1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 //
31 // Tests for Google Test itself.  This verifies that the basic constructs of
32 // Google Test work.
33 
34 #include "gtest/gtest.h"
35 
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40   bool dummy =
41       GTEST_FLAG_GET(also_run_disabled_tests) ||
42       GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43       GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44       GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45       GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46       GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47       GTEST_FLAG_GET(repeat) > 0 ||
48       GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49       GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50       GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51       GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52       GTEST_FLAG_GET(throw_on_failure);
53   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
54 }
55 
56 #include <limits.h>  // For INT_MAX.
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60 
61 #include <cstdint>
62 #include <map>
63 #include <memory>
64 #include <ostream>
65 #include <set>
66 #include <stdexcept>
67 #include <string>
68 #include <type_traits>
69 #include <unordered_set>
70 #include <utility>
71 #include <vector>
72 
73 #include "gtest/gtest-spi.h"
74 #include "src/gtest-internal-inl.h"
75 
76 struct ConvertibleGlobalType {
77   // The inner enable_if is to ensure invoking is_constructible doesn't fail.
78   // The outer enable_if is to ensure the overload resolution doesn't encounter
79   // an ambiguity.
80   template <
81       class T,
82       std::enable_if_t<
83           false, std::enable_if_t<std::is_constructible<T>::value, int>> = 0>
84   operator T() const;  // NOLINT(google-explicit-constructor)
85 };
86 void operator<<(ConvertibleGlobalType&, int);
87 static_assert(sizeof(decltype(std::declval<ConvertibleGlobalType&>()
88                               << 1)(*)()) > 0,
89               "error in operator<< overload resolution");
90 
91 namespace testing {
92 namespace internal {
93 
94 #if GTEST_CAN_STREAM_RESULTS_
95 
96 class StreamingListenerTest : public Test {
97  public:
98   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
99    public:
100     // Sends a string to the socket.
Send(const std::string & message)101     void Send(const std::string& message) override { output_ += message; }
102 
103     std::string output_;
104   };
105 
StreamingListenerTest()106   StreamingListenerTest()
107       : fake_sock_writer_(new FakeSocketWriter),
108         streamer_(fake_sock_writer_),
109         test_info_obj_("FooTest", "Bar", nullptr, nullptr,
110                        CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
111 
112  protected:
output()113   std::string* output() { return &(fake_sock_writer_->output_); }
114 
115   FakeSocketWriter* const fake_sock_writer_;
116   StreamingListener streamer_;
117   UnitTest unit_test_;
118   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
119 };
120 
TEST_F(StreamingListenerTest,OnTestProgramEnd)121 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
122   *output() = "";
123   streamer_.OnTestProgramEnd(unit_test_);
124   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
125 }
126 
TEST_F(StreamingListenerTest,OnTestIterationEnd)127 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
128   *output() = "";
129   streamer_.OnTestIterationEnd(unit_test_, 42);
130   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
131 }
132 
TEST_F(StreamingListenerTest,OnTestSuiteStart)133 TEST_F(StreamingListenerTest, OnTestSuiteStart) {
134   *output() = "";
135   streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
136   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
137 }
138 
TEST_F(StreamingListenerTest,OnTestSuiteEnd)139 TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
140   *output() = "";
141   streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
142   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
143 }
144 
TEST_F(StreamingListenerTest,OnTestStart)145 TEST_F(StreamingListenerTest, OnTestStart) {
146   *output() = "";
147   streamer_.OnTestStart(test_info_obj_);
148   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
149 }
150 
TEST_F(StreamingListenerTest,OnTestEnd)151 TEST_F(StreamingListenerTest, OnTestEnd) {
152   *output() = "";
153   streamer_.OnTestEnd(test_info_obj_);
154   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
155 }
156 
TEST_F(StreamingListenerTest,OnTestPartResult)157 TEST_F(StreamingListenerTest, OnTestPartResult) {
158   *output() = "";
159   streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
160                                             "foo.cc", 42, "failed=\n&%"));
161 
162   // Meta characters in the failure message should be properly escaped.
163   EXPECT_EQ(
164       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
165       *output());
166 }
167 
168 #endif  // GTEST_CAN_STREAM_RESULTS_
169 
170 // Provides access to otherwise private parts of the TestEventListeners class
171 // that are needed to test it.
172 class TestEventListenersAccessor {
173  public:
GetRepeater(TestEventListeners * listeners)174   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
175     return listeners->repeater();
176   }
177 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)178   static void SetDefaultResultPrinter(TestEventListeners* listeners,
179                                       TestEventListener* listener) {
180     listeners->SetDefaultResultPrinter(listener);
181   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)182   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
183                                      TestEventListener* listener) {
184     listeners->SetDefaultXmlGenerator(listener);
185   }
186 
EventForwardingEnabled(const TestEventListeners & listeners)187   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
188     return listeners.EventForwardingEnabled();
189   }
190 
SuppressEventForwarding(TestEventListeners * listeners)191   static void SuppressEventForwarding(TestEventListeners* listeners) {
192     listeners->SuppressEventForwarding(true);
193   }
194 };
195 
196 class UnitTestRecordPropertyTestHelper : public Test {
197  protected:
UnitTestRecordPropertyTestHelper()198   UnitTestRecordPropertyTestHelper() {}
199 
200   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)201   void UnitTestRecordProperty(const char* key, const std::string& value) {
202     unit_test_.RecordProperty(key, value);
203   }
204 
205   UnitTest unit_test_;
206 };
207 
208 }  // namespace internal
209 }  // namespace testing
210 
211 using testing::AssertionFailure;
212 using testing::AssertionResult;
213 using testing::AssertionSuccess;
214 using testing::DoubleLE;
215 using testing::EmptyTestEventListener;
216 using testing::Environment;
217 using testing::FloatLE;
218 using testing::IsNotSubstring;
219 using testing::IsSubstring;
220 using testing::kMaxStackTraceDepth;
221 using testing::Message;
222 using testing::ScopedFakeTestPartResultReporter;
223 using testing::StaticAssertTypeEq;
224 using testing::Test;
225 using testing::TestEventListeners;
226 using testing::TestInfo;
227 using testing::TestPartResult;
228 using testing::TestPartResultArray;
229 using testing::TestProperty;
230 using testing::TestResult;
231 using testing::TimeInMillis;
232 using testing::UnitTest;
233 using testing::internal::AlwaysFalse;
234 using testing::internal::AlwaysTrue;
235 using testing::internal::AppendUserMessage;
236 using testing::internal::ArrayAwareFind;
237 using testing::internal::ArrayEq;
238 using testing::internal::CodePointToUtf8;
239 using testing::internal::CopyArray;
240 using testing::internal::CountIf;
241 using testing::internal::EqFailure;
242 using testing::internal::FloatingPoint;
243 using testing::internal::ForEach;
244 using testing::internal::FormatEpochTimeInMillisAsIso8601;
245 using testing::internal::FormatTimeInMillisAsSeconds;
246 using testing::internal::GetElementOr;
247 using testing::internal::GetNextRandomSeed;
248 using testing::internal::GetRandomSeedFromFlag;
249 using testing::internal::GetTestTypeId;
250 using testing::internal::GetTimeInMillis;
251 using testing::internal::GetTypeId;
252 using testing::internal::GetUnitTestImpl;
253 using testing::internal::GTestFlagSaver;
254 using testing::internal::HasDebugStringAndShortDebugString;
255 using testing::internal::Int32FromEnvOrDie;
256 using testing::internal::IsContainer;
257 using testing::internal::IsContainerTest;
258 using testing::internal::IsNotContainer;
259 using testing::internal::kMaxRandomSeed;
260 using testing::internal::kTestTypeIdInGoogleTest;
261 using testing::internal::NativeArray;
262 using testing::internal::ParseFlag;
263 using testing::internal::RelationToSourceCopy;
264 using testing::internal::RelationToSourceReference;
265 using testing::internal::ShouldRunTestOnShard;
266 using testing::internal::ShouldShard;
267 using testing::internal::ShouldUseColor;
268 using testing::internal::Shuffle;
269 using testing::internal::ShuffleRange;
270 using testing::internal::SkipPrefix;
271 using testing::internal::StreamableToString;
272 using testing::internal::String;
273 using testing::internal::TestEventListenersAccessor;
274 using testing::internal::TestResultAccessor;
275 using testing::internal::WideStringToUtf8;
276 using testing::internal::edit_distance::CalculateOptimalEdits;
277 using testing::internal::edit_distance::CreateUnifiedDiff;
278 using testing::internal::edit_distance::EditType;
279 
280 #if GTEST_HAS_STREAM_REDIRECTION
281 using testing::internal::CaptureStdout;
282 using testing::internal::GetCapturedStdout;
283 #endif
284 
285 #ifdef GTEST_IS_THREADSAFE
286 using testing::internal::ThreadWithParam;
287 #endif
288 
289 class TestingVector : public std::vector<int> {};
290 
operator <<(::std::ostream & os,const TestingVector & vector)291 ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
292   os << "{ ";
293   for (size_t i = 0; i < vector.size(); i++) {
294     os << vector[i] << " ";
295   }
296   os << "}";
297   return os;
298 }
299 
300 // This line tests that we can define tests in an unnamed namespace.
301 namespace {
302 
TEST(GetRandomSeedFromFlagTest,HandlesZero)303 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
304   const int seed = GetRandomSeedFromFlag(0);
305   EXPECT_LE(1, seed);
306   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
307 }
308 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)309 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
310   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
311   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
312   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
313   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
314             GetRandomSeedFromFlag(kMaxRandomSeed));
315 }
316 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)317 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
318   const int seed1 = GetRandomSeedFromFlag(-1);
319   EXPECT_LE(1, seed1);
320   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
321 
322   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
323   EXPECT_LE(1, seed2);
324   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
325 }
326 
TEST(GetNextRandomSeedTest,WorksForValidInput)327 TEST(GetNextRandomSeedTest, WorksForValidInput) {
328   EXPECT_EQ(2, GetNextRandomSeed(1));
329   EXPECT_EQ(3, GetNextRandomSeed(2));
330   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
331             GetNextRandomSeed(kMaxRandomSeed - 1));
332   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
333 
334   // We deliberately don't test GetNextRandomSeed() with invalid
335   // inputs, as that requires death tests, which are expensive.  This
336   // is fine as GetNextRandomSeed() is internal and has a
337   // straightforward definition.
338 }
339 
ClearCurrentTestPartResults()340 static void ClearCurrentTestPartResults() {
341   TestResultAccessor::ClearTestPartResults(
342       GetUnitTestImpl()->current_test_result());
343 }
344 
345 // Tests GetTypeId.
346 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)347 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
348   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
349   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
350 }
351 
352 class SubClassOfTest : public Test {};
353 class AnotherSubClassOfTest : public Test {};
354 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)355 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
356   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
357   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
358   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
359   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
360   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
361   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
362 }
363 
364 // Verifies that GetTestTypeId() returns the same value, no matter it
365 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)366 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
367   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
368 }
369 
370 // Tests CanonicalizeForStdLibVersioning.
371 
372 using ::testing::internal::CanonicalizeForStdLibVersioning;
373 
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)374 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
375   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
376   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
377   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
378   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
379   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
380   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
381 }
382 
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)383 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
384   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
385   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
386 
387   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
388   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
389 
390   EXPECT_EQ("std::bind",
391             CanonicalizeForStdLibVersioning("std::__google::bind"));
392   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
393 }
394 
395 // Tests FormatTimeInMillisAsSeconds().
396 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)397 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
398   EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0));
399 }
400 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)401 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
402   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
403   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
404   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
405   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
406   EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000));
407   EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000));
408   EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000));
409   EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456));
410   EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890));
411 }
412 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)413 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
414   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
415   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
416   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
417   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
418   EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000));
419   EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000));
420   EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000));
421   EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456));
422   EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890));
423 }
424 
425 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
426 // for particular dates below was verified in Python using
427 // datetime.datetime.fromutctimestamp(<timestamp>/1000).
428 
429 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
430 // have to set up a particular timezone to obtain predictable results.
431 class FormatEpochTimeInMillisAsIso8601Test : public Test {
432  public:
433   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
434   // 32 bits, even when 64-bit integer types are available.  We have to
435   // force the constants to have a 64-bit type here.
436   static const TimeInMillis kMillisPerSec = 1000;
437 
438  private:
SetUp()439   void SetUp() override {
440     saved_tz_.reset();
441 
442     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */)
443     if (const char* tz = getenv("TZ")) {
444       saved_tz_ = std::make_unique<std::string>(tz);
445     }
446     GTEST_DISABLE_MSC_DEPRECATED_POP_()
447 
448     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
449     // cannot use the local time zone because the function's output depends
450     // on the time zone.
451     SetTimeZone("UTC+00");
452   }
453 
TearDown()454   void TearDown() override {
455     SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr);
456     saved_tz_.reset();
457   }
458 
SetTimeZone(const char * time_zone)459   static void SetTimeZone(const char* time_zone) {
460     // tzset() distinguishes between the TZ variable being present and empty
461     // and not being present, so we have to consider the case of time_zone
462     // being NULL.
463 #if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)
464     // ...Unless it's MSVC, whose standard library's _putenv doesn't
465     // distinguish between an empty and a missing variable.
466     const std::string env_var =
467         std::string("TZ=") + (time_zone ? time_zone : "");
468     _putenv(env_var.c_str());
469     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
470     tzset();
471     GTEST_DISABLE_MSC_WARNINGS_POP_()
472 #else
473 #if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21
474     // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
475     // See https://github.com/android/ndk/issues/1604.
476     setenv("TZ", "UTC", 1);
477     tzset();
478 #endif
479     if (time_zone) {
480       setenv(("TZ"), time_zone, 1);
481     } else {
482       unsetenv("TZ");
483     }
484     tzset();
485 #endif
486   }
487 
488   std::unique_ptr<std::string> saved_tz_;  // Empty and null are different here
489 };
490 
491 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
492 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)493 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
494   EXPECT_EQ("2011-10-31T18:52:42.000",
495             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
496 }
497 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,IncludesMillisecondsAfterDot)498 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
499   EXPECT_EQ("2011-10-31T18:52:42.234",
500             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
501 }
502 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)503 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
504   EXPECT_EQ("2011-09-03T05:07:02.000",
505             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
506 }
507 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)508 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
509   EXPECT_EQ("2011-09-28T17:08:22.000",
510             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
511 }
512 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)513 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
514   EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
515 }
516 
517 #ifdef __BORLANDC__
518 // Silences warnings: "Condition is always true", "Unreachable code"
519 #pragma option push -w-ccc -w-rch
520 #endif
521 
522 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
523 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)524 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
525   EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
526   ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
527   EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
528   ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
529   EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
530   ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
531 
532   const int* const p = nullptr;
533   EXPECT_EQ(0, p);     // NOLINT
534   ASSERT_EQ(0, p);     // NOLINT
535   EXPECT_EQ(NULL, p);  // NOLINT
536   ASSERT_EQ(NULL, p);  // NOLINT
537   EXPECT_EQ(nullptr, p);
538   ASSERT_EQ(nullptr, p);
539 }
540 
541 struct ConvertToAll {
542   template <typename T>
operator T__anon5476e4aa0111::ConvertToAll543   operator T() const {  // NOLINT
544     return T();
545   }
546 };
547 
548 struct ConvertToPointer {
549   template <class T>
operator T*__anon5476e4aa0111::ConvertToPointer550   operator T*() const {  // NOLINT
551     return nullptr;
552   }
553 };
554 
555 struct ConvertToAllButNoPointers {
556   template <typename T,
557             typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anon5476e4aa0111::ConvertToAllButNoPointers558   operator T() const {  // NOLINT
559     return T();
560   }
561 };
562 
563 struct MyType {};
operator ==(MyType const &,MyType const &)564 inline bool operator==(MyType const&, MyType const&) { return true; }
565 
TEST(NullLiteralTest,ImplicitConversion)566 TEST(NullLiteralTest, ImplicitConversion) {
567   EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
568 #if !defined(__GNUC__) || defined(__clang__)
569   // Disabled due to GCC bug gcc.gnu.org/PR89580
570   EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
571 #endif
572   EXPECT_EQ(ConvertToAll{}, MyType{});
573   EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
574 }
575 
576 #ifdef __clang__
577 #pragma clang diagnostic push
578 #if __has_warning("-Wzero-as-null-pointer-constant")
579 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
580 #endif
581 #endif
582 
TEST(NullLiteralTest,NoConversionNoWarning)583 TEST(NullLiteralTest, NoConversionNoWarning) {
584   // Test that gtests detection and handling of null pointer constants
585   // doesn't trigger a warning when '0' isn't actually used as null.
586   EXPECT_EQ(0, 0);
587   ASSERT_EQ(0, 0);
588 }
589 
590 #ifdef __clang__
591 #pragma clang diagnostic pop
592 #endif
593 
594 #ifdef __BORLANDC__
595 // Restores warnings after previous "#pragma option push" suppressed them.
596 #pragma option pop
597 #endif
598 
599 //
600 // Tests CodePointToUtf8().
601 
602 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)603 TEST(CodePointToUtf8Test, CanEncodeNul) {
604   EXPECT_EQ("", CodePointToUtf8(L'\0'));
605 }
606 
607 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)608 TEST(CodePointToUtf8Test, CanEncodeAscii) {
609   EXPECT_EQ("a", CodePointToUtf8(L'a'));
610   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
611   EXPECT_EQ("&", CodePointToUtf8(L'&'));
612   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
613 }
614 
615 // Tests that Unicode code-points that have 8 to 11 bits are encoded
616 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)617 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
618   // 000 1101 0011 => 110-00011 10-010011
619   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
620 
621   // 101 0111 0110 => 110-10101 10-110110
622   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
623   // in wide strings and wide chars. In order to accommodate them, we have to
624   // introduce such character constants as integers.
625   EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
626 }
627 
628 // Tests that Unicode code-points that have 12 to 16 bits are encoded
629 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)630 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
631   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
632   EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
633 
634   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
635   EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
636 }
637 
638 #if !GTEST_WIDE_STRING_USES_UTF16_
639 // Tests in this group require a wchar_t to hold > 16 bits, and thus
640 // are skipped on Windows, and Cygwin, where a wchar_t is
641 // 16-bit wide. This code may not compile on those systems.
642 
643 // Tests that Unicode code-points that have 17 to 21 bits are encoded
644 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)645 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
646   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
647   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
648 
649   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
650   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
651 
652   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
653   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
654 }
655 
656 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)657 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
658   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
659 }
660 
661 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
662 
663 // Tests WideStringToUtf8().
664 
665 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)666 TEST(WideStringToUtf8Test, CanEncodeNul) {
667   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
668   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
669 }
670 
671 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)672 TEST(WideStringToUtf8Test, CanEncodeAscii) {
673   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
674   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
675   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
676   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
677 }
678 
679 // Tests that Unicode code-points that have 8 to 11 bits are encoded
680 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)681 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
682   // 000 1101 0011 => 110-00011 10-010011
683   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
684   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
685 
686   // 101 0111 0110 => 110-10101 10-110110
687   const wchar_t s[] = {0x576, '\0'};
688   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
689   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
690 }
691 
692 // Tests that Unicode code-points that have 12 to 16 bits are encoded
693 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)694 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
695   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
696   const wchar_t s1[] = {0x8D3, '\0'};
697   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
698   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
699 
700   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
701   const wchar_t s2[] = {0xC74D, '\0'};
702   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
703   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
704 }
705 
706 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)707 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
708   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
709 }
710 
711 // Tests that the conversion stops when the function reaches the limit
712 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)713 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
714   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
715 }
716 
717 #if !GTEST_WIDE_STRING_USES_UTF16_
718 // Tests that Unicode code-points that have 17 to 21 bits are encoded
719 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
720 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)721 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
722   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
723   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
724   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
725 
726   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
727   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
728   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
729 }
730 
731 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)732 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
733   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
734                WideStringToUtf8(L"\xABCDFF", -1).c_str());
735 }
736 #else   // !GTEST_WIDE_STRING_USES_UTF16_
737 // Tests that surrogate pairs are encoded correctly on the systems using
738 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)739 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
740   const wchar_t s[] = {0xD801, 0xDC00, '\0'};
741   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
742 }
743 
744 // Tests that encoding an invalid UTF-16 surrogate pair
745 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)746 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
747   // Leading surrogate is at the end of the string.
748   const wchar_t s1[] = {0xD800, '\0'};
749   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
750   // Leading surrogate is not followed by the trailing surrogate.
751   const wchar_t s2[] = {0xD800, 'M', '\0'};
752   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
753   // Trailing surrogate appearas without a leading surrogate.
754   const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
755   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
756 }
757 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
758 
759 // Tests that codepoint concatenation works correctly.
760 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)761 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
762   const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
763   EXPECT_STREQ(
764       "\xF4\x88\x98\xB4"
765       "\xEC\x9D\x8D"
766       "\n"
767       "\xD5\xB6"
768       "\xE0\xA3\x93"
769       "\xF4\x88\x98\xB4",
770       WideStringToUtf8(s, -1).c_str());
771 }
772 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)773 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
774   const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
775   EXPECT_STREQ(
776       "\xEC\x9D\x8D"
777       "\n"
778       "\xD5\xB6"
779       "\xE0\xA3\x93",
780       WideStringToUtf8(s, -1).c_str());
781 }
782 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
783 
784 // Tests the Random class.
785 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)786 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
787   testing::internal::Random random(42);
788   EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
789                             "Cannot generate a number in the range \\[0, 0\\)");
790   EXPECT_DEATH_IF_SUPPORTED(
791       random.Generate(testing::internal::Random::kMaxRange + 1),
792       "Generation of a number in \\[0, 2147483649\\) was requested, "
793       "but this can only generate numbers in \\[0, 2147483648\\)");
794 }
795 
TEST(RandomTest,GeneratesNumbersWithinRange)796 TEST(RandomTest, GeneratesNumbersWithinRange) {
797   constexpr uint32_t kRange = 10000;
798   testing::internal::Random random(12345);
799   for (int i = 0; i < 10; i++) {
800     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
801   }
802 
803   testing::internal::Random random2(testing::internal::Random::kMaxRange);
804   for (int i = 0; i < 10; i++) {
805     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
806   }
807 }
808 
TEST(RandomTest,RepeatsWhenReseeded)809 TEST(RandomTest, RepeatsWhenReseeded) {
810   constexpr int kSeed = 123;
811   constexpr int kArraySize = 10;
812   constexpr uint32_t kRange = 10000;
813   uint32_t values[kArraySize];
814 
815   testing::internal::Random random(kSeed);
816   for (int i = 0; i < kArraySize; i++) {
817     values[i] = random.Generate(kRange);
818   }
819 
820   random.Reseed(kSeed);
821   for (int i = 0; i < kArraySize; i++) {
822     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
823   }
824 }
825 
826 // Tests STL container utilities.
827 
828 // Tests CountIf().
829 
IsPositive(int n)830 static bool IsPositive(int n) { return n > 0; }
831 
TEST(ContainerUtilityTest,CountIf)832 TEST(ContainerUtilityTest, CountIf) {
833   std::vector<int> v;
834   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
835 
836   v.push_back(-1);
837   v.push_back(0);
838   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
839 
840   v.push_back(2);
841   v.push_back(-10);
842   v.push_back(10);
843   EXPECT_EQ(2, CountIf(v, IsPositive));
844 }
845 
846 // Tests ForEach().
847 
848 static int g_sum = 0;
Accumulate(int n)849 static void Accumulate(int n) { g_sum += n; }
850 
TEST(ContainerUtilityTest,ForEach)851 TEST(ContainerUtilityTest, ForEach) {
852   std::vector<int> v;
853   g_sum = 0;
854   ForEach(v, Accumulate);
855   EXPECT_EQ(0, g_sum);  // Works for an empty container;
856 
857   g_sum = 0;
858   v.push_back(1);
859   ForEach(v, Accumulate);
860   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
861 
862   g_sum = 0;
863   v.push_back(20);
864   v.push_back(300);
865   ForEach(v, Accumulate);
866   EXPECT_EQ(321, g_sum);
867 }
868 
869 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)870 TEST(ContainerUtilityTest, GetElementOr) {
871   std::vector<char> a;
872   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
873 
874   a.push_back('a');
875   a.push_back('b');
876   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
877   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
878   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
879   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
880 }
881 
TEST(ContainerUtilityDeathTest,ShuffleRange)882 TEST(ContainerUtilityDeathTest, ShuffleRange) {
883   std::vector<int> a;
884   a.push_back(0);
885   a.push_back(1);
886   a.push_back(2);
887   testing::internal::Random random(1);
888 
889   EXPECT_DEATH_IF_SUPPORTED(
890       ShuffleRange(&random, -1, 1, &a),
891       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
892   EXPECT_DEATH_IF_SUPPORTED(
893       ShuffleRange(&random, 4, 4, &a),
894       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
895   EXPECT_DEATH_IF_SUPPORTED(
896       ShuffleRange(&random, 3, 2, &a),
897       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
898   EXPECT_DEATH_IF_SUPPORTED(
899       ShuffleRange(&random, 3, 4, &a),
900       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
901 }
902 
903 class VectorShuffleTest : public Test {
904  protected:
905   static const size_t kVectorSize = 20;
906 
VectorShuffleTest()907   VectorShuffleTest() : random_(1) {
908     for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
909       vector_.push_back(i);
910     }
911   }
912 
VectorIsCorrupt(const TestingVector & vector)913   static bool VectorIsCorrupt(const TestingVector& vector) {
914     if (kVectorSize != vector.size()) {
915       return true;
916     }
917 
918     bool found_in_vector[kVectorSize] = {false};
919     for (size_t i = 0; i < vector.size(); i++) {
920       const int e = vector[i];
921       if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
922         return true;
923       }
924       found_in_vector[e] = true;
925     }
926 
927     // Vector size is correct, elements' range is correct, no
928     // duplicate elements.  Therefore no corruption has occurred.
929     return false;
930   }
931 
VectorIsNotCorrupt(const TestingVector & vector)932   static bool VectorIsNotCorrupt(const TestingVector& vector) {
933     return !VectorIsCorrupt(vector);
934   }
935 
RangeIsShuffled(const TestingVector & vector,int begin,int end)936   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
937     for (int i = begin; i < end; i++) {
938       if (i != vector[static_cast<size_t>(i)]) {
939         return true;
940       }
941     }
942     return false;
943   }
944 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)945   static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
946                                 int end) {
947     return !RangeIsShuffled(vector, begin, end);
948   }
949 
VectorIsShuffled(const TestingVector & vector)950   static bool VectorIsShuffled(const TestingVector& vector) {
951     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
952   }
953 
VectorIsUnshuffled(const TestingVector & vector)954   static bool VectorIsUnshuffled(const TestingVector& vector) {
955     return !VectorIsShuffled(vector);
956   }
957 
958   testing::internal::Random random_;
959   TestingVector vector_;
960 };  // class VectorShuffleTest
961 
962 const size_t VectorShuffleTest::kVectorSize;
963 
TEST_F(VectorShuffleTest,HandlesEmptyRange)964 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
965   // Tests an empty range at the beginning...
966   ShuffleRange(&random_, 0, 0, &vector_);
967   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
968   ASSERT_PRED1(VectorIsUnshuffled, vector_);
969 
970   // ...in the middle...
971   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
972   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
973   ASSERT_PRED1(VectorIsUnshuffled, vector_);
974 
975   // ...at the end...
976   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
977   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
978   ASSERT_PRED1(VectorIsUnshuffled, vector_);
979 
980   // ...and past the end.
981   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
982   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
983   ASSERT_PRED1(VectorIsUnshuffled, vector_);
984 }
985 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)986 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
987   // Tests a size one range at the beginning...
988   ShuffleRange(&random_, 0, 1, &vector_);
989   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
990   ASSERT_PRED1(VectorIsUnshuffled, vector_);
991 
992   // ...in the middle...
993   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
994   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
995   ASSERT_PRED1(VectorIsUnshuffled, vector_);
996 
997   // ...and at the end.
998   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
999   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1000   ASSERT_PRED1(VectorIsUnshuffled, vector_);
1001 }
1002 
1003 // Because we use our own random number generator and a fixed seed,
1004 // we can guarantee that the following "random" tests will succeed.
1005 
TEST_F(VectorShuffleTest,ShufflesEntireVector)1006 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1007   Shuffle(&random_, &vector_);
1008   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1009   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1010 
1011   // Tests the first and last elements in particular to ensure that
1012   // there are no off-by-one problems in our shuffle algorithm.
1013   EXPECT_NE(0, vector_[0]);
1014   EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
1015 }
1016 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)1017 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1018   const int kRangeSize = kVectorSize / 2;
1019 
1020   ShuffleRange(&random_, 0, kRangeSize, &vector_);
1021 
1022   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1023   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1024   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1025                static_cast<int>(kVectorSize));
1026 }
1027 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1028 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1029   const int kRangeSize = kVectorSize / 2;
1030   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1031 
1032   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1033   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1034   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1035                static_cast<int>(kVectorSize));
1036 }
1037 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1038 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1039   const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1040   ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
1041 
1042   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1043   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1044   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
1045   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1046                static_cast<int>(kVectorSize));
1047 }
1048 
TEST_F(VectorShuffleTest,ShufflesRepeatably)1049 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1050   TestingVector vector2;
1051   for (size_t i = 0; i < kVectorSize; i++) {
1052     vector2.push_back(static_cast<int>(i));
1053   }
1054 
1055   random_.Reseed(1234);
1056   Shuffle(&random_, &vector_);
1057   random_.Reseed(1234);
1058   Shuffle(&random_, &vector2);
1059 
1060   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1061   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1062 
1063   for (size_t i = 0; i < kVectorSize; i++) {
1064     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1065   }
1066 }
1067 
1068 // Tests the size of the AssertHelper class.
1069 
TEST(AssertHelperTest,AssertHelperIsSmall)1070 TEST(AssertHelperTest, AssertHelperIsSmall) {
1071   // To avoid breaking clients that use lots of assertions in one
1072   // function, we cannot grow the size of AssertHelper.
1073   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1074 }
1075 
1076 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1077 TEST(StringTest, EndsWithCaseInsensitive) {
1078   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1079   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1080   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1081   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1082 
1083   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1084   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1085   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1086 }
1087 
1088 // C++Builder's preprocessor is buggy; it fails to expand macros that
1089 // appear in macro parameters after wide char literals.  Provide an alias
1090 // for NULL as a workaround.
1091 static const wchar_t* const kNull = nullptr;
1092 
1093 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1094 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1095   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1096   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1097   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1098   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1099   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1100   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1101   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1102   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1103 }
1104 
1105 #ifdef GTEST_OS_WINDOWS
1106 
1107 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1108 TEST(StringTest, ShowWideCString) {
1109   EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
1110   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1111   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1112 }
1113 
1114 #ifdef GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1115 TEST(StringTest, AnsiAndUtf16Null) {
1116   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1117   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1118 }
1119 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1120 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1121   const char* ansi = String::Utf16ToAnsi(L"str");
1122   EXPECT_STREQ("str", ansi);
1123   delete[] ansi;
1124   const WCHAR* utf16 = String::AnsiToUtf16("str");
1125   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1126   delete[] utf16;
1127 }
1128 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1129 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1130   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1131   EXPECT_STREQ(".:\\ \"*?", ansi);
1132   delete[] ansi;
1133   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1134   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1135   delete[] utf16;
1136 }
1137 #endif  // GTEST_OS_WINDOWS_MOBILE
1138 
1139 #endif  // GTEST_OS_WINDOWS
1140 
1141 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1142 TEST(TestPropertyTest, StringValue) {
1143   TestProperty property("key", "1");
1144   EXPECT_STREQ("key", property.key());
1145   EXPECT_STREQ("1", property.value());
1146 }
1147 
1148 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1149 TEST(TestPropertyTest, ReplaceStringValue) {
1150   TestProperty property("key", "1");
1151   EXPECT_STREQ("1", property.value());
1152   property.SetValue("2");
1153   EXPECT_STREQ("2", property.value());
1154 }
1155 
1156 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1157 // functions (i.e. their definitions cannot be inlined at the call
1158 // sites), or C++Builder won't compile the code.
AddFatalFailure()1159 static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
1160 
AddNonfatalFailure()1161 static void AddNonfatalFailure() {
1162   ADD_FAILURE() << "Expected non-fatal failure.";
1163 }
1164 
1165 class ScopedFakeTestPartResultReporterTest : public Test {
1166  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1167   enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
AddFailure(FailureMode failure)1168   static void AddFailure(FailureMode failure) {
1169     if (failure == FATAL_FAILURE) {
1170       AddFatalFailure();
1171     } else {
1172       AddNonfatalFailure();
1173     }
1174   }
1175 };
1176 
1177 // Tests that ScopedFakeTestPartResultReporter intercepts test
1178 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1179 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1180   TestPartResultArray results;
1181   {
1182     ScopedFakeTestPartResultReporter reporter(
1183         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1184         &results);
1185     AddFailure(NONFATAL_FAILURE);
1186     AddFailure(FATAL_FAILURE);
1187   }
1188 
1189   EXPECT_EQ(2, results.size());
1190   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1191   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1192 }
1193 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1194 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1195   TestPartResultArray results;
1196   {
1197     // Tests, that the deprecated constructor still works.
1198     ScopedFakeTestPartResultReporter reporter(&results);
1199     AddFailure(NONFATAL_FAILURE);
1200   }
1201   EXPECT_EQ(1, results.size());
1202 }
1203 
1204 #ifdef GTEST_IS_THREADSAFE
1205 
1206 class ScopedFakeTestPartResultReporterWithThreadsTest
1207     : public ScopedFakeTestPartResultReporterTest {
1208  protected:
AddFailureInOtherThread(FailureMode failure)1209   static void AddFailureInOtherThread(FailureMode failure) {
1210     ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1211     thread.Join();
1212   }
1213 };
1214 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1215 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1216        InterceptsTestFailuresInAllThreads) {
1217   TestPartResultArray results;
1218   {
1219     ScopedFakeTestPartResultReporter reporter(
1220         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1221     AddFailure(NONFATAL_FAILURE);
1222     AddFailure(FATAL_FAILURE);
1223     AddFailureInOtherThread(NONFATAL_FAILURE);
1224     AddFailureInOtherThread(FATAL_FAILURE);
1225   }
1226 
1227   EXPECT_EQ(4, results.size());
1228   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1229   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1230   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1231   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1232 }
1233 
1234 #endif  // GTEST_IS_THREADSAFE
1235 
1236 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1237 // work even if the failure is generated in a called function rather than
1238 // the current context.
1239 
1240 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1241 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1242 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1243   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1244 }
1245 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1246 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1247   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1248                        ::std::string("Expected fatal failure."));
1249 }
1250 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1251 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1252   // We have another test below to verify that the macro catches fatal
1253   // failures generated on another thread.
1254   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1255                                       "Expected fatal failure.");
1256 }
1257 
1258 #ifdef __BORLANDC__
1259 // Silences warnings: "Condition is always true"
1260 #pragma option push -w-ccc
1261 #endif
1262 
1263 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1264 // function even when the statement in it contains ASSERT_*.
1265 
NonVoidFunction()1266 int NonVoidFunction() {
1267   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1268   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1269   return 0;
1270 }
1271 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1272 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1273   NonVoidFunction();
1274 }
1275 
1276 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1277 // current function even though 'statement' generates a fatal failure.
1278 
DoesNotAbortHelper(bool * aborted)1279 void DoesNotAbortHelper(bool* aborted) {
1280   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1281   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1282 
1283   *aborted = false;
1284 }
1285 
1286 #ifdef __BORLANDC__
1287 // Restores warnings after previous "#pragma option push" suppressed them.
1288 #pragma option pop
1289 #endif
1290 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1291 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1292   bool aborted = true;
1293   DoesNotAbortHelper(&aborted);
1294   EXPECT_FALSE(aborted);
1295 }
1296 
1297 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1298 // statement that contains a macro which expands to code containing an
1299 // unprotected comma.
1300 
1301 static int global_var = 0;
1302 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1303 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1304 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1305 #ifndef __BORLANDC__
1306   // ICE's in C++Builder.
1307   EXPECT_FATAL_FAILURE(
1308       {
1309         GTEST_USE_UNPROTECTED_COMMA_;
1310         AddFatalFailure();
1311       },
1312       "");
1313 #endif
1314 
1315   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
1316       {
1317         GTEST_USE_UNPROTECTED_COMMA_;
1318         AddFatalFailure();
1319       },
1320       "");
1321 }
1322 
1323 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1324 
1325 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1326 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1327 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1328   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
1329 }
1330 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1331 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1332   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1333                           ::std::string("Expected non-fatal failure."));
1334 }
1335 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1336 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1337   // We have another test below to verify that the macro catches
1338   // non-fatal failures generated on another thread.
1339   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1340                                          "Expected non-fatal failure.");
1341 }
1342 
1343 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1344 // statement that contains a macro which expands to code containing an
1345 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1346 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1347   EXPECT_NONFATAL_FAILURE(
1348       {
1349         GTEST_USE_UNPROTECTED_COMMA_;
1350         AddNonfatalFailure();
1351       },
1352       "");
1353 
1354   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1355       {
1356         GTEST_USE_UNPROTECTED_COMMA_;
1357         AddNonfatalFailure();
1358       },
1359       "");
1360 }
1361 
1362 #ifdef GTEST_IS_THREADSAFE
1363 
1364 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1365     ExpectFailureWithThreadsTest;
1366 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1367 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1368   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1369                                       "Expected fatal failure.");
1370 }
1371 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1372 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1373   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1374       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1375 }
1376 
1377 #endif  // GTEST_IS_THREADSAFE
1378 
1379 // Tests the TestProperty class.
1380 
TEST(TestPropertyTest,ConstructorWorks)1381 TEST(TestPropertyTest, ConstructorWorks) {
1382   const TestProperty property("key", "value");
1383   EXPECT_STREQ("key", property.key());
1384   EXPECT_STREQ("value", property.value());
1385 }
1386 
TEST(TestPropertyTest,SetValue)1387 TEST(TestPropertyTest, SetValue) {
1388   TestProperty property("key", "value_1");
1389   EXPECT_STREQ("key", property.key());
1390   property.SetValue("value_2");
1391   EXPECT_STREQ("key", property.key());
1392   EXPECT_STREQ("value_2", property.value());
1393 }
1394 
1395 // Tests the TestResult class
1396 
1397 // The test fixture for testing TestResult.
1398 class TestResultTest : public Test {
1399  protected:
1400   typedef std::vector<TestPartResult> TPRVector;
1401 
1402   // We make use of 2 TestPartResult objects,
1403   TestPartResult *pr1, *pr2;
1404 
1405   // ... and 3 TestResult objects.
1406   TestResult *r0, *r1, *r2;
1407 
SetUp()1408   void SetUp() override {
1409     // pr1 is for success.
1410     pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
1411                              "Success!");
1412 
1413     // pr2 is for fatal failure.
1414     pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
1415                              -1,  // This line number means "unknown"
1416                              "Failure!");
1417 
1418     // Creates the TestResult objects.
1419     r0 = new TestResult();
1420     r1 = new TestResult();
1421     r2 = new TestResult();
1422 
1423     // In order to test TestResult, we need to modify its internal
1424     // state, in particular the TestPartResult vector it holds.
1425     // test_part_results() returns a const reference to this vector.
1426     // We cast it to a non-const object s.t. it can be modified
1427     TPRVector* results1 =
1428         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
1429     TPRVector* results2 =
1430         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
1431 
1432     // r0 is an empty TestResult.
1433 
1434     // r1 contains a single SUCCESS TestPartResult.
1435     results1->push_back(*pr1);
1436 
1437     // r2 contains a SUCCESS, and a FAILURE.
1438     results2->push_back(*pr1);
1439     results2->push_back(*pr2);
1440   }
1441 
TearDown()1442   void TearDown() override {
1443     delete pr1;
1444     delete pr2;
1445 
1446     delete r0;
1447     delete r1;
1448     delete r2;
1449   }
1450 
1451   // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1452   static void CompareTestPartResult(const TestPartResult& expected,
1453                                     const TestPartResult& actual) {
1454     EXPECT_EQ(expected.type(), actual.type());
1455     EXPECT_STREQ(expected.file_name(), actual.file_name());
1456     EXPECT_EQ(expected.line_number(), actual.line_number());
1457     EXPECT_STREQ(expected.summary(), actual.summary());
1458     EXPECT_STREQ(expected.message(), actual.message());
1459     EXPECT_EQ(expected.passed(), actual.passed());
1460     EXPECT_EQ(expected.failed(), actual.failed());
1461     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1462     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1463   }
1464 };
1465 
1466 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1467 TEST_F(TestResultTest, total_part_count) {
1468   ASSERT_EQ(0, r0->total_part_count());
1469   ASSERT_EQ(1, r1->total_part_count());
1470   ASSERT_EQ(2, r2->total_part_count());
1471 }
1472 
1473 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1474 TEST_F(TestResultTest, Passed) {
1475   ASSERT_TRUE(r0->Passed());
1476   ASSERT_TRUE(r1->Passed());
1477   ASSERT_FALSE(r2->Passed());
1478 }
1479 
1480 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1481 TEST_F(TestResultTest, Failed) {
1482   ASSERT_FALSE(r0->Failed());
1483   ASSERT_FALSE(r1->Failed());
1484   ASSERT_TRUE(r2->Failed());
1485 }
1486 
1487 // Tests TestResult::GetTestPartResult().
1488 
1489 typedef TestResultTest TestResultDeathTest;
1490 
TEST_F(TestResultDeathTest,GetTestPartResult)1491 TEST_F(TestResultDeathTest, GetTestPartResult) {
1492   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1493   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1494   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1495   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1496 }
1497 
1498 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1499 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1500   TestResult test_result;
1501   ASSERT_EQ(0, test_result.test_property_count());
1502 }
1503 
1504 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1505 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1506   TestResult test_result;
1507   TestProperty property("key_1", "1");
1508   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1509   ASSERT_EQ(1, test_result.test_property_count());
1510   const TestProperty& actual_property = test_result.GetTestProperty(0);
1511   EXPECT_STREQ("key_1", actual_property.key());
1512   EXPECT_STREQ("1", actual_property.value());
1513 }
1514 
1515 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1516 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1517   TestResult test_result;
1518   TestProperty property_1("key_1", "1");
1519   TestProperty property_2("key_2", "2");
1520   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1521   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1522   ASSERT_EQ(2, test_result.test_property_count());
1523   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1524   EXPECT_STREQ("key_1", actual_property_1.key());
1525   EXPECT_STREQ("1", actual_property_1.value());
1526 
1527   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1528   EXPECT_STREQ("key_2", actual_property_2.key());
1529   EXPECT_STREQ("2", actual_property_2.value());
1530 }
1531 
1532 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1533 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1534   TestResult test_result;
1535   TestProperty property_1_1("key_1", "1");
1536   TestProperty property_2_1("key_2", "2");
1537   TestProperty property_1_2("key_1", "12");
1538   TestProperty property_2_2("key_2", "22");
1539   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1540   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1541   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1542   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1543 
1544   ASSERT_EQ(2, test_result.test_property_count());
1545   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1546   EXPECT_STREQ("key_1", actual_property_1.key());
1547   EXPECT_STREQ("12", actual_property_1.value());
1548 
1549   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1550   EXPECT_STREQ("key_2", actual_property_2.key());
1551   EXPECT_STREQ("22", actual_property_2.value());
1552 }
1553 
1554 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1555 TEST(TestResultPropertyTest, GetTestProperty) {
1556   TestResult test_result;
1557   TestProperty property_1("key_1", "1");
1558   TestProperty property_2("key_2", "2");
1559   TestProperty property_3("key_3", "3");
1560   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1561   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1562   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1563 
1564   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1565   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1566   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1567 
1568   EXPECT_STREQ("key_1", fetched_property_1.key());
1569   EXPECT_STREQ("1", fetched_property_1.value());
1570 
1571   EXPECT_STREQ("key_2", fetched_property_2.key());
1572   EXPECT_STREQ("2", fetched_property_2.value());
1573 
1574   EXPECT_STREQ("key_3", fetched_property_3.key());
1575   EXPECT_STREQ("3", fetched_property_3.value());
1576 
1577   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1578   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1579 }
1580 
1581 // Tests the Test class.
1582 //
1583 // It's difficult to test every public method of this class (we are
1584 // already stretching the limit of Google Test by using it to test itself!).
1585 // Fortunately, we don't have to do that, as we are already testing
1586 // the functionalities of the Test class extensively by using Google Test
1587 // alone.
1588 //
1589 // Therefore, this section only contains one test.
1590 
1591 // Tests that GTestFlagSaver works on Windows and Mac.
1592 
1593 class GTestFlagSaverTest : public Test {
1594  protected:
1595   // Saves the Google Test flags such that we can restore them later, and
1596   // then sets them to their default values.  This will be called
1597   // before the first test in this test case is run.
SetUpTestSuite()1598   static void SetUpTestSuite() {
1599     saver_ = new GTestFlagSaver;
1600 
1601     GTEST_FLAG_SET(also_run_disabled_tests, false);
1602     GTEST_FLAG_SET(break_on_failure, false);
1603     GTEST_FLAG_SET(catch_exceptions, false);
1604     GTEST_FLAG_SET(death_test_use_fork, false);
1605     GTEST_FLAG_SET(color, "auto");
1606     GTEST_FLAG_SET(fail_fast, false);
1607     GTEST_FLAG_SET(filter, "");
1608     GTEST_FLAG_SET(list_tests, false);
1609     GTEST_FLAG_SET(output, "");
1610     GTEST_FLAG_SET(brief, false);
1611     GTEST_FLAG_SET(print_time, true);
1612     GTEST_FLAG_SET(random_seed, 0);
1613     GTEST_FLAG_SET(repeat, 1);
1614     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1615     GTEST_FLAG_SET(shuffle, false);
1616     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1617     GTEST_FLAG_SET(stream_result_to, "");
1618     GTEST_FLAG_SET(throw_on_failure, false);
1619   }
1620 
1621   // Restores the Google Test flags that the tests have modified.  This will
1622   // be called after the last test in this test case is run.
TearDownTestSuite()1623   static void TearDownTestSuite() {
1624     delete saver_;
1625     saver_ = nullptr;
1626   }
1627 
1628   // Verifies that the Google Test flags have their default values, and then
1629   // modifies each of them.
VerifyAndModifyFlags()1630   void VerifyAndModifyFlags() {
1631     EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1632     EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1633     EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1634     EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1635     EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1636     EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1637     EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1638     EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1639     EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1640     EXPECT_FALSE(GTEST_FLAG_GET(brief));
1641     EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1642     EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1643     EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1644     EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1645     EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1646     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1647     EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1648     EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1649 
1650     GTEST_FLAG_SET(also_run_disabled_tests, true);
1651     GTEST_FLAG_SET(break_on_failure, true);
1652     GTEST_FLAG_SET(catch_exceptions, true);
1653     GTEST_FLAG_SET(color, "no");
1654     GTEST_FLAG_SET(death_test_use_fork, true);
1655     GTEST_FLAG_SET(fail_fast, true);
1656     GTEST_FLAG_SET(filter, "abc");
1657     GTEST_FLAG_SET(list_tests, true);
1658     GTEST_FLAG_SET(output, "xml:foo.xml");
1659     GTEST_FLAG_SET(brief, true);
1660     GTEST_FLAG_SET(print_time, false);
1661     GTEST_FLAG_SET(random_seed, 1);
1662     GTEST_FLAG_SET(repeat, 100);
1663     GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1664     GTEST_FLAG_SET(shuffle, true);
1665     GTEST_FLAG_SET(stack_trace_depth, 1);
1666     GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1667     GTEST_FLAG_SET(throw_on_failure, true);
1668   }
1669 
1670  private:
1671   // For saving Google Test flags during this test case.
1672   static GTestFlagSaver* saver_;
1673 };
1674 
1675 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1676 
1677 // Google Test doesn't guarantee the order of tests.  The following two
1678 // tests are designed to work regardless of their order.
1679 
1680 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1681 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
1682 
1683 // Verifies that the Google Test flags in the body of the previous test were
1684 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1685 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
1686 
1687 // Sets an environment variable with the given name to the given
1688 // value.  If the value argument is "", unsets the environment
1689 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1690 static void SetEnv(const char* name, const char* value) {
1691 #ifdef GTEST_OS_WINDOWS_MOBILE
1692   // Environment variables are not supported on Windows CE.
1693   return;
1694 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1695   // C++Builder's putenv only stores a pointer to its parameter; we have to
1696   // ensure that the string remains valid as long as it might be needed.
1697   // We use an std::map to do so.
1698   static std::map<std::string, std::string*> added_env;
1699 
1700   // Because putenv stores a pointer to the string buffer, we can't delete the
1701   // previous string (if present) until after it's replaced.
1702   std::string* prev_env = NULL;
1703   if (added_env.find(name) != added_env.end()) {
1704     prev_env = added_env[name];
1705   }
1706   added_env[name] =
1707       new std::string((Message() << name << "=" << value).GetString());
1708 
1709   // The standard signature of putenv accepts a 'char*' argument. Other
1710   // implementations, like C++Builder's, accept a 'const char*'.
1711   // We cast away the 'const' since that would work for both variants.
1712   putenv(const_cast<char*>(added_env[name]->c_str()));
1713   delete prev_env;
1714 #elif defined(GTEST_OS_WINDOWS)  // If we are on Windows proper.
1715   _putenv((Message() << name << "=" << value).GetString().c_str());
1716 #else
1717   if (*value == '\0') {
1718     unsetenv(name);
1719   } else {
1720     setenv(name, value, 1);
1721   }
1722 #endif  // GTEST_OS_WINDOWS_MOBILE
1723 }
1724 
1725 #ifndef GTEST_OS_WINDOWS_MOBILE
1726 // Environment variables are not supported on Windows CE.
1727 
1728 using testing::internal::Int32FromGTestEnv;
1729 
1730 // Tests Int32FromGTestEnv().
1731 
1732 // Tests that Int32FromGTestEnv() returns the default value when the
1733 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1734 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1735   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1736   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1737 }
1738 
1739 #if !defined(GTEST_GET_INT32_FROM_ENV_)
1740 
1741 // Tests that Int32FromGTestEnv() returns the default value when the
1742 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1743 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1744   printf("(expecting 2 warnings)\n");
1745 
1746   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1747   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1748 
1749   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1750   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1751 }
1752 
1753 // Tests that Int32FromGTestEnv() returns the default value when the
1754 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1755 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1756   printf("(expecting 2 warnings)\n");
1757 
1758   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1759   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1760 
1761   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1762   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1763 }
1764 
1765 #endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1766 
1767 // Tests that Int32FromGTestEnv() parses and returns the value of the
1768 // environment variable when it represents a valid decimal integer in
1769 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1770 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1771   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1772   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1773 
1774   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1775   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1776 }
1777 #endif  // !GTEST_OS_WINDOWS_MOBILE
1778 
1779 // Tests ParseFlag().
1780 
1781 // Tests that ParseInt32Flag() returns false and doesn't change the
1782 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1783 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1784   int32_t value = 123;
1785   EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1786   EXPECT_EQ(123, value);
1787 
1788   EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1789   EXPECT_EQ(123, value);
1790 }
1791 
1792 // Tests that ParseFlag() returns false and doesn't change the
1793 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1794 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1795   printf("(expecting 2 warnings)\n");
1796 
1797   int32_t value = 123;
1798   EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1799   EXPECT_EQ(123, value);
1800 
1801   EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1802   EXPECT_EQ(123, value);
1803 }
1804 
1805 // Tests that ParseInt32Flag() returns false and doesn't change the
1806 // output value when the flag does not represent a valid decimal
1807 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1808 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1809   printf("(expecting 2 warnings)\n");
1810 
1811   int32_t value = 123;
1812   EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1813   EXPECT_EQ(123, value);
1814 
1815   EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1816   EXPECT_EQ(123, value);
1817 }
1818 
1819 // Tests that ParseInt32Flag() parses the value of the flag and
1820 // returns true when the flag represents a valid decimal integer in
1821 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1822 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1823   int32_t value = 123;
1824   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1825   EXPECT_EQ(456, value);
1826 
1827   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1828   EXPECT_EQ(-789, value);
1829 }
1830 
1831 // Tests that Int32FromEnvOrDie() parses the value of the var or
1832 // returns the correct default.
1833 // Environment variables are not supported on Windows CE.
1834 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1835 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1836   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1837   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1838   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1839   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1840   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1841 }
1842 #endif  // !GTEST_OS_WINDOWS_MOBILE
1843 
1844 // Tests that Int32FromEnvOrDie() aborts with an error message
1845 // if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1846 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1847   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1848   EXPECT_DEATH_IF_SUPPORTED(
1849       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1850 }
1851 
1852 // Tests that Int32FromEnvOrDie() aborts with an error message
1853 // if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1854 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1855   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1856   EXPECT_DEATH_IF_SUPPORTED(
1857       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1858 }
1859 
1860 // Tests that ShouldRunTestOnShard() selects all tests
1861 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1862 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1863   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1864   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1865   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1866   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1867   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1868 }
1869 
1870 class ShouldShardTest : public testing::Test {
1871  protected:
SetUp()1872   void SetUp() override {
1873     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1874     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1875   }
1876 
TearDown()1877   void TearDown() override {
1878     SetEnv(index_var_, "");
1879     SetEnv(total_var_, "");
1880   }
1881 
1882   const char* index_var_;
1883   const char* total_var_;
1884 };
1885 
1886 // Tests that sharding is disabled if neither of the environment variables
1887 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1888 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1889   SetEnv(index_var_, "");
1890   SetEnv(total_var_, "");
1891 
1892   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1893   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1894 }
1895 
1896 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1897 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1898   SetEnv(index_var_, "0");
1899   SetEnv(total_var_, "1");
1900   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1901   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1902 }
1903 
1904 // Tests that sharding is enabled if total_shards > 1 and
1905 // we are not in a death test subprocess.
1906 // Environment variables are not supported on Windows CE.
1907 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1908 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1909   SetEnv(index_var_, "4");
1910   SetEnv(total_var_, "22");
1911   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1912   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1913 
1914   SetEnv(index_var_, "8");
1915   SetEnv(total_var_, "9");
1916   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1917   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1918 
1919   SetEnv(index_var_, "0");
1920   SetEnv(total_var_, "9");
1921   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1922   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1923 }
1924 #endif  // !GTEST_OS_WINDOWS_MOBILE
1925 
1926 // Tests that we exit in error if the sharding values are not valid.
1927 
1928 typedef ShouldShardTest ShouldShardDeathTest;
1929 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1930 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1931   SetEnv(index_var_, "4");
1932   SetEnv(total_var_, "4");
1933   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1934 
1935   SetEnv(index_var_, "4");
1936   SetEnv(total_var_, "-2");
1937   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1938 
1939   SetEnv(index_var_, "5");
1940   SetEnv(total_var_, "");
1941   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1942 
1943   SetEnv(index_var_, "");
1944   SetEnv(total_var_, "5");
1945   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1946 }
1947 
1948 // Tests that ShouldRunTestOnShard is a partition when 5
1949 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1950 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1951   // Choose an arbitrary number of tests and shards.
1952   const int num_tests = 17;
1953   const int num_shards = 5;
1954 
1955   // Check partitioning: each test should be on exactly 1 shard.
1956   for (int test_id = 0; test_id < num_tests; test_id++) {
1957     int prev_selected_shard_index = -1;
1958     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1959       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1960         if (prev_selected_shard_index < 0) {
1961           prev_selected_shard_index = shard_index;
1962         } else {
1963           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1964                         << shard_index << " are both selected to run test "
1965                         << test_id;
1966         }
1967       }
1968     }
1969   }
1970 
1971   // Check balance: This is not required by the sharding protocol, but is a
1972   // desirable property for performance.
1973   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1974     int num_tests_on_shard = 0;
1975     for (int test_id = 0; test_id < num_tests; test_id++) {
1976       num_tests_on_shard +=
1977           ShouldRunTestOnShard(num_shards, shard_index, test_id);
1978     }
1979     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1980   }
1981 }
1982 
1983 // For the same reason we are not explicitly testing everything in the
1984 // Test class, there are no separate tests for the following classes
1985 // (except for some trivial cases):
1986 //
1987 //   TestSuite, UnitTest, UnitTestResultPrinter.
1988 //
1989 // Similarly, there are no separate tests for the following macros:
1990 //
1991 //   TEST, TEST_F, RUN_ALL_TESTS
1992 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1993 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1994   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1995   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1996 }
1997 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)1998 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1999   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2000   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2001 }
2002 
2003 // When a property using a reserved key is supplied to this function, it
2004 // tests that a non-fatal failure is added, a fatal failure is not added,
2005 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)2006 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2007     const TestResult& test_result, const char* key) {
2008   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2009   ASSERT_EQ(0, test_result.test_property_count())
2010       << "Property for key '" << key << "' recorded unexpectedly.";
2011 }
2012 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2013 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2014     const char* key) {
2015   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2016   ASSERT_TRUE(test_info != nullptr);
2017   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2018                                                         key);
2019 }
2020 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2021 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2022     const char* key) {
2023   const testing::TestSuite* test_suite =
2024       UnitTest::GetInstance()->current_test_suite();
2025   ASSERT_TRUE(test_suite != nullptr);
2026   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2027       test_suite->ad_hoc_test_result(), key);
2028 }
2029 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2030 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2031     const char* key) {
2032   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2033       UnitTest::GetInstance()->ad_hoc_test_result(), key);
2034 }
2035 
2036 // Tests that property recording functions in UnitTest outside of tests
2037 // functions correctly.  Creating a separate instance of UnitTest ensures it
2038 // is in a state similar to the UnitTest's singleton's between tests.
2039 class UnitTestRecordPropertyTest
2040     : public testing::internal::UnitTestRecordPropertyTestHelper {
2041  public:
SetUpTestSuite()2042   static void SetUpTestSuite() {
2043     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2044         "disabled");
2045     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2046         "errors");
2047     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2048         "failures");
2049     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2050         "name");
2051     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2052         "tests");
2053     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2054         "time");
2055 
2056     Test::RecordProperty("test_case_key_1", "1");
2057 
2058     const testing::TestSuite* test_suite =
2059         UnitTest::GetInstance()->current_test_suite();
2060 
2061     ASSERT_TRUE(test_suite != nullptr);
2062 
2063     ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2064     EXPECT_STREQ("test_case_key_1",
2065                  test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2066     EXPECT_STREQ("1",
2067                  test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2068   }
2069 };
2070 
2071 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2072 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2073   UnitTestRecordProperty("key_1", "1");
2074 
2075   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2076 
2077   EXPECT_STREQ("key_1",
2078                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2079   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2080 }
2081 
2082 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2083 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2084   UnitTestRecordProperty("key_1", "1");
2085   UnitTestRecordProperty("key_2", "2");
2086 
2087   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2088 
2089   EXPECT_STREQ("key_1",
2090                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2091   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2092 
2093   EXPECT_STREQ("key_2",
2094                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2095   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2096 }
2097 
2098 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2099 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2100   UnitTestRecordProperty("key_1", "1");
2101   UnitTestRecordProperty("key_2", "2");
2102   UnitTestRecordProperty("key_1", "12");
2103   UnitTestRecordProperty("key_2", "22");
2104 
2105   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2106 
2107   EXPECT_STREQ("key_1",
2108                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2109   EXPECT_STREQ("12",
2110                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2111 
2112   EXPECT_STREQ("key_2",
2113                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2114   EXPECT_STREQ("22",
2115                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2116 }
2117 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2118 TEST_F(UnitTestRecordPropertyTest,
2119        AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2120   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
2121   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2122       "value_param");
2123   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2124       "type_param");
2125   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
2126   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
2127   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2128       "classname");
2129 }
2130 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2131 TEST_F(UnitTestRecordPropertyTest,
2132        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2133   EXPECT_NONFATAL_FAILURE(
2134       Test::RecordProperty("name", "1"),
2135       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2136       " 'file', and 'line' are reserved");
2137 }
2138 
2139 class UnitTestRecordPropertyTestEnvironment : public Environment {
2140  public:
TearDown()2141   void TearDown() override {
2142     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2143         "tests");
2144     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2145         "failures");
2146     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2147         "disabled");
2148     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2149         "errors");
2150     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2151         "name");
2152     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2153         "timestamp");
2154     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2155         "time");
2156     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2157         "random_seed");
2158   }
2159 };
2160 
2161 // This will test property recording outside of any test or test case.
2162 static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
2163     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2164 
2165 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2166 // of various arities.  They do not attempt to be exhaustive.  Rather,
2167 // view them as smoke tests that can be easily reviewed and verified.
2168 // A more complete set of tests for predicate assertions can be found
2169 // in gtest_pred_impl_unittest.cc.
2170 
2171 // First, some predicates and predicate-formatters needed by the tests.
2172 
2173 // Returns true if and only if the argument is an even number.
IsEven(int n)2174 bool IsEven(int n) { return (n % 2) == 0; }
2175 
2176 // A functor that returns true if and only if the argument is an even number.
2177 struct IsEvenFunctor {
operator ()__anon5476e4aa0111::IsEvenFunctor2178   bool operator()(int n) { return IsEven(n); }
2179 };
2180 
2181 // A predicate-formatter function that asserts the argument is an even
2182 // number.
AssertIsEven(const char * expr,int n)2183 AssertionResult AssertIsEven(const char* expr, int n) {
2184   if (IsEven(n)) {
2185     return AssertionSuccess();
2186   }
2187 
2188   Message msg;
2189   msg << expr << " evaluates to " << n << ", which is not even.";
2190   return AssertionFailure(msg);
2191 }
2192 
2193 // A predicate function that returns AssertionResult for use in
2194 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2195 AssertionResult ResultIsEven(int n) {
2196   if (IsEven(n))
2197     return AssertionSuccess() << n << " is even";
2198   else
2199     return AssertionFailure() << n << " is odd";
2200 }
2201 
2202 // A predicate function that returns AssertionResult but gives no
2203 // explanation why it succeeds. Needed for testing that
2204 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2205 AssertionResult ResultIsEvenNoExplanation(int n) {
2206   if (IsEven(n))
2207     return AssertionSuccess();
2208   else
2209     return AssertionFailure() << n << " is odd";
2210 }
2211 
2212 // A predicate-formatter functor that asserts the argument is an even
2213 // number.
2214 struct AssertIsEvenFunctor {
operator ()__anon5476e4aa0111::AssertIsEvenFunctor2215   AssertionResult operator()(const char* expr, int n) {
2216     return AssertIsEven(expr, n);
2217   }
2218 };
2219 
2220 // Returns true if and only if the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2221 bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
2222 
2223 // A functor that returns true if and only if the sum of the arguments is an
2224 // even number.
2225 struct SumIsEven3Functor {
operator ()__anon5476e4aa0111::SumIsEven3Functor2226   bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
2227 };
2228 
2229 // A predicate-formatter function that asserts the sum of the
2230 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2231 AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
2232                                  const char* e4, int n1, int n2, int n3,
2233                                  int n4) {
2234   const int sum = n1 + n2 + n3 + n4;
2235   if (IsEven(sum)) {
2236     return AssertionSuccess();
2237   }
2238 
2239   Message msg;
2240   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
2241       << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
2242       << ", which is not even.";
2243   return AssertionFailure(msg);
2244 }
2245 
2246 // A predicate-formatter functor that asserts the sum of the arguments
2247 // is an even number.
2248 struct AssertSumIsEven5Functor {
operator ()__anon5476e4aa0111::AssertSumIsEven5Functor2249   AssertionResult operator()(const char* e1, const char* e2, const char* e3,
2250                              const char* e4, const char* e5, int n1, int n2,
2251                              int n3, int n4, int n5) {
2252     const int sum = n1 + n2 + n3 + n4 + n5;
2253     if (IsEven(sum)) {
2254       return AssertionSuccess();
2255     }
2256 
2257     Message msg;
2258     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2259         << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
2260         << n5 << ") evaluates to " << sum << ", which is not even.";
2261     return AssertionFailure(msg);
2262   }
2263 };
2264 
2265 // Tests unary predicate assertions.
2266 
2267 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2268 TEST(Pred1Test, WithoutFormat) {
2269   // Success cases.
2270   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2271   ASSERT_PRED1(IsEven, 4);
2272 
2273   // Failure cases.
2274   EXPECT_NONFATAL_FAILURE(
2275       {  // NOLINT
2276         EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2277       },
2278       "This failure is expected.");
2279   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
2280 }
2281 
2282 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2283 TEST(Pred1Test, WithFormat) {
2284   // Success cases.
2285   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2286   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2287       << "This failure is UNEXPECTED!";
2288 
2289   // Failure cases.
2290   const int n = 5;
2291   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2292                           "n evaluates to 5, which is not even.");
2293   EXPECT_FATAL_FAILURE(
2294       {  // NOLINT
2295         ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2296       },
2297       "This failure is expected.");
2298 }
2299 
2300 // Tests that unary predicate assertions evaluates their arguments
2301 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2302 TEST(Pred1Test, SingleEvaluationOnFailure) {
2303   // A success case.
2304   static int n = 0;
2305   EXPECT_PRED1(IsEven, n++);
2306   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2307 
2308   // A failure case.
2309   EXPECT_FATAL_FAILURE(
2310       {  // NOLINT
2311         ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2312             << "This failure is expected.";
2313       },
2314       "This failure is expected.");
2315   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2316 }
2317 
2318 // Tests predicate assertions whose arity is >= 2.
2319 
2320 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2321 TEST(PredTest, WithoutFormat) {
2322   // Success cases.
2323   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2324   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2325 
2326   // Failure cases.
2327   const int n1 = 1;
2328   const int n2 = 2;
2329   EXPECT_NONFATAL_FAILURE(
2330       {  // NOLINT
2331         EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2332       },
2333       "This failure is expected.");
2334   EXPECT_FATAL_FAILURE(
2335       {  // NOLINT
2336         ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2337       },
2338       "evaluates to false");
2339 }
2340 
2341 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2342 TEST(PredTest, WithFormat) {
2343   // Success cases.
2344   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
2345       << "This failure is UNEXPECTED!";
2346   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2347 
2348   // Failure cases.
2349   const int n1 = 1;
2350   const int n2 = 2;
2351   const int n3 = 4;
2352   const int n4 = 6;
2353   EXPECT_NONFATAL_FAILURE(
2354       {  // NOLINT
2355         EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2356       },
2357       "evaluates to 13, which is not even.");
2358   EXPECT_FATAL_FAILURE(
2359       {  // NOLINT
2360         ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2361             << "This failure is expected.";
2362       },
2363       "This failure is expected.");
2364 }
2365 
2366 // Tests that predicate assertions evaluates their arguments
2367 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2368 TEST(PredTest, SingleEvaluationOnFailure) {
2369   // A success case.
2370   int n1 = 0;
2371   int n2 = 0;
2372   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2373   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2374   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2375 
2376   // Another success case.
2377   n1 = n2 = 0;
2378   int n3 = 0;
2379   int n4 = 0;
2380   int n5 = 0;
2381   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
2382       << "This failure is UNEXPECTED!";
2383   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2384   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2385   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2386   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2387   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2388 
2389   // A failure case.
2390   n1 = n2 = n3 = 0;
2391   EXPECT_NONFATAL_FAILURE(
2392       {  // NOLINT
2393         EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2394             << "This failure is expected.";
2395       },
2396       "This failure is expected.");
2397   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2398   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2399   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2400 
2401   // Another failure case.
2402   n1 = n2 = n3 = n4 = 0;
2403   EXPECT_NONFATAL_FAILURE(
2404       {  // NOLINT
2405         EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2406       },
2407       "evaluates to 1, which is not even.");
2408   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2409   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2410   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2411   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2412 }
2413 
2414 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2415 TEST(PredTest, ExpectPredEvalFailure) {
2416   std::set<int> set_a = {2, 1, 3, 4, 5};
2417   std::set<int> set_b = {0, 4, 8};
2418   const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
2419   EXPECT_NONFATAL_FAILURE(
2420       EXPECT_PRED2(compare_sets, set_a, set_b),
2421       "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2422       "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2423 }
2424 
2425 // Some helper functions for testing using overloaded/template
2426 // functions with ASSERT_PREDn and EXPECT_PREDn.
2427 
IsPositive(double x)2428 bool IsPositive(double x) { return x > 0; }
2429 
2430 template <typename T>
IsNegative(T x)2431 bool IsNegative(T x) {
2432   return x < 0;
2433 }
2434 
2435 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2436 bool GreaterThan(T1 x1, T2 x2) {
2437   return x1 > x2;
2438 }
2439 
2440 // Tests that overloaded functions can be used in *_PRED* as long as
2441 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2442 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2443   // C++Builder requires C-style casts rather than static_cast.
2444   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);       // NOLINT
2445   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2446 }
2447 
2448 // Tests that template functions can be used in *_PRED* as long as
2449 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2450 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2451   EXPECT_PRED1(IsNegative<int>, -5);
2452   // Makes sure that we can handle templates with more than one
2453   // parameter.
2454   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2455 }
2456 
2457 // Some helper functions for testing using overloaded/template
2458 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2459 
IsPositiveFormat(const char *,int n)2460 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2461   return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2462 }
2463 
IsPositiveFormat(const char *,double x)2464 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2465   return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2466 }
2467 
2468 template <typename T>
IsNegativeFormat(const char *,T x)2469 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2470   return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2471 }
2472 
2473 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2474 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2475                              const T1& x1, const T2& x2) {
2476   return x1 == x2 ? AssertionSuccess()
2477                   : AssertionFailure(Message() << "Failure");
2478 }
2479 
2480 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2481 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2482 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2483   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2484   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2485 }
2486 
2487 // Tests that template functions can be used in *_PRED_FORMAT* without
2488 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2489 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2490   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2491   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2492 }
2493 
2494 // Tests string assertions.
2495 
2496 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2497 TEST(StringAssertionTest, ASSERT_STREQ) {
2498   const char* const p1 = "good";
2499   ASSERT_STREQ(p1, p1);
2500 
2501   // Let p2 have the same content as p1, but be at a different address.
2502   const char p2[] = "good";
2503   ASSERT_STREQ(p1, p2);
2504 
2505   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), "  \"bad\"\n  \"good\"");
2506 }
2507 
2508 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2509 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2510   ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2511   EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2512 }
2513 
2514 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2515 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2516   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2517 }
2518 
2519 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2520 TEST(StringAssertionTest, ASSERT_STRNE) {
2521   ASSERT_STRNE("hi", "Hi");
2522   ASSERT_STRNE("Hi", nullptr);
2523   ASSERT_STRNE(nullptr, "Hi");
2524   ASSERT_STRNE("", nullptr);
2525   ASSERT_STRNE(nullptr, "");
2526   ASSERT_STRNE("", "Hi");
2527   ASSERT_STRNE("Hi", "");
2528   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
2529 }
2530 
2531 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2532 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2533   ASSERT_STRCASEEQ("hi", "Hi");
2534   ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2535 
2536   ASSERT_STRCASEEQ("", "");
2537   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
2538 }
2539 
2540 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2541 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2542   ASSERT_STRCASENE("hi1", "Hi2");
2543   ASSERT_STRCASENE("Hi", nullptr);
2544   ASSERT_STRCASENE(nullptr, "Hi");
2545   ASSERT_STRCASENE("", nullptr);
2546   ASSERT_STRCASENE(nullptr, "");
2547   ASSERT_STRCASENE("", "Hi");
2548   ASSERT_STRCASENE("Hi", "");
2549   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
2550 }
2551 
2552 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2553 TEST(StringAssertionTest, STREQ_Wide) {
2554   // NULL strings.
2555   ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2556 
2557   // Empty strings.
2558   ASSERT_STREQ(L"", L"");
2559 
2560   // Non-null vs NULL.
2561   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2562 
2563   // Equal strings.
2564   EXPECT_STREQ(L"Hi", L"Hi");
2565 
2566   // Unequal strings.
2567   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
2568 
2569   // Strings containing wide characters.
2570   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
2571 
2572   // The streaming variation.
2573   EXPECT_NONFATAL_FAILURE(
2574       {  // NOLINT
2575         EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2576       },
2577       "Expected failure");
2578 }
2579 
2580 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2581 TEST(StringAssertionTest, STRNE_Wide) {
2582   // NULL strings.
2583   EXPECT_NONFATAL_FAILURE(
2584       {  // NOLINT
2585         EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2586       },
2587       "");
2588 
2589   // Empty strings.
2590   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
2591 
2592   // Non-null vs NULL.
2593   ASSERT_STRNE(L"non-null", nullptr);
2594 
2595   // Equal strings.
2596   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
2597 
2598   // Unequal strings.
2599   EXPECT_STRNE(L"abc", L"Abc");
2600 
2601   // Strings containing wide characters.
2602   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
2603 
2604   // The streaming variation.
2605   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2606 }
2607 
2608 // Tests for ::testing::IsSubstring().
2609 
2610 // Tests that IsSubstring() returns the correct result when the input
2611 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2612 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2613   EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2614   EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2615   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2616 
2617   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2618   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2619 }
2620 
2621 // Tests that IsSubstring() returns the correct result when the input
2622 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2623 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2624   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2625   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2626   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2627 
2628   EXPECT_TRUE(
2629       IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2630   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2631 }
2632 
2633 // Tests that IsSubstring() generates the correct message when the input
2634 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2635 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2636   EXPECT_STREQ(
2637       "Value of: needle_expr\n"
2638       "  Actual: \"needle\"\n"
2639       "Expected: a substring of haystack_expr\n"
2640       "Which is: \"haystack\"",
2641       IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
2642           .failure_message());
2643 }
2644 
2645 // Tests that IsSubstring returns the correct result when the input
2646 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2647 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2648   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2649   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2650 }
2651 
2652 #if GTEST_HAS_STD_WSTRING
2653 // Tests that IsSubstring returns the correct result when the input
2654 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2655 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2656   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2657   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2658 }
2659 
2660 // Tests that IsSubstring() generates the correct message when the input
2661 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2662 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2663   EXPECT_STREQ(
2664       "Value of: needle_expr\n"
2665       "  Actual: L\"needle\"\n"
2666       "Expected: a substring of haystack_expr\n"
2667       "Which is: L\"haystack\"",
2668       IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
2669                   L"haystack")
2670           .failure_message());
2671 }
2672 
2673 #endif  // GTEST_HAS_STD_WSTRING
2674 
2675 // Tests for ::testing::IsNotSubstring().
2676 
2677 // Tests that IsNotSubstring() returns the correct result when the input
2678 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2679 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2680   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2681   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2682 }
2683 
2684 // Tests that IsNotSubstring() returns the correct result when the input
2685 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2686 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2687   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2688   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2689 }
2690 
2691 // Tests that IsNotSubstring() generates the correct message when the input
2692 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2693 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2694   EXPECT_STREQ(
2695       "Value of: needle_expr\n"
2696       "  Actual: L\"needle\"\n"
2697       "Expected: not a substring of haystack_expr\n"
2698       "Which is: L\"two needles\"",
2699       IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
2700           .failure_message());
2701 }
2702 
2703 // Tests that IsNotSubstring returns the correct result when the input
2704 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2705 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2706   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2707   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2708 }
2709 
2710 // Tests that IsNotSubstring() generates the correct message when the input
2711 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2712 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2713   EXPECT_STREQ(
2714       "Value of: needle_expr\n"
2715       "  Actual: \"needle\"\n"
2716       "Expected: not a substring of haystack_expr\n"
2717       "Which is: \"two needles\"",
2718       IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
2719                      "two needles")
2720           .failure_message());
2721 }
2722 
2723 #if GTEST_HAS_STD_WSTRING
2724 
2725 // Tests that IsNotSubstring returns the correct result when the input
2726 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2727 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2728   EXPECT_FALSE(
2729       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2730   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2731 }
2732 
2733 #endif  // GTEST_HAS_STD_WSTRING
2734 
2735 // Tests floating-point assertions.
2736 
2737 template <typename RawType>
2738 class FloatingPointTest : public Test {
2739  protected:
2740   // Pre-calculated numbers to be used by the tests.
2741   struct TestValues {
2742     RawType close_to_positive_zero;
2743     RawType close_to_negative_zero;
2744     RawType further_from_negative_zero;
2745 
2746     RawType close_to_one;
2747     RawType further_from_one;
2748 
2749     RawType infinity;
2750     RawType close_to_infinity;
2751     RawType further_from_infinity;
2752 
2753     RawType nan1;
2754     RawType nan2;
2755   };
2756 
2757   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2758   typedef typename Floating::Bits Bits;
2759 
SetUp()2760   void SetUp() override {
2761     const uint32_t max_ulps = Floating::kMaxUlps;
2762 
2763     // The bits that represent 0.0.
2764     const Bits zero_bits = Floating(0).bits();
2765 
2766     // Makes some numbers close to 0.0.
2767     values_.close_to_positive_zero =
2768         Floating::ReinterpretBits(zero_bits + max_ulps / 2);
2769     values_.close_to_negative_zero =
2770         -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
2771     values_.further_from_negative_zero =
2772         -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
2773 
2774     // The bits that represent 1.0.
2775     const Bits one_bits = Floating(1).bits();
2776 
2777     // Makes some numbers close to 1.0.
2778     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2779     values_.further_from_one =
2780         Floating::ReinterpretBits(one_bits + max_ulps + 1);
2781 
2782     // +infinity.
2783     values_.infinity = Floating::Infinity();
2784 
2785     // The bits that represent +infinity.
2786     const Bits infinity_bits = Floating(values_.infinity).bits();
2787 
2788     // Makes some numbers close to infinity.
2789     values_.close_to_infinity =
2790         Floating::ReinterpretBits(infinity_bits - max_ulps);
2791     values_.further_from_infinity =
2792         Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
2793 
2794     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2795     // our NaN's are quiet; trying to process a signaling NaN would raise an
2796     // exception if our environment enables floating point exceptions.
2797     values_.nan1 = Floating::ReinterpretBits(
2798         Floating::kExponentBitMask |
2799         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2800     values_.nan2 = Floating::ReinterpretBits(
2801         Floating::kExponentBitMask |
2802         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2803   }
2804 
TestSize()2805   void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
2806 
2807   static TestValues values_;
2808 };
2809 
2810 template <typename RawType>
2811 typename FloatingPointTest<RawType>::TestValues
2812     FloatingPointTest<RawType>::values_;
2813 
2814 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2815 typedef FloatingPointTest<float> FloatTest;
2816 
2817 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2818 TEST_F(FloatTest, Size) { TestSize(); }
2819 
2820 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2821 TEST_F(FloatTest, Zeros) {
2822   EXPECT_FLOAT_EQ(0.0, -0.0);
2823   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
2824   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
2825 }
2826 
2827 // Tests comparing numbers close to 0.
2828 //
2829 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2830 // overflow occurs when comparing numbers whose absolute value is very
2831 // small.
TEST_F(FloatTest,AlmostZeros)2832 TEST_F(FloatTest, AlmostZeros) {
2833   // In C++Builder, names within local classes (such as used by
2834   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2835   // scoping class.  Use a static local alias as a workaround.
2836   // We use the assignment syntax since some compilers, like Sun Studio,
2837   // don't allow initializing references using construction syntax
2838   // (parentheses).
2839   static const FloatTest::TestValues& v = this->values_;
2840 
2841   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2842   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2843   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2844 
2845   EXPECT_FATAL_FAILURE(
2846       {  // NOLINT
2847         ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
2848       },
2849       "v.further_from_negative_zero");
2850 }
2851 
2852 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2853 TEST_F(FloatTest, SmallDiff) {
2854   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2855   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2856                           "values_.further_from_one");
2857 }
2858 
2859 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2860 TEST_F(FloatTest, LargeDiff) {
2861   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
2862 }
2863 
2864 // Tests comparing with infinity.
2865 //
2866 // This ensures that no overflow occurs when comparing numbers whose
2867 // absolute value is very large.
TEST_F(FloatTest,Infinity)2868 TEST_F(FloatTest, Infinity) {
2869   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2870   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2871   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2872                           "-values_.infinity");
2873 
2874   // This is interesting as the representations of infinity and nan1
2875   // are only 1 DLP apart.
2876   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2877                           "values_.nan1");
2878 }
2879 
2880 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2881 TEST_F(FloatTest, NaN) {
2882   // In C++Builder, names within local classes (such as used by
2883   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2884   // scoping class.  Use a static local alias as a workaround.
2885   // We use the assignment syntax since some compilers, like Sun Studio,
2886   // don't allow initializing references using construction syntax
2887   // (parentheses).
2888   static const FloatTest::TestValues& v = this->values_;
2889 
2890   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
2891   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
2892   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
2893 
2894   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
2895 }
2896 
2897 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2898 TEST_F(FloatTest, Reflexive) {
2899   EXPECT_FLOAT_EQ(0.0, 0.0);
2900   EXPECT_FLOAT_EQ(1.0, 1.0);
2901   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2902 }
2903 
2904 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2905 TEST_F(FloatTest, Commutative) {
2906   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2907   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2908 
2909   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2910   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2911                           "1.0");
2912 }
2913 
2914 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2915 TEST_F(FloatTest, EXPECT_NEAR) {
2916   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2917   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2918   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2919                           "The difference between 1.0f and 1.5f is 0.5, "
2920                           "which exceeds 0.25f");
2921 }
2922 
2923 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2924 TEST_F(FloatTest, ASSERT_NEAR) {
2925   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2926   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2927   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2928                        "The difference between 1.0f and 1.5f is 0.5, "
2929                        "which exceeds 0.25f");
2930 }
2931 
2932 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2933 TEST_F(FloatTest, FloatLESucceeds) {
2934   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2935   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2936 
2937   // or when val1 is greater than, but almost equals to, val2.
2938   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2939 }
2940 
2941 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2942 TEST_F(FloatTest, FloatLEFails) {
2943   // When val1 is greater than val2 by a large margin,
2944   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2945                           "(2.0f) <= (1.0f)");
2946 
2947   // or by a small yet non-negligible margin,
2948   EXPECT_NONFATAL_FAILURE(
2949       {  // NOLINT
2950         EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2951       },
2952       "(values_.further_from_one) <= (1.0f)");
2953 
2954   EXPECT_NONFATAL_FAILURE(
2955       {  // NOLINT
2956         EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2957       },
2958       "(values_.nan1) <= (values_.infinity)");
2959   EXPECT_NONFATAL_FAILURE(
2960       {  // NOLINT
2961         EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2962       },
2963       "(-values_.infinity) <= (values_.nan1)");
2964   EXPECT_FATAL_FAILURE(
2965       {  // NOLINT
2966         ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2967       },
2968       "(values_.nan1) <= (values_.nan1)");
2969 }
2970 
2971 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2972 typedef FloatingPointTest<double> DoubleTest;
2973 
2974 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2975 TEST_F(DoubleTest, Size) { TestSize(); }
2976 
2977 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2978 TEST_F(DoubleTest, Zeros) {
2979   EXPECT_DOUBLE_EQ(0.0, -0.0);
2980   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
2981   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
2982 }
2983 
2984 // Tests comparing numbers close to 0.
2985 //
2986 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2987 // overflow occurs when comparing numbers whose absolute value is very
2988 // small.
TEST_F(DoubleTest,AlmostZeros)2989 TEST_F(DoubleTest, AlmostZeros) {
2990   // In C++Builder, names within local classes (such as used by
2991   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2992   // scoping class.  Use a static local alias as a workaround.
2993   // We use the assignment syntax since some compilers, like Sun Studio,
2994   // don't allow initializing references using construction syntax
2995   // (parentheses).
2996   static const DoubleTest::TestValues& v = this->values_;
2997 
2998   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2999   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3000   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3001 
3002   EXPECT_FATAL_FAILURE(
3003       {  // NOLINT
3004         ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3005                          v.further_from_negative_zero);
3006       },
3007       "v.further_from_negative_zero");
3008 }
3009 
3010 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3011 TEST_F(DoubleTest, SmallDiff) {
3012   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3013   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3014                           "values_.further_from_one");
3015 }
3016 
3017 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3018 TEST_F(DoubleTest, LargeDiff) {
3019   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
3020 }
3021 
3022 // Tests comparing with infinity.
3023 //
3024 // This ensures that no overflow occurs when comparing numbers whose
3025 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3026 TEST_F(DoubleTest, Infinity) {
3027   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3028   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3029   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3030                           "-values_.infinity");
3031 
3032   // This is interesting as the representations of infinity_ and nan1_
3033   // are only 1 DLP apart.
3034   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3035                           "values_.nan1");
3036 }
3037 
3038 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3039 TEST_F(DoubleTest, NaN) {
3040   static const DoubleTest::TestValues& v = this->values_;
3041 
3042   // Nokia's STLport crashes if we try to output infinity or NaN.
3043   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
3044   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3045   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3046   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
3047 }
3048 
3049 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3050 TEST_F(DoubleTest, Reflexive) {
3051   EXPECT_DOUBLE_EQ(0.0, 0.0);
3052   EXPECT_DOUBLE_EQ(1.0, 1.0);
3053   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3054 }
3055 
3056 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3057 TEST_F(DoubleTest, Commutative) {
3058   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3059   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3060 
3061   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3062   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3063                           "1.0");
3064 }
3065 
3066 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3067 TEST_F(DoubleTest, EXPECT_NEAR) {
3068   EXPECT_NEAR(-1.0, -1.1, 0.2);
3069   EXPECT_NEAR(2.0, 3.0, 1.0);
3070   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3071                           "The difference between 1.0 and 1.5 is 0.5, "
3072                           "which exceeds 0.25");
3073   // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3074   // slightly different failure reporting path.
3075   EXPECT_NONFATAL_FAILURE(
3076       EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3077       "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3078       "minimum distance between doubles for numbers of this magnitude which is "
3079       "512");
3080 }
3081 
3082 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3083 TEST_F(DoubleTest, ASSERT_NEAR) {
3084   ASSERT_NEAR(-1.0, -1.1, 0.2);
3085   ASSERT_NEAR(2.0, 3.0, 1.0);
3086   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3087                        "The difference between 1.0 and 1.5 is 0.5, "
3088                        "which exceeds 0.25");
3089 }
3090 
3091 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3092 TEST_F(DoubleTest, DoubleLESucceeds) {
3093   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3094   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3095 
3096   // or when val1 is greater than, but almost equals to, val2.
3097   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3098 }
3099 
3100 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3101 TEST_F(DoubleTest, DoubleLEFails) {
3102   // When val1 is greater than val2 by a large margin,
3103   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3104                           "(2.0) <= (1.0)");
3105 
3106   // or by a small yet non-negligible margin,
3107   EXPECT_NONFATAL_FAILURE(
3108       {  // NOLINT
3109         EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3110       },
3111       "(values_.further_from_one) <= (1.0)");
3112 
3113   EXPECT_NONFATAL_FAILURE(
3114       {  // NOLINT
3115         EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3116       },
3117       "(values_.nan1) <= (values_.infinity)");
3118   EXPECT_NONFATAL_FAILURE(
3119       {  // NOLINT
3120         EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3121       },
3122       " (-values_.infinity) <= (values_.nan1)");
3123   EXPECT_FATAL_FAILURE(
3124       {  // NOLINT
3125         ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3126       },
3127       "(values_.nan1) <= (values_.nan1)");
3128 }
3129 
3130 // Verifies that a test or test case whose name starts with DISABLED_ is
3131 // not run.
3132 
3133 // A test whose name starts with DISABLED_.
3134 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3135 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3136   FAIL() << "Unexpected failure: Disabled test should not be run.";
3137 }
3138 
3139 // A test whose name does not start with DISABLED_.
3140 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3141 TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
3142 
3143 // A test case whose name starts with DISABLED_.
3144 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3145 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3146   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3147 }
3148 
3149 // A test case and test whose names start with DISABLED_.
3150 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3151 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3152   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3153 }
3154 
3155 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3156 // TearDownTestSuite() are not called.
3157 class DisabledTestsTest : public Test {
3158  protected:
SetUpTestSuite()3159   static void SetUpTestSuite() {
3160     FAIL() << "Unexpected failure: All tests disabled in test case. "
3161               "SetUpTestSuite() should not be called.";
3162   }
3163 
TearDownTestSuite()3164   static void TearDownTestSuite() {
3165     FAIL() << "Unexpected failure: All tests disabled in test case. "
3166               "TearDownTestSuite() should not be called.";
3167   }
3168 };
3169 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3170 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3171   FAIL() << "Unexpected failure: Disabled test should not be run.";
3172 }
3173 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3174 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3175   FAIL() << "Unexpected failure: Disabled test should not be run.";
3176 }
3177 
3178 // Tests that disabled typed tests aren't run.
3179 
3180 template <typename T>
3181 class TypedTest : public Test {};
3182 
3183 typedef testing::Types<int, double> NumericTypes;
3184 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3185 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3186 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3187   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3188 }
3189 
3190 template <typename T>
3191 class DISABLED_TypedTest : public Test {};
3192 
3193 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3194 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3195 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3196   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3197 }
3198 
3199 // Tests that disabled type-parameterized tests aren't run.
3200 
3201 template <typename T>
3202 class TypedTestP : public Test {};
3203 
3204 TYPED_TEST_SUITE_P(TypedTestP);
3205 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3206 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3207   FAIL() << "Unexpected failure: "
3208          << "Disabled type-parameterized test should not run.";
3209 }
3210 
3211 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3212 
3213 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3214 
3215 template <typename T>
3216 class DISABLED_TypedTestP : public Test {};
3217 
3218 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3219 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3220 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3221   FAIL() << "Unexpected failure: "
3222          << "Disabled type-parameterized test should not run.";
3223 }
3224 
3225 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3226 
3227 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3228 
3229 // Tests that assertion macros evaluate their arguments exactly once.
3230 
3231 class SingleEvaluationTest : public Test {
3232  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3233   // This helper function is needed by the FailedASSERT_STREQ test
3234   // below.  It's public to work around C++Builder's bug with scoping local
3235   // classes.
CompareAndIncrementCharPtrs()3236   static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
3237 
3238   // This helper function is needed by the FailedASSERT_NE test below.  It's
3239   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3240   static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
3241 
3242  protected:
SingleEvaluationTest()3243   SingleEvaluationTest() {
3244     p1_ = s1_;
3245     p2_ = s2_;
3246     a_ = 0;
3247     b_ = 0;
3248   }
3249 
3250   static const char* const s1_;
3251   static const char* const s2_;
3252   static const char* p1_;
3253   static const char* p2_;
3254 
3255   static int a_;
3256   static int b_;
3257 };
3258 
3259 const char* const SingleEvaluationTest::s1_ = "01234";
3260 const char* const SingleEvaluationTest::s2_ = "abcde";
3261 const char* SingleEvaluationTest::p1_;
3262 const char* SingleEvaluationTest::p2_;
3263 int SingleEvaluationTest::a_;
3264 int SingleEvaluationTest::b_;
3265 
3266 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3267 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3268 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3269   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3270                        "p2_++");
3271   EXPECT_EQ(s1_ + 1, p1_);
3272   EXPECT_EQ(s2_ + 1, p2_);
3273 }
3274 
3275 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3276 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3277   // successful EXPECT_STRNE
3278   EXPECT_STRNE(p1_++, p2_++);
3279   EXPECT_EQ(s1_ + 1, p1_);
3280   EXPECT_EQ(s2_ + 1, p2_);
3281 
3282   // failed EXPECT_STRCASEEQ
3283   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
3284   EXPECT_EQ(s1_ + 2, p1_);
3285   EXPECT_EQ(s2_ + 2, p2_);
3286 }
3287 
3288 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3289 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3290 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3291   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3292                        "(a_++) != (b_++)");
3293   EXPECT_EQ(1, a_);
3294   EXPECT_EQ(1, b_);
3295 }
3296 
3297 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3298 TEST_F(SingleEvaluationTest, OtherCases) {
3299   // successful EXPECT_TRUE
3300   EXPECT_TRUE(0 == a_++);  // NOLINT
3301   EXPECT_EQ(1, a_);
3302 
3303   // failed EXPECT_TRUE
3304   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3305   EXPECT_EQ(2, a_);
3306 
3307   // successful EXPECT_GT
3308   EXPECT_GT(a_++, b_++);
3309   EXPECT_EQ(3, a_);
3310   EXPECT_EQ(1, b_);
3311 
3312   // failed EXPECT_LT
3313   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3314   EXPECT_EQ(4, a_);
3315   EXPECT_EQ(2, b_);
3316 
3317   // successful ASSERT_TRUE
3318   ASSERT_TRUE(0 < a_++);  // NOLINT
3319   EXPECT_EQ(5, a_);
3320 
3321   // successful ASSERT_GT
3322   ASSERT_GT(a_++, b_++);
3323   EXPECT_EQ(6, a_);
3324   EXPECT_EQ(3, b_);
3325 }
3326 
3327 #if GTEST_HAS_EXCEPTIONS
3328 
3329 #if GTEST_HAS_RTTI
3330 
3331 #define ERROR_DESC "std::runtime_error"
3332 
3333 #else  // GTEST_HAS_RTTI
3334 
3335 #define ERROR_DESC "an std::exception-derived error"
3336 
3337 #endif  // GTEST_HAS_RTTI
3338 
ThrowAnInteger()3339 void ThrowAnInteger() { throw 1; }
ThrowRuntimeError(const char * what)3340 void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
3341 
3342 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3343 TEST_F(SingleEvaluationTest, ExceptionTests) {
3344   // successful EXPECT_THROW
3345   EXPECT_THROW(
3346       {  // NOLINT
3347         a_++;
3348         ThrowAnInteger();
3349       },
3350       int);
3351   EXPECT_EQ(1, a_);
3352 
3353   // failed EXPECT_THROW, throws different
3354   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3355                               {  // NOLINT
3356                                 a_++;
3357                                 ThrowAnInteger();
3358                               },
3359                               bool),
3360                           "throws a different type");
3361   EXPECT_EQ(2, a_);
3362 
3363   // failed EXPECT_THROW, throws runtime error
3364   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3365                               {  // NOLINT
3366                                 a_++;
3367                                 ThrowRuntimeError("A description");
3368                               },
3369                               bool),
3370                           "throws " ERROR_DESC
3371                           " with description \"A description\"");
3372   EXPECT_EQ(3, a_);
3373 
3374   // failed EXPECT_THROW, throws nothing
3375   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3376   EXPECT_EQ(4, a_);
3377 
3378   // successful EXPECT_NO_THROW
3379   EXPECT_NO_THROW(a_++);
3380   EXPECT_EQ(5, a_);
3381 
3382   // failed EXPECT_NO_THROW
3383   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3384                             a_++;
3385                             ThrowAnInteger();
3386                           }),
3387                           "it throws");
3388   EXPECT_EQ(6, a_);
3389 
3390   // successful EXPECT_ANY_THROW
3391   EXPECT_ANY_THROW({  // NOLINT
3392     a_++;
3393     ThrowAnInteger();
3394   });
3395   EXPECT_EQ(7, a_);
3396 
3397   // failed EXPECT_ANY_THROW
3398   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3399   EXPECT_EQ(8, a_);
3400 }
3401 
3402 #endif  // GTEST_HAS_EXCEPTIONS
3403 
3404 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3405 class NoFatalFailureTest : public Test {
3406  protected:
Succeeds()3407   void Succeeds() {}
FailsNonFatal()3408   void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
Fails()3409   void Fails() { FAIL() << "some fatal failure"; }
3410 
DoAssertNoFatalFailureOnFails()3411   void DoAssertNoFatalFailureOnFails() {
3412     ASSERT_NO_FATAL_FAILURE(Fails());
3413     ADD_FAILURE() << "should not reach here.";
3414   }
3415 
DoExpectNoFatalFailureOnFails()3416   void DoExpectNoFatalFailureOnFails() {
3417     EXPECT_NO_FATAL_FAILURE(Fails());
3418     ADD_FAILURE() << "other failure";
3419   }
3420 };
3421 
TEST_F(NoFatalFailureTest,NoFailure)3422 TEST_F(NoFatalFailureTest, NoFailure) {
3423   EXPECT_NO_FATAL_FAILURE(Succeeds());
3424   ASSERT_NO_FATAL_FAILURE(Succeeds());
3425 }
3426 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3427 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3428   EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3429                           "some non-fatal failure");
3430   EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3431                           "some non-fatal failure");
3432 }
3433 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3434 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3435   TestPartResultArray gtest_failures;
3436   {
3437     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3438     DoAssertNoFatalFailureOnFails();
3439   }
3440   ASSERT_EQ(2, gtest_failures.size());
3441   EXPECT_EQ(TestPartResult::kFatalFailure,
3442             gtest_failures.GetTestPartResult(0).type());
3443   EXPECT_EQ(TestPartResult::kFatalFailure,
3444             gtest_failures.GetTestPartResult(1).type());
3445   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3446                       gtest_failures.GetTestPartResult(0).message());
3447   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3448                       gtest_failures.GetTestPartResult(1).message());
3449 }
3450 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3451 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3452   TestPartResultArray gtest_failures;
3453   {
3454     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3455     DoExpectNoFatalFailureOnFails();
3456   }
3457   ASSERT_EQ(3, gtest_failures.size());
3458   EXPECT_EQ(TestPartResult::kFatalFailure,
3459             gtest_failures.GetTestPartResult(0).type());
3460   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3461             gtest_failures.GetTestPartResult(1).type());
3462   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3463             gtest_failures.GetTestPartResult(2).type());
3464   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3465                       gtest_failures.GetTestPartResult(0).message());
3466   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3467                       gtest_failures.GetTestPartResult(1).message());
3468   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3469                       gtest_failures.GetTestPartResult(2).message());
3470 }
3471 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3472 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3473   TestPartResultArray gtest_failures;
3474   {
3475     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3476     EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message";
3477   }
3478   ASSERT_EQ(2, gtest_failures.size());
3479   EXPECT_EQ(TestPartResult::kFatalFailure,
3480             gtest_failures.GetTestPartResult(0).type());
3481   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3482             gtest_failures.GetTestPartResult(1).type());
3483   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3484                       gtest_failures.GetTestPartResult(0).message());
3485   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3486                       gtest_failures.GetTestPartResult(1).message());
3487 }
3488 
3489 // Tests non-string assertions.
3490 
EditsToString(const std::vector<EditType> & edits)3491 std::string EditsToString(const std::vector<EditType>& edits) {
3492   std::string out;
3493   for (size_t i = 0; i < edits.size(); ++i) {
3494     static const char kEdits[] = " +-/";
3495     out.append(1, kEdits[edits[i]]);
3496   }
3497   return out;
3498 }
3499 
CharsToIndices(const std::string & str)3500 std::vector<size_t> CharsToIndices(const std::string& str) {
3501   std::vector<size_t> out;
3502   for (size_t i = 0; i < str.size(); ++i) {
3503     out.push_back(static_cast<size_t>(str[i]));
3504   }
3505   return out;
3506 }
3507 
CharsToLines(const std::string & str)3508 std::vector<std::string> CharsToLines(const std::string& str) {
3509   std::vector<std::string> out;
3510   for (size_t i = 0; i < str.size(); ++i) {
3511     out.push_back(str.substr(i, 1));
3512   }
3513   return out;
3514 }
3515 
TEST(EditDistance,TestSuites)3516 TEST(EditDistance, TestSuites) {
3517   struct Case {
3518     int line;
3519     const char* left;
3520     const char* right;
3521     const char* expected_edits;
3522     const char* expected_diff;
3523   };
3524   static const Case kCases[] = {
3525       // No change.
3526       {__LINE__, "A", "A", " ", ""},
3527       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3528       // Simple adds.
3529       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3530       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3531       // Simple removes.
3532       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3533       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3534       // Simple replaces.
3535       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3536       {__LINE__, "ABCD", "abcd", "////",
3537        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3538       // Path finding.
3539       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3540        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3541       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3542        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3543       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3544        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3545       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3546        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3547        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3548       {}};
3549   for (const Case* c = kCases; c->left; ++c) {
3550     EXPECT_TRUE(c->expected_edits ==
3551                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3552                                                     CharsToIndices(c->right))))
3553         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3554         << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3555                                                CharsToIndices(c->right)))
3556         << ">";
3557     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3558                                                       CharsToLines(c->right)))
3559         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3560         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3561         << ">";
3562   }
3563 }
3564 
3565 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3566 TEST(AssertionTest, EqFailure) {
3567   const std::string foo_val("5"), bar_val("6");
3568   const std::string msg1(
3569       EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
3570   EXPECT_STREQ(
3571       "Expected equality of these values:\n"
3572       "  foo\n"
3573       "    Which is: 5\n"
3574       "  bar\n"
3575       "    Which is: 6",
3576       msg1.c_str());
3577 
3578   const std::string msg2(
3579       EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
3580   EXPECT_STREQ(
3581       "Expected equality of these values:\n"
3582       "  foo\n"
3583       "    Which is: 5\n"
3584       "  6",
3585       msg2.c_str());
3586 
3587   const std::string msg3(
3588       EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
3589   EXPECT_STREQ(
3590       "Expected equality of these values:\n"
3591       "  5\n"
3592       "  bar\n"
3593       "    Which is: 6",
3594       msg3.c_str());
3595 
3596   const std::string msg4(
3597       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3598   EXPECT_STREQ(
3599       "Expected equality of these values:\n"
3600       "  5\n"
3601       "  6",
3602       msg4.c_str());
3603 
3604   const std::string msg5(
3605       EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
3606           .failure_message());
3607   EXPECT_STREQ(
3608       "Expected equality of these values:\n"
3609       "  foo\n"
3610       "    Which is: \"x\"\n"
3611       "  bar\n"
3612       "    Which is: \"y\"\n"
3613       "Ignoring case",
3614       msg5.c_str());
3615 }
3616 
TEST(AssertionTest,EqFailureWithDiff)3617 TEST(AssertionTest, EqFailureWithDiff) {
3618   const std::string left(
3619       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3620   const std::string right(
3621       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3622   const std::string msg1(
3623       EqFailure("left", "right", left, right, false).failure_message());
3624   EXPECT_STREQ(
3625       "Expected equality of these values:\n"
3626       "  left\n"
3627       "    Which is: "
3628       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3629       "  right\n"
3630       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3631       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3632       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3633       msg1.c_str());
3634 }
3635 
3636 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3637 TEST(AssertionTest, AppendUserMessage) {
3638   const std::string foo("foo");
3639 
3640   Message msg;
3641   EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
3642 
3643   msg << "bar";
3644   EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
3645 }
3646 
3647 #ifdef __BORLANDC__
3648 // Silences warnings: "Condition is always true", "Unreachable code"
3649 #pragma option push -w-ccc -w-rch
3650 #endif
3651 
3652 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3653 TEST(AssertionTest, ASSERT_TRUE) {
3654   ASSERT_TRUE(2 > 1);  // NOLINT
3655   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
3656 }
3657 
3658 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3659 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3660   ASSERT_TRUE(ResultIsEven(2));
3661 #ifndef __BORLANDC__
3662   // ICE's in C++Builder.
3663   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3664                        "Value of: ResultIsEven(3)\n"
3665                        "  Actual: false (3 is odd)\n"
3666                        "Expected: true");
3667 #endif
3668   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3669   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3670                        "Value of: ResultIsEvenNoExplanation(3)\n"
3671                        "  Actual: false (3 is odd)\n"
3672                        "Expected: true");
3673 }
3674 
3675 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3676 TEST(AssertionTest, ASSERT_FALSE) {
3677   ASSERT_FALSE(2 < 1);  // NOLINT
3678   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3679                        "Value of: 2 > 1\n"
3680                        "  Actual: true\n"
3681                        "Expected: false");
3682 }
3683 
3684 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3685 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3686   ASSERT_FALSE(ResultIsEven(3));
3687 #ifndef __BORLANDC__
3688   // ICE's in C++Builder.
3689   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3690                        "Value of: ResultIsEven(2)\n"
3691                        "  Actual: true (2 is even)\n"
3692                        "Expected: false");
3693 #endif
3694   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3695   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3696                        "Value of: ResultIsEvenNoExplanation(2)\n"
3697                        "  Actual: true\n"
3698                        "Expected: false");
3699 }
3700 
3701 #ifdef __BORLANDC__
3702 // Restores warnings after previous "#pragma option push" suppressed them
3703 #pragma option pop
3704 #endif
3705 
3706 // Tests using ASSERT_EQ on double values.  The purpose is to make
3707 // sure that the specialization we did for integer and anonymous enums
3708 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3709 TEST(ExpectTest, ASSERT_EQ_Double) {
3710   // A success.
3711   ASSERT_EQ(5.6, 5.6);
3712 
3713   // A failure.
3714   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
3715 }
3716 
3717 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3718 TEST(AssertionTest, ASSERT_EQ) {
3719   ASSERT_EQ(5, 2 + 3);
3720   // clang-format off
3721   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3722                        "Expected equality of these values:\n"
3723                        "  5\n"
3724                        "  2*3\n"
3725                        "    Which is: 6");
3726   // clang-format on
3727 }
3728 
3729 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3730 TEST(AssertionTest, ASSERT_EQ_NULL) {
3731   // A success.
3732   const char* p = nullptr;
3733   ASSERT_EQ(nullptr, p);
3734 
3735   // A failure.
3736   static int n = 0;
3737   EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3738 }
3739 
3740 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3741 // treated as a null pointer by the compiler, we need to make sure
3742 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3743 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3744 TEST(ExpectTest, ASSERT_EQ_0) {
3745   int n = 0;
3746 
3747   // A success.
3748   ASSERT_EQ(0, n);
3749 
3750   // A failure.
3751   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), "  0\n  5.6");
3752 }
3753 
3754 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3755 TEST(AssertionTest, ASSERT_NE) {
3756   ASSERT_NE(6, 7);
3757   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3758                        "Expected: ('a') != ('a'), "
3759                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3760 }
3761 
3762 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3763 TEST(AssertionTest, ASSERT_LE) {
3764   ASSERT_LE(2, 3);
3765   ASSERT_LE(2, 2);
3766   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
3767 }
3768 
3769 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3770 TEST(AssertionTest, ASSERT_LT) {
3771   ASSERT_LT(2, 3);
3772   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
3773 }
3774 
3775 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3776 TEST(AssertionTest, ASSERT_GE) {
3777   ASSERT_GE(2, 1);
3778   ASSERT_GE(2, 2);
3779   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
3780 }
3781 
3782 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3783 TEST(AssertionTest, ASSERT_GT) {
3784   ASSERT_GT(2, 1);
3785   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
3786 }
3787 
3788 #if GTEST_HAS_EXCEPTIONS
3789 
ThrowNothing()3790 void ThrowNothing() {}
3791 
3792 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3793 TEST(AssertionTest, ASSERT_THROW) {
3794   ASSERT_THROW(ThrowAnInteger(), int);
3795 
3796 #ifndef __BORLANDC__
3797 
3798   // ICE's in C++Builder 2007 and 2009.
3799   EXPECT_FATAL_FAILURE(
3800       ASSERT_THROW(ThrowAnInteger(), bool),
3801       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3802       "  Actual: it throws a different type.");
3803   EXPECT_FATAL_FAILURE(
3804       ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3805       "Expected: ThrowRuntimeError(\"A description\") "
3806       "throws an exception of type std::logic_error.\n  "
3807       "Actual: it throws " ERROR_DESC
3808       " "
3809       "with description \"A description\".");
3810 #endif
3811 
3812   EXPECT_FATAL_FAILURE(
3813       ASSERT_THROW(ThrowNothing(), bool),
3814       "Expected: ThrowNothing() throws an exception of type bool.\n"
3815       "  Actual: it throws nothing.");
3816 }
3817 
3818 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3819 TEST(AssertionTest, ASSERT_NO_THROW) {
3820   ASSERT_NO_THROW(ThrowNothing());
3821   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3822                        "Expected: ThrowAnInteger() doesn't throw an exception."
3823                        "\n  Actual: it throws.");
3824   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3825                        "Expected: ThrowRuntimeError(\"A description\") "
3826                        "doesn't throw an exception.\n  "
3827                        "Actual: it throws " ERROR_DESC
3828                        " "
3829                        "with description \"A description\".");
3830 }
3831 
3832 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3833 TEST(AssertionTest, ASSERT_ANY_THROW) {
3834   ASSERT_ANY_THROW(ThrowAnInteger());
3835   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
3836                        "Expected: ThrowNothing() throws an exception.\n"
3837                        "  Actual: it doesn't.");
3838 }
3839 
3840 #endif  // GTEST_HAS_EXCEPTIONS
3841 
3842 // Makes sure we deal with the precedence of <<.  This test should
3843 // compile.
TEST(AssertionTest,AssertPrecedence)3844 TEST(AssertionTest, AssertPrecedence) {
3845   ASSERT_EQ(1 < 2, true);
3846   bool false_value = false;
3847   ASSERT_EQ(true && false_value, false);
3848 }
3849 
3850 // A subroutine used by the following test.
TestEq1(int x)3851 void TestEq1(int x) { ASSERT_EQ(1, x); }
3852 
3853 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3854 TEST(AssertionTest, NonFixtureSubroutine) {
3855   EXPECT_FATAL_FAILURE(TestEq1(2), "  x\n    Which is: 2");
3856 }
3857 
3858 // An uncopyable class.
3859 class Uncopyable {
3860  public:
Uncopyable(int a_value)3861   explicit Uncopyable(int a_value) : value_(a_value) {}
3862 
value() const3863   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3864   bool operator==(const Uncopyable& rhs) const {
3865     return value() == rhs.value();
3866   }
3867 
3868  private:
3869   // This constructor deliberately has no implementation, as we don't
3870   // want this class to be copyable.
3871   Uncopyable(const Uncopyable&);  // NOLINT
3872 
3873   int value_;
3874 };
3875 
operator <<(::std::ostream & os,const Uncopyable & value)3876 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3877   return os << value.value();
3878 }
3879 
IsPositiveUncopyable(const Uncopyable & x)3880 bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
3881 
3882 // A subroutine used by the following test.
TestAssertNonPositive()3883 void TestAssertNonPositive() {
3884   Uncopyable y(-1);
3885   ASSERT_PRED1(IsPositiveUncopyable, y);
3886 }
3887 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3888 void TestAssertEqualsUncopyable() {
3889   Uncopyable x(5);
3890   Uncopyable y(-1);
3891   ASSERT_EQ(x, y);
3892 }
3893 
3894 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3895 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3896   Uncopyable x(5);
3897   ASSERT_PRED1(IsPositiveUncopyable, x);
3898   ASSERT_EQ(x, x);
3899   EXPECT_FATAL_FAILURE(
3900       TestAssertNonPositive(),
3901       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3902   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3903                        "Expected equality of these values:\n"
3904                        "  x\n    Which is: 5\n  y\n    Which is: -1");
3905 }
3906 
3907 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3908 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3909   Uncopyable x(5);
3910   EXPECT_PRED1(IsPositiveUncopyable, x);
3911   Uncopyable y(-1);
3912   EXPECT_NONFATAL_FAILURE(
3913       EXPECT_PRED1(IsPositiveUncopyable, y),
3914       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3915   EXPECT_EQ(x, x);
3916   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3917                           "Expected equality of these values:\n"
3918                           "  x\n    Which is: 5\n  y\n    Which is: -1");
3919 }
3920 
3921 enum NamedEnum { kE1 = 0, kE2 = 1 };
3922 
TEST(AssertionTest,NamedEnum)3923 TEST(AssertionTest, NamedEnum) {
3924   EXPECT_EQ(kE1, kE1);
3925   EXPECT_LT(kE1, kE2);
3926   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3927   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3928 }
3929 
3930 // Sun Studio and HP aCC2reject this code.
3931 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3932 
3933 // Tests using assertions with anonymous enums.
3934 enum {
3935   kCaseA = -1,
3936 
3937 #ifdef GTEST_OS_LINUX
3938 
3939   // We want to test the case where the size of the anonymous enum is
3940   // larger than sizeof(int), to make sure our implementation of the
3941   // assertions doesn't truncate the enums.  However, MSVC
3942   // (incorrectly) doesn't allow an enum value to exceed the range of
3943   // an int, so this has to be conditionally compiled.
3944   //
3945   // On Linux, kCaseB and kCaseA have the same value when truncated to
3946   // int size.  We want to test whether this will confuse the
3947   // assertions.
3948   kCaseB = testing::internal::kMaxBiggestInt,
3949 
3950 #else
3951 
3952   kCaseB = INT_MAX,
3953 
3954 #endif  // GTEST_OS_LINUX
3955 
3956   kCaseC = 42
3957 };
3958 
TEST(AssertionTest,AnonymousEnum)3959 TEST(AssertionTest, AnonymousEnum) {
3960 #ifdef GTEST_OS_LINUX
3961 
3962   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3963 
3964 #endif  // GTEST_OS_LINUX
3965 
3966   EXPECT_EQ(kCaseA, kCaseA);
3967   EXPECT_NE(kCaseA, kCaseB);
3968   EXPECT_LT(kCaseA, kCaseB);
3969   EXPECT_LE(kCaseA, kCaseB);
3970   EXPECT_GT(kCaseB, kCaseA);
3971   EXPECT_GE(kCaseA, kCaseA);
3972   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
3973   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
3974 
3975   ASSERT_EQ(kCaseA, kCaseA);
3976   ASSERT_NE(kCaseA, kCaseB);
3977   ASSERT_LT(kCaseA, kCaseB);
3978   ASSERT_LE(kCaseA, kCaseB);
3979   ASSERT_GT(kCaseB, kCaseA);
3980   ASSERT_GE(kCaseA, kCaseA);
3981 
3982 #ifndef __BORLANDC__
3983 
3984   // ICE's in C++Builder.
3985   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), "  kCaseB\n    Which is: ");
3986   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: 42");
3987 #endif
3988 
3989   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: -1");
3990 }
3991 
3992 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3993 
3994 #ifdef GTEST_OS_WINDOWS
3995 
UnexpectedHRESULTFailure()3996 static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
3997 
OkHRESULTSuccess()3998 static HRESULT OkHRESULTSuccess() { return S_OK; }
3999 
FalseHRESULTSuccess()4000 static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
4001 
4002 // HRESULT assertion tests test both zero and non-zero
4003 // success codes as well as failure message for each.
4004 //
4005 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4006 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4007   EXPECT_HRESULT_SUCCEEDED(S_OK);
4008   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4009 
4010   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4011                           "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4012                           "  Actual: 0x8000FFFF");
4013 }
4014 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4015 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4016   ASSERT_HRESULT_SUCCEEDED(S_OK);
4017   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4018 
4019   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4020                        "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4021                        "  Actual: 0x8000FFFF");
4022 }
4023 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4024 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4025   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4026 
4027   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4028                           "Expected: (OkHRESULTSuccess()) fails.\n"
4029                           "  Actual: 0x0");
4030   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4031                           "Expected: (FalseHRESULTSuccess()) fails.\n"
4032                           "  Actual: 0x1");
4033 }
4034 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4035 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4036   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4037 
4038 #ifndef __BORLANDC__
4039 
4040   // ICE's in C++Builder 2007 and 2009.
4041   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4042                        "Expected: (OkHRESULTSuccess()) fails.\n"
4043                        "  Actual: 0x0");
4044 #endif
4045 
4046   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4047                        "Expected: (FalseHRESULTSuccess()) fails.\n"
4048                        "  Actual: 0x1");
4049 }
4050 
4051 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4052 TEST(HRESULTAssertionTest, Streaming) {
4053   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4054   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4055   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4056   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4057 
4058   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4059                               << "expected failure",
4060                           "expected failure");
4061 
4062 #ifndef __BORLANDC__
4063 
4064   // ICE's in C++Builder 2007 and 2009.
4065   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4066                            << "expected failure",
4067                        "expected failure");
4068 #endif
4069 
4070   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4071                           "expected failure");
4072 
4073   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4074                        "expected failure");
4075 }
4076 
4077 #endif  // GTEST_OS_WINDOWS
4078 
4079 // The following code intentionally tests a suboptimal syntax.
4080 #ifdef __GNUC__
4081 #pragma GCC diagnostic push
4082 #pragma GCC diagnostic ignored "-Wdangling-else"
4083 #pragma GCC diagnostic ignored "-Wempty-body"
4084 #pragma GCC diagnostic ignored "-Wpragmas"
4085 #endif
4086 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4087 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4088   if (AlwaysFalse())
4089     ASSERT_TRUE(false) << "This should never be executed; "
4090                           "It's a compilation test only.";
4091 
4092   if (AlwaysTrue())
4093     EXPECT_FALSE(false);
4094   else
4095     ;  // NOLINT
4096 
4097   if (AlwaysFalse()) ASSERT_LT(1, 3);
4098 
4099   if (AlwaysFalse())
4100     ;  // NOLINT
4101   else
4102     EXPECT_GT(3, 2) << "";
4103 }
4104 #ifdef __GNUC__
4105 #pragma GCC diagnostic pop
4106 #endif
4107 
4108 #if GTEST_HAS_EXCEPTIONS
4109 // Tests that the compiler will not complain about unreachable code in the
4110 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4111 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4112   int n = 0;
4113 
4114   EXPECT_THROW(throw 1, int);
4115   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4116   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4117   EXPECT_NO_THROW(n++);
4118   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4119   EXPECT_ANY_THROW(throw 1);
4120   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4121 }
4122 
TEST(ExpectThrowTest,DoesNotGenerateDuplicateCatchClauseWarning)4123 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4124   EXPECT_THROW(throw std::exception(), std::exception);
4125 }
4126 
4127 // The following code intentionally tests a suboptimal syntax.
4128 #ifdef __GNUC__
4129 #pragma GCC diagnostic push
4130 #pragma GCC diagnostic ignored "-Wdangling-else"
4131 #pragma GCC diagnostic ignored "-Wempty-body"
4132 #pragma GCC diagnostic ignored "-Wpragmas"
4133 #endif
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4134 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4135   if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
4136 
4137   if (AlwaysTrue())
4138     EXPECT_THROW(ThrowAnInteger(), int);
4139   else
4140     ;  // NOLINT
4141 
4142   if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
4143 
4144   if (AlwaysTrue())
4145     EXPECT_NO_THROW(ThrowNothing());
4146   else
4147     ;  // NOLINT
4148 
4149   if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
4150 
4151   if (AlwaysTrue())
4152     EXPECT_ANY_THROW(ThrowAnInteger());
4153   else
4154     ;  // NOLINT
4155 }
4156 #ifdef __GNUC__
4157 #pragma GCC diagnostic pop
4158 #endif
4159 
4160 #endif  // GTEST_HAS_EXCEPTIONS
4161 
4162 // The following code intentionally tests a suboptimal syntax.
4163 #ifdef __GNUC__
4164 #pragma GCC diagnostic push
4165 #pragma GCC diagnostic ignored "-Wdangling-else"
4166 #pragma GCC diagnostic ignored "-Wempty-body"
4167 #pragma GCC diagnostic ignored "-Wpragmas"
4168 #endif
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4169 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4170   if (AlwaysFalse())
4171     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4172                                     << "It's a compilation test only.";
4173   else
4174     ;  // NOLINT
4175 
4176   if (AlwaysFalse())
4177     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4178   else
4179     ;  // NOLINT
4180 
4181   if (AlwaysTrue())
4182     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4183   else
4184     ;  // NOLINT
4185 
4186   if (AlwaysFalse())
4187     ;  // NOLINT
4188   else
4189     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4190 }
4191 #ifdef __GNUC__
4192 #pragma GCC diagnostic pop
4193 #endif
4194 
4195 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4196 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4197   switch (0) {
4198     case 1:
4199       break;
4200     default:
4201       ASSERT_TRUE(true);
4202   }
4203 
4204   switch (0)
4205   case 0:
4206     EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4207 
4208   // Binary assertions are implemented using a different code path
4209   // than the Boolean assertions.  Hence we test them separately.
4210   switch (0) {
4211     case 1:
4212     default:
4213       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4214   }
4215 
4216   switch (0)
4217   case 0:
4218     EXPECT_NE(1, 2);
4219 }
4220 
4221 #if GTEST_HAS_EXCEPTIONS
4222 
ThrowAString()4223 void ThrowAString() { throw "std::string"; }
4224 
4225 // Test that the exception assertion macros compile and work with const
4226 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4227 TEST(AssertionSyntaxTest, WorksWithConst) {
4228   ASSERT_THROW(ThrowAString(), const char*);
4229 
4230   EXPECT_THROW(ThrowAString(), const char*);
4231 }
4232 
4233 #endif  // GTEST_HAS_EXCEPTIONS
4234 
4235 }  // namespace
4236 
4237 namespace testing {
4238 
4239 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4240 TEST(SuccessfulAssertionTest, SUCCEED) {
4241   SUCCEED();
4242   SUCCEED() << "OK";
4243   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4244 }
4245 
4246 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4247 TEST(SuccessfulAssertionTest, EXPECT) {
4248   EXPECT_TRUE(true);
4249   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4250 }
4251 
4252 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4253 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4254   EXPECT_STREQ("", "");
4255   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4256 }
4257 
4258 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4259 TEST(SuccessfulAssertionTest, ASSERT) {
4260   ASSERT_TRUE(true);
4261   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4262 }
4263 
4264 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4265 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4266   ASSERT_STREQ("", "");
4267   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4268 }
4269 
4270 }  // namespace testing
4271 
4272 namespace {
4273 
4274 // Tests the message streaming variation of assertions.
4275 
TEST(AssertionWithMessageTest,EXPECT)4276 TEST(AssertionWithMessageTest, EXPECT) {
4277   EXPECT_EQ(1, 1) << "This should succeed.";
4278   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4279                           "Expected failure #1");
4280   EXPECT_LE(1, 2) << "This should succeed.";
4281   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4282                           "Expected failure #2.");
4283   EXPECT_GE(1, 0) << "This should succeed.";
4284   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4285                           "Expected failure #3.");
4286 
4287   EXPECT_STREQ("1", "1") << "This should succeed.";
4288   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4289                           "Expected failure #4.");
4290   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4291   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4292                           "Expected failure #5.");
4293 
4294   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4295   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4296                           "Expected failure #6.");
4297   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4298 }
4299 
TEST(AssertionWithMessageTest,ASSERT)4300 TEST(AssertionWithMessageTest, ASSERT) {
4301   ASSERT_EQ(1, 1) << "This should succeed.";
4302   ASSERT_NE(1, 2) << "This should succeed.";
4303   ASSERT_LE(1, 2) << "This should succeed.";
4304   ASSERT_LT(1, 2) << "This should succeed.";
4305   ASSERT_GE(1, 0) << "This should succeed.";
4306   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4307                        "Expected failure.");
4308 }
4309 
TEST(AssertionWithMessageTest,ASSERT_STR)4310 TEST(AssertionWithMessageTest, ASSERT_STR) {
4311   ASSERT_STREQ("1", "1") << "This should succeed.";
4312   ASSERT_STRNE("1", "2") << "This should succeed.";
4313   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4314   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4315                        "Expected failure.");
4316 }
4317 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4318 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4319   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4320   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4321   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.",  // NOLINT
4322                        "Expect failure.");
4323 }
4324 
4325 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4326 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4327   ASSERT_FALSE(false) << "This shouldn't fail.";
4328   EXPECT_FATAL_FAILURE(
4329       {  // NOLINT
4330         ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4331                            << " evaluates to " << true;
4332       },
4333       "Expected failure");
4334 }
4335 
4336 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4337 TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
4338 
4339 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4340 TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
4341 
4342 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4343 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4344   ASSERT_TRUE(true) << "This should succeed.";
4345   ASSERT_TRUE(true) << true;
4346   EXPECT_FATAL_FAILURE(
4347       {  // NOLINT
4348         ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4349                            << static_cast<char*>(nullptr);
4350       },
4351       "(null)(null)");
4352 }
4353 
4354 #ifdef GTEST_OS_WINDOWS
4355 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4356 TEST(AssertionWithMessageTest, WideStringMessage) {
4357   EXPECT_NONFATAL_FAILURE(
4358       {  // NOLINT
4359         EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4360       },
4361       "This failure is expected.");
4362   EXPECT_FATAL_FAILURE(
4363       {  // NOLINT
4364         ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
4365       },
4366       "This failure is expected too.");
4367 }
4368 #endif  // GTEST_OS_WINDOWS
4369 
4370 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4371 TEST(ExpectTest, EXPECT_TRUE) {
4372   EXPECT_TRUE(true) << "Intentional success";
4373   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4374                           "Intentional failure #1.");
4375   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4376                           "Intentional failure #2.");
4377   EXPECT_TRUE(2 > 1);  // NOLINT
4378   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4379                           "Value of: 2 < 1\n"
4380                           "  Actual: false\n"
4381                           "Expected: true");
4382   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
4383 }
4384 
4385 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4386 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4387   EXPECT_TRUE(ResultIsEven(2));
4388   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4389                           "Value of: ResultIsEven(3)\n"
4390                           "  Actual: false (3 is odd)\n"
4391                           "Expected: true");
4392   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4393   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4394                           "Value of: ResultIsEvenNoExplanation(3)\n"
4395                           "  Actual: false (3 is odd)\n"
4396                           "Expected: true");
4397 }
4398 
4399 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4400 TEST(ExpectTest, EXPECT_FALSE) {
4401   EXPECT_FALSE(2 < 1);  // NOLINT
4402   EXPECT_FALSE(false) << "Intentional success";
4403   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4404                           "Intentional failure #1.");
4405   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4406                           "Intentional failure #2.");
4407   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4408                           "Value of: 2 > 1\n"
4409                           "  Actual: true\n"
4410                           "Expected: false");
4411   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
4412 }
4413 
4414 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4415 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4416   EXPECT_FALSE(ResultIsEven(3));
4417   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4418                           "Value of: ResultIsEven(2)\n"
4419                           "  Actual: true (2 is even)\n"
4420                           "Expected: false");
4421   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4422   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4423                           "Value of: ResultIsEvenNoExplanation(2)\n"
4424                           "  Actual: true\n"
4425                           "Expected: false");
4426 }
4427 
4428 #ifdef __BORLANDC__
4429 // Restores warnings after previous "#pragma option push" suppressed them
4430 #pragma option pop
4431 #endif
4432 
4433 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4434 TEST(ExpectTest, EXPECT_EQ) {
4435   EXPECT_EQ(5, 2 + 3);
4436   // clang-format off
4437   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4438                           "Expected equality of these values:\n"
4439                           "  5\n"
4440                           "  2*3\n"
4441                           "    Which is: 6");
4442   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
4443   // clang-format on
4444 }
4445 
4446 // Tests using EXPECT_EQ on double values.  The purpose is to make
4447 // sure that the specialization we did for integer and anonymous enums
4448 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4449 TEST(ExpectTest, EXPECT_EQ_Double) {
4450   // A success.
4451   EXPECT_EQ(5.6, 5.6);
4452 
4453   // A failure.
4454   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
4455 }
4456 
4457 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4458 TEST(ExpectTest, EXPECT_EQ_NULL) {
4459   // A success.
4460   const char* p = nullptr;
4461   EXPECT_EQ(nullptr, p);
4462 
4463   // A failure.
4464   int n = 0;
4465   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4466 }
4467 
4468 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4469 // treated as a null pointer by the compiler, we need to make sure
4470 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4471 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4472 TEST(ExpectTest, EXPECT_EQ_0) {
4473   int n = 0;
4474 
4475   // A success.
4476   EXPECT_EQ(0, n);
4477 
4478   // A failure.
4479   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), "  0\n  5.6");
4480 }
4481 
4482 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4483 TEST(ExpectTest, EXPECT_NE) {
4484   EXPECT_NE(6, 7);
4485 
4486   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4487                           "Expected: ('a') != ('a'), "
4488                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4489   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
4490   char* const p0 = nullptr;
4491   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
4492   // Only way to get the Nokia compiler to compile the cast
4493   // is to have a separate void* variable first. Putting
4494   // the two casts on the same line doesn't work, neither does
4495   // a direct C-style to char*.
4496   void* pv1 = (void*)0x1234;  // NOLINT
4497   char* const p1 = reinterpret_cast<char*>(pv1);
4498   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
4499 }
4500 
4501 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4502 TEST(ExpectTest, EXPECT_LE) {
4503   EXPECT_LE(2, 3);
4504   EXPECT_LE(2, 2);
4505   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4506                           "Expected: (2) <= (0), actual: 2 vs 0");
4507   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
4508 }
4509 
4510 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4511 TEST(ExpectTest, EXPECT_LT) {
4512   EXPECT_LT(2, 3);
4513   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4514                           "Expected: (2) < (2), actual: 2 vs 2");
4515   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
4516 }
4517 
4518 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4519 TEST(ExpectTest, EXPECT_GE) {
4520   EXPECT_GE(2, 1);
4521   EXPECT_GE(2, 2);
4522   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4523                           "Expected: (2) >= (3), actual: 2 vs 3");
4524   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
4525 }
4526 
4527 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4528 TEST(ExpectTest, EXPECT_GT) {
4529   EXPECT_GT(2, 1);
4530   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4531                           "Expected: (2) > (2), actual: 2 vs 2");
4532   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
4533 }
4534 
4535 #if GTEST_HAS_EXCEPTIONS
4536 
4537 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4538 TEST(ExpectTest, EXPECT_THROW) {
4539   EXPECT_THROW(ThrowAnInteger(), int);
4540   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4541                           "Expected: ThrowAnInteger() throws an exception of "
4542                           "type bool.\n  Actual: it throws a different type.");
4543   EXPECT_NONFATAL_FAILURE(
4544       EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
4545       "Expected: ThrowRuntimeError(\"A description\") "
4546       "throws an exception of type std::logic_error.\n  "
4547       "Actual: it throws " ERROR_DESC
4548       " "
4549       "with description \"A description\".");
4550   EXPECT_NONFATAL_FAILURE(
4551       EXPECT_THROW(ThrowNothing(), bool),
4552       "Expected: ThrowNothing() throws an exception of type bool.\n"
4553       "  Actual: it throws nothing.");
4554 }
4555 
4556 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4557 TEST(ExpectTest, EXPECT_NO_THROW) {
4558   EXPECT_NO_THROW(ThrowNothing());
4559   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4560                           "Expected: ThrowAnInteger() doesn't throw an "
4561                           "exception.\n  Actual: it throws.");
4562   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4563                           "Expected: ThrowRuntimeError(\"A description\") "
4564                           "doesn't throw an exception.\n  "
4565                           "Actual: it throws " ERROR_DESC
4566                           " "
4567                           "with description \"A description\".");
4568 }
4569 
4570 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4571 TEST(ExpectTest, EXPECT_ANY_THROW) {
4572   EXPECT_ANY_THROW(ThrowAnInteger());
4573   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
4574                           "Expected: ThrowNothing() throws an exception.\n"
4575                           "  Actual: it doesn't.");
4576 }
4577 
4578 #endif  // GTEST_HAS_EXCEPTIONS
4579 
4580 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4581 TEST(ExpectTest, ExpectPrecedence) {
4582   EXPECT_EQ(1 < 2, true);
4583   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4584                           "  true && false\n    Which is: false");
4585 }
4586 
4587 // Tests the StreamableToString() function.
4588 
4589 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4590 TEST(StreamableToStringTest, Scalar) {
4591   EXPECT_STREQ("5", StreamableToString(5).c_str());
4592 }
4593 
4594 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4595 TEST(StreamableToStringTest, Pointer) {
4596   int n = 0;
4597   int* p = &n;
4598   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4599 }
4600 
4601 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4602 TEST(StreamableToStringTest, NullPointer) {
4603   int* p = nullptr;
4604   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4605 }
4606 
4607 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4608 TEST(StreamableToStringTest, CString) {
4609   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4610 }
4611 
4612 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4613 TEST(StreamableToStringTest, NullCString) {
4614   char* p = nullptr;
4615   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4616 }
4617 
4618 // Tests using streamable values as assertion messages.
4619 
4620 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4621 TEST(StreamableTest, string) {
4622   static const std::string str(
4623       "This failure message is a std::string, and is expected.");
4624   EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
4625 }
4626 
4627 // Tests that we can output strings containing embedded NULs.
4628 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4629 TEST(StreamableTest, stringWithEmbeddedNUL) {
4630   static const char char_array_with_nul[] =
4631       "Here's a NUL\0 and some more string";
4632   static const std::string string_with_nul(
4633       char_array_with_nul,
4634       sizeof(char_array_with_nul) - 1);  // drops the trailing NUL
4635   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4636                        "Here's a NUL\\0 and some more string");
4637 }
4638 
4639 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4640 TEST(StreamableTest, NULChar) {
4641   EXPECT_FATAL_FAILURE(
4642       {  // NOLINT
4643         FAIL() << "A NUL" << '\0' << " and some more string";
4644       },
4645       "A NUL\\0 and some more string");
4646 }
4647 
4648 // Tests using int as an assertion message.
TEST(StreamableTest,int)4649 TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
4650 
4651 // Tests using NULL char pointer as an assertion message.
4652 //
4653 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4654 // implemented a workaround (substituting "(null)" for NULL).  This
4655 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4656 TEST(StreamableTest, NullCharPtr) {
4657   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4658 }
4659 
4660 // Tests that basic IO manipulators (endl, ends, and flush) can be
4661 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4662 TEST(StreamableTest, BasicIoManip) {
4663   EXPECT_FATAL_FAILURE(
4664       {  // NOLINT
4665         FAIL() << "Line 1." << std::endl
4666                << "A NUL char " << std::ends << std::flush << " in line 2.";
4667       },
4668       "Line 1.\nA NUL char \\0 in line 2.");
4669 }
4670 
4671 // Tests the macros that haven't been covered so far.
4672 
AddFailureHelper(bool * aborted)4673 void AddFailureHelper(bool* aborted) {
4674   *aborted = true;
4675   ADD_FAILURE() << "Intentional failure.";
4676   *aborted = false;
4677 }
4678 
4679 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4680 TEST(MacroTest, ADD_FAILURE) {
4681   bool aborted = true;
4682   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
4683   EXPECT_FALSE(aborted);
4684 }
4685 
4686 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4687 TEST(MacroTest, ADD_FAILURE_AT) {
4688   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4689   // the failure message contains the user-streamed part.
4690   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4691 
4692   // Verifies that the user-streamed part is optional.
4693   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4694 
4695   // Unfortunately, we cannot verify that the failure message contains
4696   // the right file path and line number the same way, as
4697   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4698   // line number.  Instead, we do that in googletest-output-test_.cc.
4699 }
4700 
4701 // Tests FAIL.
TEST(MacroTest,FAIL)4702 TEST(MacroTest, FAIL) {
4703   EXPECT_FATAL_FAILURE(FAIL(), "Failed");
4704   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4705                        "Intentional failure.");
4706 }
4707 
4708 // Tests GTEST_FAIL_AT.
TEST(MacroTest,GTEST_FAIL_AT)4709 TEST(MacroTest, GTEST_FAIL_AT) {
4710   // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4711   // the failure message contains the user-streamed part.
4712   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4713 
4714   // Verifies that the user-streamed part is optional.
4715   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4716 
4717   // See the ADD_FAIL_AT test above to see how we test that the failure message
4718   // contains the right filename and line number -- the same applies here.
4719 }
4720 
4721 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4722 TEST(MacroTest, SUCCEED) {
4723   SUCCEED();
4724   SUCCEED() << "Explicit success.";
4725 }
4726 
4727 // Tests for EXPECT_EQ() and ASSERT_EQ().
4728 //
4729 // These tests fail *intentionally*, s.t. the failure messages can be
4730 // generated and tested.
4731 //
4732 // We have different tests for different argument types.
4733 
4734 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4735 TEST(EqAssertionTest, Bool) {
4736   EXPECT_EQ(true, true);
4737   EXPECT_FATAL_FAILURE(
4738       {
4739         bool false_value = false;
4740         ASSERT_EQ(false_value, true);
4741       },
4742       "  false_value\n    Which is: false\n  true");
4743 }
4744 
4745 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4746 TEST(EqAssertionTest, Int) {
4747   ASSERT_EQ(32, 32);
4748   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), "  32\n  33");
4749 }
4750 
4751 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4752 TEST(EqAssertionTest, Time_T) {
4753   EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
4754   EXPECT_FATAL_FAILURE(
4755       ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
4756 }
4757 
4758 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4759 TEST(EqAssertionTest, Char) {
4760   ASSERT_EQ('z', 'z');
4761   const char ch = 'b';
4762   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), "  ch\n    Which is: 'b'");
4763   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), "  ch\n    Which is: 'b'");
4764 }
4765 
4766 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4767 TEST(EqAssertionTest, WideChar) {
4768   EXPECT_EQ(L'b', L'b');
4769 
4770   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4771                           "Expected equality of these values:\n"
4772                           "  L'\0'\n"
4773                           "    Which is: L'\0' (0, 0x0)\n"
4774                           "  L'x'\n"
4775                           "    Which is: L'x' (120, 0x78)");
4776 
4777   static wchar_t wchar;
4778   wchar = L'b';
4779   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
4780   wchar = 0x8119;
4781   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4782                        "  wchar\n    Which is: L'");
4783 }
4784 
4785 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4786 TEST(EqAssertionTest, StdString) {
4787   // Compares a const char* to an std::string that has identical
4788   // content.
4789   ASSERT_EQ("Test", ::std::string("Test"));
4790 
4791   // Compares two identical std::strings.
4792   static const ::std::string str1("A * in the middle");
4793   static const ::std::string str2(str1);
4794   EXPECT_EQ(str1, str2);
4795 
4796   // Compares a const char* to an std::string that has different
4797   // content
4798   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
4799 
4800   // Compares an std::string to a char* that has different content.
4801   char* const p1 = const_cast<char*>("foo");
4802   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
4803 
4804   // Compares two std::strings that have different contents, one of
4805   // which having a NUL character in the middle.  This should fail.
4806   static ::std::string str3(str1);
4807   str3.at(2) = '\0';
4808   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4809                        "  str3\n    Which is: \"A \\0 in the middle\"");
4810 }
4811 
4812 #if GTEST_HAS_STD_WSTRING
4813 
4814 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4815 TEST(EqAssertionTest, StdWideString) {
4816   // Compares two identical std::wstrings.
4817   const ::std::wstring wstr1(L"A * in the middle");
4818   const ::std::wstring wstr2(wstr1);
4819   ASSERT_EQ(wstr1, wstr2);
4820 
4821   // Compares an std::wstring to a const wchar_t* that has identical
4822   // content.
4823   const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
4824   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4825 
4826   // Compares an std::wstring to a const wchar_t* that has different
4827   // content.
4828   const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
4829   EXPECT_NONFATAL_FAILURE(
4830       {  // NOLINT
4831         EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4832       },
4833       "kTestX8120");
4834 
4835   // Compares two std::wstrings that have different contents, one of
4836   // which having a NUL character in the middle.
4837   ::std::wstring wstr3(wstr1);
4838   wstr3.at(2) = L'\0';
4839   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
4840 
4841   // Compares a wchar_t* to an std::wstring that has different
4842   // content.
4843   EXPECT_FATAL_FAILURE(
4844       {  // NOLINT
4845         ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4846       },
4847       "");
4848 }
4849 
4850 #endif  // GTEST_HAS_STD_WSTRING
4851 
4852 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4853 TEST(EqAssertionTest, CharPointer) {
4854   char* const p0 = nullptr;
4855   // Only way to get the Nokia compiler to compile the cast
4856   // is to have a separate void* variable first. Putting
4857   // the two casts on the same line doesn't work, neither does
4858   // a direct C-style to char*.
4859   void* pv1 = (void*)0x1234;  // NOLINT
4860   void* pv2 = (void*)0xABC0;  // NOLINT
4861   char* const p1 = reinterpret_cast<char*>(pv1);
4862   char* const p2 = reinterpret_cast<char*>(pv2);
4863   ASSERT_EQ(p1, p1);
4864 
4865   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4866   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4867   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4868                                  reinterpret_cast<char*>(0xABC0)),
4869                        "ABC0");
4870 }
4871 
4872 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4873 TEST(EqAssertionTest, WideCharPointer) {
4874   wchar_t* const p0 = nullptr;
4875   // Only way to get the Nokia compiler to compile the cast
4876   // is to have a separate void* variable first. Putting
4877   // the two casts on the same line doesn't work, neither does
4878   // a direct C-style to char*.
4879   void* pv1 = (void*)0x1234;  // NOLINT
4880   void* pv2 = (void*)0xABC0;  // NOLINT
4881   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4882   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4883   EXPECT_EQ(p0, p0);
4884 
4885   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4886   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4887   void* pv3 = (void*)0x1234;  // NOLINT
4888   void* pv4 = (void*)0xABC0;  // NOLINT
4889   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4890   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4891   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
4892 }
4893 
4894 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4895 TEST(EqAssertionTest, OtherPointer) {
4896   ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4897   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4898                                  reinterpret_cast<const int*>(0x1234)),
4899                        "0x1234");
4900 }
4901 
4902 // A class that supports binary comparison operators but not streaming.
4903 class UnprintableChar {
4904  public:
UnprintableChar(char ch)4905   explicit UnprintableChar(char ch) : char_(ch) {}
4906 
operator ==(const UnprintableChar & rhs) const4907   bool operator==(const UnprintableChar& rhs) const {
4908     return char_ == rhs.char_;
4909   }
operator !=(const UnprintableChar & rhs) const4910   bool operator!=(const UnprintableChar& rhs) const {
4911     return char_ != rhs.char_;
4912   }
operator <(const UnprintableChar & rhs) const4913   bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
operator <=(const UnprintableChar & rhs) const4914   bool operator<=(const UnprintableChar& rhs) const {
4915     return char_ <= rhs.char_;
4916   }
operator >(const UnprintableChar & rhs) const4917   bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
operator >=(const UnprintableChar & rhs) const4918   bool operator>=(const UnprintableChar& rhs) const {
4919     return char_ >= rhs.char_;
4920   }
4921 
4922  private:
4923   char char_;
4924 };
4925 
4926 // Tests that ASSERT_EQ() and friends don't require the arguments to
4927 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4928 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4929   const UnprintableChar x('x'), y('y');
4930   ASSERT_EQ(x, x);
4931   EXPECT_NE(x, y);
4932   ASSERT_LT(x, y);
4933   EXPECT_LE(x, y);
4934   ASSERT_GT(y, x);
4935   EXPECT_GE(x, x);
4936 
4937   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4938   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4939   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4940   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4941   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4942 
4943   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4944   // variables, so we have to write UnprintableChar('x') instead of x.
4945 #ifndef __BORLANDC__
4946   // ICE's in C++Builder.
4947   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4948                        "1-byte object <78>");
4949   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4950                        "1-byte object <78>");
4951 #endif
4952   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4953                        "1-byte object <79>");
4954   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4955                        "1-byte object <78>");
4956   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4957                        "1-byte object <79>");
4958 }
4959 
4960 // Tests the FRIEND_TEST macro.
4961 
4962 // This class has a private member we want to test.  We will test it
4963 // both in a TEST and in a TEST_F.
4964 class Foo {
4965  public:
4966   Foo() = default;
4967 
4968  private:
Bar() const4969   int Bar() const { return 1; }
4970 
4971   // Declares the friend tests that can access the private member
4972   // Bar().
4973   FRIEND_TEST(FRIEND_TEST_Test, TEST);
4974   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4975 };
4976 
4977 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4978 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)4979 TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
4980 
4981 // The fixture needed to test using FRIEND_TEST with TEST_F.
4982 class FRIEND_TEST_Test2 : public Test {
4983  protected:
4984   Foo foo;
4985 };
4986 
4987 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4988 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)4989 TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
4990 
4991 // Tests the life cycle of Test objects.
4992 
4993 // The test fixture for testing the life cycle of Test objects.
4994 //
4995 // This class counts the number of live test objects that uses this
4996 // fixture.
4997 class TestLifeCycleTest : public Test {
4998  protected:
4999   // Constructor.  Increments the number of test objects that uses
5000   // this fixture.
TestLifeCycleTest()5001   TestLifeCycleTest() { count_++; }
5002 
5003   // Destructor.  Decrements the number of test objects that uses this
5004   // fixture.
~TestLifeCycleTest()5005   ~TestLifeCycleTest() override { count_--; }
5006 
5007   // Returns the number of live test objects that uses this fixture.
count() const5008   int count() const { return count_; }
5009 
5010  private:
5011   static int count_;
5012 };
5013 
5014 int TestLifeCycleTest::count_ = 0;
5015 
5016 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5017 TEST_F(TestLifeCycleTest, Test1) {
5018   // There should be only one test object in this test case that's
5019   // currently alive.
5020   ASSERT_EQ(1, count());
5021 }
5022 
5023 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5024 TEST_F(TestLifeCycleTest, Test2) {
5025   // After Test1 is done and Test2 is started, there should still be
5026   // only one live test object, as the object for Test1 should've been
5027   // deleted.
5028   ASSERT_EQ(1, count());
5029 }
5030 
5031 }  // namespace
5032 
5033 // Tests that the copy constructor works when it is NOT optimized away by
5034 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5035 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5036   // Checks that the copy constructor doesn't try to dereference NULL pointers
5037   // in the source object.
5038   AssertionResult r1 = AssertionSuccess();
5039   AssertionResult r2 = r1;
5040   // The following line is added to prevent the compiler from optimizing
5041   // away the constructor call.
5042   r1 << "abc";
5043 
5044   AssertionResult r3 = r1;
5045   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5046   EXPECT_STREQ("abc", r1.message());
5047 }
5048 
5049 // Tests that AssertionSuccess and AssertionFailure construct
5050 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5051 TEST(AssertionResultTest, ConstructionWorks) {
5052   AssertionResult r1 = AssertionSuccess();
5053   EXPECT_TRUE(r1);
5054   EXPECT_STREQ("", r1.message());
5055 
5056   AssertionResult r2 = AssertionSuccess() << "abc";
5057   EXPECT_TRUE(r2);
5058   EXPECT_STREQ("abc", r2.message());
5059 
5060   AssertionResult r3 = AssertionFailure();
5061   EXPECT_FALSE(r3);
5062   EXPECT_STREQ("", r3.message());
5063 
5064   AssertionResult r4 = AssertionFailure() << "def";
5065   EXPECT_FALSE(r4);
5066   EXPECT_STREQ("def", r4.message());
5067 
5068   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5069   EXPECT_FALSE(r5);
5070   EXPECT_STREQ("ghi", r5.message());
5071 }
5072 
5073 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5074 TEST(AssertionResultTest, NegationWorks) {
5075   AssertionResult r1 = AssertionSuccess() << "abc";
5076   EXPECT_FALSE(!r1);
5077   EXPECT_STREQ("abc", (!r1).message());
5078 
5079   AssertionResult r2 = AssertionFailure() << "def";
5080   EXPECT_TRUE(!r2);
5081   EXPECT_STREQ("def", (!r2).message());
5082 }
5083 
TEST(AssertionResultTest,StreamingWorks)5084 TEST(AssertionResultTest, StreamingWorks) {
5085   AssertionResult r = AssertionSuccess();
5086   r << "abc" << 'd' << 0 << true;
5087   EXPECT_STREQ("abcd0true", r.message());
5088 }
5089 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5090 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5091   AssertionResult r = AssertionSuccess();
5092   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5093   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5094 }
5095 
5096 // The next test uses explicit conversion operators
5097 
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5098 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5099   struct ExplicitlyConvertibleToBool {
5100     explicit operator bool() const { return value; }
5101     bool value;
5102   };
5103   ExplicitlyConvertibleToBool v1 = {false};
5104   ExplicitlyConvertibleToBool v2 = {true};
5105   EXPECT_FALSE(v1);
5106   EXPECT_TRUE(v2);
5107 }
5108 
5109 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5110   operator AssertionResult() const { return AssertionResult(true); }
5111 };
5112 
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5113 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5114   ConvertibleToAssertionResult obj;
5115   EXPECT_TRUE(obj);
5116 }
5117 
5118 // Tests streaming a user type whose definition and operator << are
5119 // both in the global namespace.
5120 class Base {
5121  public:
Base(int an_x)5122   explicit Base(int an_x) : x_(an_x) {}
x() const5123   int x() const { return x_; }
5124 
5125  private:
5126   int x_;
5127 };
operator <<(std::ostream & os,const Base & val)5128 std::ostream& operator<<(std::ostream& os, const Base& val) {
5129   return os << val.x();
5130 }
operator <<(std::ostream & os,const Base * pointer)5131 std::ostream& operator<<(std::ostream& os, const Base* pointer) {
5132   return os << "(" << pointer->x() << ")";
5133 }
5134 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5135 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5136   Message msg;
5137   Base a(1);
5138 
5139   msg << a << &a;  // Uses ::operator<<.
5140   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5141 }
5142 
5143 // Tests streaming a user type whose definition and operator<< are
5144 // both in an unnamed namespace.
5145 namespace {
5146 class MyTypeInUnnamedNameSpace : public Base {
5147  public:
MyTypeInUnnamedNameSpace(int an_x)5148   explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
5149 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5150 std::ostream& operator<<(std::ostream& os,
5151                          const MyTypeInUnnamedNameSpace& val) {
5152   return os << val.x();
5153 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5154 std::ostream& operator<<(std::ostream& os,
5155                          const MyTypeInUnnamedNameSpace* pointer) {
5156   return os << "(" << pointer->x() << ")";
5157 }
5158 }  // namespace
5159 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5160 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5161   Message msg;
5162   MyTypeInUnnamedNameSpace a(1);
5163 
5164   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5165   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5166 }
5167 
5168 // Tests streaming a user type whose definition and operator<< are
5169 // both in a user namespace.
5170 namespace namespace1 {
5171 class MyTypeInNameSpace1 : public Base {
5172  public:
MyTypeInNameSpace1(int an_x)5173   explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
5174 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5175 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
5176   return os << val.x();
5177 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5178 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
5179   return os << "(" << pointer->x() << ")";
5180 }
5181 }  // namespace namespace1
5182 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5183 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5184   Message msg;
5185   namespace1::MyTypeInNameSpace1 a(1);
5186 
5187   msg << a << &a;  // Uses namespace1::operator<<.
5188   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5189 }
5190 
5191 // Tests streaming a user type whose definition is in a user namespace
5192 // but whose operator<< is in the global namespace.
5193 namespace namespace2 {
5194 class MyTypeInNameSpace2 : public ::Base {
5195  public:
MyTypeInNameSpace2(int an_x)5196   explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
5197 };
5198 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5199 std::ostream& operator<<(std::ostream& os,
5200                          const namespace2::MyTypeInNameSpace2& val) {
5201   return os << val.x();
5202 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5203 std::ostream& operator<<(std::ostream& os,
5204                          const namespace2::MyTypeInNameSpace2* pointer) {
5205   return os << "(" << pointer->x() << ")";
5206 }
5207 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5208 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5209   Message msg;
5210   namespace2::MyTypeInNameSpace2 a(1);
5211 
5212   msg << a << &a;  // Uses ::operator<<.
5213   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5214 }
5215 
5216 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5217 TEST(MessageTest, NullPointers) {
5218   Message msg;
5219   char* const p1 = nullptr;
5220   unsigned char* const p2 = nullptr;
5221   int* p3 = nullptr;
5222   double* p4 = nullptr;
5223   bool* p5 = nullptr;
5224   Message* p6 = nullptr;
5225 
5226   msg << p1 << p2 << p3 << p4 << p5 << p6;
5227   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
5228 }
5229 
5230 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5231 TEST(MessageTest, WideStrings) {
5232   // Streams a NULL of type const wchar_t*.
5233   const wchar_t* const_wstr = nullptr;
5234   EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
5235 
5236   // Streams a NULL of type wchar_t*.
5237   wchar_t* wstr = nullptr;
5238   EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
5239 
5240   // Streams a non-NULL of type const wchar_t*.
5241   const_wstr = L"abc\x8119";
5242   EXPECT_STREQ("abc\xe8\x84\x99",
5243                (Message() << const_wstr).GetString().c_str());
5244 
5245   // Streams a non-NULL of type wchar_t*.
5246   wstr = const_cast<wchar_t*>(const_wstr);
5247   EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
5248 }
5249 
5250 // This line tests that we can define tests in the testing namespace.
5251 namespace testing {
5252 
5253 // Tests the TestInfo class.
5254 
5255 class TestInfoTest : public Test {
5256  protected:
GetTestInfo(const char * test_name)5257   static const TestInfo* GetTestInfo(const char* test_name) {
5258     const TestSuite* const test_suite =
5259         GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5260 
5261     for (int i = 0; i < test_suite->total_test_count(); ++i) {
5262       const TestInfo* const test_info = test_suite->GetTestInfo(i);
5263       if (strcmp(test_name, test_info->name()) == 0) return test_info;
5264     }
5265     return nullptr;
5266   }
5267 
GetTestResult(const TestInfo * test_info)5268   static const TestResult* GetTestResult(const TestInfo* test_info) {
5269     return test_info->result();
5270   }
5271 };
5272 
5273 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5274 TEST_F(TestInfoTest, Names) {
5275   const TestInfo* const test_info = GetTestInfo("Names");
5276 
5277   ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5278   ASSERT_STREQ("Names", test_info->name());
5279 }
5280 
5281 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5282 TEST_F(TestInfoTest, result) {
5283   const TestInfo* const test_info = GetTestInfo("result");
5284 
5285   // Initially, there is no TestPartResult for this test.
5286   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5287 
5288   // After the previous assertion, there is still none.
5289   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5290 }
5291 
5292 #define VERIFY_CODE_LOCATION                                                \
5293   const int expected_line = __LINE__ - 1;                                   \
5294   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5295   ASSERT_TRUE(test_info);                                                   \
5296   EXPECT_STREQ(__FILE__, test_info->file());                                \
5297   EXPECT_EQ(expected_line, test_info->line())
5298 
5299 // clang-format off
TEST(CodeLocationForTEST,Verify)5300 TEST(CodeLocationForTEST, Verify) {
5301   VERIFY_CODE_LOCATION;
5302 }
5303 
5304 class CodeLocationForTESTF : public Test {};
5305 
TEST_F(CodeLocationForTESTF,Verify)5306 TEST_F(CodeLocationForTESTF, Verify) {
5307   VERIFY_CODE_LOCATION;
5308 }
5309 
5310 class CodeLocationForTESTP : public TestWithParam<int> {};
5311 
TEST_P(CodeLocationForTESTP,Verify)5312 TEST_P(CodeLocationForTESTP, Verify) {
5313   VERIFY_CODE_LOCATION;
5314 }
5315 
5316 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5317 
5318 template <typename T>
5319 class CodeLocationForTYPEDTEST : public Test {};
5320 
5321 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5322 
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5323 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5324   VERIFY_CODE_LOCATION;
5325 }
5326 
5327 template <typename T>
5328 class CodeLocationForTYPEDTESTP : public Test {};
5329 
5330 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5331 
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5332 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5333   VERIFY_CODE_LOCATION;
5334 }
5335 
5336 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5337 
5338 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5339 
5340 #undef VERIFY_CODE_LOCATION
5341 // clang-format on
5342 
5343 // Tests setting up and tearing down a test case.
5344 // Legacy API is deprecated but still available
5345 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5346 class SetUpTestCaseTest : public Test {
5347  protected:
5348   // This will be called once before the first test in this test case
5349   // is run.
SetUpTestCase()5350   static void SetUpTestCase() {
5351     printf("Setting up the test case . . .\n");
5352 
5353     // Initializes some shared resource.  In this simple example, we
5354     // just create a C string.  More complex stuff can be done if
5355     // desired.
5356     shared_resource_ = "123";
5357 
5358     // Increments the number of test cases that have been set up.
5359     counter_++;
5360 
5361     // SetUpTestCase() should be called only once.
5362     EXPECT_EQ(1, counter_);
5363   }
5364 
5365   // This will be called once after the last test in this test case is
5366   // run.
TearDownTestCase()5367   static void TearDownTestCase() {
5368     printf("Tearing down the test case . . .\n");
5369 
5370     // Decrements the number of test cases that have been set up.
5371     counter_--;
5372 
5373     // TearDownTestCase() should be called only once.
5374     EXPECT_EQ(0, counter_);
5375 
5376     // Cleans up the shared resource.
5377     shared_resource_ = nullptr;
5378   }
5379 
5380   // This will be called before each test in this test case.
SetUp()5381   void SetUp() override {
5382     // SetUpTestCase() should be called only once, so counter_ should
5383     // always be 1.
5384     EXPECT_EQ(1, counter_);
5385   }
5386 
5387   // Number of test cases that have been set up.
5388   static int counter_;
5389 
5390   // Some resource to be shared by all tests in this test case.
5391   static const char* shared_resource_;
5392 };
5393 
5394 int SetUpTestCaseTest::counter_ = 0;
5395 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5396 
5397 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5398 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5399 
5400 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5401 TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
5402 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5403 
5404 // Tests SetupTestSuite/TearDown TestSuite
5405 class SetUpTestSuiteTest : public Test {
5406  protected:
5407   // This will be called once before the first test in this test case
5408   // is run.
SetUpTestSuite()5409   static void SetUpTestSuite() {
5410     printf("Setting up the test suite . . .\n");
5411 
5412     // Initializes some shared resource.  In this simple example, we
5413     // just create a C string.  More complex stuff can be done if
5414     // desired.
5415     shared_resource_ = "123";
5416 
5417     // Increments the number of test cases that have been set up.
5418     counter_++;
5419 
5420     // SetUpTestSuite() should be called only once.
5421     EXPECT_EQ(1, counter_);
5422   }
5423 
5424   // This will be called once after the last test in this test case is
5425   // run.
TearDownTestSuite()5426   static void TearDownTestSuite() {
5427     printf("Tearing down the test suite . . .\n");
5428 
5429     // Decrements the number of test suites that have been set up.
5430     counter_--;
5431 
5432     // TearDownTestSuite() should be called only once.
5433     EXPECT_EQ(0, counter_);
5434 
5435     // Cleans up the shared resource.
5436     shared_resource_ = nullptr;
5437   }
5438 
5439   // This will be called before each test in this test case.
SetUp()5440   void SetUp() override {
5441     // SetUpTestSuite() should be called only once, so counter_ should
5442     // always be 1.
5443     EXPECT_EQ(1, counter_);
5444   }
5445 
5446   // Number of test suites that have been set up.
5447   static int counter_;
5448 
5449   // Some resource to be shared by all tests in this test case.
5450   static const char* shared_resource_;
5451 };
5452 
5453 int SetUpTestSuiteTest::counter_ = 0;
5454 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5455 
5456 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5457 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5458   EXPECT_STRNE(nullptr, shared_resource_);
5459 }
5460 
5461 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5462 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5463   EXPECT_STREQ("123", shared_resource_);
5464 }
5465 
5466 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5467 
5468 // The Flags struct stores a copy of all Google Test flags.
5469 struct Flags {
5470   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5471   Flags()
5472       : also_run_disabled_tests(false),
5473         break_on_failure(false),
5474         catch_exceptions(false),
5475         death_test_use_fork(false),
5476         fail_fast(false),
5477         filter(""),
5478         list_tests(false),
5479         output(""),
5480         brief(false),
5481         print_time(true),
5482         random_seed(0),
5483         repeat(1),
5484         recreate_environments_when_repeating(true),
5485         shuffle(false),
5486         stack_trace_depth(kMaxStackTraceDepth),
5487         stream_result_to(""),
5488         throw_on_failure(false) {}
5489 
5490   // Factory methods.
5491 
5492   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5493   // the given value.
AlsoRunDisabledTeststesting::Flags5494   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5495     Flags flags;
5496     flags.also_run_disabled_tests = also_run_disabled_tests;
5497     return flags;
5498   }
5499 
5500   // Creates a Flags struct where the gtest_break_on_failure flag has
5501   // the given value.
BreakOnFailuretesting::Flags5502   static Flags BreakOnFailure(bool break_on_failure) {
5503     Flags flags;
5504     flags.break_on_failure = break_on_failure;
5505     return flags;
5506   }
5507 
5508   // Creates a Flags struct where the gtest_catch_exceptions flag has
5509   // the given value.
CatchExceptionstesting::Flags5510   static Flags CatchExceptions(bool catch_exceptions) {
5511     Flags flags;
5512     flags.catch_exceptions = catch_exceptions;
5513     return flags;
5514   }
5515 
5516   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5517   // the given value.
DeathTestUseForktesting::Flags5518   static Flags DeathTestUseFork(bool death_test_use_fork) {
5519     Flags flags;
5520     flags.death_test_use_fork = death_test_use_fork;
5521     return flags;
5522   }
5523 
5524   // Creates a Flags struct where the gtest_fail_fast flag has
5525   // the given value.
FailFasttesting::Flags5526   static Flags FailFast(bool fail_fast) {
5527     Flags flags;
5528     flags.fail_fast = fail_fast;
5529     return flags;
5530   }
5531 
5532   // Creates a Flags struct where the gtest_filter flag has the given
5533   // value.
Filtertesting::Flags5534   static Flags Filter(const char* filter) {
5535     Flags flags;
5536     flags.filter = filter;
5537     return flags;
5538   }
5539 
5540   // Creates a Flags struct where the gtest_list_tests flag has the
5541   // given value.
ListTeststesting::Flags5542   static Flags ListTests(bool list_tests) {
5543     Flags flags;
5544     flags.list_tests = list_tests;
5545     return flags;
5546   }
5547 
5548   // Creates a Flags struct where the gtest_output flag has the given
5549   // value.
Outputtesting::Flags5550   static Flags Output(const char* output) {
5551     Flags flags;
5552     flags.output = output;
5553     return flags;
5554   }
5555 
5556   // Creates a Flags struct where the gtest_brief flag has the given
5557   // value.
Brieftesting::Flags5558   static Flags Brief(bool brief) {
5559     Flags flags;
5560     flags.brief = brief;
5561     return flags;
5562   }
5563 
5564   // Creates a Flags struct where the gtest_print_time flag has the given
5565   // value.
PrintTimetesting::Flags5566   static Flags PrintTime(bool print_time) {
5567     Flags flags;
5568     flags.print_time = print_time;
5569     return flags;
5570   }
5571 
5572   // Creates a Flags struct where the gtest_random_seed flag has the given
5573   // value.
RandomSeedtesting::Flags5574   static Flags RandomSeed(int32_t random_seed) {
5575     Flags flags;
5576     flags.random_seed = random_seed;
5577     return flags;
5578   }
5579 
5580   // Creates a Flags struct where the gtest_repeat flag has the given
5581   // value.
Repeattesting::Flags5582   static Flags Repeat(int32_t repeat) {
5583     Flags flags;
5584     flags.repeat = repeat;
5585     return flags;
5586   }
5587 
5588   // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5589   // flag has the given value.
RecreateEnvironmentsWhenRepeatingtesting::Flags5590   static Flags RecreateEnvironmentsWhenRepeating(
5591       bool recreate_environments_when_repeating) {
5592     Flags flags;
5593     flags.recreate_environments_when_repeating =
5594         recreate_environments_when_repeating;
5595     return flags;
5596   }
5597 
5598   // Creates a Flags struct where the gtest_shuffle flag has the given
5599   // value.
Shuffletesting::Flags5600   static Flags Shuffle(bool shuffle) {
5601     Flags flags;
5602     flags.shuffle = shuffle;
5603     return flags;
5604   }
5605 
5606   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5607   // the given value.
StackTraceDepthtesting::Flags5608   static Flags StackTraceDepth(int32_t stack_trace_depth) {
5609     Flags flags;
5610     flags.stack_trace_depth = stack_trace_depth;
5611     return flags;
5612   }
5613 
5614   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5615   // the given value.
StreamResultTotesting::Flags5616   static Flags StreamResultTo(const char* stream_result_to) {
5617     Flags flags;
5618     flags.stream_result_to = stream_result_to;
5619     return flags;
5620   }
5621 
5622   // Creates a Flags struct where the gtest_throw_on_failure flag has
5623   // the given value.
ThrowOnFailuretesting::Flags5624   static Flags ThrowOnFailure(bool throw_on_failure) {
5625     Flags flags;
5626     flags.throw_on_failure = throw_on_failure;
5627     return flags;
5628   }
5629 
5630   // These fields store the flag values.
5631   bool also_run_disabled_tests;
5632   bool break_on_failure;
5633   bool catch_exceptions;
5634   bool death_test_use_fork;
5635   bool fail_fast;
5636   const char* filter;
5637   bool list_tests;
5638   const char* output;
5639   bool brief;
5640   bool print_time;
5641   int32_t random_seed;
5642   int32_t repeat;
5643   bool recreate_environments_when_repeating;
5644   bool shuffle;
5645   int32_t stack_trace_depth;
5646   const char* stream_result_to;
5647   bool throw_on_failure;
5648 };
5649 
5650 // Fixture for testing ParseGoogleTestFlagsOnly().
5651 class ParseFlagsTest : public Test {
5652  protected:
5653   // Clears the flags before each test.
SetUp()5654   void SetUp() override {
5655     GTEST_FLAG_SET(also_run_disabled_tests, false);
5656     GTEST_FLAG_SET(break_on_failure, false);
5657     GTEST_FLAG_SET(catch_exceptions, false);
5658     GTEST_FLAG_SET(death_test_use_fork, false);
5659     GTEST_FLAG_SET(fail_fast, false);
5660     GTEST_FLAG_SET(filter, "");
5661     GTEST_FLAG_SET(list_tests, false);
5662     GTEST_FLAG_SET(output, "");
5663     GTEST_FLAG_SET(brief, false);
5664     GTEST_FLAG_SET(print_time, true);
5665     GTEST_FLAG_SET(random_seed, 0);
5666     GTEST_FLAG_SET(repeat, 1);
5667     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5668     GTEST_FLAG_SET(shuffle, false);
5669     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5670     GTEST_FLAG_SET(stream_result_to, "");
5671     GTEST_FLAG_SET(throw_on_failure, false);
5672   }
5673 
5674   // Asserts that two narrow or wide string arrays are equal.
5675   template <typename CharType>
AssertStringArrayEq(int size1,CharType ** array1,int size2,CharType ** array2)5676   static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5677                                   CharType** array2) {
5678     ASSERT_EQ(size1, size2) << " Array sizes different.";
5679 
5680     for (int i = 0; i != size1; i++) {
5681       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5682     }
5683   }
5684 
5685   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5686   static void CheckFlags(const Flags& expected) {
5687     EXPECT_EQ(expected.also_run_disabled_tests,
5688               GTEST_FLAG_GET(also_run_disabled_tests));
5689     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5690     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5691     EXPECT_EQ(expected.death_test_use_fork,
5692               GTEST_FLAG_GET(death_test_use_fork));
5693     EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5694     EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5695     EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5696     EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5697     EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5698     EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5699     EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5700     EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5701     EXPECT_EQ(expected.recreate_environments_when_repeating,
5702               GTEST_FLAG_GET(recreate_environments_when_repeating));
5703     EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5704     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5705     EXPECT_STREQ(expected.stream_result_to,
5706                  GTEST_FLAG_GET(stream_result_to).c_str());
5707     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5708   }
5709 
5710   // Parses a command line (specified by argc1 and argv1), then
5711   // verifies that the flag values are expected and that the
5712   // recognized flags are removed from the command line.
5713   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5714   static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
5715                                const CharType** argv2, const Flags& expected,
5716                                bool should_print_help) {
5717     const bool saved_help_flag = ::testing::internal::g_help_flag;
5718     ::testing::internal::g_help_flag = false;
5719 
5720 #if GTEST_HAS_STREAM_REDIRECTION
5721     CaptureStdout();
5722 #endif
5723 
5724     // Parses the command line.
5725     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5726 
5727 #if GTEST_HAS_STREAM_REDIRECTION
5728     const std::string captured_stdout = GetCapturedStdout();
5729 #endif
5730 
5731     // Verifies the flag values.
5732     CheckFlags(expected);
5733 
5734     // Verifies that the recognized flags are removed from the command
5735     // line.
5736     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5737 
5738     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5739     // help message for the flags it recognizes.
5740     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5741 
5742 #if GTEST_HAS_STREAM_REDIRECTION
5743     const char* const expected_help_fragment =
5744         "This program contains tests written using";
5745     if (should_print_help) {
5746       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5747     } else {
5748       EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
5749                           captured_stdout);
5750     }
5751 #endif  // GTEST_HAS_STREAM_REDIRECTION
5752 
5753     ::testing::internal::g_help_flag = saved_help_flag;
5754   }
5755 
5756   // This macro wraps TestParsingFlags s.t. the user doesn't need
5757   // to specify the array sizes.
5758 
5759 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5760   TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1,                \
5761                    sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected,      \
5762                    should_print_help)
5763 };
5764 
5765 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5766 TEST_F(ParseFlagsTest, Empty) {
5767   const char* argv[] = {nullptr};
5768 
5769   const char* argv2[] = {nullptr};
5770 
5771   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5772 }
5773 
5774 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5775 TEST_F(ParseFlagsTest, NoFlag) {
5776   const char* argv[] = {"foo.exe", nullptr};
5777 
5778   const char* argv2[] = {"foo.exe", nullptr};
5779 
5780   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5781 }
5782 
5783 // Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest,FailFast)5784 TEST_F(ParseFlagsTest, FailFast) {
5785   const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5786 
5787   const char* argv2[] = {"foo.exe", nullptr};
5788 
5789   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5790 }
5791 
5792 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5793 TEST_F(ParseFlagsTest, FilterEmpty) {
5794   const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5795 
5796   const char* argv2[] = {"foo.exe", nullptr};
5797 
5798   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5799 }
5800 
5801 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5802 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5803   const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5804 
5805   const char* argv2[] = {"foo.exe", nullptr};
5806 
5807   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5808 }
5809 
5810 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5811 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5812   const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5813 
5814   const char* argv2[] = {"foo.exe", nullptr};
5815 
5816   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5817 }
5818 
5819 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5820 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5821   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5822 
5823   const char* argv2[] = {"foo.exe", nullptr};
5824 
5825   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5826 }
5827 
5828 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5829 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5830   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5831 
5832   const char* argv2[] = {"foo.exe", nullptr};
5833 
5834   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5835 }
5836 
5837 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5838 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5839   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5840 
5841   const char* argv2[] = {"foo.exe", nullptr};
5842 
5843   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5844 }
5845 
5846 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5847 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5848 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5849   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5850 
5851   const char* argv2[] = {"foo.exe", nullptr};
5852 
5853   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5854 }
5855 
5856 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5857 TEST_F(ParseFlagsTest, CatchExceptions) {
5858   const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5859 
5860   const char* argv2[] = {"foo.exe", nullptr};
5861 
5862   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5863 }
5864 
5865 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5866 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5867   const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5868 
5869   const char* argv2[] = {"foo.exe", nullptr};
5870 
5871   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5872 }
5873 
5874 // Tests having the same flag twice with different values.  The
5875 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5876 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5877   const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5878                         nullptr};
5879 
5880   const char* argv2[] = {"foo.exe", nullptr};
5881 
5882   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5883 }
5884 
5885 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5886 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5887   const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5888                         "bar",  // Unrecognized by Google Test.
5889                         "--gtest_filter=b", nullptr};
5890 
5891   const char* argv2[] = {"foo.exe", "bar", nullptr};
5892 
5893   Flags flags;
5894   flags.break_on_failure = true;
5895   flags.filter = "b";
5896   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5897 }
5898 
5899 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)5900 TEST_F(ParseFlagsTest, ListTestsFlag) {
5901   const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5902 
5903   const char* argv2[] = {"foo.exe", nullptr};
5904 
5905   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5906 }
5907 
5908 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)5909 TEST_F(ParseFlagsTest, ListTestsTrue) {
5910   const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5911 
5912   const char* argv2[] = {"foo.exe", nullptr};
5913 
5914   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5915 }
5916 
5917 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)5918 TEST_F(ParseFlagsTest, ListTestsFalse) {
5919   const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5920 
5921   const char* argv2[] = {"foo.exe", nullptr};
5922 
5923   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5924 }
5925 
5926 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)5927 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5928   const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5929 
5930   const char* argv2[] = {"foo.exe", nullptr};
5931 
5932   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5933 }
5934 
5935 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)5936 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5937   const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5938 
5939   const char* argv2[] = {"foo.exe", nullptr};
5940 
5941   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5942 }
5943 
5944 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)5945 TEST_F(ParseFlagsTest, OutputXml) {
5946   const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
5947 
5948   const char* argv2[] = {"foo.exe", nullptr};
5949 
5950   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5951 }
5952 
5953 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)5954 TEST_F(ParseFlagsTest, OutputXmlFile) {
5955   const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
5956 
5957   const char* argv2[] = {"foo.exe", nullptr};
5958 
5959   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5960 }
5961 
5962 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)5963 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
5964   const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
5965                         nullptr};
5966 
5967   const char* argv2[] = {"foo.exe", nullptr};
5968 
5969   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
5970                             false);
5971 }
5972 
5973 // Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest,BriefFlag)5974 TEST_F(ParseFlagsTest, BriefFlag) {
5975   const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
5976 
5977   const char* argv2[] = {"foo.exe", nullptr};
5978 
5979   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5980 }
5981 
5982 // Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest,BriefFlagTrue)5983 TEST_F(ParseFlagsTest, BriefFlagTrue) {
5984   const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
5985 
5986   const char* argv2[] = {"foo.exe", nullptr};
5987 
5988   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5989 }
5990 
5991 // Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest,BriefFlagFalse)5992 TEST_F(ParseFlagsTest, BriefFlagFalse) {
5993   const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
5994 
5995   const char* argv2[] = {"foo.exe", nullptr};
5996 
5997   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
5998 }
5999 
6000 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6001 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6002   const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6003 
6004   const char* argv2[] = {"foo.exe", nullptr};
6005 
6006   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6007 }
6008 
6009 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6010 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6011   const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6012 
6013   const char* argv2[] = {"foo.exe", nullptr};
6014 
6015   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6016 }
6017 
6018 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6019 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6020   const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6021 
6022   const char* argv2[] = {"foo.exe", nullptr};
6023 
6024   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6025 }
6026 
6027 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6028 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6029   const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6030 
6031   const char* argv2[] = {"foo.exe", nullptr};
6032 
6033   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6034 }
6035 
6036 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6037 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6038   const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6039 
6040   const char* argv2[] = {"foo.exe", nullptr};
6041 
6042   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6043 }
6044 
6045 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6046 TEST_F(ParseFlagsTest, RandomSeed) {
6047   const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6048 
6049   const char* argv2[] = {"foo.exe", nullptr};
6050 
6051   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6052 }
6053 
6054 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6055 TEST_F(ParseFlagsTest, Repeat) {
6056   const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6057 
6058   const char* argv2[] = {"foo.exe", nullptr};
6059 
6060   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6061 }
6062 
6063 // Tests parsing --gtest_recreate_environments_when_repeating
TEST_F(ParseFlagsTest,RecreateEnvironmentsWhenRepeating)6064 TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6065   const char* argv[] = {
6066       "foo.exe",
6067       "--gtest_recreate_environments_when_repeating=0",
6068       nullptr,
6069   };
6070 
6071   const char* argv2[] = {"foo.exe", nullptr};
6072 
6073   GTEST_TEST_PARSING_FLAGS_(
6074       argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6075 }
6076 
6077 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6078 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6079   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6080 
6081   const char* argv2[] = {"foo.exe", nullptr};
6082 
6083   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6084                             false);
6085 }
6086 
6087 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6088 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6089   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6090                         nullptr};
6091 
6092   const char* argv2[] = {"foo.exe", nullptr};
6093 
6094   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6095                             false);
6096 }
6097 
6098 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6099 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6100   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6101                         nullptr};
6102 
6103   const char* argv2[] = {"foo.exe", nullptr};
6104 
6105   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6106                             false);
6107 }
6108 
6109 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6110 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6111   const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6112 
6113   const char* argv2[] = {"foo.exe", nullptr};
6114 
6115   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6116 }
6117 
6118 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6119 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6120   const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6121 
6122   const char* argv2[] = {"foo.exe", nullptr};
6123 
6124   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6125 }
6126 
6127 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6128 TEST_F(ParseFlagsTest, ShuffleTrue) {
6129   const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6130 
6131   const char* argv2[] = {"foo.exe", nullptr};
6132 
6133   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6134 }
6135 
6136 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6137 TEST_F(ParseFlagsTest, StackTraceDepth) {
6138   const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6139 
6140   const char* argv2[] = {"foo.exe", nullptr};
6141 
6142   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6143 }
6144 
TEST_F(ParseFlagsTest,StreamResultTo)6145 TEST_F(ParseFlagsTest, StreamResultTo) {
6146   const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6147                         nullptr};
6148 
6149   const char* argv2[] = {"foo.exe", nullptr};
6150 
6151   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6152                             Flags::StreamResultTo("localhost:1234"), false);
6153 }
6154 
6155 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6156 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6157   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6158 
6159   const char* argv2[] = {"foo.exe", nullptr};
6160 
6161   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6162 }
6163 
6164 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6165 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6166   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6167 
6168   const char* argv2[] = {"foo.exe", nullptr};
6169 
6170   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6171 }
6172 
6173 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6174 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6175 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6176   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6177 
6178   const char* argv2[] = {"foo.exe", nullptr};
6179 
6180   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6181 }
6182 
6183 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)6184 TEST_F(ParseFlagsTest, FilterBad) {
6185   const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
6186 
6187   const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
6188 
6189 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6190   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6191   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
6192               testing::ExitedWithCode(1),
6193               "ERROR: Missing the value for the flag 'gtest_filter'");
6194 #elif !defined(GTEST_HAS_ABSL)
6195   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
6196 #else
6197   static_cast<void>(argv);
6198   static_cast<void>(argv2);
6199 #endif
6200 }
6201 
6202 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6203 TEST_F(ParseFlagsTest, OutputEmpty) {
6204   const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6205 
6206   const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6207 
6208 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6209   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6210   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
6211               testing::ExitedWithCode(1),
6212               "ERROR: Missing the value for the flag 'gtest_output'");
6213 #elif !defined(GTEST_HAS_ABSL)
6214   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6215 #else
6216   static_cast<void>(argv);
6217   static_cast<void>(argv2);
6218 #endif
6219 }
6220 
6221 #ifdef GTEST_HAS_ABSL
TEST_F(ParseFlagsTest,AbseilPositionalFlags)6222 TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
6223   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
6224                         "--other_flag", nullptr};
6225 
6226   // When using Abseil flags, it should be possible to pass flags not recognized
6227   // using "--" to delimit positional arguments. These flags should be returned
6228   // though argv.
6229   const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6230 
6231   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6232 }
6233 #endif
6234 
TEST_F(ParseFlagsTest,UnrecognizedFlags)6235 TEST_F(ParseFlagsTest, UnrecognizedFlags) {
6236   const char* argv[] = {"foo.exe", "--gtest_filter=abcd", "--other_flag",
6237                         nullptr};
6238 
6239   const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6240 
6241   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abcd"), false);
6242 }
6243 
6244 #ifdef GTEST_OS_WINDOWS
6245 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6246 TEST_F(ParseFlagsTest, WideStrings) {
6247   const wchar_t* argv[] = {L"foo.exe",
6248                            L"--gtest_filter=Foo*",
6249                            L"--gtest_list_tests=1",
6250                            L"--gtest_break_on_failure",
6251                            L"--non_gtest_flag",
6252                            NULL};
6253 
6254   const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
6255 
6256   Flags expected_flags;
6257   expected_flags.break_on_failure = true;
6258   expected_flags.filter = "Foo*";
6259   expected_flags.list_tests = true;
6260 
6261   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6262 }
6263 #endif  // GTEST_OS_WINDOWS
6264 
6265 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6266 class FlagfileTest : public ParseFlagsTest {
6267  public:
SetUp()6268   void SetUp() override {
6269     ParseFlagsTest::SetUp();
6270 
6271     testdata_path_.Set(internal::FilePath(
6272         testing::TempDir() + internal::GetCurrentExecutableName().string() +
6273         "_flagfile_test"));
6274     testing::internal::posix::RmDir(testdata_path_.c_str());
6275     EXPECT_TRUE(testdata_path_.CreateFolder());
6276   }
6277 
TearDown()6278   void TearDown() override {
6279     testing::internal::posix::RmDir(testdata_path_.c_str());
6280     ParseFlagsTest::TearDown();
6281   }
6282 
CreateFlagfile(const char * contents)6283   internal::FilePath CreateFlagfile(const char* contents) {
6284     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6285         testdata_path_, internal::FilePath("unique"), "txt"));
6286     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6287     fprintf(f, "%s", contents);
6288     fclose(f);
6289     return file_path;
6290   }
6291 
6292  private:
6293   internal::FilePath testdata_path_;
6294 };
6295 
6296 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6297 TEST_F(FlagfileTest, Empty) {
6298   internal::FilePath flagfile_path(CreateFlagfile(""));
6299   std::string flagfile_flag =
6300       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6301 
6302   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6303 
6304   const char* argv2[] = {"foo.exe", nullptr};
6305 
6306   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6307 }
6308 
6309 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6310 TEST_F(FlagfileTest, FilterNonEmpty) {
6311   internal::FilePath flagfile_path(
6312       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
6313   std::string flagfile_flag =
6314       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6315 
6316   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6317 
6318   const char* argv2[] = {"foo.exe", nullptr};
6319 
6320   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6321 }
6322 
6323 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6324 TEST_F(FlagfileTest, SeveralFlags) {
6325   internal::FilePath flagfile_path(
6326       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
6327                      "--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
6328                      "--" GTEST_FLAG_PREFIX_ "list_tests"));
6329   std::string flagfile_flag =
6330       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6331 
6332   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6333 
6334   const char* argv2[] = {"foo.exe", nullptr};
6335 
6336   Flags expected_flags;
6337   expected_flags.break_on_failure = true;
6338   expected_flags.filter = "abc";
6339   expected_flags.list_tests = true;
6340 
6341   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6342 }
6343 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6344 
6345 // Tests current_test_info() in UnitTest.
6346 class CurrentTestInfoTest : public Test {
6347  protected:
6348   // Tests that current_test_info() returns NULL before the first test in
6349   // the test case is run.
SetUpTestSuite()6350   static void SetUpTestSuite() {
6351     // There should be no tests running at this point.
6352     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6353     EXPECT_TRUE(test_info == nullptr)
6354         << "There should be no tests running at this point.";
6355   }
6356 
6357   // Tests that current_test_info() returns NULL after the last test in
6358   // the test case has run.
TearDownTestSuite()6359   static void TearDownTestSuite() {
6360     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6361     EXPECT_TRUE(test_info == nullptr)
6362         << "There should be no tests running at this point.";
6363   }
6364 };
6365 
6366 // Tests that current_test_info() returns TestInfo for currently running
6367 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6368 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6369   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6370   ASSERT_TRUE(nullptr != test_info)
6371       << "There is a test running so we should have a valid TestInfo.";
6372   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6373       << "Expected the name of the currently running test suite.";
6374   EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6375       << "Expected the name of the currently running test.";
6376 }
6377 
6378 // Tests that current_test_info() returns TestInfo for currently running
6379 // test by checking the expected test name against the actual one.  We
6380 // use this test to see that the TestInfo object actually changed from
6381 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6382 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6383   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6384   ASSERT_TRUE(nullptr != test_info)
6385       << "There is a test running so we should have a valid TestInfo.";
6386   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6387       << "Expected the name of the currently running test suite.";
6388   EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6389       << "Expected the name of the currently running test.";
6390 }
6391 
6392 }  // namespace testing
6393 
6394 // These two lines test that we can define tests in a namespace that
6395 // has the name "testing" and is nested in another namespace.
6396 namespace my_namespace {
6397 namespace testing {
6398 
6399 // Makes sure that TEST knows to use ::testing::Test instead of
6400 // ::my_namespace::testing::Test.
6401 class Test {};
6402 
6403 // Makes sure that an assertion knows to use ::testing::Message instead of
6404 // ::my_namespace::testing::Message.
6405 class Message {};
6406 
6407 // Makes sure that an assertion knows to use
6408 // ::testing::AssertionResult instead of
6409 // ::my_namespace::testing::AssertionResult.
6410 class AssertionResult {};
6411 
6412 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6413 TEST(NestedTestingNamespaceTest, Success) {
6414   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6415 }
6416 
6417 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6418 TEST(NestedTestingNamespaceTest, Failure) {
6419   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6420                        "This failure is expected.");
6421 }
6422 
6423 }  // namespace testing
6424 }  // namespace my_namespace
6425 
6426 // Tests that one can call superclass SetUp and TearDown methods--
6427 // that is, that they are not private.
6428 // No tests are based on this fixture; the test "passes" if it compiles
6429 // successfully.
6430 class ProtectedFixtureMethodsTest : public Test {
6431  protected:
SetUp()6432   void SetUp() override { Test::SetUp(); }
TearDown()6433   void TearDown() override { Test::TearDown(); }
6434 };
6435 
6436 // StreamingAssertionsTest tests the streaming versions of a representative
6437 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6438 TEST(StreamingAssertionsTest, Unconditional) {
6439   SUCCEED() << "expected success";
6440   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6441                           "expected failure");
6442   EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
6443 }
6444 
6445 #ifdef __BORLANDC__
6446 // Silences warnings: "Condition is always true", "Unreachable code"
6447 #pragma option push -w-ccc -w-rch
6448 #endif
6449 
TEST(StreamingAssertionsTest,Truth)6450 TEST(StreamingAssertionsTest, Truth) {
6451   EXPECT_TRUE(true) << "unexpected failure";
6452   ASSERT_TRUE(true) << "unexpected failure";
6453   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6454                           "expected failure");
6455   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6456                        "expected failure");
6457 }
6458 
TEST(StreamingAssertionsTest,Truth2)6459 TEST(StreamingAssertionsTest, Truth2) {
6460   EXPECT_FALSE(false) << "unexpected failure";
6461   ASSERT_FALSE(false) << "unexpected failure";
6462   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6463                           "expected failure");
6464   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6465                        "expected failure");
6466 }
6467 
6468 #ifdef __BORLANDC__
6469 // Restores warnings after previous "#pragma option push" suppressed them
6470 #pragma option pop
6471 #endif
6472 
TEST(StreamingAssertionsTest,IntegerEquals)6473 TEST(StreamingAssertionsTest, IntegerEquals) {
6474   EXPECT_EQ(1, 1) << "unexpected failure";
6475   ASSERT_EQ(1, 1) << "unexpected failure";
6476   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6477                           "expected failure");
6478   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6479                        "expected failure");
6480 }
6481 
TEST(StreamingAssertionsTest,IntegerLessThan)6482 TEST(StreamingAssertionsTest, IntegerLessThan) {
6483   EXPECT_LT(1, 2) << "unexpected failure";
6484   ASSERT_LT(1, 2) << "unexpected failure";
6485   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6486                           "expected failure");
6487   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6488                        "expected failure");
6489 }
6490 
TEST(StreamingAssertionsTest,StringsEqual)6491 TEST(StreamingAssertionsTest, StringsEqual) {
6492   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6493   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6494   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6495                           "expected failure");
6496   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6497                        "expected failure");
6498 }
6499 
TEST(StreamingAssertionsTest,StringsNotEqual)6500 TEST(StreamingAssertionsTest, StringsNotEqual) {
6501   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6502   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6503   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6504                           "expected failure");
6505   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6506                        "expected failure");
6507 }
6508 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6509 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6510   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6511   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6512   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6513                           "expected failure");
6514   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6515                        "expected failure");
6516 }
6517 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6518 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6519   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6520   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6521   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6522                           "expected failure");
6523   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6524                        "expected failure");
6525 }
6526 
TEST(StreamingAssertionsTest,FloatingPointEquals)6527 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6528   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6529   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6530   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6531                           "expected failure");
6532   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6533                        "expected failure");
6534 }
6535 
6536 #if GTEST_HAS_EXCEPTIONS
6537 
TEST(StreamingAssertionsTest,Throw)6538 TEST(StreamingAssertionsTest, Throw) {
6539   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6540   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6541   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
6542                               << "expected failure",
6543                           "expected failure");
6544   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
6545                            << "expected failure",
6546                        "expected failure");
6547 }
6548 
TEST(StreamingAssertionsTest,NoThrow)6549 TEST(StreamingAssertionsTest, NoThrow) {
6550   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6551   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6552   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
6553                               << "expected failure",
6554                           "expected failure");
6555   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
6556                        "expected failure");
6557 }
6558 
TEST(StreamingAssertionsTest,AnyThrow)6559 TEST(StreamingAssertionsTest, AnyThrow) {
6560   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6561   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6562   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
6563                               << "expected failure",
6564                           "expected failure");
6565   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
6566                        "expected failure");
6567 }
6568 
6569 #endif  // GTEST_HAS_EXCEPTIONS
6570 
6571 // Tests that Google Test correctly decides whether to use colors in the output.
6572 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6573 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6574   GTEST_FLAG_SET(color, "yes");
6575 
6576   SetEnv("TERM", "xterm");             // TERM supports colors.
6577   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6578   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6579 
6580   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6581   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6582   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6583 }
6584 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6585 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6586   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6587 
6588   GTEST_FLAG_SET(color, "True");
6589   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6590 
6591   GTEST_FLAG_SET(color, "t");
6592   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6593 
6594   GTEST_FLAG_SET(color, "1");
6595   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6596 }
6597 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6598 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6599   GTEST_FLAG_SET(color, "no");
6600 
6601   SetEnv("TERM", "xterm");              // TERM supports colors.
6602   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6603   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6604 
6605   SetEnv("TERM", "dumb");               // TERM doesn't support colors.
6606   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6607   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6608 }
6609 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6610 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6611   SetEnv("TERM", "xterm");  // TERM supports colors.
6612 
6613   GTEST_FLAG_SET(color, "F");
6614   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6615 
6616   GTEST_FLAG_SET(color, "0");
6617   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6618 
6619   GTEST_FLAG_SET(color, "unknown");
6620   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6621 }
6622 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6623 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6624   GTEST_FLAG_SET(color, "auto");
6625 
6626   SetEnv("TERM", "xterm");              // TERM supports colors.
6627   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6628   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6629 }
6630 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6631 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6632   GTEST_FLAG_SET(color, "auto");
6633 
6634 #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW)
6635   // On Windows, we ignore the TERM variable as it's usually not set.
6636 
6637   SetEnv("TERM", "dumb");
6638   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6639 
6640   SetEnv("TERM", "");
6641   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6642 
6643   SetEnv("TERM", "xterm");
6644   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6645 #else
6646   // On non-Windows platforms, we rely on TERM to determine if the
6647   // terminal supports colors.
6648 
6649   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6650   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6651 
6652   SetEnv("TERM", "emacs");             // TERM doesn't support colors.
6653   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6654 
6655   SetEnv("TERM", "vt100");             // TERM doesn't support colors.
6656   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6657 
6658   SetEnv("TERM", "xterm-mono");        // TERM doesn't support colors.
6659   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6660 
6661   SetEnv("TERM", "xterm");            // TERM supports colors.
6662   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6663 
6664   SetEnv("TERM", "xterm-color");      // TERM supports colors.
6665   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6666 
6667   SetEnv("TERM", "xterm-kitty");      // TERM supports colors.
6668   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6669 
6670   SetEnv("TERM", "xterm-256color");   // TERM supports colors.
6671   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6672 
6673   SetEnv("TERM", "screen");           // TERM supports colors.
6674   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6675 
6676   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6677   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6678 
6679   SetEnv("TERM", "tmux");             // TERM supports colors.
6680   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6681 
6682   SetEnv("TERM", "tmux-256color");    // TERM supports colors.
6683   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6684 
6685   SetEnv("TERM", "rxvt-unicode");     // TERM supports colors.
6686   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6687 
6688   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6689   EXPECT_TRUE(ShouldUseColor(true));        // Stdout is a TTY.
6690 
6691   SetEnv("TERM", "linux");            // TERM supports colors.
6692   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6693 
6694   SetEnv("TERM", "cygwin");  // TERM supports colors.
6695   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6696 #endif  // GTEST_OS_WINDOWS
6697 }
6698 
6699 // Verifies that StaticAssertTypeEq works in a namespace scope.
6700 
6701 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6702 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6703     StaticAssertTypeEq<const int, const int>();
6704 
6705 // Verifies that StaticAssertTypeEq works in a class.
6706 
6707 template <typename T>
6708 class StaticAssertTypeEqTestHelper {
6709  public:
StaticAssertTypeEqTestHelper()6710   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6711 };
6712 
TEST(StaticAssertTypeEqTest,WorksInClass)6713 TEST(StaticAssertTypeEqTest, WorksInClass) {
6714   StaticAssertTypeEqTestHelper<bool>();
6715 }
6716 
6717 // Verifies that StaticAssertTypeEq works inside a function.
6718 
6719 typedef int IntAlias;
6720 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6721 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6722   StaticAssertTypeEq<int, IntAlias>();
6723   StaticAssertTypeEq<int*, IntAlias*>();
6724 }
6725 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6726 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6727   EXPECT_FALSE(HasNonfatalFailure());
6728 }
6729 
FailFatally()6730 static void FailFatally() { FAIL(); }
6731 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6732 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6733   FailFatally();
6734   const bool has_nonfatal_failure = HasNonfatalFailure();
6735   ClearCurrentTestPartResults();
6736   EXPECT_FALSE(has_nonfatal_failure);
6737 }
6738 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6739 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6740   ADD_FAILURE();
6741   const bool has_nonfatal_failure = HasNonfatalFailure();
6742   ClearCurrentTestPartResults();
6743   EXPECT_TRUE(has_nonfatal_failure);
6744 }
6745 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6746 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6747   FailFatally();
6748   ADD_FAILURE();
6749   const bool has_nonfatal_failure = HasNonfatalFailure();
6750   ClearCurrentTestPartResults();
6751   EXPECT_TRUE(has_nonfatal_failure);
6752 }
6753 
6754 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6755 static bool HasNonfatalFailureHelper() {
6756   return testing::Test::HasNonfatalFailure();
6757 }
6758 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6759 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6760   EXPECT_FALSE(HasNonfatalFailureHelper());
6761 }
6762 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6763 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6764   ADD_FAILURE();
6765   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6766   ClearCurrentTestPartResults();
6767   EXPECT_TRUE(has_nonfatal_failure);
6768 }
6769 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6770 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6771   EXPECT_FALSE(HasFailure());
6772 }
6773 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6774 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6775   FailFatally();
6776   const bool has_failure = HasFailure();
6777   ClearCurrentTestPartResults();
6778   EXPECT_TRUE(has_failure);
6779 }
6780 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6781 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6782   ADD_FAILURE();
6783   const bool has_failure = HasFailure();
6784   ClearCurrentTestPartResults();
6785   EXPECT_TRUE(has_failure);
6786 }
6787 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6788 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6789   FailFatally();
6790   ADD_FAILURE();
6791   const bool has_failure = HasFailure();
6792   ClearCurrentTestPartResults();
6793   EXPECT_TRUE(has_failure);
6794 }
6795 
6796 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6797 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6798 
TEST(HasFailureTest,WorksOutsideOfTestBody)6799 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6800   EXPECT_FALSE(HasFailureHelper());
6801 }
6802 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6803 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6804   ADD_FAILURE();
6805   const bool has_failure = HasFailureHelper();
6806   ClearCurrentTestPartResults();
6807   EXPECT_TRUE(has_failure);
6808 }
6809 
6810 class TestListener : public EmptyTestEventListener {
6811  public:
TestListener()6812   TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6813   TestListener(int* on_start_counter, bool* is_destroyed)
6814       : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
6815 
~TestListener()6816   ~TestListener() override {
6817     if (is_destroyed_) *is_destroyed_ = true;
6818   }
6819 
6820  protected:
OnTestProgramStart(const UnitTest &)6821   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6822     if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6823   }
6824 
6825  private:
6826   int* on_start_counter_;
6827   bool* is_destroyed_;
6828 };
6829 
6830 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6831 TEST(TestEventListenersTest, ConstructionWorks) {
6832   TestEventListeners listeners;
6833 
6834   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6835   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6836   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6837 }
6838 
6839 // Tests that the TestEventListeners destructor deletes all the listeners it
6840 // owns.
TEST(TestEventListenersTest,DestructionWorks)6841 TEST(TestEventListenersTest, DestructionWorks) {
6842   bool default_result_printer_is_destroyed = false;
6843   bool default_xml_printer_is_destroyed = false;
6844   bool extra_listener_is_destroyed = false;
6845   TestListener* default_result_printer =
6846       new TestListener(nullptr, &default_result_printer_is_destroyed);
6847   TestListener* default_xml_printer =
6848       new TestListener(nullptr, &default_xml_printer_is_destroyed);
6849   TestListener* extra_listener =
6850       new TestListener(nullptr, &extra_listener_is_destroyed);
6851 
6852   {
6853     TestEventListeners listeners;
6854     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6855                                                         default_result_printer);
6856     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6857                                                        default_xml_printer);
6858     listeners.Append(extra_listener);
6859   }
6860   EXPECT_TRUE(default_result_printer_is_destroyed);
6861   EXPECT_TRUE(default_xml_printer_is_destroyed);
6862   EXPECT_TRUE(extra_listener_is_destroyed);
6863 }
6864 
6865 // Tests that a listener Append'ed to a TestEventListeners list starts
6866 // receiving events.
TEST(TestEventListenersTest,Append)6867 TEST(TestEventListenersTest, Append) {
6868   int on_start_counter = 0;
6869   bool is_destroyed = false;
6870   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6871   {
6872     TestEventListeners listeners;
6873     listeners.Append(listener);
6874     TestEventListenersAccessor::GetRepeater(&listeners)
6875         ->OnTestProgramStart(*UnitTest::GetInstance());
6876     EXPECT_EQ(1, on_start_counter);
6877   }
6878   EXPECT_TRUE(is_destroyed);
6879 }
6880 
6881 // Tests that listeners receive events in the order they were appended to
6882 // the list, except for *End requests, which must be received in the reverse
6883 // order.
6884 class SequenceTestingListener : public EmptyTestEventListener {
6885  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6886   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6887       : vector_(vector), id_(id) {}
6888 
6889  protected:
OnTestProgramStart(const UnitTest &)6890   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6891     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6892   }
6893 
OnTestProgramEnd(const UnitTest &)6894   void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6895     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6896   }
6897 
OnTestIterationStart(const UnitTest &,int)6898   void OnTestIterationStart(const UnitTest& /*unit_test*/,
6899                             int /*iteration*/) override {
6900     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6901   }
6902 
OnTestIterationEnd(const UnitTest &,int)6903   void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6904                           int /*iteration*/) override {
6905     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6906   }
6907 
6908  private:
GetEventDescription(const char * method)6909   std::string GetEventDescription(const char* method) {
6910     Message message;
6911     message << id_ << "." << method;
6912     return message.GetString();
6913   }
6914 
6915   std::vector<std::string>* vector_;
6916   const char* const id_;
6917 
6918   SequenceTestingListener(const SequenceTestingListener&) = delete;
6919   SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
6920 };
6921 
TEST(EventListenerTest,AppendKeepsOrder)6922 TEST(EventListenerTest, AppendKeepsOrder) {
6923   std::vector<std::string> vec;
6924   TestEventListeners listeners;
6925   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6926   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6927   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6928 
6929   TestEventListenersAccessor::GetRepeater(&listeners)
6930       ->OnTestProgramStart(*UnitTest::GetInstance());
6931   ASSERT_EQ(3U, vec.size());
6932   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6933   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6934   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6935 
6936   vec.clear();
6937   TestEventListenersAccessor::GetRepeater(&listeners)
6938       ->OnTestProgramEnd(*UnitTest::GetInstance());
6939   ASSERT_EQ(3U, vec.size());
6940   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6941   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6942   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6943 
6944   vec.clear();
6945   TestEventListenersAccessor::GetRepeater(&listeners)
6946       ->OnTestIterationStart(*UnitTest::GetInstance(), 0);
6947   ASSERT_EQ(3U, vec.size());
6948   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6949   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6950   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6951 
6952   vec.clear();
6953   TestEventListenersAccessor::GetRepeater(&listeners)
6954       ->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
6955   ASSERT_EQ(3U, vec.size());
6956   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6957   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6958   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6959 }
6960 
6961 // Tests that a listener removed from a TestEventListeners list stops receiving
6962 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6963 TEST(TestEventListenersTest, Release) {
6964   int on_start_counter = 0;
6965   bool is_destroyed = false;
6966   // Although Append passes the ownership of this object to the list,
6967   // the following calls release it, and we need to delete it before the
6968   // test ends.
6969   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6970   {
6971     TestEventListeners listeners;
6972     listeners.Append(listener);
6973     EXPECT_EQ(listener, listeners.Release(listener));
6974     TestEventListenersAccessor::GetRepeater(&listeners)
6975         ->OnTestProgramStart(*UnitTest::GetInstance());
6976     EXPECT_TRUE(listeners.Release(listener) == nullptr);
6977   }
6978   EXPECT_EQ(0, on_start_counter);
6979   EXPECT_FALSE(is_destroyed);
6980   delete listener;
6981 }
6982 
6983 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)6984 TEST(EventListenerTest, SuppressEventForwarding) {
6985   int on_start_counter = 0;
6986   TestListener* listener = new TestListener(&on_start_counter, nullptr);
6987 
6988   TestEventListeners listeners;
6989   listeners.Append(listener);
6990   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6991   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6992   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6993   TestEventListenersAccessor::GetRepeater(&listeners)
6994       ->OnTestProgramStart(*UnitTest::GetInstance());
6995   EXPECT_EQ(0, on_start_counter);
6996 }
6997 
6998 // Tests that events generated by Google Test are not forwarded in
6999 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprocesses)7000 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) {
7001   EXPECT_DEATH_IF_SUPPORTED(
7002       {
7003         GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7004             *GetUnitTestImpl()->listeners()))
7005             << "expected failure";
7006       },
7007       "expected failure");
7008 }
7009 
7010 // Tests that a listener installed via SetDefaultResultPrinter() starts
7011 // receiving events and is returned via default_result_printer() and that
7012 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7013 TEST(EventListenerTest, default_result_printer) {
7014   int on_start_counter = 0;
7015   bool is_destroyed = false;
7016   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7017 
7018   TestEventListeners listeners;
7019   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7020 
7021   EXPECT_EQ(listener, listeners.default_result_printer());
7022 
7023   TestEventListenersAccessor::GetRepeater(&listeners)
7024       ->OnTestProgramStart(*UnitTest::GetInstance());
7025 
7026   EXPECT_EQ(1, on_start_counter);
7027 
7028   // Replacing default_result_printer with something else should remove it
7029   // from the list and destroy it.
7030   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7031 
7032   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7033   EXPECT_TRUE(is_destroyed);
7034 
7035   // After broadcasting an event the counter is still the same, indicating
7036   // the listener is not in the list anymore.
7037   TestEventListenersAccessor::GetRepeater(&listeners)
7038       ->OnTestProgramStart(*UnitTest::GetInstance());
7039   EXPECT_EQ(1, on_start_counter);
7040 }
7041 
7042 // Tests that the default_result_printer listener stops receiving events
7043 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7044 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7045   int on_start_counter = 0;
7046   bool is_destroyed = false;
7047   // Although Append passes the ownership of this object to the list,
7048   // the following calls release it, and we need to delete it before the
7049   // test ends.
7050   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7051   {
7052     TestEventListeners listeners;
7053     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7054 
7055     EXPECT_EQ(listener, listeners.Release(listener));
7056     EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7057     EXPECT_FALSE(is_destroyed);
7058 
7059     // Broadcasting events now should not affect default_result_printer.
7060     TestEventListenersAccessor::GetRepeater(&listeners)
7061         ->OnTestProgramStart(*UnitTest::GetInstance());
7062     EXPECT_EQ(0, on_start_counter);
7063   }
7064   // Destroying the list should not affect the listener now, too.
7065   EXPECT_FALSE(is_destroyed);
7066   delete listener;
7067 }
7068 
7069 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7070 // receiving events and is returned via default_xml_generator() and that
7071 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7072 TEST(EventListenerTest, default_xml_generator) {
7073   int on_start_counter = 0;
7074   bool is_destroyed = false;
7075   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7076 
7077   TestEventListeners listeners;
7078   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7079 
7080   EXPECT_EQ(listener, listeners.default_xml_generator());
7081 
7082   TestEventListenersAccessor::GetRepeater(&listeners)
7083       ->OnTestProgramStart(*UnitTest::GetInstance());
7084 
7085   EXPECT_EQ(1, on_start_counter);
7086 
7087   // Replacing default_xml_generator with something else should remove it
7088   // from the list and destroy it.
7089   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7090 
7091   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7092   EXPECT_TRUE(is_destroyed);
7093 
7094   // After broadcasting an event the counter is still the same, indicating
7095   // the listener is not in the list anymore.
7096   TestEventListenersAccessor::GetRepeater(&listeners)
7097       ->OnTestProgramStart(*UnitTest::GetInstance());
7098   EXPECT_EQ(1, on_start_counter);
7099 }
7100 
7101 // Tests that the default_xml_generator listener stops receiving events
7102 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7103 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7104   int on_start_counter = 0;
7105   bool is_destroyed = false;
7106   // Although Append passes the ownership of this object to the list,
7107   // the following calls release it, and we need to delete it before the
7108   // test ends.
7109   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7110   {
7111     TestEventListeners listeners;
7112     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7113 
7114     EXPECT_EQ(listener, listeners.Release(listener));
7115     EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7116     EXPECT_FALSE(is_destroyed);
7117 
7118     // Broadcasting events now should not affect default_xml_generator.
7119     TestEventListenersAccessor::GetRepeater(&listeners)
7120         ->OnTestProgramStart(*UnitTest::GetInstance());
7121     EXPECT_EQ(0, on_start_counter);
7122   }
7123   // Destroying the list should not affect the listener now, too.
7124   EXPECT_FALSE(is_destroyed);
7125   delete listener;
7126 }
7127 
7128 // Tests to ensure that the alternative, verbose spellings of
7129 // some of the macros work.  We don't test them thoroughly as that
7130 // would be quite involved.  Since their implementations are
7131 // straightforward, and they are rarely used, we'll just rely on the
7132 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7133 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7134   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7135 
7136   // GTEST_FAIL is the same as FAIL.
7137   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7138                        "An expected failure");
7139 
7140   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7141 
7142   GTEST_ASSERT_EQ(0, 0);
7143   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7144                        "An expected failure");
7145   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7146                        "An expected failure");
7147 
7148   GTEST_ASSERT_NE(0, 1);
7149   GTEST_ASSERT_NE(1, 0);
7150   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7151                        "An expected failure");
7152 
7153   GTEST_ASSERT_LE(0, 0);
7154   GTEST_ASSERT_LE(0, 1);
7155   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7156                        "An expected failure");
7157 
7158   GTEST_ASSERT_LT(0, 1);
7159   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7160                        "An expected failure");
7161   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7162                        "An expected failure");
7163 
7164   GTEST_ASSERT_GE(0, 0);
7165   GTEST_ASSERT_GE(1, 0);
7166   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7167                        "An expected failure");
7168 
7169   GTEST_ASSERT_GT(1, 0);
7170   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7171                        "An expected failure");
7172   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7173                        "An expected failure");
7174 }
7175 
7176 // Tests for internal utilities necessary for implementation of the universal
7177 // printing.
7178 
7179 class ConversionHelperBase {};
7180 class ConversionHelperDerived : public ConversionHelperBase {};
7181 
7182 struct HasDebugStringMethods {
DebugStringHasDebugStringMethods7183   std::string DebugString() const { return ""; }
ShortDebugStringHasDebugStringMethods7184   std::string ShortDebugString() const { return ""; }
7185 };
7186 
7187 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7188 
7189 struct WrongTypeDebugStringMethod {
DebugStringWrongTypeDebugStringMethod7190   std::string DebugString() const { return ""; }
ShortDebugStringWrongTypeDebugStringMethod7191   int ShortDebugString() const { return 1; }
7192 };
7193 
7194 struct NotConstDebugStringMethod {
DebugStringNotConstDebugStringMethod7195   std::string DebugString() { return ""; }
ShortDebugStringNotConstDebugStringMethod7196   std::string ShortDebugString() const { return ""; }
7197 };
7198 
7199 struct MissingDebugStringMethod {
DebugStringMissingDebugStringMethod7200   std::string DebugString() { return ""; }
7201 };
7202 
7203 struct IncompleteType;
7204 
7205 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7206 // constant.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsCompileTimeConstant)7207 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7208   static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7209                 "const_true");
7210   static_assert(
7211       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7212       "const_true");
7213   static_assert(HasDebugStringAndShortDebugString<
7214                     const InheritsDebugStringMethods>::value,
7215                 "const_true");
7216   static_assert(
7217       !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7218       "const_false");
7219   static_assert(
7220       !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7221       "const_false");
7222   static_assert(
7223       !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7224       "const_false");
7225   static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
7226                 "const_false");
7227   static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
7228 }
7229 
7230 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7231 // needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsTrueWhenTypeHasDebugStringAndShortDebugString)7232 TEST(HasDebugStringAndShortDebugStringTest,
7233      ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7234   EXPECT_TRUE(
7235       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7236 }
7237 
7238 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7239 // doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7240 TEST(HasDebugStringAndShortDebugStringTest,
7241      ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7242   EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7243   EXPECT_FALSE(
7244       HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7245 }
7246 
7247 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7248 
7249 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7250 void TestGTestRemoveReferenceAndConst() {
7251   static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7252                 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7253 }
7254 
TEST(RemoveReferenceToConstTest,Works)7255 TEST(RemoveReferenceToConstTest, Works) {
7256   TestGTestRemoveReferenceAndConst<int, int>();
7257   TestGTestRemoveReferenceAndConst<double, double&>();
7258   TestGTestRemoveReferenceAndConst<char, const char>();
7259   TestGTestRemoveReferenceAndConst<char, const char&>();
7260   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7261 }
7262 
7263 // Tests GTEST_REFERENCE_TO_CONST_.
7264 
7265 template <typename T1, typename T2>
TestGTestReferenceToConst()7266 void TestGTestReferenceToConst() {
7267   static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7268                 "GTEST_REFERENCE_TO_CONST_ failed.");
7269 }
7270 
TEST(GTestReferenceToConstTest,Works)7271 TEST(GTestReferenceToConstTest, Works) {
7272   TestGTestReferenceToConst<const char&, char>();
7273   TestGTestReferenceToConst<const int&, const int>();
7274   TestGTestReferenceToConst<const double&, double>();
7275   TestGTestReferenceToConst<const std::string&, const std::string&>();
7276 }
7277 
7278 // Tests IsContainerTest.
7279 
7280 class NonContainer {};
7281 
TEST(IsContainerTestTest,WorksForNonContainer)7282 TEST(IsContainerTestTest, WorksForNonContainer) {
7283   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7284   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7285   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7286 }
7287 
TEST(IsContainerTestTest,WorksForContainer)7288 TEST(IsContainerTestTest, WorksForContainer) {
7289   EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
7290   EXPECT_EQ(sizeof(IsContainer),
7291             sizeof(IsContainerTest<std::map<int, double>>(0)));
7292 }
7293 
7294 struct ConstOnlyContainerWithPointerIterator {
7295   using const_iterator = int*;
7296   const_iterator begin() const;
7297   const_iterator end() const;
7298 };
7299 
7300 struct ConstOnlyContainerWithClassIterator {
7301   struct const_iterator {
7302     const int& operator*() const;
7303     const_iterator& operator++(/* pre-increment */);
7304   };
7305   const_iterator begin() const;
7306   const_iterator end() const;
7307 };
7308 
TEST(IsContainerTestTest,ConstOnlyContainer)7309 TEST(IsContainerTestTest, ConstOnlyContainer) {
7310   EXPECT_EQ(sizeof(IsContainer),
7311             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7312   EXPECT_EQ(sizeof(IsContainer),
7313             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7314 }
7315 
7316 // Tests IsHashTable.
7317 struct AHashTable {
7318   typedef void hasher;
7319 };
7320 struct NotReallyAHashTable {
7321   typedef void hasher;
7322   typedef void reverse_iterator;
7323 };
TEST(IsHashTable,Basic)7324 TEST(IsHashTable, Basic) {
7325   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7326   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7327   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7328   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7329 }
7330 
7331 // Tests ArrayEq().
7332 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7333 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7334   EXPECT_TRUE(ArrayEq(5, 5L));
7335   EXPECT_FALSE(ArrayEq('a', 0));
7336 }
7337 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7338 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7339   // Note that a and b are distinct but compatible types.
7340   const int a[] = {0, 1};
7341   long b[] = {0, 1};
7342   EXPECT_TRUE(ArrayEq(a, b));
7343   EXPECT_TRUE(ArrayEq(a, 2, b));
7344 
7345   b[0] = 2;
7346   EXPECT_FALSE(ArrayEq(a, b));
7347   EXPECT_FALSE(ArrayEq(a, 1, b));
7348 }
7349 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7350 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7351   const char a[][3] = {"hi", "lo"};
7352   const char b[][3] = {"hi", "lo"};
7353   const char c[][3] = {"hi", "li"};
7354 
7355   EXPECT_TRUE(ArrayEq(a, b));
7356   EXPECT_TRUE(ArrayEq(a, 2, b));
7357 
7358   EXPECT_FALSE(ArrayEq(a, c));
7359   EXPECT_FALSE(ArrayEq(a, 2, c));
7360 }
7361 
7362 // Tests ArrayAwareFind().
7363 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7364 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7365   const char a[] = "hello";
7366   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7367   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7368 }
7369 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7370 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7371   int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
7372   const int b[2] = {2, 3};
7373   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7374 
7375   const int c[2] = {6, 7};
7376   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7377 }
7378 
7379 // Tests CopyArray().
7380 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7381 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7382   int n = 0;
7383   CopyArray('a', &n);
7384   EXPECT_EQ('a', n);
7385 }
7386 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7387 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7388   const char a[3] = "hi";
7389   int b[3];
7390 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7391   CopyArray(a, &b);
7392   EXPECT_TRUE(ArrayEq(a, b));
7393 #endif
7394 
7395   int c[3];
7396   CopyArray(a, 3, c);
7397   EXPECT_TRUE(ArrayEq(a, c));
7398 }
7399 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7400 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7401   const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
7402   int b[2][3];
7403 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7404   CopyArray(a, &b);
7405   EXPECT_TRUE(ArrayEq(a, b));
7406 #endif
7407 
7408   int c[2][3];
7409   CopyArray(a, 2, c);
7410   EXPECT_TRUE(ArrayEq(a, c));
7411 }
7412 
7413 // Tests NativeArray.
7414 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7415 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7416   const int a[3] = {0, 1, 2};
7417   NativeArray<int> na(a, 3, RelationToSourceReference());
7418   EXPECT_EQ(3U, na.size());
7419   EXPECT_EQ(a, na.begin());
7420 }
7421 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7422 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7423   typedef int Array[2];
7424   Array* a = new Array[1];
7425   (*a)[0] = 0;
7426   (*a)[1] = 1;
7427   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7428   EXPECT_NE(*a, na.begin());
7429   delete[] a;
7430   EXPECT_EQ(0, na.begin()[0]);
7431   EXPECT_EQ(1, na.begin()[1]);
7432 
7433   // We rely on the heap checker to verify that na deletes the copy of
7434   // array.
7435 }
7436 
TEST(NativeArrayTest,TypeMembersAreCorrect)7437 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7438   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7439   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7440 
7441   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7442   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7443 }
7444 
TEST(NativeArrayTest,MethodsWork)7445 TEST(NativeArrayTest, MethodsWork) {
7446   const int a[3] = {0, 1, 2};
7447   NativeArray<int> na(a, 3, RelationToSourceCopy());
7448   ASSERT_EQ(3U, na.size());
7449   EXPECT_EQ(3, na.end() - na.begin());
7450 
7451   NativeArray<int>::const_iterator it = na.begin();
7452   EXPECT_EQ(0, *it);
7453   ++it;
7454   EXPECT_EQ(1, *it);
7455   it++;
7456   EXPECT_EQ(2, *it);
7457   ++it;
7458   EXPECT_EQ(na.end(), it);
7459 
7460   EXPECT_TRUE(na == na);
7461 
7462   NativeArray<int> na2(a, 3, RelationToSourceReference());
7463   EXPECT_TRUE(na == na2);
7464 
7465   const int b1[3] = {0, 1, 1};
7466   const int b2[4] = {0, 1, 2, 3};
7467   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7468   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7469 }
7470 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7471 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7472   const char a[2][3] = {"hi", "lo"};
7473   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7474   ASSERT_EQ(2U, na.size());
7475   EXPECT_EQ(a, na.begin());
7476 }
7477 
7478 // IndexSequence
TEST(IndexSequence,MakeIndexSequence)7479 TEST(IndexSequence, MakeIndexSequence) {
7480   using testing::internal::IndexSequence;
7481   using testing::internal::MakeIndexSequence;
7482   EXPECT_TRUE(
7483       (std::is_same<IndexSequence<>, MakeIndexSequence<0>::type>::value));
7484   EXPECT_TRUE(
7485       (std::is_same<IndexSequence<0>, MakeIndexSequence<1>::type>::value));
7486   EXPECT_TRUE(
7487       (std::is_same<IndexSequence<0, 1>, MakeIndexSequence<2>::type>::value));
7488   EXPECT_TRUE((
7489       std::is_same<IndexSequence<0, 1, 2>, MakeIndexSequence<3>::type>::value));
7490   EXPECT_TRUE(
7491       (std::is_base_of<IndexSequence<0, 1, 2>, MakeIndexSequence<3>>::value));
7492 }
7493 
7494 // ElemFromList
TEST(ElemFromList,Basic)7495 TEST(ElemFromList, Basic) {
7496   using testing::internal::ElemFromList;
7497   EXPECT_TRUE(
7498       (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7499   EXPECT_TRUE(
7500       (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7501   EXPECT_TRUE(
7502       (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7503   EXPECT_TRUE((
7504       std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7505                                       char, int, int, int, int>::type>::value));
7506 }
7507 
7508 // FlatTuple
TEST(FlatTuple,Basic)7509 TEST(FlatTuple, Basic) {
7510   using testing::internal::FlatTuple;
7511 
7512   FlatTuple<int, double, const char*> tuple = {};
7513   EXPECT_EQ(0, tuple.Get<0>());
7514   EXPECT_EQ(0.0, tuple.Get<1>());
7515   EXPECT_EQ(nullptr, tuple.Get<2>());
7516 
7517   tuple = FlatTuple<int, double, const char*>(
7518       testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7519   EXPECT_EQ(7, tuple.Get<0>());
7520   EXPECT_EQ(3.2, tuple.Get<1>());
7521   EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7522 
7523   tuple.Get<1>() = 5.1;
7524   EXPECT_EQ(5.1, tuple.Get<1>());
7525 }
7526 
7527 namespace {
AddIntToString(int i,const std::string & s)7528 std::string AddIntToString(int i, const std::string& s) {
7529   return s + std::to_string(i);
7530 }
7531 }  // namespace
7532 
TEST(FlatTuple,Apply)7533 TEST(FlatTuple, Apply) {
7534   using testing::internal::FlatTuple;
7535 
7536   FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7537                                     5, "Hello"};
7538 
7539   // Lambda.
7540   EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7541     return i == static_cast<int>(s.size());
7542   }));
7543 
7544   // Function.
7545   EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7546 
7547   // Mutating operations.
7548   tuple.Apply([](int& i, std::string& s) {
7549     ++i;
7550     s += s;
7551   });
7552   EXPECT_EQ(tuple.Get<0>(), 6);
7553   EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7554 }
7555 
7556 struct ConstructionCounting {
ConstructionCountingConstructionCounting7557   ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCountingConstructionCounting7558   ~ConstructionCounting() { ++dtor_calls; }
ConstructionCountingConstructionCounting7559   ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCountingConstructionCounting7560   ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
operator =ConstructionCounting7561   ConstructionCounting& operator=(const ConstructionCounting&) {
7562     ++copy_assignment_calls;
7563     return *this;
7564   }
operator =ConstructionCounting7565   ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7566     ++move_assignment_calls;
7567     return *this;
7568   }
7569 
ResetConstructionCounting7570   static void Reset() {
7571     default_ctor_calls = 0;
7572     dtor_calls = 0;
7573     copy_ctor_calls = 0;
7574     move_ctor_calls = 0;
7575     copy_assignment_calls = 0;
7576     move_assignment_calls = 0;
7577   }
7578 
7579   static int default_ctor_calls;
7580   static int dtor_calls;
7581   static int copy_ctor_calls;
7582   static int move_ctor_calls;
7583   static int copy_assignment_calls;
7584   static int move_assignment_calls;
7585 };
7586 
7587 int ConstructionCounting::default_ctor_calls = 0;
7588 int ConstructionCounting::dtor_calls = 0;
7589 int ConstructionCounting::copy_ctor_calls = 0;
7590 int ConstructionCounting::move_ctor_calls = 0;
7591 int ConstructionCounting::copy_assignment_calls = 0;
7592 int ConstructionCounting::move_assignment_calls = 0;
7593 
TEST(FlatTuple,ConstructorCalls)7594 TEST(FlatTuple, ConstructorCalls) {
7595   using testing::internal::FlatTuple;
7596 
7597   // Default construction.
7598   ConstructionCounting::Reset();
7599   { FlatTuple<ConstructionCounting> tuple; }
7600   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7601   EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7602   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7603   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7604   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7605   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7606 
7607   // Copy construction.
7608   ConstructionCounting::Reset();
7609   {
7610     ConstructionCounting elem;
7611     FlatTuple<ConstructionCounting> tuple{
7612         testing::internal::FlatTupleConstructTag{}, elem};
7613   }
7614   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7615   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7616   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7617   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7618   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7619   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7620 
7621   // Move construction.
7622   ConstructionCounting::Reset();
7623   {
7624     FlatTuple<ConstructionCounting> tuple{
7625         testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7626   }
7627   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7628   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7629   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7630   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7631   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7632   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7633 
7634   // Copy assignment.
7635   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7636   // elements
7637   ConstructionCounting::Reset();
7638   {
7639     FlatTuple<ConstructionCounting> tuple;
7640     ConstructionCounting elem;
7641     tuple.Get<0>() = elem;
7642   }
7643   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7644   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7645   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7646   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7647   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7648   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7649 
7650   // Move assignment.
7651   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7652   // elements
7653   ConstructionCounting::Reset();
7654   {
7655     FlatTuple<ConstructionCounting> tuple;
7656     tuple.Get<0>() = ConstructionCounting{};
7657   }
7658   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7659   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7660   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7661   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7662   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7663   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7664 
7665   ConstructionCounting::Reset();
7666 }
7667 
TEST(FlatTuple,ManyTypes)7668 TEST(FlatTuple, ManyTypes) {
7669   using testing::internal::FlatTuple;
7670 
7671   // Instantiate FlatTuple with 257 ints.
7672   // Tests show that we can do it with thousands of elements, but very long
7673   // compile times makes it unusuitable for this test.
7674 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7675 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7676 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7677 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7678 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7679 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7680 
7681   // Let's make sure that we can have a very long list of types without blowing
7682   // up the template instantiation depth.
7683   FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7684 
7685   tuple.Get<0>() = 7;
7686   tuple.Get<99>() = 17;
7687   tuple.Get<256>() = 1000;
7688   EXPECT_EQ(7, tuple.Get<0>());
7689   EXPECT_EQ(17, tuple.Get<99>());
7690   EXPECT_EQ(1000, tuple.Get<256>());
7691 }
7692 
7693 // Tests SkipPrefix().
7694 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7695 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7696   const char* const str = "hello";
7697 
7698   const char* p = str;
7699   EXPECT_TRUE(SkipPrefix("", &p));
7700   EXPECT_EQ(str, p);
7701 
7702   p = str;
7703   EXPECT_TRUE(SkipPrefix("hell", &p));
7704   EXPECT_EQ(str + 4, p);
7705 }
7706 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7707 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7708   const char* const str = "world";
7709 
7710   const char* p = str;
7711   EXPECT_FALSE(SkipPrefix("W", &p));
7712   EXPECT_EQ(str, p);
7713 
7714   p = str;
7715   EXPECT_FALSE(SkipPrefix("world!", &p));
7716   EXPECT_EQ(str, p);
7717 }
7718 
7719 // Tests ad_hoc_test_result().
TEST(AdHocTestResultTest,AdHocTestResultForUnitTestDoesNotShowFailure)7720 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7721   const testing::TestResult& test_result =
7722       testing::UnitTest::GetInstance()->ad_hoc_test_result();
7723   EXPECT_FALSE(test_result.Failed());
7724 }
7725 
7726 class DynamicUnitTestFixture : public testing::Test {};
7727 
7728 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7729   void TestBody() override { EXPECT_TRUE(true); }
7730 };
7731 
7732 auto* dynamic_test = testing::RegisterTest(
7733     "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anon5476e4aa0a02() 7734     __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7735 
TEST(RegisterTest,WasRegistered)7736 TEST(RegisterTest, WasRegistered) {
7737   const auto& unittest = testing::UnitTest::GetInstance();
7738   for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7739     auto* tests = unittest->GetTestSuite(i);
7740     if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7741     for (int j = 0; j < tests->total_test_count(); ++j) {
7742       if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7743       // Found it.
7744       EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7745       EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7746       return;
7747     }
7748   }
7749 
7750   FAIL() << "Didn't find the test!";
7751 }
7752 
7753 // Test that the pattern globbing algorithm is linear. If not, this test should
7754 // time out.
TEST(PatternGlobbingTest,MatchesFilterLinearRuntime)7755 TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7756   std::string name(100, 'a');  // Construct the string (a^100)b
7757   name.push_back('b');
7758 
7759   std::string pattern;  // Construct the string ((a*)^100)b
7760   for (int i = 0; i < 100; ++i) {
7761     pattern.append("a*");
7762   }
7763   pattern.push_back('b');
7764 
7765   EXPECT_TRUE(
7766       testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7767 }
7768 
TEST(PatternGlobbingTest,MatchesFilterWithMultiplePatterns)7769 TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7770   const std::string name = "aaaa";
7771   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7772   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7773   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7774   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7775   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7776 }
7777 
TEST(PatternGlobbingTest,MatchesFilterEdgeCases)7778 TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7779   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7780   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7781   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7782   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7783 }
7784