xref: /netbsd/lib/libc/db/btree/bt_split.c (revision 5da14d93)
1 /*	$NetBSD: bt_split.c,v 1.22 2016/09/24 21:31:25 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1990, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Mike Olson.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #if HAVE_NBTOOL_CONFIG_H
36 #include "nbtool_config.h"
37 #endif
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: bt_split.c,v 1.22 2016/09/24 21:31:25 christos Exp $");
41 
42 #include "namespace.h"
43 #include <sys/types.h>
44 
45 #include <assert.h>
46 #include <limits.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 
51 #include <db.h>
52 #include "btree.h"
53 
54 static int	 bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
55 static PAGE	*bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
56 static int	 bt_preserve(BTREE *, pgno_t);
57 static PAGE	*bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
58 static PAGE	*bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
59 static int	 bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
60 static recno_t	 rec_total(PAGE *);
61 
62 #ifdef STATISTICS
63 unsigned long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
64 #endif
65 
66 /*
67  * __BT_SPLIT -- Split the tree.
68  *
69  * Parameters:
70  *	t:	tree
71  *	sp:	page to split
72  *	key:	key to insert
73  *	data:	data to insert
74  *	flags:	BIGKEY/BIGDATA flags
75  *	ilen:	insert length
76  *	skip:	index to leave open
77  *
78  * Returns:
79  *	RET_ERROR, RET_SUCCESS
80  */
81 int
__bt_split(BTREE * t,PAGE * sp,const DBT * key,const DBT * data,int flags,size_t ilen,uint32_t argskip)82 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
83     size_t ilen, uint32_t argskip)
84 {
85 	BINTERNAL *bi = NULL;	/* pacify gcc */
86 	BLEAF *bl = NULL, *tbl;	/* pacify gcc */
87 	DBT a, b;
88 	EPGNO *parent;
89 	PAGE *h, *l, *r, *lchild, *rchild;
90 	indx_t nxtindex;
91 	uint16_t skip;
92 	uint32_t n, nbytes, nksize = 0; /* pacify gcc */
93 	int parentsplit;
94 	char *dest;
95 
96 	/*
97 	 * Split the page into two pages, l and r.  The split routines return
98 	 * a pointer to the page into which the key should be inserted and with
99 	 * skip set to the offset which should be used.  Additionally, l and r
100 	 * are pinned.
101 	 */
102 	skip = argskip;
103 	h = sp->pgno == P_ROOT ?
104 	    bt_root(t, sp, &l, &r, &skip, ilen) :
105 	    bt_page(t, sp, &l, &r, &skip, ilen);
106 	if (h == NULL)
107 		return (RET_ERROR);
108 
109 	/*
110 	 * Insert the new key/data pair into the leaf page.  (Key inserts
111 	 * always cause a leaf page to split first.)
112 	 */
113 	_DBFIT(ilen, indx_t);
114 	h->upper -= (indx_t)ilen;
115 	h->linp[skip] = h->upper;
116 	dest = (char *)(void *)h + h->upper;
117 	if (F_ISSET(t, R_RECNO))
118 		WR_RLEAF(dest, data, flags);
119 	else
120 		WR_BLEAF(dest, key, data, flags);
121 
122 	/* If the root page was split, make it look right. */
123 	if (sp->pgno == P_ROOT &&
124 	    (F_ISSET(t, R_RECNO) ?
125 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
126 		goto err2;
127 
128 	/*
129 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
130 	 * were traversed when we searched for the page that split.  Each stack
131 	 * entry is a page number and a page index offset.  The offset is for
132 	 * the page traversed on the search.  We've just split a page, so we
133 	 * have to insert a new key into the parent page.
134 	 *
135 	 * If the insert into the parent page causes it to split, may have to
136 	 * continue splitting all the way up the tree.  We stop if the root
137 	 * splits or the page inserted into didn't have to split to hold the
138 	 * new key.  Some algorithms replace the key for the old page as well
139 	 * as the new page.  We don't, as there's no reason to believe that the
140 	 * first key on the old page is any better than the key we have, and,
141 	 * in the case of a key being placed at index 0 causing the split, the
142 	 * key is unavailable.
143 	 *
144 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
145 	 * and right pages pinned while working on the parent.   The 5 are the
146 	 * two children, left parent and right parent (when the parent splits)
147 	 * and the root page or the overflow key page when calling bt_preserve.
148 	 * This code must make sure that all pins are released other than the
149 	 * root page or overflow page which is unlocked elsewhere.
150 	 */
151 	while ((parent = BT_POP(t)) != NULL) {
152 		lchild = l;
153 		rchild = r;
154 
155 		/* Get the parent page. */
156 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
157 			goto err2;
158 
159 	 	/*
160 		 * The new key goes ONE AFTER the index, because the split
161 		 * was to the right.
162 		 */
163 		skip = parent->index + 1;
164 
165 		/*
166 		 * Calculate the space needed on the parent page.
167 		 *
168 		 * Prefix trees: space hack when inserting into BINTERNAL
169 		 * pages.  Retain only what's needed to distinguish between
170 		 * the new entry and the LAST entry on the page to its left.
171 		 * If the keys compare equal, retain the entire key.  Note,
172 		 * we don't touch overflow keys, and the entire key must be
173 		 * retained for the next-to-left most key on the leftmost
174 		 * page of each level, or the search will fail.  Applicable
175 		 * ONLY to internal pages that have leaf pages as children.
176 		 * Further reduction of the key between pairs of internal
177 		 * pages loses too much information.
178 		 */
179 		switch (rchild->flags & P_TYPE) {
180 		case P_BINTERNAL:
181 			bi = GETBINTERNAL(rchild, 0);
182 			nbytes = NBINTERNAL(bi->ksize);
183 			break;
184 		case P_BLEAF:
185 			bl = GETBLEAF(rchild, 0);
186 			nbytes = NBINTERNAL(bl->ksize);
187 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
188 			    (h->prevpg != P_INVALID || skip > 1)) {
189 				size_t temp;
190 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
191 				a.size = tbl->ksize;
192 				a.data = tbl->bytes;
193 				b.size = bl->ksize;
194 				b.data = bl->bytes;
195 				temp = t->bt_pfx(&a, &b);
196 				_DBFIT(temp, uint32_t);
197 				nksize = (uint32_t)temp;
198 				n = NBINTERNAL(nksize);
199 				if (n < nbytes) {
200 #ifdef STATISTICS
201 					bt_pfxsaved += nbytes - n;
202 #endif
203 					nbytes = n;
204 				} else
205 					nksize = 0;
206 			} else
207 				nksize = 0;
208 			break;
209 		case P_RINTERNAL:
210 		case P_RLEAF:
211 			nbytes = NRINTERNAL;
212 			break;
213 		default:
214 			abort();
215 		}
216 
217 		/* Split the parent page if necessary or shift the indices. */
218 		if ((uint32_t)h->upper - (uint32_t)h->lower < nbytes + sizeof(indx_t)) {
219 			sp = h;
220 			h = h->pgno == P_ROOT ?
221 			    bt_root(t, h, &l, &r, &skip, nbytes) :
222 			    bt_page(t, h, &l, &r, &skip, nbytes);
223 			if (h == NULL)
224 				goto err1;
225 			parentsplit = 1;
226 		} else {
227 			if (skip < (nxtindex = NEXTINDEX(h)))
228 				memmove(h->linp + skip + 1, h->linp + skip,
229 				    (nxtindex - skip) * sizeof(indx_t));
230 			h->lower += sizeof(indx_t);
231 			parentsplit = 0;
232 		}
233 
234 		/* Insert the key into the parent page. */
235 		switch (rchild->flags & P_TYPE) {
236 		case P_BINTERNAL:
237 			h->linp[skip] = h->upper -= nbytes;
238 			dest = (char *)(void *)h + h->linp[skip];
239 			memmove(dest, bi, nbytes);
240 			((BINTERNAL *)(void *)dest)->pgno = rchild->pgno;
241 			break;
242 		case P_BLEAF:
243 			h->linp[skip] = h->upper -= nbytes;
244 			dest = (char *)(void *)h + h->linp[skip];
245 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
246 			    rchild->pgno, bl->flags & P_BIGKEY);
247 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
248 			if (bl->flags & P_BIGKEY) {
249 				pgno_t pgno;
250 				memcpy(&pgno, bl->bytes, sizeof(pgno));
251 				if (bt_preserve(t, pgno) == RET_ERROR)
252 					goto err1;
253 			}
254 			break;
255 		case P_RINTERNAL:
256 			/*
257 			 * Update the left page count.  If split
258 			 * added at index 0, fix the correct page.
259 			 */
260 			if (skip > 0)
261 				dest = (char *)(void *)h + h->linp[skip - 1];
262 			else
263 				dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
264 			((RINTERNAL *)(void *)dest)->nrecs = rec_total(lchild);
265 			((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
266 
267 			/* Update the right page count. */
268 			h->linp[skip] = h->upper -= nbytes;
269 			dest = (char *)(void *)h + h->linp[skip];
270 			((RINTERNAL *)(void *)dest)->nrecs = rec_total(rchild);
271 			((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
272 			break;
273 		case P_RLEAF:
274 			/*
275 			 * Update the left page count.  If split
276 			 * added at index 0, fix the correct page.
277 			 */
278 			if (skip > 0)
279 				dest = (char *)(void *)h + h->linp[skip - 1];
280 			else
281 				dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
282 			((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(lchild);
283 			((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
284 
285 			/* Update the right page count. */
286 			h->linp[skip] = h->upper -= nbytes;
287 			dest = (char *)(void *)h + h->linp[skip];
288 			((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(rchild);
289 			((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
290 			break;
291 		default:
292 			abort();
293 		}
294 
295 		/* Unpin the held pages. */
296 		if (!parentsplit) {
297 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
298 			break;
299 		}
300 
301 		/* If the root page was split, make it look right. */
302 		if (sp->pgno == P_ROOT &&
303 		    (F_ISSET(t, R_RECNO) ?
304 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
305 			goto err1;
306 
307 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
308 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
309 	}
310 
311 	/* Unpin the held pages. */
312 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
313 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
314 
315 	/* Clear any pages left on the stack. */
316 	return (RET_SUCCESS);
317 
318 	/*
319 	 * If something fails in the above loop we were already walking back
320 	 * up the tree and the tree is now inconsistent.  Nothing much we can
321 	 * do about it but release any memory we're holding.
322 	 */
323 err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
324 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
325 
326 err2:	mpool_put(t->bt_mp, l, 0);
327 	mpool_put(t->bt_mp, r, 0);
328 	__dbpanic(t->bt_dbp);
329 	return (RET_ERROR);
330 }
331 
332 /*
333  * BT_PAGE -- Split a non-root page of a btree.
334  *
335  * Parameters:
336  *	t:	tree
337  *	h:	root page
338  *	lp:	pointer to left page pointer
339  *	rp:	pointer to right page pointer
340  *	skip:	pointer to index to leave open
341  *	ilen:	insert length
342  *
343  * Returns:
344  *	Pointer to page in which to insert or NULL on error.
345  */
346 static PAGE *
bt_page(BTREE * t,PAGE * h,PAGE ** lp,PAGE ** rp,indx_t * skip,size_t ilen)347 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
348 {
349 	PAGE *l, *r, *tp;
350 	pgno_t npg;
351 
352 #ifdef STATISTICS
353 	++bt_split;
354 #endif
355 	/* Put the new right page for the split into place. */
356 	if ((r = __bt_new(t, &npg)) == NULL)
357 		return (NULL);
358 	r->pgno = npg;
359 	r->lower = BTDATAOFF;
360 	r->upper = t->bt_psize;
361 	r->nextpg = h->nextpg;
362 	r->prevpg = h->pgno;
363 	r->flags = h->flags & P_TYPE;
364 
365 	/*
366 	 * If we're splitting the last page on a level because we're appending
367 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
368 	 * sorted.  Adding an empty page on the side of the level is less work
369 	 * and can push the fill factor much higher than normal.  If we're
370 	 * wrong it's no big deal, we'll just do the split the right way next
371 	 * time.  It may look like it's equally easy to do a similar hack for
372 	 * reverse sorted data, that is, split the tree left, but it's not.
373 	 * Don't even try.
374 	 */
375 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
376 #ifdef STATISTICS
377 		++bt_sortsplit;
378 #endif
379 		h->nextpg = r->pgno;
380 		r->lower = BTDATAOFF + sizeof(indx_t);
381 		*skip = 0;
382 		*lp = h;
383 		*rp = r;
384 		return (r);
385 	}
386 
387 	/* Put the new left page for the split into place. */
388 	if ((l = calloc(1, t->bt_psize)) == NULL) {
389 		mpool_put(t->bt_mp, r, 0);
390 		return (NULL);
391 	}
392 #ifdef PURIFY
393 	memset(l, 0xff, t->bt_psize);
394 #endif
395 	l->pgno = h->pgno;
396 	l->nextpg = r->pgno;
397 	l->prevpg = h->prevpg;
398 	l->lower = BTDATAOFF;
399 	l->upper = t->bt_psize;
400 	l->flags = h->flags & P_TYPE;
401 
402 	/* Fix up the previous pointer of the page after the split page. */
403 	if (h->nextpg != P_INVALID) {
404 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
405 			free(l);
406 			/* XXX mpool_free(t->bt_mp, r->pgno); */
407 			return (NULL);
408 		}
409 		tp->prevpg = r->pgno;
410 		mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
411 	}
412 
413 	/*
414 	 * Split right.  The key/data pairs aren't sorted in the btree page so
415 	 * it's simpler to copy the data from the split page onto two new pages
416 	 * instead of copying half the data to the right page and compacting
417 	 * the left page in place.  Since the left page can't change, we have
418 	 * to swap the original and the allocated left page after the split.
419 	 */
420 	tp = bt_psplit(t, h, l, r, skip, ilen);
421 
422 	/* Move the new left page onto the old left page. */
423 	memmove(h, l, t->bt_psize);
424 	if (tp == l)
425 		tp = h;
426 	free(l);
427 
428 	*lp = h;
429 	*rp = r;
430 	return (tp);
431 }
432 
433 /*
434  * BT_ROOT -- Split the root page of a btree.
435  *
436  * Parameters:
437  *	t:	tree
438  *	h:	root page
439  *	lp:	pointer to left page pointer
440  *	rp:	pointer to right page pointer
441  *	skip:	pointer to index to leave open
442  *	ilen:	insert length
443  *
444  * Returns:
445  *	Pointer to page in which to insert or NULL on error.
446  */
447 static PAGE *
bt_root(BTREE * t,PAGE * h,PAGE ** lp,PAGE ** rp,indx_t * skip,size_t ilen)448 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
449 {
450 	PAGE *l, *r, *tp;
451 	pgno_t lnpg, rnpg;
452 
453 #ifdef STATISTICS
454 	++bt_split;
455 	++bt_rootsplit;
456 #endif
457 	/* Put the new left and right pages for the split into place. */
458 	if ((l = __bt_new(t, &lnpg)) == NULL ||
459 	    (r = __bt_new(t, &rnpg)) == NULL)
460 		return (NULL);
461 	l->pgno = lnpg;
462 	r->pgno = rnpg;
463 	l->nextpg = r->pgno;
464 	r->prevpg = l->pgno;
465 	l->prevpg = r->nextpg = P_INVALID;
466 	l->lower = r->lower = BTDATAOFF;
467 	l->upper = r->upper = t->bt_psize;
468 	l->flags = r->flags = h->flags & P_TYPE;
469 
470 	/* Split the root page. */
471 	tp = bt_psplit(t, h, l, r, skip, ilen);
472 
473 	*lp = l;
474 	*rp = r;
475 	return (tp);
476 }
477 
478 /*
479  * BT_RROOT -- Fix up the recno root page after it has been split.
480  *
481  * Parameters:
482  *	t:	tree
483  *	h:	root page
484  *	l:	left page
485  *	r:	right page
486  *
487  * Returns:
488  *	RET_ERROR, RET_SUCCESS
489  */
490 static int
bt_rroot(BTREE * t,PAGE * h,PAGE * l,PAGE * r)491 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
492 {
493 	char *dest;
494 	uint32_t sz;
495 	size_t temp;
496 
497 	temp = t->bt_psize - NRINTERNAL;
498 	_DBFIT(temp, uint32_t);
499 	sz = (uint32_t)temp;
500 
501 	/* Insert the left and right keys, set the header information. */
502 	_DBFIT(sz, indx_t);
503 	h->linp[0] = h->upper = (indx_t)sz;
504 	dest = (char *)(void *)h + h->upper;
505 	WR_RINTERNAL(dest,
506 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
507 
508 	h->linp[1] = h->upper -= NRINTERNAL;
509 	dest = (char *)(void *)h + h->upper;
510 	WR_RINTERNAL(dest,
511 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
512 
513 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
514 
515 	/* Unpin the root page, set to recno internal page. */
516 	h->flags &= ~P_TYPE;
517 	h->flags |= P_RINTERNAL;
518 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
519 
520 	return (RET_SUCCESS);
521 }
522 
523 /*
524  * BT_BROOT -- Fix up the btree root page after it has been split.
525  *
526  * Parameters:
527  *	t:	tree
528  *	h:	root page
529  *	l:	left page
530  *	r:	right page
531  *
532  * Returns:
533  *	RET_ERROR, RET_SUCCESS
534  */
535 static int
bt_broot(BTREE * t,PAGE * h,PAGE * l,PAGE * r)536 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
537 {
538 	BINTERNAL *bi = NULL;	/* pacify gcc */
539 	BLEAF *bl;
540 	uint32_t nbytes;
541 	char *dest;
542 
543 	/*
544 	 * If the root page was a leaf page, change it into an internal page.
545 	 * We copy the key we split on (but not the key's data, in the case of
546 	 * a leaf page) to the new root page.
547 	 *
548 	 * The btree comparison code guarantees that the left-most key on any
549 	 * level of the tree is never used, so it doesn't need to be filled in.
550 	 */
551 	nbytes = NBINTERNAL(0);
552 	h->linp[0] = h->upper = t->bt_psize - nbytes;
553 	dest = (char *)(void *)h + h->upper;
554 	WR_BINTERNAL(dest, 0, l->pgno, 0);
555 
556 	switch (h->flags & P_TYPE) {
557 	case P_BLEAF:
558 		bl = GETBLEAF(r, 0);
559 		nbytes = NBINTERNAL(bl->ksize);
560 		h->linp[1] = h->upper -= nbytes;
561 		dest = (char *)(void *)h + h->upper;
562 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
563 		memmove(dest, bl->bytes, bl->ksize);
564 
565 		/*
566 		 * If the key is on an overflow page, mark the overflow chain
567 		 * so it isn't deleted when the leaf copy of the key is deleted.
568 		 */
569 		if (bl->flags & P_BIGKEY) {
570 			pgno_t pgno;
571 			memcpy(&pgno, bl->bytes, sizeof(pgno));
572 			if (bt_preserve(t, pgno) == RET_ERROR)
573 				return (RET_ERROR);
574 		}
575 		break;
576 	case P_BINTERNAL:
577 		bi = GETBINTERNAL(r, 0);
578 		nbytes = NBINTERNAL(bi->ksize);
579 		h->linp[1] = h->upper -= nbytes;
580 		dest = (char *)(void *)h + h->upper;
581 		memmove(dest, bi, nbytes);
582 		((BINTERNAL *)(void *)dest)->pgno = r->pgno;
583 		break;
584 	default:
585 		abort();
586 	}
587 
588 	/* There are two keys on the page. */
589 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
590 
591 	/* Unpin the root page, set to btree internal page. */
592 	h->flags &= ~P_TYPE;
593 	h->flags |= P_BINTERNAL;
594 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
595 
596 	return (RET_SUCCESS);
597 }
598 
599 /*
600  * BT_PSPLIT -- Do the real work of splitting the page.
601  *
602  * Parameters:
603  *	t:	tree
604  *	h:	page to be split
605  *	l:	page to put lower half of data
606  *	r:	page to put upper half of data
607  *	pskip:	pointer to index to leave open
608  *	ilen:	insert length
609  *
610  * Returns:
611  *	Pointer to page in which to insert.
612  */
613 static PAGE *
bt_psplit(BTREE * t,PAGE * h,PAGE * l,PAGE * r,indx_t * pskip,size_t ilen)614 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
615 {
616 	BINTERNAL *bi;
617 	BLEAF *bl;
618 	CURSOR *c;
619 	RLEAF *rl;
620 	PAGE *rval;
621 	void *src = NULL;	/* pacify gcc */
622 	indx_t full, half, nxt, off, skip, top, used;
623 	uint32_t nbytes;
624 	size_t temp;
625 	int bigkeycnt, isbigkey;
626 
627 	/*
628 	 * Split the data to the left and right pages.  Leave the skip index
629 	 * open.  Additionally, make some effort not to split on an overflow
630 	 * key.  This makes internal page processing faster and can save
631 	 * space as overflow keys used by internal pages are never deleted.
632 	 */
633 	bigkeycnt = 0;
634 	skip = *pskip;
635 	temp = t->bt_psize - BTDATAOFF;
636 	_DBFIT(temp, indx_t);
637 	full = (indx_t)temp;
638 	half = full / 2;
639 	used = 0;
640 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
641 		if (skip == off) {
642 			_DBFIT(ilen, uint32_t);
643 			nbytes = (uint32_t)ilen;
644 			isbigkey = 0;		/* XXX: not really known. */
645 		} else
646 			switch (h->flags & P_TYPE) {
647 			case P_BINTERNAL:
648 				src = bi = GETBINTERNAL(h, nxt);
649 				nbytes = NBINTERNAL(bi->ksize);
650 				isbigkey = bi->flags & P_BIGKEY;
651 				break;
652 			case P_BLEAF:
653 				src = bl = GETBLEAF(h, nxt);
654 				nbytes = NBLEAF(bl);
655 				isbigkey = bl->flags & P_BIGKEY;
656 				break;
657 			case P_RINTERNAL:
658 				src = GETRINTERNAL(h, nxt);
659 				nbytes = NRINTERNAL;
660 				isbigkey = 0;
661 				break;
662 			case P_RLEAF:
663 				src = rl = GETRLEAF(h, nxt);
664 				nbytes = NRLEAF(rl);
665 				isbigkey = 0;
666 				break;
667 			default:
668 				abort();
669 			}
670 
671 		/*
672 		 * If the key/data pairs are substantial fractions of the max
673 		 * possible size for the page, it's possible to get situations
674 		 * where we decide to try and copy too much onto the left page.
675 		 * Make sure that doesn't happen.
676 		 */
677 		if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
678 		    nxt == top - 1) {
679 			--off;
680 			break;
681 		}
682 
683 		/* Copy the key/data pair, if not the skipped index. */
684 		if (skip != off) {
685 			++nxt;
686 
687 			l->linp[off] = l->upper -= nbytes;
688 			memmove((char *)(void *)l + l->upper, src, nbytes);
689 		}
690 
691 		temp = nbytes + sizeof(indx_t);
692 		_DBFIT(temp, indx_t);
693 		used += (indx_t)temp;
694 		if (used >= half) {
695 			if (!isbigkey || bigkeycnt == 3)
696 				break;
697 			else
698 				++bigkeycnt;
699 		}
700 	}
701 
702 	/*
703 	 * Off is the last offset that's valid for the left page.
704 	 * Nxt is the first offset to be placed on the right page.
705 	 */
706 	temp = (off + 1) * sizeof(indx_t);
707 	_DBFIT(temp, indx_t);
708 	l->lower += (indx_t)temp;
709 
710 	/*
711 	 * If splitting the page that the cursor was on, the cursor has to be
712 	 * adjusted to point to the same record as before the split.  If the
713 	 * cursor is at or past the skipped slot, the cursor is incremented by
714 	 * one.  If the cursor is on the right page, it is decremented by the
715 	 * number of records split to the left page.
716 	 */
717 	c = &t->bt_cursor;
718 	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
719 		if (c->pg.index >= skip)
720 			++c->pg.index;
721 		if (c->pg.index < nxt)			/* Left page. */
722 			c->pg.pgno = l->pgno;
723 		else {					/* Right page. */
724 			c->pg.pgno = r->pgno;
725 			c->pg.index -= nxt;
726 		}
727 	}
728 
729 	/*
730 	 * If the skipped index was on the left page, just return that page.
731 	 * Otherwise, adjust the skip index to reflect the new position on
732 	 * the right page.
733 	 */
734 	if (skip <= off) {
735 		skip = MAX_PAGE_OFFSET;
736 		rval = l;
737 	} else {
738 		rval = r;
739 		*pskip -= nxt;
740 	}
741 
742 	for (off = 0; nxt < top; ++off) {
743 		if (skip == nxt) {
744 			++off;
745 			skip = MAX_PAGE_OFFSET;
746 		}
747 		switch (h->flags & P_TYPE) {
748 		case P_BINTERNAL:
749 			src = bi = GETBINTERNAL(h, nxt);
750 			nbytes = NBINTERNAL(bi->ksize);
751 			break;
752 		case P_BLEAF:
753 			src = bl = GETBLEAF(h, nxt);
754 			nbytes = NBLEAF(bl);
755 			break;
756 		case P_RINTERNAL:
757 			src = GETRINTERNAL(h, nxt);
758 			nbytes = NRINTERNAL;
759 			break;
760 		case P_RLEAF:
761 			src = rl = GETRLEAF(h, nxt);
762 			nbytes = NRLEAF(rl);
763 			break;
764 		default:
765 			abort();
766 		}
767 		++nxt;
768 		r->linp[off] = r->upper -= nbytes;
769 		memmove((char *)(void *)r + r->upper, src, nbytes);
770 	}
771 	temp = off * sizeof(indx_t);
772 	_DBFIT(temp, indx_t);
773 	r->lower += (indx_t)temp;
774 
775 	/* If the key is being appended to the page, adjust the index. */
776 	if (skip == top)
777 		r->lower += sizeof(indx_t);
778 
779 	return (rval);
780 }
781 
782 /*
783  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
784  *
785  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
786  * record that references them gets deleted.  Chains pointed to by internal
787  * pages never get deleted.  This routine marks a chain as pointed to by an
788  * internal page.
789  *
790  * Parameters:
791  *	t:	tree
792  *	pg:	page number of first page in the chain.
793  *
794  * Returns:
795  *	RET_SUCCESS, RET_ERROR.
796  */
797 static int
bt_preserve(BTREE * t,pgno_t pg)798 bt_preserve(BTREE *t, pgno_t pg)
799 {
800 	PAGE *h;
801 
802 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
803 		return (RET_ERROR);
804 	h->flags |= P_PRESERVE;
805 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
806 	return (RET_SUCCESS);
807 }
808 
809 /*
810  * REC_TOTAL -- Return the number of recno entries below a page.
811  *
812  * Parameters:
813  *	h:	page
814  *
815  * Returns:
816  *	The number of recno entries below a page.
817  *
818  * XXX
819  * These values could be set by the bt_psplit routine.  The problem is that the
820  * entry has to be popped off of the stack etc. or the values have to be passed
821  * all the way back to bt_split/bt_rroot and it's not very clean.
822  */
823 static recno_t
rec_total(PAGE * h)824 rec_total(PAGE *h)
825 {
826 	recno_t recs;
827 	indx_t nxt, top;
828 
829 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
830 		recs += GETRINTERNAL(h, nxt)->nrecs;
831 	return (recs);
832 }
833