 	    &sc->sc_iface);
258 	if (error != 0) {
259 		aprint_error_dev(sc->sc_dev,
260 		    "could not get interface handle\n");
261 		return;
262 	}
263 
264 	/* find endpoints */
265 	id = usbd_get_interface_descriptor(sc->sc_iface);
266 	sc->sc_rx_no = sc->sc_tx_no = -1;
267 	for (i = 0; i < id->bNumEndpoints; i++) {
268 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
269 		if (ed == NULL) {
270 			aprint_error_dev(sc->sc_dev,
271 			    "no endpoint descriptor for iface %d\n", i);
272 			return;
273 		}
274 
275 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
276 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
277 			sc->sc_tx_no = ed->bEndpointAddress;
278 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
279 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
280 			sc->sc_rx_no = ed->bEndpointAddress;
281 
282 		/*
283 		 * 0x01 TX pipe
284 		 * 0x81 RX pipe
285 		 *
286 		 * Deprecated scheme (not used with fw version >2.5.6.x):
287 		 * 0x02 TX MGMT pipe
288 		 * 0x82 TX MGMT pipe
289 		 */
290 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
291 			break;
292 	}
293 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
294 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
295 		return;
296 	}
297 
298 	/* setup tasks and timeouts */
299 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
300 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
301 	callout_init(&sc->scan_to, 0);
302 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
303 	callout_init(&sc->led_to, 0);
304 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
305 
306 	/*
307 	 * Open TX and RX USB bulk pipes.
308 	 */
309 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
310 	    &sc->sc_tx_pipeh);
311 	if (error != 0) {
312 		aprint_error_dev(sc->sc_dev,
313 		    "could not open TX pipe: %s\n", usbd_errstr(error));
314 		goto fail;
315 	}
316 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
317 	    &sc->sc_rx_pipeh);
318 	if (error != 0) {
319 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
320 		    usbd_errstr(error));
321 		goto fail;
322 	}
323 
324 	/*
325 	 * Allocate TX, RX, and CMD xfers.
326 	 */
327 	if (upgt_alloc_tx(sc) != 0)
328 		goto fail;
329 	if (upgt_alloc_rx(sc) != 0)
330 		goto fail;
331 	if (upgt_alloc_cmd(sc) != 0)
332 		goto fail;
333 
334 	/*
335 	 * We need the firmware loaded from file system to complete the attach.
336 	 */
337 	config_mountroot(self, upgt_attach_hook);
338 
339 	return;
340 fail:
341 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
342 }
343 
344 static void
upgt_attach_hook(device_t arg)345 upgt_attach_hook(device_t arg)
346 {
347 	struct upgt_softc *sc = device_private(arg);
348 	struct ieee80211com *ic = &sc->sc_ic;
349 	struct ifnet *ifp = &sc->sc_if;
350 	usbd_status error;
351 	int i;
352 
353 	/*
354 	 * Load firmware file into memory.
355 	 */
356 	if (upgt_fw_alloc(sc) != 0)
357 		goto fail;
358 
359 	/*
360 	 * Initialize the device.
361 	 */
362 	if (upgt_device_init(sc) != 0)
363 		goto fail;
364 
365 	/*
366 	 * Verify the firmware.
367 	 */
368 	if (upgt_fw_verify(sc) != 0)
369 		goto fail;
370 
371 	/*
372 	 * Calculate device memory space.
373 	 */
374 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
375 		aprint_error_dev(sc->sc_dev,
376 		    "could not find memory space addresses on FW\n");
377 		goto fail;
378 	}
379 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
380 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
381 
382 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
383 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
384 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
385 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
386 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
387 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
388 
389 	upgt_mem_init(sc);
390 
391 	/*
392 	 * Load the firmware.
393 	 */
394 	if (upgt_fw_load(sc) != 0)
395 		goto fail;
396 
397 	/*
398 	 * Startup the RX pipe.
399 	 */
400 	struct upgt_data *data_rx = &sc->rx_data;
401 
402 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
403 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
404 	error = usbd_transfer(data_rx->xfer);
405 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
406 		aprint_error_dev(sc->sc_dev,
407 		    "could not queue RX transfer\n");
408 		goto fail;
409 	}
410 	usbd_delay_ms(sc->sc_udev, 100);
411 
412 	/*
413 	 * Read the whole EEPROM content and parse it.
414 	 */
415 	if (upgt_eeprom_read(sc) != 0)
416 		goto fail;
417 	if (upgt_eeprom_parse(sc) != 0)
418 		goto fail;
419 
420 	/*
421 	 * Setup the 802.11 device.
422 	 */
423 	ic->ic_ifp = ifp;
424 	ic->ic_phytype = IEEE80211_T_OFDM;
425 	ic->ic_opmode = IEEE80211_M_STA;
426 	ic->ic_state = IEEE80211_S_INIT;
427 	ic->ic_caps =
428 	    IEEE80211_C_MONITOR |
429 	    IEEE80211_C_SHPREAMBLE |
430 	    IEEE80211_C_SHSLOT;
431 
432 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
433 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
434 
435 	for (i = 1; i <= 14; i++) {
436 		ic->ic_channels[i].ic_freq =
437 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
438 		ic->ic_channels[i].ic_flags =
439 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
440 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
441 	}
442 
443 	ifp->if_softc = sc;
444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 	ifp->if_init = upgt_init;
446 	ifp->if_ioctl = upgt_ioctl;
447 	ifp->if_start = upgt_start;
448 	ifp->if_watchdog = upgt_watchdog;
449 	IFQ_SET_READY(&ifp->if_snd);
450 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451 
452 	if_attach(ifp);
453 	ieee80211_ifattach(ic);
454 	ic->ic_newassoc = upgt_newassoc;
455 
456 	sc->sc_newstate = ic->ic_newstate;
457 	ic->ic_newstate = upgt_newstate;
458 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
459 
460 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
461 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
462 	    &sc->sc_drvbpf);
463 
464 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
465 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
466 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
467 
468 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
469 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
470 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
471 
472 	aprint_normal_dev(sc->sc_dev, "address %s\n",
473 	    ether_sprintf(ic->ic_myaddr));
474 
475 	ieee80211_announce(ic);
476 
477 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
478 
479 	/* device attached */
480 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
481 
482 	return;
483 fail:
484 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
485 }
486 
487 static int
upgt_detach(device_t self,int flags)488 upgt_detach(device_t self, int flags)
489 {
490 	struct upgt_softc *sc = device_private(self);
491 	struct ifnet *ifp = &sc->sc_if;
492 	struct ieee80211com *ic = &sc->sc_ic;
493 	int s;
494 
495 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
496 
497 	s = splnet();
498 
499 	if (ifp->if_flags & IFF_RUNNING)
500 		upgt_stop(sc);
501 
502 	/* remove tasks and timeouts */
503 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
504 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
505 	callout_destroy(&sc->scan_to);
506 	callout_destroy(&sc->led_to);
507 
508 	/* abort and close TX / RX pipes */
509 	if (sc->sc_tx_pipeh != NULL) {
510 		usbd_abort_pipe(sc->sc_tx_pipeh);
511 	}
512 	if (sc->sc_rx_pipeh != NULL) {
513 		usbd_abort_pipe(sc->sc_rx_pipeh);
514 	}
515 
516 	/* free xfers */
517 	upgt_free_tx(sc);
518 	upgt_free_rx(sc);
519 	upgt_free_cmd(sc);
520 
521 	/* Close TX / RX pipes */
522 	if (sc->sc_tx_pipeh != NULL) {
523 		usbd_close_pipe(sc->sc_tx_pipeh);
524 	}
525 	if (sc->sc_rx_pipeh != NULL) {
526 		usbd_close_pipe(sc->sc_rx_pipeh);
527 	}
528 
529 	/* free firmware */
530 	upgt_fw_free(sc);
531 
532 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
533 		/* detach interface */
534 		bpf_detach(ifp);
535 		ieee80211_ifdetach(ic);
536 		if_detach(ifp);
537 	}
538 
539 	splx(s);
540 
541 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
542 
543 	return 0;
544 }
545 
546 static int
upgt_activate(device_t self,devact_t act)547 upgt_activate(device_t self, devact_t act)
548 {
549 	struct upgt_softc *sc = device_private(self);
550 
551 	switch (act) {
552 	case DVACT_DEACTIVATE:
553 		if_deactivate(&sc->sc_if);
554 		return 0;
555 	default:
556 		return EOPNOTSUPP;
557 	}
558 }
559 
560 static int
upgt_device_type(struct upgt_softc * sc,uint16_t vendor,uint16_t product)561 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
562 {
563 
564 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
565 		sc->sc_device_type = 1;
566 		/* XXX */
567 		aprint_error_dev(sc->sc_dev,
568 		    "version 1 devices not supported yet\n");
569 		return 1;
570 	} else
571 		sc->sc_device_type = 2;
572 
573 	return 0;
574 }
575 
576 static int
upgt_device_init(struct upgt_softc * sc)577 upgt_device_init(struct upgt_softc *sc)
578 {
579 	struct upgt_data *data_cmd = &sc->cmd_data;
580 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
581 	int len;
582 
583 	len = sizeof(init_cmd);
584 	memcpy(data_cmd->buf, init_cmd, len);
585 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
586 		aprint_error_dev(sc->sc_dev,
587 		    "could not send device init string\n");
588 		return EIO;
589 	}
590 	usbd_delay_ms(sc->sc_udev, 100);
591 
592 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
593 
594 	return 0;
595 }
596 
597 static int
upgt_mem_init(struct upgt_softc * sc)598 upgt_mem_init(struct upgt_softc *sc)
599 {
600 	int i;
601 
602 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
603 		sc->sc_memory.page[i].used = 0;
604 
605 		if (i == 0) {
606 			/*
607 			 * The first memory page is always reserved for
608 			 * command data.
609 			 */
610 			sc->sc_memory.page[i].addr =
611 			    sc->sc_memaddr_frame_start + MCLBYTES;
612 		} else {
613 			sc->sc_memory.page[i].addr =
614 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
615 		}
616 
617 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
618 		    sc->sc_memaddr_frame_end)
619 			break;
620 
621 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
622 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
623 	}
624 
625 	sc->sc_memory.pages = i;
626 
627 	DPRINTF(2, "%s: memory pages=%d\n",
628 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
629 
630 	return 0;
631 }
632 
633 static uint32_t
upgt_mem_alloc(struct upgt_softc * sc)634 upgt_mem_alloc(struct upgt_softc *sc)
635 {
636 	int i;
637 
638 	for (i = 0; i < sc->sc_memory.pages; i++) {
639 		if (sc->sc_memory.page[i].used == 0) {
640 			sc->sc_memory.page[i].used = 1;
641 			return sc->sc_memory.page[i].addr;
642 		}
643 	}
644 
645 	return 0;
646 }
647 
648 static void
upgt_mem_free(struct upgt_softc * sc,uint32_t addr)649 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
650 {
651 	int i;
652 
653 	for (i = 0; i < sc->sc_memory.pages; i++) {
654 		if (sc->sc_memory.page[i].addr == addr) {
655 			sc->sc_memory.page[i].used = 0;
656 			return;
657 		}
658 	}
659 
660 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
661 	    addr);
662 }
663 
664 
665 static int
upgt_fw_alloc(struct upgt_softc * sc)666 upgt_fw_alloc(struct upgt_softc *sc)
667 {
668 	const char *name = "upgt-gw3887";
669 	int error;
670 
671 	if (sc->sc_fw == NULL) {
672 		error = firmware_load("upgt", name, &sc->sc_fw,
673 		    &sc->sc_fw_size);
674 		if (error != 0) {
675 			if (error == ENOENT) {
676 				/*
677 				 * The firmware file for upgt(4) is not in
678 				 * the default distribution due to its lisence
679 				 * so explicitly notify it if the firmware file
680 				 * is not found.
681 				 */
682 				aprint_error_dev(sc->sc_dev,
683 				    "firmware file %s is not installed\n",
684 				    name);
685 				aprint_error_dev(sc->sc_dev,
686 				    "(it is not included in the default"
687 				    " distribution)\n");
688 				aprint_error_dev(sc->sc_dev,
689 				    "see upgt(4) man page for details about "
690 				    "firmware installation\n");
691 			} else {
692 				aprint_error_dev(sc->sc_dev,
693 				    "could not read firmware %s\n", name);
694 			}
695 			return EIO;
696 		}
697 	}
698 
699 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
700 	    name);
701 
702 	return 0;
703 }
704 
705 static void
upgt_fw_free(struct upgt_softc * sc)706 upgt_fw_free(struct upgt_softc *sc)
707 {
708 
709 	if (sc->sc_fw != NULL) {
710 		firmware_free(sc->sc_fw, sc->sc_fw_size);
711 		sc->sc_fw = NULL;
712 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
713 	}
714 }
715 
716 static int
upgt_fw_verify(struct upgt_softc * sc)717 upgt_fw_verify(struct upgt_softc *sc)
718 {
719 	struct upgt_fw_bra_option *bra_option;
720 	uint32_t bra_option_type, bra_option_len;
721 	uint32_t *uc;
722 	int offset, bra_end = 0;
723 
724 	/*
725 	 * Seek to beginning of Boot Record Area (BRA).
726 	 */
727 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
728 		uc = (uint32_t *)(sc->sc_fw + offset);
729 		if (*uc == 0)
730 			break;
731 	}
732 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
733 		uc = (uint32_t *)(sc->sc_fw + offset);
734 		if (*uc != 0)
735 			break;
736 	}
737 	if (offset == sc->sc_fw_size) {
738 		aprint_error_dev(sc->sc_dev,
739 		    "firmware Boot Record Area not found\n");
740 		return EIO;
741 	}
742 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
743 	    device_xname(sc->sc_dev), offset);
744 
745 	/*
746 	 * Parse Boot Record Area (BRA) options.
747 	 */
748 	while (offset < sc->sc_fw_size && bra_end == 0) {
749 		/* get current BRA option */
750 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
751 		bra_option_type = le32toh(bra_option->type);
752 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
753 
754 		switch (bra_option_type) {
755 		case UPGT_BRA_TYPE_FW:
756 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
757 			    device_xname(sc->sc_dev), bra_option_len);
758 
759 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
760 				aprint_error_dev(sc->sc_dev,
761 				    "wrong UPGT_BRA_TYPE_FW len\n");
762 				return EIO;
763 			}
764 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
765 			    bra_option_len) == 0) {
766 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
767 				break;
768 			}
769 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
770 			    bra_option_len) == 0) {
771 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
772 				break;
773 			}
774 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
775 			    bra_option_len) == 0) {
776 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
777 				break;
778 			}
779 			aprint_error_dev(sc->sc_dev,
780 			    "unsupported firmware type\n");
781 			return EIO;
782 		case UPGT_BRA_TYPE_VERSION:
783 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
784 			    device_xname(sc->sc_dev), bra_option_len);
785 			break;
786 		case UPGT_BRA_TYPE_DEPIF:
787 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
788 			    device_xname(sc->sc_dev), bra_option_len);
789 			break;
790 		case UPGT_BRA_TYPE_EXPIF:
791 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
792 			    device_xname(sc->sc_dev), bra_option_len);
793 			break;
794 		case UPGT_BRA_TYPE_DESCR:
795 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
796 			    device_xname(sc->sc_dev), bra_option_len);
797 
798 			struct upgt_fw_bra_descr *descr =
799 				(struct upgt_fw_bra_descr *)bra_option->data;
800 
801 			sc->sc_memaddr_frame_start =
802 			    le32toh(descr->memaddr_space_start);
803 			sc->sc_memaddr_frame_end =
804 			    le32toh(descr->memaddr_space_end);
805 
806 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
807 			    device_xname(sc->sc_dev),
808 			    sc->sc_memaddr_frame_start);
809 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
810 			    device_xname(sc->sc_dev),
811 			    sc->sc_memaddr_frame_end);
812 			break;
813 		case UPGT_BRA_TYPE_END:
814 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
815 			    device_xname(sc->sc_dev), bra_option_len);
816 			bra_end = 1;
817 			break;
818 		default:
819 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
820 			    device_xname(sc->sc_dev), bra_option_len);
821 			return EIO;
822 		}
823 
824 		/* jump to next BRA option */
825 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
826 	}
827 
828 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
829 
830 	return 0;
831 }
832 
833 static int
upgt_fw_load(struct upgt_softc * sc)834 upgt_fw_load(struct upgt_softc *sc)
835 {
836 	struct upgt_data *data_cmd = &sc->cmd_data;
837 	struct upgt_data *data_rx = &sc->rx_data;
838 	struct upgt_fw_x2_header *x2;
839 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
840 	int offset, bsize, n, i, len;
841 	uint32_t crc;
842 
843 	/* send firmware start load command */
844 	len = sizeof(start_fwload_cmd);
845 	memcpy(data_cmd->buf, start_fwload_cmd, len);
846 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
847 		aprint_error_dev(sc->sc_dev,
848 		    "could not send start_firmware_load command\n");
849 		return EIO;
850 	}
851 
852 	/* send X2 header */
853 	len = sizeof(struct upgt_fw_x2_header);
854 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
855 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
856 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
857 	x2->len = htole32(sc->sc_fw_size);
858 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
859 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
860 	    sizeof(uint32_t));
861 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
862 		aprint_error_dev(sc->sc_dev,
863 		    "could not send firmware X2 header\n");
864 		return EIO;
865 	}
866 
867 	/* download firmware */
868 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
869 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
870 			bsize = UPGT_FW_BLOCK_SIZE;
871 		else
872 			bsize = sc->sc_fw_size - offset;
873 
874 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
875 
876 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
877 		    device_xname(sc->sc_dev), offset, n, bsize);
878 
879 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
880 		    != 0) {
881 			aprint_error_dev(sc->sc_dev,
882 			    "error while downloading firmware block\n");
883 			return EIO;
884 		}
885 
886 		bsize = n;
887 	}
888 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
889 
890 	/* load firmware */
891 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
892 	*((uint32_t *)(data_cmd->buf)    ) = crc;
893 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
894 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
895 	len = 6;
896 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
897 		aprint_error_dev(sc->sc_dev,
898 		    "could not send load_firmware command\n");
899 		return EIO;
900 	}
901 
902 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
903 		len = UPGT_FW_BLOCK_SIZE;
904 		memset(data_rx->buf, 0, 2);
905 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
906 		    USBD_SHORT_XFER_OK) != 0) {
907 			aprint_error_dev(sc->sc_dev,
908 			    "could not read firmware response\n");
909 			return EIO;
910 		}
911 
912 		if (memcmp(data_rx->buf, "OK", 2) == 0)
913 			break;	/* firmware load was successful */
914 	}
915 	if (i == UPGT_FIRMWARE_TIMEOUT) {
916 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
917 		return EIO;
918 	}
919 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
920 
921 	return 0;
922 }
923 
924 /*
925  * While copying the version 2 firmware, we need to replace two characters:
926  *
927  * 0x7e -> 0x7d 0x5e
928  * 0x7d -> 0x7d 0x5d
929  */
930 static int
upgt_fw_copy(char * src,char * dst,int size)931 upgt_fw_copy(char *src, char *dst, int size)
932 {
933 	int i, j;
934 
935 	for (i = 0, j = 0; i < size && j < size; i++) {
936 		switch (src[i]) {
937 		case 0x7e:
938 			dst[j] = 0x7d;
939 			j++;
940 			dst[j] = 0x5e;
941 			j++;
942 			break;
943 		case 0x7d:
944 			dst[j] = 0x7d;
945 			j++;
946 			dst[j] = 0x5d;
947 			j++;
948 			break;
949 		default:
950 			dst[j] = src[i];
951 			j++;
952 			break;
953 		}
954 	}
955 
956 	return i;
957 }
958 
959 static int
upgt_eeprom_read(struct upgt_softc * sc)960 upgt_eeprom_read(struct upgt_softc *sc)
961 {
962 	struct upgt_data *data_cmd = &sc->cmd_data;
963 	struct upgt_lmac_mem *mem;
964 	struct upgt_lmac_eeprom	*eeprom;
965 	int offset, block, len;
966 
967 	offset = 0;
968 	block = UPGT_EEPROM_BLOCK_SIZE;
969 	while (offset < UPGT_EEPROM_SIZE) {
970 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
971 		    device_xname(sc->sc_dev), offset, block);
972 
973 		/*
974 		 * Transmit the URB containing the CMD data.
975 		 */
976 		len = sizeof(*mem) + sizeof(*eeprom) + block;
977 
978 		memset(data_cmd->buf, 0, len);
979 
980 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
981 		mem->addr = htole32(sc->sc_memaddr_frame_start +
982 		    UPGT_MEMSIZE_FRAME_HEAD);
983 
984 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
985 		eeprom->header1.flags = 0;
986 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
987 		eeprom->header1.len = htole16((
988 		    sizeof(struct upgt_lmac_eeprom) -
989 		    sizeof(struct upgt_lmac_header)) + block);
990 
991 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
992 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
993 		eeprom->header2.flags = 0;
994 
995 		eeprom->offset = htole16(offset);
996 		eeprom->len = htole16(block);
997 
998 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
999 		    len - sizeof(*mem));
1000 
1001 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1002 		    USBD_FORCE_SHORT_XFER) != 0) {
1003 			aprint_error_dev(sc->sc_dev,
1004 			    "could not transmit EEPROM data URB\n");
1005 			return EIO;
1006 		}
1007 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1008 			aprint_error_dev(sc->sc_dev,
1009 			    "timeout while waiting for EEPROM data\n");
1010 			return EIO;
1011 		}
1012 
1013 		offset += block;
1014 		if (UPGT_EEPROM_SIZE - offset < block)
1015 			block = UPGT_EEPROM_SIZE - offset;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 static int
upgt_eeprom_parse(struct upgt_softc * sc)1022 upgt_eeprom_parse(struct upgt_softc *sc)
1023 {
1024 	struct ieee80211com *ic = &sc->sc_ic;
1025 	struct upgt_eeprom_header *eeprom_header;
1026 	struct upgt_eeprom_option *eeprom_option;
1027 	uint16_t option_len;
1028 	uint16_t option_type;
1029 	uint16_t preamble_len;
1030 	int option_end = 0;
1031 
1032 	/* calculate eeprom options start offset */
1033 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1034 	preamble_len = le16toh(eeprom_header->preamble_len);
1035 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1036 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1037 
1038 	while (!option_end) {
1039 		/* the eeprom option length is stored in words */
1040 		option_len =
1041 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1042 		option_type =
1043 		    le16toh(eeprom_option->type);
1044 
1045 		switch (option_type) {
1046 		case UPGT_EEPROM_TYPE_NAME:
1047 			DPRINTF(1, "%s: EEPROM name len=%d\n",
1048 			    device_xname(sc->sc_dev), option_len);
1049 			break;
1050 		case UPGT_EEPROM_TYPE_SERIAL:
1051 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
1052 			    device_xname(sc->sc_dev), option_len);
1053 			break;
1054 		case UPGT_EEPROM_TYPE_MAC:
1055 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
1056 			    device_xname(sc->sc_dev), option_len);
1057 
1058 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1059 			break;
1060 		case UPGT_EEPROM_TYPE_HWRX:
1061 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1062 			    device_xname(sc->sc_dev), option_len);
1063 
1064 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1065 			break;
1066 		case UPGT_EEPROM_TYPE_CHIP:
1067 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
1068 			    device_xname(sc->sc_dev), option_len);
1069 			break;
1070 		case UPGT_EEPROM_TYPE_FREQ3:
1071 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1072 			    device_xname(sc->sc_dev), option_len);
1073 
1074 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1075 			    option_len);
1076 			break;
1077 		case UPGT_EEPROM_TYPE_FREQ4:
1078 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1079 			    device_xname(sc->sc_dev), option_len);
1080 
1081 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1082 			    option_len);
1083 			break;
1084 		case UPGT_EEPROM_TYPE_FREQ5:
1085 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1086 			    device_xname(sc->sc_dev), option_len);
1087 			break;
1088 		case UPGT_EEPROM_TYPE_FREQ6:
1089 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1090 			    device_xname(sc->sc_dev), option_len);
1091 
1092 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1093 			    option_len);
1094 			break;
1095 		case UPGT_EEPROM_TYPE_END:
1096 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1097 			    device_xname(sc->sc_dev), option_len);
1098 			option_end = 1;
1099 			break;
1100 		case UPGT_EEPROM_TYPE_OFF:
1101 			DPRINTF(1, "%s: EEPROM off without end option\n",
1102 			    device_xname(sc->sc_dev));
1103 			return EIO;
1104 		default:
1105 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1106 			    device_xname(sc->sc_dev), option_type, option_len);
1107 			break;
1108 		}
1109 
1110 		/* jump to next EEPROM option */
1111 		eeprom_option = (struct upgt_eeprom_option *)
1112 		    (eeprom_option->data + option_len);
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 static void
upgt_eeprom_parse_hwrx(struct upgt_softc * sc,uint8_t * data)1119 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1120 {
1121 	struct upgt_eeprom_option_hwrx *option_hwrx;
1122 
1123 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1124 
1125 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1126 
1127 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1128 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1129 }
1130 
1131 static void
upgt_eeprom_parse_freq3(struct upgt_softc * sc,uint8_t * data,int len)1132 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1133 {
1134 	struct upgt_eeprom_freq3_header *freq3_header;
1135 	struct upgt_lmac_freq3 *freq3;
1136 	int i, elements, flags;
1137 	unsigned channel;
1138 
1139 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1140 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1141 
1142 	flags = freq3_header->flags;
1143 	elements = freq3_header->elements;
1144 
1145 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1146 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1147 	__USE(flags);
1148 
1149 	for (i = 0; i < elements; i++) {
1150 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1151 
1152 		sc->sc_eeprom_freq3[channel] = freq3[i];
1153 
1154 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1155 		    device_xname(sc->sc_dev),
1156 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1157 	}
1158 }
1159 
1160 static void
upgt_eeprom_parse_freq4(struct upgt_softc * sc,uint8_t * data,int len)1161 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1162 {
1163 	struct upgt_eeprom_freq4_header *freq4_header;
1164 	struct upgt_eeprom_freq4_1 *freq4_1;
1165 	struct upgt_eeprom_freq4_2 *freq4_2;
1166 	int i, j, elements, settings, flags;
1167 	unsigned channel;
1168 
1169 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1170 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1171 
1172 	flags = freq4_header->flags;
1173 	elements = freq4_header->elements;
1174 	settings = freq4_header->settings;
1175 
1176 	/* we need this value later */
1177 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1178 
1179 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1180 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1181 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1182 	__USE(flags);
1183 
1184 	for (i = 0; i < elements; i++) {
1185 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1186 
1187 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1188 
1189 		for (j = 0; j < settings; j++) {
1190 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1191 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1192 		}
1193 
1194 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1195 		    device_xname(sc->sc_dev),
1196 		    le16toh(freq4_1[i].freq), channel);
1197 	}
1198 }
1199 
1200 static void
upgt_eeprom_parse_freq6(struct upgt_softc * sc,uint8_t * data,int len)1201 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1202 {
1203 	struct upgt_lmac_freq6 *freq6;
1204 	int i, elements;
1205 	unsigned channel;
1206 
1207 	freq6 = (struct upgt_lmac_freq6 *)data;
1208 
1209 	elements = len / sizeof(struct upgt_lmac_freq6);
1210 
1211 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1212 
1213 	for (i = 0; i < elements; i++) {
1214 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1215 
1216 		sc->sc_eeprom_freq6[channel] = freq6[i];
1217 
1218 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1219 		    device_xname(sc->sc_dev),
1220 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1221 	}
1222 }
1223 
1224 static int
upgt_ioctl(struct ifnet * ifp,u_long cmd,void * data)1225 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1226 {
1227 	struct upgt_softc *sc = ifp->if_softc;
1228 	struct ieee80211com *ic = &sc->sc_ic;
1229 	int s, error = 0;
1230 
1231 	s = splnet();
1232 
1233 	switch (cmd) {
1234 	case SIOCSIFFLAGS:
1235 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1236 			break;
1237 		if (ifp->if_flags & IFF_UP) {
1238 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1239 				upgt_init(ifp);
1240 		} else {
1241 			if (ifp->if_flags & IFF_RUNNING)
1242 				upgt_stop(sc);
1243 		}
1244 		break;
1245 	case SIOCADDMULTI:
1246 	case SIOCDELMULTI:
1247 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1248 			/* setup multicast filter, etc */
1249 			error = 0;
1250 		}
1251 		break;
1252 	default:
1253 		error = ieee80211_ioctl(ic, cmd, data);
1254 		break;
1255 	}
1256 
1257 	if (error == ENETRESET) {
1258 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1259 		    (IFF_UP | IFF_RUNNING))
1260 			upgt_init(ifp);
1261 		error = 0;
1262 	}
1263 
1264 	splx(s);
1265 
1266 	return error;
1267 }
1268 
1269 static int
upgt_init(struct ifnet * ifp)1270 upgt_init(struct ifnet *ifp)
1271 {
1272 	struct upgt_softc *sc = ifp->if_softc;
1273 	struct ieee80211com *ic = &sc->sc_ic;
1274 
1275 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1276 
1277 	if (ifp->if_flags & IFF_RUNNING)
1278 		upgt_stop(sc);
1279 
1280 	ifp->if_flags |= IFF_RUNNING;
1281 	ifp->if_flags &= ~IFF_OACTIVE;
1282 
1283 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1284 
1285 	/* setup device rates */
1286 	upgt_setup_rates(sc);
1287 
1288 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1289 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1290 	else
1291 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1292 
1293 	return 0;
1294 }
1295 
1296 static void
upgt_stop(struct upgt_softc * sc)1297 upgt_stop(struct upgt_softc *sc)
1298 {
1299 	struct ieee80211com *ic = &sc->sc_ic;
1300 	struct ifnet *ifp = &sc->sc_if;
1301 
1302 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1303 
1304 	/* device down */
1305 	ifp->if_timer = 0;
1306 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1307 
1308 	/* change device back to initial state */
1309 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1310 }
1311 
1312 static int
upgt_media_change(struct ifnet * ifp)1313 upgt_media_change(struct ifnet *ifp)
1314 {
1315 	struct upgt_softc *sc = ifp->if_softc;
1316 	int error;
1317 
1318 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1319 
1320 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1321 		return error;
1322 
1323 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1324 	    (IFF_UP | IFF_RUNNING)) {
1325 		/* give pending USB transfers a chance to finish */
1326 		usbd_delay_ms(sc->sc_udev, 100);
1327 		upgt_init(ifp);
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 static void
upgt_newassoc(struct ieee80211_node * ni,int isnew)1334 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1335 {
1336 
1337 	ni->ni_txrate = 0;
1338 }
1339 
1340 static int
upgt_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)1341 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1342 {
1343 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1344 
1345 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1346 	callout_stop(&sc->scan_to);
1347 
1348 	/* do it in a process context */
1349 	sc->sc_state = nstate;
1350 	sc->sc_arg = arg;
1351 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1352 
1353 	return 0;
1354 }
1355 
1356 static void
upgt_newstate_task(void * arg)1357 upgt_newstate_task(void *arg)
1358 {
1359 	struct upgt_softc *sc = arg;
1360 	struct ieee80211com *ic = &sc->sc_ic;
1361 	struct ieee80211_node *ni;
1362 	unsigned channel;
1363 
1364 	mutex_enter(&sc->sc_mtx);
1365 
1366 	switch (sc->sc_state) {
1367 	case IEEE80211_S_INIT:
1368 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1369 		    device_xname(sc->sc_dev));
1370 
1371 		/* do not accept any frames if the device is down */
1372 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1373 		upgt_set_led(sc, UPGT_LED_OFF);
1374 		break;
1375 	case IEEE80211_S_SCAN:
1376 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1377 		    device_xname(sc->sc_dev));
1378 
1379 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1380 		upgt_set_channel(sc, channel);
1381 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1382 		callout_schedule(&sc->scan_to, hz / 5);
1383 		break;
1384 	case IEEE80211_S_AUTH:
1385 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1386 		    device_xname(sc->sc_dev));
1387 
1388 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1389 		upgt_set_channel(sc, channel);
1390 		break;
1391 	case IEEE80211_S_ASSOC:
1392 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1393 		    device_xname(sc->sc_dev));
1394 
1395 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1396 		upgt_set_channel(sc, channel);
1397 		break;
1398 	case IEEE80211_S_RUN:
1399 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1400 		    device_xname(sc->sc_dev));
1401 
1402 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1403 		upgt_set_channel(sc, channel);
1404 
1405 		ni = ic->ic_bss;
1406 
1407 		/*
1408 		 * TX rate control is done by the firmware.
1409 		 * Report the maximum rate which is available therefore.
1410 		 */
1411 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1412 
1413 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1414 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1415 		upgt_set_led(sc, UPGT_LED_ON);
1416 		break;
1417 	}
1418 
1419 	mutex_exit(&sc->sc_mtx);
1420 
1421 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1422 }
1423 
1424 static void
upgt_next_scan(void * arg)1425 upgt_next_scan(void *arg)
1426 {
1427 	struct upgt_softc *sc = arg;
1428 	struct ieee80211com *ic = &sc->sc_ic;
1429 
1430 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1431 
1432 	if (ic->ic_state == IEEE80211_S_SCAN)
1433 		ieee80211_next_scan(ic);
1434 }
1435 
1436 static void
upgt_start(struct ifnet * ifp)1437 upgt_start(struct ifnet *ifp)
1438 {
1439 	struct upgt_softc *sc = ifp->if_softc;
1440 	struct ieee80211com *ic = &sc->sc_ic;
1441 	struct ether_header *eh;
1442 	struct ieee80211_node *ni;
1443 	struct mbuf *m;
1444 	int i;
1445 
1446 	/* don't transmit packets if interface is busy or down */
1447 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1448 		return;
1449 
1450 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1451 
1452 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1453 		struct upgt_data *data_tx = &sc->tx_data[i];
1454 
1455 		if (data_tx->m != NULL)
1456 			continue;
1457 
1458 		IF_POLL(&ic->ic_mgtq, m);
1459 		if (m != NULL) {
1460 			/* management frame */
1461 			IF_DEQUEUE(&ic->ic_mgtq, m);
1462 
1463 			ni = M_GETCTX(m, struct ieee80211_node *);
1464 			M_CLEARCTX(m);
1465 
1466 			bpf_mtap3(ic->ic_rawbpf, m);
1467 
1468 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1469 				aprint_error_dev(sc->sc_dev,
1470 				    "no free prism memory\n");
1471 				m_freem(m);
1472 				ifp->if_oerrors++;
1473 				break;
1474 			}
1475 			data_tx->ni = ni;
1476 			data_tx->m = m;
1477 			sc->tx_queued++;
1478 		} else {
1479 			/* data frame */
1480 			if (ic->ic_state != IEEE80211_S_RUN)
1481 				break;
1482 
1483 			IFQ_POLL(&ifp->if_snd, m);
1484 			if (m == NULL)
1485 				break;
1486 
1487 			IFQ_DEQUEUE(&ifp->if_snd, m);
1488 			if (m->m_len < sizeof(struct ether_header) &&
1489 			    !(m = m_pullup(m, sizeof(struct ether_header))))
1490 				continue;
1491 
1492 			eh = mtod(m, struct ether_header *);
1493 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1494 			if (ni == NULL) {
1495 				m_freem(m);
1496 				continue;
1497 			}
1498 
1499 			bpf_mtap(ifp, m);
1500 
1501 			m = ieee80211_encap(ic, m, ni);
1502 			if (m == NULL) {
1503 				ieee80211_free_node(ni);
1504 				continue;
1505 			}
1506 
1507 			bpf_mtap3(ic->ic_rawbpf, m);
1508 
1509 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1510 				aprint_error_dev(sc->sc_dev,
1511 				    "no free prism memory\n");
1512 				m_freem(m);
1513 				ieee80211_free_node(ni);
1514 				ifp->if_oerrors++;
1515 				break;
1516 			}
1517 			data_tx->ni = ni;
1518 			data_tx->m = m;
1519 			sc->tx_queued++;
1520 		}
1521 	}
1522 
1523 	if (sc->tx_queued > 0) {
1524 		DPRINTF(2, "%s: tx_queued=%d\n",
1525 		    device_xname(sc->sc_dev), sc->tx_queued);
1526 		/* process the TX queue in process context */
1527 		ifp->if_timer = 5;
1528 		ifp->if_flags |= IFF_OACTIVE;
1529 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1530 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1531 	}
1532 }
1533 
1534 static void
upgt_watchdog(struct ifnet * ifp)1535 upgt_watchdog(struct ifnet *ifp)
1536 {
1537 	struct upgt_softc *sc = ifp->if_softc;
1538 	struct ieee80211com *ic = &sc->sc_ic;
1539 
1540 	if (ic->ic_state == IEEE80211_S_INIT)
1541 		return;
1542 
1543 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1544 
1545 	/* TODO: what shall we do on TX timeout? */
1546 
1547 	ieee80211_watchdog(ic);
1548 }
1549 
1550 static void
upgt_tx_task(void * arg)1551 upgt_tx_task(void *arg)
1552 {
1553 	struct upgt_softc *sc = arg;
1554 	struct ieee80211com *ic = &sc->sc_ic;
1555 	struct ieee80211_frame *wh;
1556 	struct ieee80211_key *k;
1557 	struct ifnet *ifp = &sc->sc_if;
1558 	struct upgt_lmac_mem *mem;
1559 	struct upgt_lmac_tx_desc *txdesc;
1560 	struct mbuf *m;
1561 	uint32_t addr;
1562 	int i, len, pad, s;
1563 	usbd_status error;
1564 
1565 	mutex_enter(&sc->sc_mtx);
1566 	upgt_set_led(sc, UPGT_LED_BLINK);
1567 	mutex_exit(&sc->sc_mtx);
1568 
1569 	s = splnet();
1570 
1571 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1572 		struct upgt_data *data_tx = &sc->tx_data[i];
1573 
1574 		if (data_tx->m == NULL)
1575 			continue;
1576 
1577 		m = data_tx->m;
1578 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1579 
1580 		/*
1581 		 * Software crypto.
1582 		 */
1583 		wh = mtod(m, struct ieee80211_frame *);
1584 
1585 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1586 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1587 			if (k == NULL) {
1588 				m_freem(m);
1589 				data_tx->m = NULL;
1590 				ieee80211_free_node(data_tx->ni);
1591 				data_tx->ni = NULL;
1592 				ifp->if_oerrors++;
1593 				break;
1594 			}
1595 
1596 			/* in case packet header moved, reset pointer */
1597 			wh = mtod(m, struct ieee80211_frame *);
1598 		}
1599 
1600 		/*
1601 		 * Transmit the URB containing the TX data.
1602 		 */
1603 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1604 
1605 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1606 		mem->addr = htole32(addr);
1607 
1608 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1609 
1610 		/* XXX differ between data and mgmt frames? */
1611 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1612 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1613 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1614 
1615 		txdesc->header2.reqid = htole32(data_tx->addr);
1616 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1617 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1618 
1619 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1620 		    IEEE80211_FC0_TYPE_MGT) {
1621 			/* always send mgmt frames at lowest rate (DS1) */
1622 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1623 		} else {
1624 			memcpy(txdesc->rates, sc->sc_cur_rateset,
1625 			    sizeof(txdesc->rates));
1626 		}
1627 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1628 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1629 
1630 		if (sc->sc_drvbpf != NULL) {
1631 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1632 
1633 			tap->wt_flags = 0;
1634 			tap->wt_rate = 0;	/* TODO: where to get from? */
1635 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1636 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1637 
1638 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1639 		}
1640 
1641 		/* copy frame below our TX descriptor header */
1642 		m_copydata(m, 0, m->m_pkthdr.len,
1643 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1644 
1645 		/* calculate frame size */
1646 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1647 
1648 		if (len & 3) {
1649 			/* we need to align the frame to a 4 byte boundary */
1650 			pad = 4 - (len & 3);
1651 			memset(data_tx->buf + len, 0, pad);
1652 			len += pad;
1653 		}
1654 
1655 		/* calculate frame checksum */
1656 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1657 		    len - sizeof(*mem));
1658 
1659 		/* we do not need the mbuf anymore */
1660 		m_freem(m);
1661 		data_tx->m = NULL;
1662 
1663 		ieee80211_free_node(data_tx->ni);
1664 		data_tx->ni = NULL;
1665 
1666 		DPRINTF(2, "%s: TX start data sending\n",
1667 		    device_xname(sc->sc_dev));
1668 
1669 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1670 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1671 		error = usbd_transfer(data_tx->xfer);
1672 		if (error != USBD_NORMAL_COMPLETION &&
1673 		    error != USBD_IN_PROGRESS) {
1674 			aprint_error_dev(sc->sc_dev,
1675 			    "could not transmit TX data URB\n");
1676 			ifp->if_oerrors++;
1677 			break;
1678 		}
1679 
1680 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1681 		    device_xname(sc->sc_dev), len);
1682 	}
1683 
1684 	splx(s);
1685 
1686 	/*
1687 	 * If we don't regulary read the device statistics, the RX queue
1688 	 * will stall.  It's strange, but it works, so we keep reading
1689 	 * the statistics here.  *shrug*
1690 	 */
1691 	mutex_enter(&sc->sc_mtx);
1692 	upgt_get_stats(sc);
1693 	mutex_exit(&sc->sc_mtx);
1694 }
1695 
1696 static void
upgt_tx_done(struct upgt_softc * sc,uint8_t * data)1697 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1698 {
1699 	struct ifnet *ifp = &sc->sc_if;
1700 	struct upgt_lmac_tx_done_desc *desc;
1701 	int i, s;
1702 
1703 	s = splnet();
1704 
1705 	desc = (struct upgt_lmac_tx_done_desc *)data;
1706 
1707 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1708 		struct upgt_data *data_tx = &sc->tx_data[i];
1709 
1710 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1711 			upgt_mem_free(sc, data_tx->addr);
1712 			data_tx->addr = 0;
1713 
1714 			sc->tx_queued--;
1715 			ifp->if_opackets++;
1716 
1717 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1718 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1719 			    le32toh(desc->header2.reqid),
1720 			    le16toh(desc->status),
1721 			    le16toh(desc->rssi));
1722 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1723 			break;
1724 		}
1725 	}
1726 
1727 	if (sc->tx_queued == 0) {
1728 		/* TX queued was processed, continue */
1729 		ifp->if_timer = 0;
1730 		ifp->if_flags &= ~IFF_OACTIVE;
1731 		upgt_start(ifp);
1732 	}
1733 
1734 	splx(s);
1735 }
1736 
1737 static void
upgt_rx_cb(struct usbd_xfer * xfer,void * priv,usbd_status status)1738 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1739 {
1740 	struct upgt_data *data_rx = priv;
1741 	struct upgt_softc *sc = data_rx->sc;
1742 	int len;
1743 	struct upgt_lmac_header *header;
1744 	struct upgt_lmac_eeprom *eeprom;
1745 	uint8_t h1_type;
1746 	uint16_t h2_type;
1747 
1748 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1749 
1750 	if (status != USBD_NORMAL_COMPLETION) {
1751 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1752 			return;
1753 		if (status == USBD_STALLED)
1754 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1755 		goto skip;
1756 	}
1757 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1758 
1759 	/*
1760 	 * Check what type of frame came in.
1761 	 */
1762 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1763 
1764 	h1_type = header->header1.type;
1765 	h2_type = le16toh(header->header2.type);
1766 
1767 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1768 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1769 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1770 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1771 		uint16_t eeprom_len = le16toh(eeprom->len);
1772 
1773 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1774 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1775 
1776 		memcpy(sc->sc_eeprom + eeprom_offset,
1777 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1778 		    eeprom_len);
1779 
1780 		/* EEPROM data has arrived in time, wakeup tsleep() */
1781 		wakeup(sc);
1782 	} else
1783 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1784 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1785 		DPRINTF(2, "%s: received 802.11 TX done\n",
1786 		    device_xname(sc->sc_dev));
1787 
1788 		upgt_tx_done(sc, data_rx->buf + 4);
1789 	} else
1790 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1791 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1792 		DPRINTF(3, "%s: received 802.11 RX data\n",
1793 		    device_xname(sc->sc_dev));
1794 
1795 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1796 	} else
1797 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1798 	    h2_type == UPGT_H2_TYPE_STATS) {
1799 		DPRINTF(2, "%s: received statistic data\n",
1800 		    device_xname(sc->sc_dev));
1801 
1802 		/* TODO: what could we do with the statistic data? */
1803 	} else {
1804 		/* ignore unknown frame types */
1805 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1806 		    device_xname(sc->sc_dev), header->header1.type);
1807 	}
1808 
1809 skip:	/* setup new transfer */
1810 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1811 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1812 	(void)usbd_transfer(xfer);
1813 }
1814 
1815 static void
upgt_rx(struct upgt_softc * sc,uint8_t * data,int pkglen)1816 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1817 {
1818 	struct ieee80211com *ic = &sc->sc_ic;
1819 	struct ifnet *ifp = &sc->sc_if;
1820 	struct upgt_lmac_rx_desc *rxdesc;
1821 	struct ieee80211_frame *wh;
1822 	struct ieee80211_node *ni;
1823 	struct mbuf *m;
1824 	int s;
1825 
1826 	/* access RX packet descriptor */
1827 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1828 
1829 	/* create mbuf which is suitable for strict alignment archs */
1830 #define ETHER_ALIGN	0
1831 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1832 	if (m == NULL) {
1833 		DPRINTF(1, "%s: could not create RX mbuf\n",
1834 		   device_xname(sc->sc_dev));
1835 		ifp->if_ierrors++;
1836 		return;
1837 	}
1838 
1839 	s = splnet();
1840 
1841 	if (sc->sc_drvbpf != NULL) {
1842 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1843 
1844 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1845 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1846 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1847 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1848 		tap->wr_antsignal = rxdesc->rssi;
1849 
1850 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1851 	}
1852 
1853 	/* trim FCS */
1854 	m_adj(m, -IEEE80211_CRC_LEN);
1855 
1856 	wh = mtod(m, struct ieee80211_frame *);
1857 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1858 
1859 	/* push the frame up to the 802.11 stack */
1860 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1861 
1862 	/* node is no longer needed */
1863 	ieee80211_free_node(ni);
1864 
1865 	splx(s);
1866 
1867 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1868 }
1869 
1870 static void
upgt_setup_rates(struct upgt_softc * sc)1871 upgt_setup_rates(struct upgt_softc *sc)
1872 {
1873 	struct ieee80211com *ic = &sc->sc_ic;
1874 
1875 	/*
1876 	 * 0x01 = OFMD6   0x10 = DS1
1877 	 * 0x04 = OFDM9   0x11 = DS2
1878 	 * 0x06 = OFDM12  0x12 = DS5
1879 	 * 0x07 = OFDM18  0x13 = DS11
1880 	 * 0x08 = OFDM24
1881 	 * 0x09 = OFDM36
1882 	 * 0x0a = OFDM48
1883 	 * 0x0b = OFDM54
1884 	 */
1885 	const uint8_t rateset_auto_11b[] =
1886 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1887 	const uint8_t rateset_auto_11g[] =
1888 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1889 	const uint8_t rateset_fix_11bg[] =
1890 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1891 	      0x08, 0x09, 0x0a, 0x0b };
1892 
1893 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1894 		/*
1895 		 * Automatic rate control is done by the device.
1896 		 * We just pass the rateset from which the device
1897 		 * will pickup a rate.
1898 		 */
1899 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1900 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1901 			    sizeof(sc->sc_cur_rateset));
1902 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1903 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1904 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1905 			    sizeof(sc->sc_cur_rateset));
1906 	} else {
1907 		/* set a fixed rate */
1908 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1909 		    sizeof(sc->sc_cur_rateset));
1910 	}
1911 }
1912 
1913 static uint8_t
upgt_rx_rate(struct upgt_softc * sc,const int rate)1914 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1915 {
1916 	struct ieee80211com *ic = &sc->sc_ic;
1917 
1918 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1919 		if (rate < 0 || rate > 3)
1920 			/* invalid rate */
1921 			return 0;
1922 
1923 		switch (rate) {
1924 		case 0:
1925 			return 2;
1926 		case 1:
1927 			return 4;
1928 		case 2:
1929 			return 11;
1930 		case 3:
1931 			return 22;
1932 		default:
1933 			return 0;
1934 		}
1935 	}
1936 
1937 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1938 		if (rate < 0 || rate > 11)
1939 			/* invalid rate */
1940 			return 0;
1941 
1942 		switch (rate) {
1943 		case 0:
1944 			return 2;
1945 		case 1:
1946 			return 4;
1947 		case 2:
1948 			return 11;
1949 		case 3:
1950 			return 22;
1951 		case 4:
1952 			return 12;
1953 		case 5:
1954 			return 18;
1955 		case 6:
1956 			return 24;
1957 		case 7:
1958 			return 36;
1959 		case 8:
1960 			return 48;
1961 		case 9:
1962 			return 72;
1963 		case 10:
1964 			return 96;
1965 		case 11:
1966 			return 108;
1967 		default:
1968 			return 0;
1969 		}
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static int
upgt_set_macfilter(struct upgt_softc * sc,uint8_t state)1976 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1977 {
1978 	struct ieee80211com *ic = &sc->sc_ic;
1979 	struct ieee80211_node *ni = ic->ic_bss;
1980 	struct upgt_data *data_cmd = &sc->cmd_data;
1981 	struct upgt_lmac_mem *mem;
1982 	struct upgt_lmac_filter *filter;
1983 	int len;
1984 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1985 
1986 	/*
1987 	 * Transmit the URB containing the CMD data.
1988 	 */
1989 	len = sizeof(*mem) + sizeof(*filter);
1990 
1991 	memset(data_cmd->buf, 0, len);
1992 
1993 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1994 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1995 	    UPGT_MEMSIZE_FRAME_HEAD);
1996 
1997 	filter = (struct upgt_lmac_filter *)(mem + 1);
1998 
1999 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2000 	filter->header1.type = UPGT_H1_TYPE_CTRL;
2001 	filter->header1.len = htole16(
2002 	    sizeof(struct upgt_lmac_filter) -
2003 	    sizeof(struct upgt_lmac_header));
2004 
2005 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2006 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2007 	filter->header2.flags = 0;
2008 
2009 	switch (state) {
2010 	case IEEE80211_S_INIT:
2011 		DPRINTF(1, "%s: set MAC filter to INIT\n",
2012 		    device_xname(sc->sc_dev));
2013 
2014 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2015 		break;
2016 	case IEEE80211_S_SCAN:
2017 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2018 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
2019 
2020 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2021 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2022 		IEEE80211_ADDR_COPY(filter->src, broadcast);
2023 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2024 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2025 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2026 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2027 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2028 		break;
2029 	case IEEE80211_S_RUN:
2030 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2031 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2032 
2033 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
2034 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2035 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2036 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2037 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2038 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2039 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2040 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2041 		break;
2042 	default:
2043 		aprint_error_dev(sc->sc_dev,
2044 		    "MAC filter does not know that state\n");
2045 		break;
2046 	}
2047 
2048 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2049 
2050 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2051 		aprint_error_dev(sc->sc_dev,
2052 		    "could not transmit macfilter CMD data URB\n");
2053 		return EIO;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static int
upgt_set_channel(struct upgt_softc * sc,unsigned channel)2060 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2061 {
2062 	struct upgt_data *data_cmd = &sc->cmd_data;
2063 	struct upgt_lmac_mem *mem;
2064 	struct upgt_lmac_channel *chan;
2065 	int len;
2066 
2067 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2068 	    channel);
2069 
2070 	/*
2071 	 * Transmit the URB containing the CMD data.
2072 	 */
2073 	len = sizeof(*mem) + sizeof(*chan);
2074 
2075 	memset(data_cmd->buf, 0, len);
2076 
2077 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2078 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2079 	    UPGT_MEMSIZE_FRAME_HEAD);
2080 
2081 	chan = (struct upgt_lmac_channel *)(mem + 1);
2082 
2083 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2084 	chan->header1.type = UPGT_H1_TYPE_CTRL;
2085 	chan->header1.len = htole16(
2086 	    sizeof(struct upgt_lmac_channel) -
2087 	    sizeof(struct upgt_lmac_header));
2088 
2089 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2090 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2091 	chan->header2.flags = 0;
2092 
2093 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2094 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2095 	chan->freq6 = sc->sc_eeprom_freq6[channel];
2096 	chan->settings = sc->sc_eeprom_freq6_settings;
2097 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2098 
2099 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2100 	    sizeof(chan->freq3_1));
2101 
2102 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2103 	    sizeof(sc->sc_eeprom_freq4[channel]));
2104 
2105 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2106 	    sizeof(chan->freq3_2));
2107 
2108 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2109 
2110 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2111 		aprint_error_dev(sc->sc_dev,
2112 		    "could not transmit channel CMD data URB\n");
2113 		return EIO;
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 static void
upgt_set_led(struct upgt_softc * sc,int action)2120 upgt_set_led(struct upgt_softc *sc, int action)
2121 {
2122 	struct ieee80211com *ic = &sc->sc_ic;
2123 	struct upgt_data *data_cmd = &sc->cmd_data;
2124 	struct upgt_lmac_mem *mem;
2125 	struct upgt_lmac_led *led;
2126 	struct timeval t;
2127 	int len;
2128 
2129 	/*
2130 	 * Transmit the URB containing the CMD data.
2131 	 */
2132 	len = sizeof(*mem) + sizeof(*led);
2133 
2134 	memset(data_cmd->buf, 0, len);
2135 
2136 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2137 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2138 	    UPGT_MEMSIZE_FRAME_HEAD);
2139 
2140 	led = (struct upgt_lmac_led *)(mem + 1);
2141 
2142 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2143 	led->header1.type = UPGT_H1_TYPE_CTRL;
2144 	led->header1.len = htole16(
2145 	    sizeof(struct upgt_lmac_led) -
2146 	    sizeof(struct upgt_lmac_header));
2147 
2148 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2149 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2150 	led->header2.flags = 0;
2151 
2152 	switch (action) {
2153 	case UPGT_LED_OFF:
2154 		led->mode = htole16(UPGT_LED_MODE_SET);
2155 		led->action_fix = 0;
2156 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2157 		led->action_tmp_dur = 0;
2158 		break;
2159 	case UPGT_LED_ON:
2160 		led->mode = htole16(UPGT_LED_MODE_SET);
2161 		led->action_fix = 0;
2162 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2163 		led->action_tmp_dur = 0;
2164 		break;
2165 	case UPGT_LED_BLINK:
2166 		if (ic->ic_state != IEEE80211_S_RUN)
2167 			return;
2168 		if (sc->sc_led_blink)
2169 			/* previous blink was not finished */
2170 			return;
2171 		led->mode = htole16(UPGT_LED_MODE_SET);
2172 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2173 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2174 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2175 		/* lock blink */
2176 		sc->sc_led_blink = 1;
2177 		t.tv_sec = 0;
2178 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2179 		callout_schedule(&sc->led_to, tvtohz(&t));
2180 		break;
2181 	default:
2182 		return;
2183 	}
2184 
2185 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2186 
2187 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2188 		aprint_error_dev(sc->sc_dev,
2189 		    "could not transmit led CMD URB\n");
2190 	}
2191 }
2192 
2193 static void
upgt_set_led_blink(void * arg)2194 upgt_set_led_blink(void *arg)
2195 {
2196 	struct upgt_softc *sc = arg;
2197 
2198 	/* blink finished, we are ready for a next one */
2199 	sc->sc_led_blink = 0;
2200 	callout_stop(&sc->led_to);
2201 }
2202 
2203 static int
upgt_get_stats(struct upgt_softc * sc)2204 upgt_get_stats(struct upgt_softc *sc)
2205 {
2206 	struct upgt_data *data_cmd = &sc->cmd_data;
2207 	struct upgt_lmac_mem *mem;
2208 	struct upgt_lmac_stats *stats;
2209 	int len;
2210 
2211 	/*
2212 	 * Transmit the URB containing the CMD data.
2213 	 */
2214 	len = sizeof(*mem) + sizeof(*stats);
2215 
2216 	memset(data_cmd->buf, 0, len);
2217 
2218 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2219 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2220 	    UPGT_MEMSIZE_FRAME_HEAD);
2221 
2222 	stats = (struct upgt_lmac_stats *)(mem + 1);
2223 
2224 	stats->header1.flags = 0;
2225 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2226 	stats->header1.len = htole16(
2227 	    sizeof(struct upgt_lmac_stats) -
2228 	    sizeof(struct upgt_lmac_header));
2229 
2230 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2231 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2232 	stats->header2.flags = 0;
2233 
2234 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2235 
2236 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2237 		aprint_error_dev(sc->sc_dev,
2238 		    "could not transmit statistics CMD data URB\n");
2239 		return EIO;
2240 	}
2241 
2242 	return 0;
2243 
2244 }
2245 
2246 static int
upgt_alloc_tx(struct upgt_softc * sc)2247 upgt_alloc_tx(struct upgt_softc *sc)
2248 {
2249 	int i;
2250 
2251 	sc->tx_queued = 0;
2252 
2253 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2254 		struct upgt_data *data_tx = &sc->tx_data[i];
2255 
2256 		data_tx->sc = sc;
2257 
2258 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 0, 0,
2259 		    &data_tx->xfer);
2260 		if (err) {
2261 			aprint_error_dev(sc->sc_dev,
2262 			    "could not allocate TX xfer\n");
2263 			return err;
2264 		}
2265 
2266 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int
upgt_alloc_rx(struct upgt_softc * sc)2273 upgt_alloc_rx(struct upgt_softc *sc)
2274 {
2275 	struct upgt_data *data_rx = &sc->rx_data;
2276 
2277 	data_rx->sc = sc;
2278 
2279 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2280 	    USBD_SHORT_XFER_OK, 0, &data_rx->xfer);
2281 	if (err) {
2282 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2283 		return err;
2284 	}
2285 
2286 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
2287 
2288 	return 0;
2289 }
2290 
2291 static int
upgt_alloc_cmd(struct upgt_softc * sc)2292 upgt_alloc_cmd(struct upgt_softc *sc)
2293 {
2294 	struct upgt_data *data_cmd = &sc->cmd_data;
2295 
2296 	data_cmd->sc = sc;
2297 
2298 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2299 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2300 	if (err) {
2301 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2302 		return err;
2303 	}
2304 
2305 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2306 
2307 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2308 
2309 	return 0;
2310 }
2311 
2312 static void
upgt_free_tx(struct upgt_softc * sc)2313 upgt_free_tx(struct upgt_softc *sc)
2314 {
2315 	int i;
2316 
2317 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2318 		struct upgt_data *data_tx = &sc->tx_data[i];
2319 
2320 		if (data_tx->xfer != NULL) {
2321 			usbd_destroy_xfer(data_tx->xfer);
2322 			data_tx->xfer = NULL;
2323 		}
2324 
2325 		data_tx->ni = NULL;
2326 	}
2327 }
2328 
2329 static void
upgt_free_rx(struct upgt_softc * sc)2330 upgt_free_rx(struct upgt_softc *sc)
2331 {
2332 	struct upgt_data *data_rx = &sc->rx_data;
2333 
2334 	if (data_rx->xfer != NULL) {
2335 		usbd_destroy_xfer(data_rx->xfer);
2336 		data_rx->xfer = NULL;
2337 	}
2338 
2339 	data_rx->ni = NULL;
2340 }
2341 
2342 static void
upgt_free_cmd(struct upgt_softc * sc)2343 upgt_free_cmd(struct upgt_softc *sc)
2344 {
2345 	struct upgt_data *data_cmd = &sc->cmd_data;
2346 
2347 	if (data_cmd->xfer != NULL) {
2348 		usbd_destroy_xfer(data_cmd->xfer);
2349 		data_cmd->xfer = NULL;
2350 	}
2351 
2352 	mutex_destroy(&sc->sc_mtx);
2353 }
2354 
2355 static int
upgt_bulk_xmit(struct upgt_softc * sc,struct upgt_data * data,struct usbd_pipe * pipeh,uint32_t * size,int flags)2356 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2357     struct usbd_pipe *pipeh, uint32_t *size, int flags)
2358 {
2359         usbd_status status;
2360 
2361 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2362 	    data->buf, size);
2363 	if (status != USBD_NORMAL_COMPLETION) {
2364 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2365 		    usbd_errstr(status));
2366 		return EIO;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 #if 0
2373 static void
2374 upgt_hexdump(void *buf, int len)
2375 {
2376 	int i;
2377 
2378 	for (i = 0; i < len; i++) {
2379 		if (i % 16 == 0)
2380 			printf("%s%5i:", i ? "\n" : "", i);
2381 		if (i % 4 == 0)
2382 			printf(" ");
2383 		printf("%02x", (int)*((uint8_t *)buf + i));
2384 	}
2385 	printf("\n");
2386 }
2387 #endif
2388 
2389 static uint32_t
upgt_crc32_le(const void * buf,size_t size)2390 upgt_crc32_le(const void *buf, size_t size)
2391 {
2392 	uint32_t crc;
2393 
2394 	crc = ether_crc32_le(buf, size);
2395 
2396 	/* apply final XOR value as common for CRC-32 */
2397 	crc = htole32(crc ^ 0xffffffffU);
2398 
2399 	return crc;
2400 }
2401 
2402 /*
2403  * The firmware awaits a checksum for each frame we send to it.
2404  * The algorithm used therefor is uncommon but somehow similar to CRC32.
2405  */
2406 static uint32_t
upgt_chksum_le(const uint32_t * buf,size_t size)2407 upgt_chksum_le(const uint32_t *buf, size_t size)
2408 {
2409 	int i;
2410 	uint32_t crc = 0;
2411 
2412 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2413 		crc = htole32(crc ^ *buf++);
2414 		crc = htole32((crc >> 5) ^ (crc << 3));
2415 	}
2416 
2417 	return crc;
2418 }
2419