1 /*	$NetBSD: vfs_bio.c,v 1.259 2016/02/01 05:05:43 riz Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, and by Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
66  */
67 
68 /*-
69  * Copyright (c) 1994 Christopher G. Demetriou
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions
73  * are met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce the above copyright
77  *    notice, this list of conditions and the following disclaimer in the
78  *    documentation and/or other materials provided with the distribution.
79  * 3. All advertising materials mentioning features or use of this software
80  *    must display the following acknowledgement:
81  *	This product includes software developed by the University of
82  *	California, Berkeley and its contributors.
83  * 4. Neither the name of the University nor the names of its contributors
84  *    may be used to endorse or promote products derived from this software
85  *    without specific prior written permission.
86  *
87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97  * SUCH DAMAGE.
98  *
99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
100  */
101 
102 /*
103  * The buffer cache subsystem.
104  *
105  * Some references:
106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
108  *		UNIX Operating System (Addison Welley, 1989)
109  *
110  * Locking
111  *
112  * There are three locks:
113  * - bufcache_lock: protects global buffer cache state.
114  * - BC_BUSY: a long term per-buffer lock.
115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116  *
117  * For buffers associated with vnodes (a most common case) b_objlock points
118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
119  *
120  * Lock order:
121  *	bufcache_lock ->
122  *		buf_t::b_objlock
123  */
124 
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.259 2016/02/01 05:05:43 riz Exp $");
127 
128 #ifdef _KERNEL_OPT
129 #include "opt_bufcache.h"
130 #include "opt_dtrace.h"
131 #endif
132 
133 #include <sys/param.h>
134 #include <sys/systm.h>
135 #include <sys/kernel.h>
136 #include <sys/proc.h>
137 #include <sys/buf.h>
138 #include <sys/vnode.h>
139 #include <sys/mount.h>
140 #include <sys/resourcevar.h>
141 #include <sys/sysctl.h>
142 #include <sys/conf.h>
143 #include <sys/kauth.h>
144 #include <sys/fstrans.h>
145 #include <sys/intr.h>
146 #include <sys/cpu.h>
147 #include <sys/wapbl.h>
148 #include <sys/bitops.h>
149 #include <sys/cprng.h>
150 #include <sys/sdt.h>
151 
152 #include <uvm/uvm.h>	/* extern struct uvm uvm */
153 
154 #include <miscfs/specfs/specdev.h>
155 
156 #ifndef	BUFPAGES
157 # define BUFPAGES 0
158 #endif
159 
160 #ifdef BUFCACHE
161 # if (BUFCACHE < 5) || (BUFCACHE > 95)
162 #  error BUFCACHE is not between 5 and 95
163 # endif
164 #else
165 # define BUFCACHE 15
166 #endif
167 
168 u_int	nbuf;			/* desired number of buffer headers */
169 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
170 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
171 
172 /* Function prototypes */
173 struct bqueue;
174 
175 static void buf_setwm(void);
176 static int buf_trim(void);
177 static void *bufpool_page_alloc(struct pool *, int);
178 static void bufpool_page_free(struct pool *, void *);
179 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
180 static buf_t *getnewbuf(int, int, int);
181 static int buf_lotsfree(void);
182 static int buf_canrelease(void);
183 static u_long buf_mempoolidx(u_long);
184 static u_long buf_roundsize(u_long);
185 static void *buf_alloc(size_t);
186 static void buf_mrelease(void *, size_t);
187 static void binsheadfree(buf_t *, struct bqueue *);
188 static void binstailfree(buf_t *, struct bqueue *);
189 #ifdef DEBUG
190 static int checkfreelist(buf_t *, struct bqueue *, int);
191 #endif
192 static void biointr(void *);
193 static void biodone2(buf_t *);
194 static void bref(buf_t *);
195 static void brele(buf_t *);
196 static void sysctl_kern_buf_setup(void);
197 static void sysctl_vm_buf_setup(void);
198 
199 /*
200  * Definitions for the buffer hash lists.
201  */
202 #define	BUFHASH(dvp, lbn)	\
203 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
204 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
205 u_long	bufhash;
206 struct bqueue bufqueues[BQUEUES];
207 
208 static kcondvar_t needbuffer_cv;
209 
210 /*
211  * Buffer queue lock.
212  */
213 kmutex_t bufcache_lock;
214 kmutex_t buffer_lock;
215 
216 /* Software ISR for completed transfers. */
217 static void *biodone_sih;
218 
219 /* Buffer pool for I/O buffers. */
220 static pool_cache_t buf_cache;
221 static pool_cache_t bufio_cache;
222 
223 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
224 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
225 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
226 
227 /* Buffer memory pools */
228 static struct pool bmempools[NMEMPOOLS];
229 
230 static struct vm_map *buf_map;
231 
232 /*
233  * Buffer memory pool allocator.
234  */
235 static void *
bufpool_page_alloc(struct pool * pp,int flags)236 bufpool_page_alloc(struct pool *pp, int flags)
237 {
238 
239 	return (void *)uvm_km_alloc(buf_map,
240 	    MAXBSIZE, MAXBSIZE,
241 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
242 	    | UVM_KMF_WIRED);
243 }
244 
245 static void
bufpool_page_free(struct pool * pp,void * v)246 bufpool_page_free(struct pool *pp, void *v)
247 {
248 
249 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
250 }
251 
252 static struct pool_allocator bufmempool_allocator = {
253 	.pa_alloc = bufpool_page_alloc,
254 	.pa_free = bufpool_page_free,
255 	.pa_pagesz = MAXBSIZE,
256 };
257 
258 /* Buffer memory management variables */
259 u_long bufmem_valimit;
260 u_long bufmem_hiwater;
261 u_long bufmem_lowater;
262 u_long bufmem;
263 
264 /*
265  * MD code can call this to set a hard limit on the amount
266  * of virtual memory used by the buffer cache.
267  */
268 int
buf_setvalimit(vsize_t sz)269 buf_setvalimit(vsize_t sz)
270 {
271 
272 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
273 	if (sz < NMEMPOOLS * MAXBSIZE)
274 		return EINVAL;
275 
276 	bufmem_valimit = sz;
277 	return 0;
278 }
279 
280 static void
buf_setwm(void)281 buf_setwm(void)
282 {
283 
284 	bufmem_hiwater = buf_memcalc();
285 	/* lowater is approx. 2% of memory (with bufcache = 15) */
286 #define	BUFMEM_WMSHIFT	3
287 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
288 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
289 		/* Ensure a reasonable minimum value */
290 		bufmem_hiwater = BUFMEM_HIWMMIN;
291 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
292 }
293 
294 #ifdef DEBUG
295 int debug_verify_freelist = 0;
296 static int
checkfreelist(buf_t * bp,struct bqueue * dp,int ison)297 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
298 {
299 	buf_t *b;
300 
301 	if (!debug_verify_freelist)
302 		return 1;
303 
304 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
305 		if (b == bp)
306 			return ison ? 1 : 0;
307 	}
308 
309 	return ison ? 0 : 1;
310 }
311 #endif
312 
313 /*
314  * Insq/Remq for the buffer hash lists.
315  * Call with buffer queue locked.
316  */
317 static void
binsheadfree(buf_t * bp,struct bqueue * dp)318 binsheadfree(buf_t *bp, struct bqueue *dp)
319 {
320 
321 	KASSERT(mutex_owned(&bufcache_lock));
322 	KASSERT(bp->b_freelistindex == -1);
323 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
324 	dp->bq_bytes += bp->b_bufsize;
325 	bp->b_freelistindex = dp - bufqueues;
326 }
327 
328 static void
binstailfree(buf_t * bp,struct bqueue * dp)329 binstailfree(buf_t *bp, struct bqueue *dp)
330 {
331 
332 	KASSERT(mutex_owned(&bufcache_lock));
333 	KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
334 	    "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
335 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
336 	dp->bq_bytes += bp->b_bufsize;
337 	bp->b_freelistindex = dp - bufqueues;
338 }
339 
340 void
bremfree(buf_t * bp)341 bremfree(buf_t *bp)
342 {
343 	struct bqueue *dp;
344 	int bqidx = bp->b_freelistindex;
345 
346 	KASSERT(mutex_owned(&bufcache_lock));
347 
348 	KASSERT(bqidx != -1);
349 	dp = &bufqueues[bqidx];
350 	KDASSERT(checkfreelist(bp, dp, 1));
351 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
352 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
353 	dp->bq_bytes -= bp->b_bufsize;
354 
355 	/* For the sysctl helper. */
356 	if (bp == dp->bq_marker)
357 		dp->bq_marker = NULL;
358 
359 #if defined(DIAGNOSTIC)
360 	bp->b_freelistindex = -1;
361 #endif /* defined(DIAGNOSTIC) */
362 }
363 
364 /*
365  * Add a reference to an buffer structure that came from buf_cache.
366  */
367 static inline void
bref(buf_t * bp)368 bref(buf_t *bp)
369 {
370 
371 	KASSERT(mutex_owned(&bufcache_lock));
372 	KASSERT(bp->b_refcnt > 0);
373 
374 	bp->b_refcnt++;
375 }
376 
377 /*
378  * Free an unused buffer structure that came from buf_cache.
379  */
380 static inline void
brele(buf_t * bp)381 brele(buf_t *bp)
382 {
383 
384 	KASSERT(mutex_owned(&bufcache_lock));
385 	KASSERT(bp->b_refcnt > 0);
386 
387 	if (bp->b_refcnt-- == 1) {
388 		buf_destroy(bp);
389 #ifdef DEBUG
390 		memset((char *)bp, 0, sizeof(*bp));
391 #endif
392 		pool_cache_put(buf_cache, bp);
393 	}
394 }
395 
396 /*
397  * note that for some ports this is used by pmap bootstrap code to
398  * determine kva size.
399  */
400 u_long
buf_memcalc(void)401 buf_memcalc(void)
402 {
403 	u_long n;
404 	vsize_t mapsz = 0;
405 
406 	/*
407 	 * Determine the upper bound of memory to use for buffers.
408 	 *
409 	 *	- If bufpages is specified, use that as the number
410 	 *	  pages.
411 	 *
412 	 *	- Otherwise, use bufcache as the percentage of
413 	 *	  physical memory.
414 	 */
415 	if (bufpages != 0) {
416 		n = bufpages;
417 	} else {
418 		if (bufcache < 5) {
419 			printf("forcing bufcache %d -> 5", bufcache);
420 			bufcache = 5;
421 		}
422 		if (bufcache > 95) {
423 			printf("forcing bufcache %d -> 95", bufcache);
424 			bufcache = 95;
425 		}
426 		if (buf_map != NULL)
427 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
428 		n = calc_cache_size(mapsz, bufcache,
429 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
430 		    / PAGE_SIZE;
431 	}
432 
433 	n <<= PAGE_SHIFT;
434 	if (bufmem_valimit != 0 && n > bufmem_valimit)
435 		n = bufmem_valimit;
436 
437 	return (n);
438 }
439 
440 /*
441  * Initialize buffers and hash links for buffers.
442  */
443 void
bufinit(void)444 bufinit(void)
445 {
446 	struct bqueue *dp;
447 	int use_std;
448 	u_int i;
449 
450 	biodone_vfs = biodone;
451 
452 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
453 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
454 	cv_init(&needbuffer_cv, "needbuf");
455 
456 	if (bufmem_valimit != 0) {
457 		vaddr_t minaddr = 0, maxaddr;
458 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
459 					  bufmem_valimit, 0, false, 0);
460 		if (buf_map == NULL)
461 			panic("bufinit: cannot allocate submap");
462 	} else
463 		buf_map = kernel_map;
464 
465 	/*
466 	 * Initialize buffer cache memory parameters.
467 	 */
468 	bufmem = 0;
469 	buf_setwm();
470 
471 	/* On "small" machines use small pool page sizes where possible */
472 	use_std = (physmem < atop(16*1024*1024));
473 
474 	/*
475 	 * Also use them on systems that can map the pool pages using
476 	 * a direct-mapped segment.
477 	 */
478 #ifdef PMAP_MAP_POOLPAGE
479 	use_std = 1;
480 #endif
481 
482 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
483 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
484 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
485 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
486 
487 	for (i = 0; i < NMEMPOOLS; i++) {
488 		struct pool_allocator *pa;
489 		struct pool *pp = &bmempools[i];
490 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
491 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
492 		if (__predict_false(size >= 1048576))
493 			(void)snprintf(name, 8, "buf%um", size / 1048576);
494 		else if (__predict_true(size >= 1024))
495 			(void)snprintf(name, 8, "buf%uk", size / 1024);
496 		else
497 			(void)snprintf(name, 8, "buf%ub", size);
498 		pa = (size <= PAGE_SIZE && use_std)
499 			? &pool_allocator_nointr
500 			: &bufmempool_allocator;
501 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
502 		pool_setlowat(pp, 1);
503 		pool_sethiwat(pp, 1);
504 	}
505 
506 	/* Initialize the buffer queues */
507 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
508 		TAILQ_INIT(&dp->bq_queue);
509 		dp->bq_bytes = 0;
510 	}
511 
512 	/*
513 	 * Estimate hash table size based on the amount of memory we
514 	 * intend to use for the buffer cache. The average buffer
515 	 * size is dependent on our clients (i.e. filesystems).
516 	 *
517 	 * For now, use an empirical 3K per buffer.
518 	 */
519 	nbuf = (bufmem_hiwater / 1024) / 3;
520 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
521 
522 	sysctl_kern_buf_setup();
523 	sysctl_vm_buf_setup();
524 }
525 
526 void
bufinit2(void)527 bufinit2(void)
528 {
529 
530 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
531 	    NULL);
532 	if (biodone_sih == NULL)
533 		panic("bufinit2: can't establish soft interrupt");
534 }
535 
536 static int
buf_lotsfree(void)537 buf_lotsfree(void)
538 {
539 	u_long guess;
540 
541 	/* Always allocate if less than the low water mark. */
542 	if (bufmem < bufmem_lowater)
543 		return 1;
544 
545 	/* Never allocate if greater than the high water mark. */
546 	if (bufmem > bufmem_hiwater)
547 		return 0;
548 
549 	/* If there's anything on the AGE list, it should be eaten. */
550 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
551 		return 0;
552 
553 	/*
554 	 * The probabily of getting a new allocation is inversely
555 	 * proportional  to the current size of the cache above
556 	 * the low water mark.  Divide the total first to avoid overflows
557 	 * in the product.
558 	 */
559 	guess = cprng_fast32() % 16;
560 
561 	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
562 	    (bufmem - bufmem_lowater))
563 		return 1;
564 
565 	/* Otherwise don't allocate. */
566 	return 0;
567 }
568 
569 /*
570  * Return estimate of bytes we think need to be
571  * released to help resolve low memory conditions.
572  *
573  * => called with bufcache_lock held.
574  */
575 static int
buf_canrelease(void)576 buf_canrelease(void)
577 {
578 	int pagedemand, ninvalid = 0;
579 
580 	KASSERT(mutex_owned(&bufcache_lock));
581 
582 	if (bufmem < bufmem_lowater)
583 		return 0;
584 
585 	if (bufmem > bufmem_hiwater)
586 		return bufmem - bufmem_hiwater;
587 
588 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
589 
590 	pagedemand = uvmexp.freetarg - uvmexp.free;
591 	if (pagedemand < 0)
592 		return ninvalid;
593 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
594 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
595 }
596 
597 /*
598  * Buffer memory allocation helper functions
599  */
600 static u_long
buf_mempoolidx(u_long size)601 buf_mempoolidx(u_long size)
602 {
603 	u_int n = 0;
604 
605 	size -= 1;
606 	size >>= MEMPOOL_INDEX_OFFSET;
607 	while (size) {
608 		size >>= 1;
609 		n += 1;
610 	}
611 	if (n >= NMEMPOOLS)
612 		panic("buf mem pool index %d", n);
613 	return n;
614 }
615 
616 static u_long
buf_roundsize(u_long size)617 buf_roundsize(u_long size)
618 {
619 	/* Round up to nearest power of 2 */
620 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
621 }
622 
623 static void *
buf_alloc(size_t size)624 buf_alloc(size_t size)
625 {
626 	u_int n = buf_mempoolidx(size);
627 	void *addr;
628 
629 	while (1) {
630 		addr = pool_get(&bmempools[n], PR_NOWAIT);
631 		if (addr != NULL)
632 			break;
633 
634 		/* No memory, see if we can free some. If so, try again */
635 		mutex_enter(&bufcache_lock);
636 		if (buf_drain(1) > 0) {
637 			mutex_exit(&bufcache_lock);
638 			continue;
639 		}
640 
641 		if (curlwp == uvm.pagedaemon_lwp) {
642 			mutex_exit(&bufcache_lock);
643 			return NULL;
644 		}
645 
646 		/* Wait for buffers to arrive on the LRU queue */
647 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
648 		mutex_exit(&bufcache_lock);
649 	}
650 
651 	return addr;
652 }
653 
654 static void
buf_mrelease(void * addr,size_t size)655 buf_mrelease(void *addr, size_t size)
656 {
657 
658 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
659 }
660 
661 /*
662  * bread()/breadn() helper.
663  */
664 static buf_t *
bio_doread(struct vnode * vp,daddr_t blkno,int size,int async)665 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
666 {
667 	buf_t *bp;
668 	struct mount *mp;
669 
670 	bp = getblk(vp, blkno, size, 0, 0);
671 
672 	/*
673 	 * getblk() may return NULL if we are the pagedaemon.
674 	 */
675 	if (bp == NULL) {
676 		KASSERT(curlwp == uvm.pagedaemon_lwp);
677 		return NULL;
678 	}
679 
680 	/*
681 	 * If buffer does not have data valid, start a read.
682 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
683 	 * Therefore, it's valid if its I/O has completed or been delayed.
684 	 */
685 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
686 		/* Start I/O for the buffer. */
687 		SET(bp->b_flags, B_READ | async);
688 		if (async)
689 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
690 		else
691 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
692 		VOP_STRATEGY(vp, bp);
693 
694 		/* Pay for the read. */
695 		curlwp->l_ru.ru_inblock++;
696 	} else if (async)
697 		brelse(bp, 0);
698 
699 	if (vp->v_type == VBLK)
700 		mp = spec_node_getmountedfs(vp);
701 	else
702 		mp = vp->v_mount;
703 
704 	/*
705 	 * Collect statistics on synchronous and asynchronous reads.
706 	 * Reads from block devices are charged to their associated
707 	 * filesystem (if any).
708 	 */
709 	if (mp != NULL) {
710 		if (async == 0)
711 			mp->mnt_stat.f_syncreads++;
712 		else
713 			mp->mnt_stat.f_asyncreads++;
714 	}
715 
716 	return (bp);
717 }
718 
719 /*
720  * Read a disk block.
721  * This algorithm described in Bach (p.54).
722  */
723 int
bread(struct vnode * vp,daddr_t blkno,int size,int flags,buf_t ** bpp)724 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
725 {
726 	buf_t *bp;
727 	int error;
728 
729 	/* Get buffer for block. */
730 	bp = *bpp = bio_doread(vp, blkno, size, 0);
731 	if (bp == NULL)
732 		return ENOMEM;
733 
734 	/* Wait for the read to complete, and return result. */
735 	error = biowait(bp);
736 	if (error == 0 && (flags & B_MODIFY) != 0)
737 		error = fscow_run(bp, true);
738 	if (error) {
739 		brelse(bp, 0);
740 		*bpp = NULL;
741 	}
742 
743 	return error;
744 }
745 
746 /*
747  * Read-ahead multiple disk blocks. The first is sync, the rest async.
748  * Trivial modification to the breada algorithm presented in Bach (p.55).
749  */
750 int
breadn(struct vnode * vp,daddr_t blkno,int size,daddr_t * rablks,int * rasizes,int nrablks,int flags,buf_t ** bpp)751 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
752     int *rasizes, int nrablks, int flags, buf_t **bpp)
753 {
754 	buf_t *bp;
755 	int error, i;
756 
757 	bp = *bpp = bio_doread(vp, blkno, size, 0);
758 	if (bp == NULL)
759 		return ENOMEM;
760 
761 	/*
762 	 * For each of the read-ahead blocks, start a read, if necessary.
763 	 */
764 	mutex_enter(&bufcache_lock);
765 	for (i = 0; i < nrablks; i++) {
766 		/* If it's in the cache, just go on to next one. */
767 		if (incore(vp, rablks[i]))
768 			continue;
769 
770 		/* Get a buffer for the read-ahead block */
771 		mutex_exit(&bufcache_lock);
772 		(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
773 		mutex_enter(&bufcache_lock);
774 	}
775 	mutex_exit(&bufcache_lock);
776 
777 	/* Otherwise, we had to start a read for it; wait until it's valid. */
778 	error = biowait(bp);
779 	if (error == 0 && (flags & B_MODIFY) != 0)
780 		error = fscow_run(bp, true);
781 	if (error) {
782 		brelse(bp, 0);
783 		*bpp = NULL;
784 	}
785 
786 	return error;
787 }
788 
789 /*
790  * Block write.  Described in Bach (p.56)
791  */
792 int
bwrite(buf_t * bp)793 bwrite(buf_t *bp)
794 {
795 	int rv, sync, wasdelayed;
796 	struct vnode *vp;
797 	struct mount *mp;
798 
799 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
800 	KASSERT(!cv_has_waiters(&bp->b_done));
801 
802 	vp = bp->b_vp;
803 	if (vp != NULL) {
804 		KASSERT(bp->b_objlock == vp->v_interlock);
805 		if (vp->v_type == VBLK)
806 			mp = spec_node_getmountedfs(vp);
807 		else
808 			mp = vp->v_mount;
809 	} else {
810 		mp = NULL;
811 	}
812 
813 	if (mp && mp->mnt_wapbl) {
814 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
815 			bdwrite(bp);
816 			return 0;
817 		}
818 	}
819 
820 	/*
821 	 * Remember buffer type, to switch on it later.  If the write was
822 	 * synchronous, but the file system was mounted with MNT_ASYNC,
823 	 * convert it to a delayed write.
824 	 * XXX note that this relies on delayed tape writes being converted
825 	 * to async, not sync writes (which is safe, but ugly).
826 	 */
827 	sync = !ISSET(bp->b_flags, B_ASYNC);
828 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
829 		bdwrite(bp);
830 		return (0);
831 	}
832 
833 	/*
834 	 * Collect statistics on synchronous and asynchronous writes.
835 	 * Writes to block devices are charged to their associated
836 	 * filesystem (if any).
837 	 */
838 	if (mp != NULL) {
839 		if (sync)
840 			mp->mnt_stat.f_syncwrites++;
841 		else
842 			mp->mnt_stat.f_asyncwrites++;
843 	}
844 
845 	/*
846 	 * Pay for the I/O operation and make sure the buf is on the correct
847 	 * vnode queue.
848 	 */
849 	bp->b_error = 0;
850 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
851 	CLR(bp->b_flags, B_READ);
852 	if (wasdelayed) {
853 		mutex_enter(&bufcache_lock);
854 		mutex_enter(bp->b_objlock);
855 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
856 		reassignbuf(bp, bp->b_vp);
857 		mutex_exit(&bufcache_lock);
858 	} else {
859 		curlwp->l_ru.ru_oublock++;
860 		mutex_enter(bp->b_objlock);
861 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
862 	}
863 	if (vp != NULL)
864 		vp->v_numoutput++;
865 	mutex_exit(bp->b_objlock);
866 
867 	/* Initiate disk write. */
868 	if (sync)
869 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
870 	else
871 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
872 
873 	VOP_STRATEGY(vp, bp);
874 
875 	if (sync) {
876 		/* If I/O was synchronous, wait for it to complete. */
877 		rv = biowait(bp);
878 
879 		/* Release the buffer. */
880 		brelse(bp, 0);
881 
882 		return (rv);
883 	} else {
884 		return (0);
885 	}
886 }
887 
888 int
vn_bwrite(void * v)889 vn_bwrite(void *v)
890 {
891 	struct vop_bwrite_args *ap = v;
892 
893 	return (bwrite(ap->a_bp));
894 }
895 
896 /*
897  * Delayed write.
898  *
899  * The buffer is marked dirty, but is not queued for I/O.
900  * This routine should be used when the buffer is expected
901  * to be modified again soon, typically a small write that
902  * partially fills a buffer.
903  *
904  * NB: magnetic tapes cannot be delayed; they must be
905  * written in the order that the writes are requested.
906  *
907  * Described in Leffler, et al. (pp. 208-213).
908  */
909 void
bdwrite(buf_t * bp)910 bdwrite(buf_t *bp)
911 {
912 
913 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
914 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
915 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
916 	KASSERT(!cv_has_waiters(&bp->b_done));
917 
918 	/* If this is a tape block, write the block now. */
919 	if (bdev_type(bp->b_dev) == D_TAPE) {
920 		bawrite(bp);
921 		return;
922 	}
923 
924 	if (wapbl_vphaswapbl(bp->b_vp)) {
925 		struct mount *mp = wapbl_vptomp(bp->b_vp);
926 
927 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
928 			WAPBL_ADD_BUF(mp, bp);
929 		}
930 	}
931 
932 	/*
933 	 * If the block hasn't been seen before:
934 	 *	(1) Mark it as having been seen,
935 	 *	(2) Charge for the write,
936 	 *	(3) Make sure it's on its vnode's correct block list.
937 	 */
938 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
939 
940 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
941 		mutex_enter(&bufcache_lock);
942 		mutex_enter(bp->b_objlock);
943 		SET(bp->b_oflags, BO_DELWRI);
944 		curlwp->l_ru.ru_oublock++;
945 		reassignbuf(bp, bp->b_vp);
946 		mutex_exit(&bufcache_lock);
947 	} else {
948 		mutex_enter(bp->b_objlock);
949 	}
950 	/* Otherwise, the "write" is done, so mark and release the buffer. */
951 	CLR(bp->b_oflags, BO_DONE);
952 	mutex_exit(bp->b_objlock);
953 
954 	brelse(bp, 0);
955 }
956 
957 /*
958  * Asynchronous block write; just an asynchronous bwrite().
959  */
960 void
bawrite(buf_t * bp)961 bawrite(buf_t *bp)
962 {
963 
964 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
965 	KASSERT(bp->b_vp != NULL);
966 
967 	SET(bp->b_flags, B_ASYNC);
968 	VOP_BWRITE(bp->b_vp, bp);
969 }
970 
971 /*
972  * Release a buffer on to the free lists.
973  * Described in Bach (p. 46).
974  */
975 void
brelsel(buf_t * bp,int set)976 brelsel(buf_t *bp, int set)
977 {
978 	struct bqueue *bufq;
979 	struct vnode *vp;
980 
981 	KASSERT(bp != NULL);
982 	KASSERT(mutex_owned(&bufcache_lock));
983 	KASSERT(!cv_has_waiters(&bp->b_done));
984 	KASSERT(bp->b_refcnt > 0);
985 
986 	SET(bp->b_cflags, set);
987 
988 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
989 	KASSERT(bp->b_iodone == NULL);
990 
991 	/* Wake up any processes waiting for any buffer to become free. */
992 	cv_signal(&needbuffer_cv);
993 
994 	/* Wake up any proceeses waiting for _this_ buffer to become */
995 	if (ISSET(bp->b_cflags, BC_WANTED))
996 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
997 
998 	/* If it's clean clear the copy-on-write flag. */
999 	if (ISSET(bp->b_flags, B_COWDONE)) {
1000 		mutex_enter(bp->b_objlock);
1001 		if (!ISSET(bp->b_oflags, BO_DELWRI))
1002 			CLR(bp->b_flags, B_COWDONE);
1003 		mutex_exit(bp->b_objlock);
1004 	}
1005 
1006 	/*
1007 	 * Determine which queue the buffer should be on, then put it there.
1008 	 */
1009 
1010 	/* If it's locked, don't report an error; try again later. */
1011 	if (ISSET(bp->b_flags, B_LOCKED))
1012 		bp->b_error = 0;
1013 
1014 	/* If it's not cacheable, or an error, mark it invalid. */
1015 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1016 		SET(bp->b_cflags, BC_INVAL);
1017 
1018 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1019 		/*
1020 		 * This is a delayed write buffer that was just flushed to
1021 		 * disk.  It is still on the LRU queue.  If it's become
1022 		 * invalid, then we need to move it to a different queue;
1023 		 * otherwise leave it in its current position.
1024 		 */
1025 		CLR(bp->b_cflags, BC_VFLUSH);
1026 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1027 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1028 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1029 			goto already_queued;
1030 		} else {
1031 			bremfree(bp);
1032 		}
1033 	}
1034 
1035 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1036 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1037 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1038 
1039 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1040 		/*
1041 		 * If it's invalid or empty, dissociate it from its vnode
1042 		 * and put on the head of the appropriate queue.
1043 		 */
1044 		if (ISSET(bp->b_flags, B_LOCKED)) {
1045 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1046 				struct mount *mp = wapbl_vptomp(vp);
1047 
1048 				KASSERT(bp->b_iodone
1049 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
1050 				WAPBL_REMOVE_BUF(mp, bp);
1051 			}
1052 		}
1053 
1054 		mutex_enter(bp->b_objlock);
1055 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1056 		if ((vp = bp->b_vp) != NULL) {
1057 			KASSERT(bp->b_objlock == vp->v_interlock);
1058 			reassignbuf(bp, bp->b_vp);
1059 			brelvp(bp);
1060 			mutex_exit(vp->v_interlock);
1061 		} else {
1062 			KASSERT(bp->b_objlock == &buffer_lock);
1063 			mutex_exit(bp->b_objlock);
1064 		}
1065 
1066 		if (bp->b_bufsize <= 0)
1067 			/* no data */
1068 			goto already_queued;
1069 		else
1070 			/* invalid data */
1071 			bufq = &bufqueues[BQ_AGE];
1072 		binsheadfree(bp, bufq);
1073 	} else  {
1074 		/*
1075 		 * It has valid data.  Put it on the end of the appropriate
1076 		 * queue, so that it'll stick around for as long as possible.
1077 		 * If buf is AGE, but has dependencies, must put it on last
1078 		 * bufqueue to be scanned, ie LRU. This protects against the
1079 		 * livelock where BQ_AGE only has buffers with dependencies,
1080 		 * and we thus never get to the dependent buffers in BQ_LRU.
1081 		 */
1082 		if (ISSET(bp->b_flags, B_LOCKED)) {
1083 			/* locked in core */
1084 			bufq = &bufqueues[BQ_LOCKED];
1085 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1086 			/* valid data */
1087 			bufq = &bufqueues[BQ_LRU];
1088 		} else {
1089 			/* stale but valid data */
1090 			bufq = &bufqueues[BQ_AGE];
1091 		}
1092 		binstailfree(bp, bufq);
1093 	}
1094 already_queued:
1095 	/* Unlock the buffer. */
1096 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1097 	CLR(bp->b_flags, B_ASYNC);
1098 	cv_broadcast(&bp->b_busy);
1099 
1100 	if (bp->b_bufsize <= 0)
1101 		brele(bp);
1102 }
1103 
1104 void
brelse(buf_t * bp,int set)1105 brelse(buf_t *bp, int set)
1106 {
1107 
1108 	mutex_enter(&bufcache_lock);
1109 	brelsel(bp, set);
1110 	mutex_exit(&bufcache_lock);
1111 }
1112 
1113 /*
1114  * Determine if a block is in the cache.
1115  * Just look on what would be its hash chain.  If it's there, return
1116  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1117  * we normally don't return the buffer, unless the caller explicitly
1118  * wants us to.
1119  */
1120 buf_t *
incore(struct vnode * vp,daddr_t blkno)1121 incore(struct vnode *vp, daddr_t blkno)
1122 {
1123 	buf_t *bp;
1124 
1125 	KASSERT(mutex_owned(&bufcache_lock));
1126 
1127 	/* Search hash chain */
1128 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1129 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1130 		    !ISSET(bp->b_cflags, BC_INVAL)) {
1131 		    	KASSERT(bp->b_objlock == vp->v_interlock);
1132 		    	return (bp);
1133 		}
1134 	}
1135 
1136 	return (NULL);
1137 }
1138 
1139 /*
1140  * Get a block of requested size that is associated with
1141  * a given vnode and block offset. If it is found in the
1142  * block cache, mark it as having been found, make it busy
1143  * and return it. Otherwise, return an empty block of the
1144  * correct size. It is up to the caller to insure that the
1145  * cached blocks be of the correct size.
1146  */
1147 buf_t *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo)1148 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1149 {
1150 	int err, preserve;
1151 	buf_t *bp;
1152 
1153 	mutex_enter(&bufcache_lock);
1154  loop:
1155 	bp = incore(vp, blkno);
1156 	if (bp != NULL) {
1157 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1158 		if (err != 0) {
1159 			if (err == EPASSTHROUGH)
1160 				goto loop;
1161 			mutex_exit(&bufcache_lock);
1162 			return (NULL);
1163 		}
1164 		KASSERT(!cv_has_waiters(&bp->b_done));
1165 #ifdef DIAGNOSTIC
1166 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1167 		    bp->b_bcount < size && vp->v_type != VBLK)
1168 			panic("getblk: block size invariant failed");
1169 #endif
1170 		bremfree(bp);
1171 		preserve = 1;
1172 	} else {
1173 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1174 			goto loop;
1175 
1176 		if (incore(vp, blkno) != NULL) {
1177 			/* The block has come into memory in the meantime. */
1178 			brelsel(bp, 0);
1179 			goto loop;
1180 		}
1181 
1182 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1183 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1184 		mutex_enter(vp->v_interlock);
1185 		bgetvp(vp, bp);
1186 		mutex_exit(vp->v_interlock);
1187 		preserve = 0;
1188 	}
1189 	mutex_exit(&bufcache_lock);
1190 
1191 	/*
1192 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1193 	 * if we re-size buffers here.
1194 	 */
1195 	if (ISSET(bp->b_flags, B_LOCKED)) {
1196 		KASSERT(bp->b_bufsize >= size);
1197 	} else {
1198 		if (allocbuf(bp, size, preserve)) {
1199 			mutex_enter(&bufcache_lock);
1200 			LIST_REMOVE(bp, b_hash);
1201 			mutex_exit(&bufcache_lock);
1202 			brelse(bp, BC_INVAL);
1203 			return NULL;
1204 		}
1205 	}
1206 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1207 	return (bp);
1208 }
1209 
1210 /*
1211  * Get an empty, disassociated buffer of given size.
1212  */
1213 buf_t *
geteblk(int size)1214 geteblk(int size)
1215 {
1216 	buf_t *bp;
1217 	int error __diagused;
1218 
1219 	mutex_enter(&bufcache_lock);
1220 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1221 		;
1222 
1223 	SET(bp->b_cflags, BC_INVAL);
1224 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1225 	mutex_exit(&bufcache_lock);
1226 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1227 	error = allocbuf(bp, size, 0);
1228 	KASSERT(error == 0);
1229 	return (bp);
1230 }
1231 
1232 /*
1233  * Expand or contract the actual memory allocated to a buffer.
1234  *
1235  * If the buffer shrinks, data is lost, so it's up to the
1236  * caller to have written it out *first*; this routine will not
1237  * start a write.  If the buffer grows, it's the callers
1238  * responsibility to fill out the buffer's additional contents.
1239  */
1240 int
allocbuf(buf_t * bp,int size,int preserve)1241 allocbuf(buf_t *bp, int size, int preserve)
1242 {
1243 	void *addr;
1244 	vsize_t oldsize, desired_size;
1245 	int oldcount;
1246 	int delta;
1247 
1248 	desired_size = buf_roundsize(size);
1249 	if (desired_size > MAXBSIZE)
1250 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1251 
1252 	oldcount = bp->b_bcount;
1253 
1254 	bp->b_bcount = size;
1255 
1256 	oldsize = bp->b_bufsize;
1257 	if (oldsize == desired_size) {
1258 		/*
1259 		 * Do not short cut the WAPBL resize, as the buffer length
1260 		 * could still have changed and this would corrupt the
1261 		 * tracking of the transaction length.
1262 		 */
1263 		goto out;
1264 	}
1265 
1266 	/*
1267 	 * If we want a buffer of a different size, re-allocate the
1268 	 * buffer's memory; copy old content only if needed.
1269 	 */
1270 	addr = buf_alloc(desired_size);
1271 	if (addr == NULL)
1272 		return ENOMEM;
1273 	if (preserve)
1274 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1275 	if (bp->b_data != NULL)
1276 		buf_mrelease(bp->b_data, oldsize);
1277 	bp->b_data = addr;
1278 	bp->b_bufsize = desired_size;
1279 
1280 	/*
1281 	 * Update overall buffer memory counter (protected by bufcache_lock)
1282 	 */
1283 	delta = (long)desired_size - (long)oldsize;
1284 
1285 	mutex_enter(&bufcache_lock);
1286 	if ((bufmem += delta) > bufmem_hiwater) {
1287 		/*
1288 		 * Need to trim overall memory usage.
1289 		 */
1290 		while (buf_canrelease()) {
1291 			if (curcpu()->ci_schedstate.spc_flags &
1292 			    SPCF_SHOULDYIELD) {
1293 				mutex_exit(&bufcache_lock);
1294 				preempt();
1295 				mutex_enter(&bufcache_lock);
1296 			}
1297 			if (buf_trim() == 0)
1298 				break;
1299 		}
1300 	}
1301 	mutex_exit(&bufcache_lock);
1302 
1303  out:
1304 	if (wapbl_vphaswapbl(bp->b_vp))
1305 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1306 
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Find a buffer which is available for use.
1312  * Select something from a free list.
1313  * Preference is to AGE list, then LRU list.
1314  *
1315  * Called with the buffer queues locked.
1316  * Return buffer locked.
1317  */
1318 buf_t *
getnewbuf(int slpflag,int slptimeo,int from_bufq)1319 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1320 {
1321 	buf_t *bp;
1322 	struct vnode *vp;
1323 
1324  start:
1325 	KASSERT(mutex_owned(&bufcache_lock));
1326 
1327 	/*
1328 	 * Get a new buffer from the pool.
1329 	 */
1330 	if (!from_bufq && buf_lotsfree()) {
1331 		mutex_exit(&bufcache_lock);
1332 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1333 		if (bp != NULL) {
1334 			memset((char *)bp, 0, sizeof(*bp));
1335 			buf_init(bp);
1336 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
1337 			mutex_enter(&bufcache_lock);
1338 #if defined(DIAGNOSTIC)
1339 			bp->b_freelistindex = -1;
1340 #endif /* defined(DIAGNOSTIC) */
1341 			return (bp);
1342 		}
1343 		mutex_enter(&bufcache_lock);
1344 	}
1345 
1346 	KASSERT(mutex_owned(&bufcache_lock));
1347 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1348 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1349 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1350 		bremfree(bp);
1351 
1352 		/* Buffer is no longer on free lists. */
1353 		SET(bp->b_cflags, BC_BUSY);
1354 	} else {
1355 		/*
1356 		 * XXX: !from_bufq should be removed.
1357 		 */
1358 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1359 			/* wait for a free buffer of any kind */
1360 			if ((slpflag & PCATCH) != 0)
1361 				(void)cv_timedwait_sig(&needbuffer_cv,
1362 				    &bufcache_lock, slptimeo);
1363 			else
1364 				(void)cv_timedwait(&needbuffer_cv,
1365 				    &bufcache_lock, slptimeo);
1366 		}
1367 		return (NULL);
1368 	}
1369 
1370 #ifdef DIAGNOSTIC
1371 	if (bp->b_bufsize <= 0)
1372 		panic("buffer %p: on queue but empty", bp);
1373 #endif
1374 
1375 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1376 		/*
1377 		 * This is a delayed write buffer being flushed to disk.  Make
1378 		 * sure it gets aged out of the queue when it's finished, and
1379 		 * leave it off the LRU queue.
1380 		 */
1381 		CLR(bp->b_cflags, BC_VFLUSH);
1382 		SET(bp->b_cflags, BC_AGE);
1383 		goto start;
1384 	}
1385 
1386 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1387 	KASSERT(bp->b_refcnt > 0);
1388     	KASSERT(!cv_has_waiters(&bp->b_done));
1389 
1390 	/*
1391 	 * If buffer was a delayed write, start it and return NULL
1392 	 * (since we might sleep while starting the write).
1393 	 */
1394 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1395 		/*
1396 		 * This buffer has gone through the LRU, so make sure it gets
1397 		 * reused ASAP.
1398 		 */
1399 		SET(bp->b_cflags, BC_AGE);
1400 		mutex_exit(&bufcache_lock);
1401 		bawrite(bp);
1402 		mutex_enter(&bufcache_lock);
1403 		return (NULL);
1404 	}
1405 
1406 	vp = bp->b_vp;
1407 
1408 	/* clear out various other fields */
1409 	bp->b_cflags = BC_BUSY;
1410 	bp->b_oflags = 0;
1411 	bp->b_flags = 0;
1412 	bp->b_dev = NODEV;
1413 	bp->b_blkno = 0;
1414 	bp->b_lblkno = 0;
1415 	bp->b_rawblkno = 0;
1416 	bp->b_iodone = 0;
1417 	bp->b_error = 0;
1418 	bp->b_resid = 0;
1419 	bp->b_bcount = 0;
1420 
1421 	LIST_REMOVE(bp, b_hash);
1422 
1423 	/* Disassociate us from our vnode, if we had one... */
1424 	if (vp != NULL) {
1425 		mutex_enter(vp->v_interlock);
1426 		brelvp(bp);
1427 		mutex_exit(vp->v_interlock);
1428 	}
1429 
1430 	return (bp);
1431 }
1432 
1433 /*
1434  * Attempt to free an aged buffer off the queues.
1435  * Called with queue lock held.
1436  * Returns the amount of buffer memory freed.
1437  */
1438 static int
buf_trim(void)1439 buf_trim(void)
1440 {
1441 	buf_t *bp;
1442 	long size;
1443 
1444 	KASSERT(mutex_owned(&bufcache_lock));
1445 
1446 	/* Instruct getnewbuf() to get buffers off the queues */
1447 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1448 		return 0;
1449 
1450 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1451 	size = bp->b_bufsize;
1452 	bufmem -= size;
1453 	if (size > 0) {
1454 		buf_mrelease(bp->b_data, size);
1455 		bp->b_bcount = bp->b_bufsize = 0;
1456 	}
1457 	/* brelse() will return the buffer to the global buffer pool */
1458 	brelsel(bp, 0);
1459 	return size;
1460 }
1461 
1462 int
buf_drain(int n)1463 buf_drain(int n)
1464 {
1465 	int size = 0, sz;
1466 
1467 	KASSERT(mutex_owned(&bufcache_lock));
1468 
1469 	while (size < n && bufmem > bufmem_lowater) {
1470 		sz = buf_trim();
1471 		if (sz <= 0)
1472 			break;
1473 		size += sz;
1474 	}
1475 
1476 	return size;
1477 }
1478 
1479 SDT_PROVIDER_DEFINE(io);
1480 
1481 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
1482 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
1483 
1484 /*
1485  * Wait for operations on the buffer to complete.
1486  * When they do, extract and return the I/O's error value.
1487  */
1488 int
biowait(buf_t * bp)1489 biowait(buf_t *bp)
1490 {
1491 
1492 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1493 	KASSERT(bp->b_refcnt > 0);
1494 
1495 	SDT_PROBE1(io, kernel, , wait__start, bp);
1496 
1497 	mutex_enter(bp->b_objlock);
1498 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1499 		cv_wait(&bp->b_done, bp->b_objlock);
1500 	mutex_exit(bp->b_objlock);
1501 
1502 	SDT_PROBE1(io, kernel, , wait__done, bp);
1503 
1504 	return bp->b_error;
1505 }
1506 
1507 /*
1508  * Mark I/O complete on a buffer.
1509  *
1510  * If a callback has been requested, e.g. the pageout
1511  * daemon, do so. Otherwise, awaken waiting processes.
1512  *
1513  * [ Leffler, et al., says on p.247:
1514  *	"This routine wakes up the blocked process, frees the buffer
1515  *	for an asynchronous write, or, for a request by the pagedaemon
1516  *	process, invokes a procedure specified in the buffer structure" ]
1517  *
1518  * In real life, the pagedaemon (or other system processes) wants
1519  * to do async stuff to, and doesn't want the buffer brelse()'d.
1520  * (for swap pager, that puts swap buffers on the free lists (!!!),
1521  * for the vn device, that puts allocated buffers on the free lists!)
1522  */
1523 void
biodone(buf_t * bp)1524 biodone(buf_t *bp)
1525 {
1526 	int s;
1527 
1528 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1529 
1530 	if (cpu_intr_p()) {
1531 		/* From interrupt mode: defer to a soft interrupt. */
1532 		s = splvm();
1533 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1534 		softint_schedule(biodone_sih);
1535 		splx(s);
1536 	} else {
1537 		/* Process now - the buffer may be freed soon. */
1538 		biodone2(bp);
1539 	}
1540 }
1541 
1542 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1543 
1544 static void
biodone2(buf_t * bp)1545 biodone2(buf_t *bp)
1546 {
1547 	void (*callout)(buf_t *);
1548 
1549 	SDT_PROBE1(io, kernel, ,done, bp);
1550 
1551 	mutex_enter(bp->b_objlock);
1552 	/* Note that the transfer is done. */
1553 	if (ISSET(bp->b_oflags, BO_DONE))
1554 		panic("biodone2 already");
1555 	CLR(bp->b_flags, B_COWDONE);
1556 	SET(bp->b_oflags, BO_DONE);
1557 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1558 
1559 	/* Wake up waiting writers. */
1560 	if (!ISSET(bp->b_flags, B_READ))
1561 		vwakeup(bp);
1562 
1563 	if ((callout = bp->b_iodone) != NULL) {
1564 		/* Note callout done, then call out. */
1565 		KASSERT(!cv_has_waiters(&bp->b_done));
1566 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1567 		bp->b_iodone = NULL;
1568 		mutex_exit(bp->b_objlock);
1569 		(*callout)(bp);
1570 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1571 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1572 		/* If async, release. */
1573 		KASSERT(!cv_has_waiters(&bp->b_done));
1574 		mutex_exit(bp->b_objlock);
1575 		brelse(bp, 0);
1576 	} else {
1577 		/* Otherwise just wake up waiters in biowait(). */
1578 		cv_broadcast(&bp->b_done);
1579 		mutex_exit(bp->b_objlock);
1580 	}
1581 }
1582 
1583 static void
biointr(void * cookie)1584 biointr(void *cookie)
1585 {
1586 	struct cpu_info *ci;
1587 	buf_t *bp;
1588 	int s;
1589 
1590 	ci = curcpu();
1591 
1592 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1593 		KASSERT(curcpu() == ci);
1594 
1595 		s = splvm();
1596 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1597 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1598 		splx(s);
1599 
1600 		biodone2(bp);
1601 	}
1602 }
1603 
1604 /*
1605  * Wait for all buffers to complete I/O
1606  * Return the number of "stuck" buffers.
1607  */
1608 int
buf_syncwait(void)1609 buf_syncwait(void)
1610 {
1611 	buf_t *bp;
1612 	int iter, nbusy, nbusy_prev = 0, ihash;
1613 
1614 	for (iter = 0; iter < 20;) {
1615 		mutex_enter(&bufcache_lock);
1616 		nbusy = 0;
1617 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1618 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1619 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1620 				nbusy += ((bp->b_flags & B_READ) == 0);
1621 		    }
1622 		}
1623 		mutex_exit(&bufcache_lock);
1624 
1625 		if (nbusy == 0)
1626 			break;
1627 		if (nbusy_prev == 0)
1628 			nbusy_prev = nbusy;
1629 		printf("%d ", nbusy);
1630 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1631 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1632 			iter++;
1633 		else
1634 			nbusy_prev = nbusy;
1635 	}
1636 
1637 	if (nbusy) {
1638 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1639 		printf("giving up\nPrinting vnodes for busy buffers\n");
1640 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1641 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1642 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1643 			    (bp->b_flags & B_READ) == 0)
1644 				vprint(NULL, bp->b_vp);
1645 		    }
1646 		}
1647 #endif
1648 	}
1649 
1650 	return nbusy;
1651 }
1652 
1653 static void
sysctl_fillbuf(buf_t * i,struct buf_sysctl * o)1654 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1655 {
1656 
1657 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1658 	o->b_error = i->b_error;
1659 	o->b_prio = i->b_prio;
1660 	o->b_dev = i->b_dev;
1661 	o->b_bufsize = i->b_bufsize;
1662 	o->b_bcount = i->b_bcount;
1663 	o->b_resid = i->b_resid;
1664 	o->b_addr = PTRTOUINT64(i->b_data);
1665 	o->b_blkno = i->b_blkno;
1666 	o->b_rawblkno = i->b_rawblkno;
1667 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1668 	o->b_proc = PTRTOUINT64(i->b_proc);
1669 	o->b_vp = PTRTOUINT64(i->b_vp);
1670 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1671 	o->b_lblkno = i->b_lblkno;
1672 }
1673 
1674 #define KERN_BUFSLOP 20
1675 static int
sysctl_dobuf(SYSCTLFN_ARGS)1676 sysctl_dobuf(SYSCTLFN_ARGS)
1677 {
1678 	buf_t *bp;
1679 	struct buf_sysctl bs;
1680 	struct bqueue *bq;
1681 	char *dp;
1682 	u_int i, op, arg;
1683 	size_t len, needed, elem_size, out_size;
1684 	int error, elem_count, retries;
1685 
1686 	if (namelen == 1 && name[0] == CTL_QUERY)
1687 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1688 
1689 	if (namelen != 4)
1690 		return (EINVAL);
1691 
1692 	retries = 100;
1693  retry:
1694 	dp = oldp;
1695 	len = (oldp != NULL) ? *oldlenp : 0;
1696 	op = name[0];
1697 	arg = name[1];
1698 	elem_size = name[2];
1699 	elem_count = name[3];
1700 	out_size = MIN(sizeof(bs), elem_size);
1701 
1702 	/*
1703 	 * at the moment, these are just "placeholders" to make the
1704 	 * API for retrieving kern.buf data more extensible in the
1705 	 * future.
1706 	 *
1707 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1708 	 * these will be resolved at a later point.
1709 	 */
1710 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1711 	    elem_size < 1 || elem_count < 0)
1712 		return (EINVAL);
1713 
1714 	error = 0;
1715 	needed = 0;
1716 	sysctl_unlock();
1717 	mutex_enter(&bufcache_lock);
1718 	for (i = 0; i < BQUEUES; i++) {
1719 		bq = &bufqueues[i];
1720 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1721 			bq->bq_marker = bp;
1722 			if (len >= elem_size && elem_count > 0) {
1723 				sysctl_fillbuf(bp, &bs);
1724 				mutex_exit(&bufcache_lock);
1725 				error = copyout(&bs, dp, out_size);
1726 				mutex_enter(&bufcache_lock);
1727 				if (error)
1728 					break;
1729 				if (bq->bq_marker != bp) {
1730 					/*
1731 					 * This sysctl node is only for
1732 					 * statistics.  Retry; if the
1733 					 * queue keeps changing, then
1734 					 * bail out.
1735 					 */
1736 					if (retries-- == 0) {
1737 						error = EAGAIN;
1738 						break;
1739 					}
1740 					mutex_exit(&bufcache_lock);
1741 					sysctl_relock();
1742 					goto retry;
1743 				}
1744 				dp += elem_size;
1745 				len -= elem_size;
1746 			}
1747 			needed += elem_size;
1748 			if (elem_count > 0 && elem_count != INT_MAX)
1749 				elem_count--;
1750 		}
1751 		if (error != 0)
1752 			break;
1753 	}
1754 	mutex_exit(&bufcache_lock);
1755 	sysctl_relock();
1756 
1757 	*oldlenp = needed;
1758 	if (oldp == NULL)
1759 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1760 
1761 	return (error);
1762 }
1763 
1764 static int
sysctl_bufvm_update(SYSCTLFN_ARGS)1765 sysctl_bufvm_update(SYSCTLFN_ARGS)
1766 {
1767 	int error, rv;
1768 	struct sysctlnode node;
1769 	unsigned int temp_bufcache;
1770 	unsigned long temp_water;
1771 
1772 	/* Take a copy of the supplied node and its data */
1773 	node = *rnode;
1774 	if (node.sysctl_data == &bufcache) {
1775 	    node.sysctl_data = &temp_bufcache;
1776 	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1777 	} else {
1778 	    node.sysctl_data = &temp_water;
1779 	    temp_water = *(unsigned long *)rnode->sysctl_data;
1780 	}
1781 
1782 	/* Update the copy */
1783 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1784 	if (error || newp == NULL)
1785 		return (error);
1786 
1787 	if (rnode->sysctl_data == &bufcache) {
1788 		if (temp_bufcache > 100)
1789 			return (EINVAL);
1790 		bufcache = temp_bufcache;
1791 		buf_setwm();
1792 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1793 		if (bufmem_hiwater - temp_water < 16)
1794 			return (EINVAL);
1795 		bufmem_lowater = temp_water;
1796 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1797 		if (temp_water - bufmem_lowater < 16)
1798 			return (EINVAL);
1799 		bufmem_hiwater = temp_water;
1800 	} else
1801 		return (EINVAL);
1802 
1803 	/* Drain until below new high water mark */
1804 	sysctl_unlock();
1805 	mutex_enter(&bufcache_lock);
1806 	while (bufmem > bufmem_hiwater) {
1807 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1808 		if (rv <= 0)
1809 			break;
1810 	}
1811 	mutex_exit(&bufcache_lock);
1812 	sysctl_relock();
1813 
1814 	return 0;
1815 }
1816 
1817 static struct sysctllog *vfsbio_sysctllog;
1818 
1819 static void
sysctl_kern_buf_setup(void)1820 sysctl_kern_buf_setup(void)
1821 {
1822 
1823 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1824 		       CTLFLAG_PERMANENT,
1825 		       CTLTYPE_NODE, "buf",
1826 		       SYSCTL_DESCR("Kernel buffer cache information"),
1827 		       sysctl_dobuf, 0, NULL, 0,
1828 		       CTL_KERN, KERN_BUF, CTL_EOL);
1829 }
1830 
1831 static void
sysctl_vm_buf_setup(void)1832 sysctl_vm_buf_setup(void)
1833 {
1834 
1835 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1836 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837 		       CTLTYPE_INT, "bufcache",
1838 		       SYSCTL_DESCR("Percentage of physical memory to use for "
1839 				    "buffer cache"),
1840 		       sysctl_bufvm_update, 0, &bufcache, 0,
1841 		       CTL_VM, CTL_CREATE, CTL_EOL);
1842 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1843 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1844 		       CTLTYPE_LONG, "bufmem",
1845 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1846 				    "cache"),
1847 		       NULL, 0, &bufmem, 0,
1848 		       CTL_VM, CTL_CREATE, CTL_EOL);
1849 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1850 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1851 		       CTLTYPE_LONG, "bufmem_lowater",
1852 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1853 				    "reserve for buffer cache"),
1854 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1855 		       CTL_VM, CTL_CREATE, CTL_EOL);
1856 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1857 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1858 		       CTLTYPE_LONG, "bufmem_hiwater",
1859 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1860 				    "for buffer cache"),
1861 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1862 		       CTL_VM, CTL_CREATE, CTL_EOL);
1863 }
1864 
1865 #ifdef DEBUG
1866 /*
1867  * Print out statistics on the current allocation of the buffer pool.
1868  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1869  * in vfs_syscalls.c using sysctl.
1870  */
1871 void
vfs_bufstats(void)1872 vfs_bufstats(void)
1873 {
1874 	int i, j, count;
1875 	buf_t *bp;
1876 	struct bqueue *dp;
1877 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1878 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1879 
1880 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1881 		count = 0;
1882 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1883 			counts[j] = 0;
1884 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1885 			counts[bp->b_bufsize/PAGE_SIZE]++;
1886 			count++;
1887 		}
1888 		printf("%s: total-%d", bname[i], count);
1889 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1890 			if (counts[j] != 0)
1891 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1892 		printf("\n");
1893 	}
1894 }
1895 #endif /* DEBUG */
1896 
1897 /* ------------------------------ */
1898 
1899 buf_t *
getiobuf(struct vnode * vp,bool waitok)1900 getiobuf(struct vnode *vp, bool waitok)
1901 {
1902 	buf_t *bp;
1903 
1904 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1905 	if (bp == NULL)
1906 		return bp;
1907 
1908 	buf_init(bp);
1909 
1910 	if ((bp->b_vp = vp) == NULL)
1911 		bp->b_objlock = &buffer_lock;
1912 	else
1913 		bp->b_objlock = vp->v_interlock;
1914 
1915 	return bp;
1916 }
1917 
1918 void
putiobuf(buf_t * bp)1919 putiobuf(buf_t *bp)
1920 {
1921 
1922 	buf_destroy(bp);
1923 	pool_cache_put(bufio_cache, bp);
1924 }
1925 
1926 /*
1927  * nestiobuf_iodone: b_iodone callback for nested buffers.
1928  */
1929 
1930 void
nestiobuf_iodone(buf_t * bp)1931 nestiobuf_iodone(buf_t *bp)
1932 {
1933 	buf_t *mbp = bp->b_private;
1934 	int error;
1935 	int donebytes;
1936 
1937 	KASSERT(bp->b_bcount <= bp->b_bufsize);
1938 	KASSERT(mbp != bp);
1939 
1940 	error = bp->b_error;
1941 	if (bp->b_error == 0 &&
1942 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1943 		/*
1944 		 * Not all got transfered, raise an error. We have no way to
1945 		 * propagate these conditions to mbp.
1946 		 */
1947 		error = EIO;
1948 	}
1949 
1950 	donebytes = bp->b_bufsize;
1951 
1952 	putiobuf(bp);
1953 	nestiobuf_done(mbp, donebytes, error);
1954 }
1955 
1956 /*
1957  * nestiobuf_setup: setup a "nested" buffer.
1958  *
1959  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1960  * => 'bp' should be a buffer allocated by getiobuf.
1961  * => 'offset' is a byte offset in the master buffer.
1962  * => 'size' is a size in bytes of this nested buffer.
1963  */
1964 
1965 void
nestiobuf_setup(buf_t * mbp,buf_t * bp,int offset,size_t size)1966 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1967 {
1968 	const int b_read = mbp->b_flags & B_READ;
1969 	struct vnode *vp = mbp->b_vp;
1970 
1971 	KASSERT(mbp->b_bcount >= offset + size);
1972 	bp->b_vp = vp;
1973 	bp->b_dev = mbp->b_dev;
1974 	bp->b_objlock = mbp->b_objlock;
1975 	bp->b_cflags = BC_BUSY;
1976 	bp->b_flags = B_ASYNC | b_read;
1977 	bp->b_iodone = nestiobuf_iodone;
1978 	bp->b_data = (char *)mbp->b_data + offset;
1979 	bp->b_resid = bp->b_bcount = size;
1980 	bp->b_bufsize = bp->b_bcount;
1981 	bp->b_private = mbp;
1982 	BIO_COPYPRIO(bp, mbp);
1983 	if (!b_read && vp != NULL) {
1984 		mutex_enter(vp->v_interlock);
1985 		vp->v_numoutput++;
1986 		mutex_exit(vp->v_interlock);
1987 	}
1988 }
1989 
1990 /*
1991  * nestiobuf_done: propagate completion to the master buffer.
1992  *
1993  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1994  * => 'error' is an errno(2) that 'donebytes' has been completed with.
1995  */
1996 
1997 void
nestiobuf_done(buf_t * mbp,int donebytes,int error)1998 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1999 {
2000 
2001 	if (donebytes == 0) {
2002 		return;
2003 	}
2004 	mutex_enter(mbp->b_objlock);
2005 	KASSERT(mbp->b_resid >= donebytes);
2006 	mbp->b_resid -= donebytes;
2007 	if (error)
2008 		mbp->b_error = error;
2009 	if (mbp->b_resid == 0) {
2010 		if (mbp->b_error)
2011 			mbp->b_resid = mbp->b_bcount;
2012 		mutex_exit(mbp->b_objlock);
2013 		biodone(mbp);
2014 	} else
2015 		mutex_exit(mbp->b_objlock);
2016 }
2017 
2018 void
buf_init(buf_t * bp)2019 buf_init(buf_t *bp)
2020 {
2021 
2022 	cv_init(&bp->b_busy, "biolock");
2023 	cv_init(&bp->b_done, "biowait");
2024 	bp->b_dev = NODEV;
2025 	bp->b_error = 0;
2026 	bp->b_flags = 0;
2027 	bp->b_cflags = 0;
2028 	bp->b_oflags = 0;
2029 	bp->b_objlock = &buffer_lock;
2030 	bp->b_iodone = NULL;
2031 	bp->b_refcnt = 1;
2032 	bp->b_dev = NODEV;
2033 	bp->b_vnbufs.le_next = NOLIST;
2034 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2035 }
2036 
2037 void
buf_destroy(buf_t * bp)2038 buf_destroy(buf_t *bp)
2039 {
2040 
2041 	cv_destroy(&bp->b_done);
2042 	cv_destroy(&bp->b_busy);
2043 }
2044 
2045 int
bbusy(buf_t * bp,bool intr,int timo,kmutex_t * interlock)2046 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2047 {
2048 	int error;
2049 
2050 	KASSERT(mutex_owned(&bufcache_lock));
2051 
2052 	if ((bp->b_cflags & BC_BUSY) != 0) {
2053 		if (curlwp == uvm.pagedaemon_lwp)
2054 			return EDEADLK;
2055 		bp->b_cflags |= BC_WANTED;
2056 		bref(bp);
2057 		if (interlock != NULL)
2058 			mutex_exit(interlock);
2059 		if (intr) {
2060 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2061 			    timo);
2062 		} else {
2063 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2064 			    timo);
2065 		}
2066 		brele(bp);
2067 		if (interlock != NULL)
2068 			mutex_enter(interlock);
2069 		if (error != 0)
2070 			return error;
2071 		return EPASSTHROUGH;
2072 	}
2073 	bp->b_cflags |= BC_BUSY;
2074 
2075 	return 0;
2076 }
2077