xref: /linux/fs/btrfs/ctree.c (revision e094f480)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
abort_should_print_stack(int error)233 bool __cold abort_should_print_stack(int error)
234 {
235 	switch (error) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 	u64 reloc_src_root = 0;
320 
321 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 		trans->transid != fs_info->running_transaction->transid);
323 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 		trans->transid != root->last_trans);
325 
326 	level = btrfs_header_level(buf);
327 	if (level == 0)
328 		btrfs_item_key(buf, &disk_key, 0);
329 	else
330 		btrfs_node_key(buf, &disk_key, 0);
331 
332 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 		reloc_src_root = btrfs_header_owner(buf);
334 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 				     &disk_key, level, buf->start, 0,
336 				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 	if (IS_ERR(cow))
338 		return PTR_ERR(cow);
339 
340 	copy_extent_buffer_full(cow, buf);
341 	btrfs_set_header_bytenr(cow, cow->start);
342 	btrfs_set_header_generation(cow, trans->transid);
343 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 				     BTRFS_HEADER_FLAG_RELOC);
346 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 	else
349 		btrfs_set_header_owner(cow, new_root_objectid);
350 
351 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352 
353 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
354 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355 		ret = btrfs_inc_ref(trans, root, cow, 1);
356 	else
357 		ret = btrfs_inc_ref(trans, root, cow, 0);
358 	if (ret) {
359 		btrfs_tree_unlock(cow);
360 		free_extent_buffer(cow);
361 		btrfs_abort_transaction(trans, ret);
362 		return ret;
363 	}
364 
365 	btrfs_mark_buffer_dirty(trans, cow);
366 	*cow_ret = cow;
367 	return 0;
368 }
369 
370 /*
371  * check if the tree block can be shared by multiple trees
372  */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374 			       struct btrfs_root *root,
375 			       struct extent_buffer *buf)
376 {
377 	const u64 buf_gen = btrfs_header_generation(buf);
378 
379 	/*
380 	 * Tree blocks not in shareable trees and tree roots are never shared.
381 	 * If a block was allocated after the last snapshot and the block was
382 	 * not allocated by tree relocation, we know the block is not shared.
383 	 */
384 
385 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386 		return false;
387 
388 	if (buf == root->node)
389 		return false;
390 
391 	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393 		return false;
394 
395 	if (buf != root->commit_root)
396 		return true;
397 
398 	/*
399 	 * An extent buffer that used to be the commit root may still be shared
400 	 * because the tree height may have increased and it became a child of a
401 	 * higher level root. This can happen when snapshotting a subvolume
402 	 * created in the current transaction.
403 	 */
404 	if (buf_gen == trans->transid)
405 		return true;
406 
407 	return false;
408 }
409 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411 				       struct btrfs_root *root,
412 				       struct extent_buffer *buf,
413 				       struct extent_buffer *cow,
414 				       int *last_ref)
415 {
416 	struct btrfs_fs_info *fs_info = root->fs_info;
417 	u64 refs;
418 	u64 owner;
419 	u64 flags;
420 	u64 new_flags = 0;
421 	int ret;
422 
423 	/*
424 	 * Backrefs update rules:
425 	 *
426 	 * Always use full backrefs for extent pointers in tree block
427 	 * allocated by tree relocation.
428 	 *
429 	 * If a shared tree block is no longer referenced by its owner
430 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
431 	 * use full backrefs for extent pointers in tree block.
432 	 *
433 	 * If a tree block is been relocating
434 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
435 	 * use full backrefs for extent pointers in tree block.
436 	 * The reason for this is some operations (such as drop tree)
437 	 * are only allowed for blocks use full backrefs.
438 	 */
439 
440 	if (btrfs_block_can_be_shared(trans, root, buf)) {
441 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
442 					       btrfs_header_level(buf), 1,
443 					       &refs, &flags, NULL);
444 		if (ret)
445 			return ret;
446 		if (unlikely(refs == 0)) {
447 			btrfs_crit(fs_info,
448 		"found 0 references for tree block at bytenr %llu level %d root %llu",
449 				   buf->start, btrfs_header_level(buf),
450 				   btrfs_root_id(root));
451 			ret = -EUCLEAN;
452 			btrfs_abort_transaction(trans, ret);
453 			return ret;
454 		}
455 	} else {
456 		refs = 1;
457 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
458 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
460 		else
461 			flags = 0;
462 	}
463 
464 	owner = btrfs_header_owner(buf);
465 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
466 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
467 
468 	if (refs > 1) {
469 		if ((owner == btrfs_root_id(root) ||
470 		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
471 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
472 			ret = btrfs_inc_ref(trans, root, buf, 1);
473 			if (ret)
474 				return ret;
475 
476 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
477 				ret = btrfs_dec_ref(trans, root, buf, 0);
478 				if (ret)
479 					return ret;
480 				ret = btrfs_inc_ref(trans, root, cow, 1);
481 				if (ret)
482 					return ret;
483 			}
484 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
485 		} else {
486 
487 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
488 				ret = btrfs_inc_ref(trans, root, cow, 1);
489 			else
490 				ret = btrfs_inc_ref(trans, root, cow, 0);
491 			if (ret)
492 				return ret;
493 		}
494 		if (new_flags != 0) {
495 			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
496 			if (ret)
497 				return ret;
498 		}
499 	} else {
500 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
501 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
502 				ret = btrfs_inc_ref(trans, root, cow, 1);
503 			else
504 				ret = btrfs_inc_ref(trans, root, cow, 0);
505 			if (ret)
506 				return ret;
507 			ret = btrfs_dec_ref(trans, root, buf, 1);
508 			if (ret)
509 				return ret;
510 		}
511 		btrfs_clear_buffer_dirty(trans, buf);
512 		*last_ref = 1;
513 	}
514 	return 0;
515 }
516 
517 /*
518  * does the dirty work in cow of a single block.  The parent block (if
519  * supplied) is updated to point to the new cow copy.  The new buffer is marked
520  * dirty and returned locked.  If you modify the block it needs to be marked
521  * dirty again.
522  *
523  * search_start -- an allocation hint for the new block
524  *
525  * empty_size -- a hint that you plan on doing more cow.  This is the size in
526  * bytes the allocator should try to find free next to the block it returns.
527  * This is just a hint and may be ignored by the allocator.
528  */
btrfs_force_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)529 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
530 			  struct btrfs_root *root,
531 			  struct extent_buffer *buf,
532 			  struct extent_buffer *parent, int parent_slot,
533 			  struct extent_buffer **cow_ret,
534 			  u64 search_start, u64 empty_size,
535 			  enum btrfs_lock_nesting nest)
536 {
537 	struct btrfs_fs_info *fs_info = root->fs_info;
538 	struct btrfs_disk_key disk_key;
539 	struct extent_buffer *cow;
540 	int level, ret;
541 	int last_ref = 0;
542 	int unlock_orig = 0;
543 	u64 parent_start = 0;
544 	u64 reloc_src_root = 0;
545 
546 	if (*cow_ret == buf)
547 		unlock_orig = 1;
548 
549 	btrfs_assert_tree_write_locked(buf);
550 
551 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
552 		trans->transid != fs_info->running_transaction->transid);
553 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
554 		trans->transid != root->last_trans);
555 
556 	level = btrfs_header_level(buf);
557 
558 	if (level == 0)
559 		btrfs_item_key(buf, &disk_key, 0);
560 	else
561 		btrfs_node_key(buf, &disk_key, 0);
562 
563 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
564 		if (parent)
565 			parent_start = parent->start;
566 		reloc_src_root = btrfs_header_owner(buf);
567 	}
568 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
569 				     btrfs_root_id(root), &disk_key, level,
570 				     search_start, empty_size, reloc_src_root, nest);
571 	if (IS_ERR(cow))
572 		return PTR_ERR(cow);
573 
574 	/* cow is set to blocking by btrfs_init_new_buffer */
575 
576 	copy_extent_buffer_full(cow, buf);
577 	btrfs_set_header_bytenr(cow, cow->start);
578 	btrfs_set_header_generation(cow, trans->transid);
579 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
580 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
581 				     BTRFS_HEADER_FLAG_RELOC);
582 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
583 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
584 	else
585 		btrfs_set_header_owner(cow, btrfs_root_id(root));
586 
587 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
588 
589 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
590 	if (ret) {
591 		btrfs_tree_unlock(cow);
592 		free_extent_buffer(cow);
593 		btrfs_abort_transaction(trans, ret);
594 		return ret;
595 	}
596 
597 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
598 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
599 		if (ret) {
600 			btrfs_tree_unlock(cow);
601 			free_extent_buffer(cow);
602 			btrfs_abort_transaction(trans, ret);
603 			return ret;
604 		}
605 	}
606 
607 	if (buf == root->node) {
608 		WARN_ON(parent && parent != buf);
609 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
610 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
611 			parent_start = buf->start;
612 
613 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
614 		if (ret < 0) {
615 			btrfs_tree_unlock(cow);
616 			free_extent_buffer(cow);
617 			btrfs_abort_transaction(trans, ret);
618 			return ret;
619 		}
620 		atomic_inc(&cow->refs);
621 		rcu_assign_pointer(root->node, cow);
622 
623 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
624 				      parent_start, last_ref);
625 		free_extent_buffer(buf);
626 		add_root_to_dirty_list(root);
627 	} else {
628 		WARN_ON(trans->transid != btrfs_header_generation(parent));
629 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
630 						    BTRFS_MOD_LOG_KEY_REPLACE);
631 		if (ret) {
632 			btrfs_tree_unlock(cow);
633 			free_extent_buffer(cow);
634 			btrfs_abort_transaction(trans, ret);
635 			return ret;
636 		}
637 		btrfs_set_node_blockptr(parent, parent_slot,
638 					cow->start);
639 		btrfs_set_node_ptr_generation(parent, parent_slot,
640 					      trans->transid);
641 		btrfs_mark_buffer_dirty(trans, parent);
642 		if (last_ref) {
643 			ret = btrfs_tree_mod_log_free_eb(buf);
644 			if (ret) {
645 				btrfs_tree_unlock(cow);
646 				free_extent_buffer(cow);
647 				btrfs_abort_transaction(trans, ret);
648 				return ret;
649 			}
650 		}
651 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
652 				      parent_start, last_ref);
653 	}
654 	if (unlock_orig)
655 		btrfs_tree_unlock(buf);
656 	free_extent_buffer_stale(buf);
657 	btrfs_mark_buffer_dirty(trans, cow);
658 	*cow_ret = cow;
659 	return 0;
660 }
661 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)662 static inline int should_cow_block(struct btrfs_trans_handle *trans,
663 				   struct btrfs_root *root,
664 				   struct extent_buffer *buf)
665 {
666 	if (btrfs_is_testing(root->fs_info))
667 		return 0;
668 
669 	/* Ensure we can see the FORCE_COW bit */
670 	smp_mb__before_atomic();
671 
672 	/*
673 	 * We do not need to cow a block if
674 	 * 1) this block is not created or changed in this transaction;
675 	 * 2) this block does not belong to TREE_RELOC tree;
676 	 * 3) the root is not forced COW.
677 	 *
678 	 * What is forced COW:
679 	 *    when we create snapshot during committing the transaction,
680 	 *    after we've finished copying src root, we must COW the shared
681 	 *    block to ensure the metadata consistency.
682 	 */
683 	if (btrfs_header_generation(buf) == trans->transid &&
684 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
685 	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
686 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
687 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
688 		return 0;
689 	return 1;
690 }
691 
692 /*
693  * COWs a single block, see btrfs_force_cow_block() for the real work.
694  * This version of it has extra checks so that a block isn't COWed more than
695  * once per transaction, as long as it hasn't been written yet
696  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)697 int btrfs_cow_block(struct btrfs_trans_handle *trans,
698 		    struct btrfs_root *root, struct extent_buffer *buf,
699 		    struct extent_buffer *parent, int parent_slot,
700 		    struct extent_buffer **cow_ret,
701 		    enum btrfs_lock_nesting nest)
702 {
703 	struct btrfs_fs_info *fs_info = root->fs_info;
704 	u64 search_start;
705 	int ret;
706 
707 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
708 		btrfs_abort_transaction(trans, -EUCLEAN);
709 		btrfs_crit(fs_info,
710 		   "attempt to COW block %llu on root %llu that is being deleted",
711 			   buf->start, btrfs_root_id(root));
712 		return -EUCLEAN;
713 	}
714 
715 	/*
716 	 * COWing must happen through a running transaction, which always
717 	 * matches the current fs generation (it's a transaction with a state
718 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
719 	 * into error state to prevent the commit of any transaction.
720 	 */
721 	if (unlikely(trans->transaction != fs_info->running_transaction ||
722 		     trans->transid != fs_info->generation)) {
723 		btrfs_abort_transaction(trans, -EUCLEAN);
724 		btrfs_crit(fs_info,
725 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
726 			   buf->start, btrfs_root_id(root), trans->transid,
727 			   fs_info->running_transaction->transid,
728 			   fs_info->generation);
729 		return -EUCLEAN;
730 	}
731 
732 	if (!should_cow_block(trans, root, buf)) {
733 		*cow_ret = buf;
734 		return 0;
735 	}
736 
737 	search_start = round_down(buf->start, SZ_1G);
738 
739 	/*
740 	 * Before CoWing this block for later modification, check if it's
741 	 * the subtree root and do the delayed subtree trace if needed.
742 	 *
743 	 * Also We don't care about the error, as it's handled internally.
744 	 */
745 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
746 	ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
747 				    cow_ret, search_start, 0, nest);
748 
749 	trace_btrfs_cow_block(root, buf, *cow_ret);
750 
751 	return ret;
752 }
753 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
754 
755 /*
756  * same as comp_keys only with two btrfs_key's
757  */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)758 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
759 {
760 	if (k1->objectid > k2->objectid)
761 		return 1;
762 	if (k1->objectid < k2->objectid)
763 		return -1;
764 	if (k1->type > k2->type)
765 		return 1;
766 	if (k1->type < k2->type)
767 		return -1;
768 	if (k1->offset > k2->offset)
769 		return 1;
770 	if (k1->offset < k2->offset)
771 		return -1;
772 	return 0;
773 }
774 
775 /*
776  * Search for a key in the given extent_buffer.
777  *
778  * The lower boundary for the search is specified by the slot number @first_slot.
779  * Use a value of 0 to search over the whole extent buffer. Works for both
780  * leaves and nodes.
781  *
782  * The slot in the extent buffer is returned via @slot. If the key exists in the
783  * extent buffer, then @slot will point to the slot where the key is, otherwise
784  * it points to the slot where you would insert the key.
785  *
786  * Slot may point to the total number of items (i.e. one position beyond the last
787  * key) if the key is bigger than the last key in the extent buffer.
788  */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)789 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
790 		     const struct btrfs_key *key, int *slot)
791 {
792 	unsigned long p;
793 	int item_size;
794 	/*
795 	 * Use unsigned types for the low and high slots, so that we get a more
796 	 * efficient division in the search loop below.
797 	 */
798 	u32 low = first_slot;
799 	u32 high = btrfs_header_nritems(eb);
800 	int ret;
801 	const int key_size = sizeof(struct btrfs_disk_key);
802 
803 	if (unlikely(low > high)) {
804 		btrfs_err(eb->fs_info,
805 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
806 			  __func__, low, high, eb->start,
807 			  btrfs_header_owner(eb), btrfs_header_level(eb));
808 		return -EINVAL;
809 	}
810 
811 	if (btrfs_header_level(eb) == 0) {
812 		p = offsetof(struct btrfs_leaf, items);
813 		item_size = sizeof(struct btrfs_item);
814 	} else {
815 		p = offsetof(struct btrfs_node, ptrs);
816 		item_size = sizeof(struct btrfs_key_ptr);
817 	}
818 
819 	while (low < high) {
820 		const int unit_size = eb->folio_size;
821 		unsigned long oil;
822 		unsigned long offset;
823 		struct btrfs_disk_key *tmp;
824 		struct btrfs_disk_key unaligned;
825 		int mid;
826 
827 		mid = (low + high) / 2;
828 		offset = p + mid * item_size;
829 		oil = get_eb_offset_in_folio(eb, offset);
830 
831 		if (oil + key_size <= unit_size) {
832 			const unsigned long idx = get_eb_folio_index(eb, offset);
833 			char *kaddr = folio_address(eb->folios[idx]);
834 
835 			oil = get_eb_offset_in_folio(eb, offset);
836 			tmp = (struct btrfs_disk_key *)(kaddr + oil);
837 		} else {
838 			read_extent_buffer(eb, &unaligned, offset, key_size);
839 			tmp = &unaligned;
840 		}
841 
842 		ret = btrfs_comp_keys(tmp, key);
843 
844 		if (ret < 0)
845 			low = mid + 1;
846 		else if (ret > 0)
847 			high = mid;
848 		else {
849 			*slot = mid;
850 			return 0;
851 		}
852 	}
853 	*slot = low;
854 	return 1;
855 }
856 
root_add_used_bytes(struct btrfs_root * root)857 static void root_add_used_bytes(struct btrfs_root *root)
858 {
859 	spin_lock(&root->accounting_lock);
860 	btrfs_set_root_used(&root->root_item,
861 		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
862 	spin_unlock(&root->accounting_lock);
863 }
864 
root_sub_used_bytes(struct btrfs_root * root)865 static void root_sub_used_bytes(struct btrfs_root *root)
866 {
867 	spin_lock(&root->accounting_lock);
868 	btrfs_set_root_used(&root->root_item,
869 		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
870 	spin_unlock(&root->accounting_lock);
871 }
872 
873 /* given a node and slot number, this reads the blocks it points to.  The
874  * extent buffer is returned with a reference taken (but unlocked).
875  */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)876 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
877 					   int slot)
878 {
879 	int level = btrfs_header_level(parent);
880 	struct btrfs_tree_parent_check check = { 0 };
881 	struct extent_buffer *eb;
882 
883 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
884 		return ERR_PTR(-ENOENT);
885 
886 	ASSERT(level);
887 
888 	check.level = level - 1;
889 	check.transid = btrfs_node_ptr_generation(parent, slot);
890 	check.owner_root = btrfs_header_owner(parent);
891 	check.has_first_key = true;
892 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
893 
894 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
895 			     &check);
896 	if (IS_ERR(eb))
897 		return eb;
898 	if (!extent_buffer_uptodate(eb)) {
899 		free_extent_buffer(eb);
900 		return ERR_PTR(-EIO);
901 	}
902 
903 	return eb;
904 }
905 
906 /*
907  * node level balancing, used to make sure nodes are in proper order for
908  * item deletion.  We balance from the top down, so we have to make sure
909  * that a deletion won't leave an node completely empty later on.
910  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)911 static noinline int balance_level(struct btrfs_trans_handle *trans,
912 			 struct btrfs_root *root,
913 			 struct btrfs_path *path, int level)
914 {
915 	struct btrfs_fs_info *fs_info = root->fs_info;
916 	struct extent_buffer *right = NULL;
917 	struct extent_buffer *mid;
918 	struct extent_buffer *left = NULL;
919 	struct extent_buffer *parent = NULL;
920 	int ret = 0;
921 	int wret;
922 	int pslot;
923 	int orig_slot = path->slots[level];
924 	u64 orig_ptr;
925 
926 	ASSERT(level > 0);
927 
928 	mid = path->nodes[level];
929 
930 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
931 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
932 
933 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
934 
935 	if (level < BTRFS_MAX_LEVEL - 1) {
936 		parent = path->nodes[level + 1];
937 		pslot = path->slots[level + 1];
938 	}
939 
940 	/*
941 	 * deal with the case where there is only one pointer in the root
942 	 * by promoting the node below to a root
943 	 */
944 	if (!parent) {
945 		struct extent_buffer *child;
946 
947 		if (btrfs_header_nritems(mid) != 1)
948 			return 0;
949 
950 		/* promote the child to a root */
951 		child = btrfs_read_node_slot(mid, 0);
952 		if (IS_ERR(child)) {
953 			ret = PTR_ERR(child);
954 			goto out;
955 		}
956 
957 		btrfs_tree_lock(child);
958 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
959 				      BTRFS_NESTING_COW);
960 		if (ret) {
961 			btrfs_tree_unlock(child);
962 			free_extent_buffer(child);
963 			goto out;
964 		}
965 
966 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
967 		if (ret < 0) {
968 			btrfs_tree_unlock(child);
969 			free_extent_buffer(child);
970 			btrfs_abort_transaction(trans, ret);
971 			goto out;
972 		}
973 		rcu_assign_pointer(root->node, child);
974 
975 		add_root_to_dirty_list(root);
976 		btrfs_tree_unlock(child);
977 
978 		path->locks[level] = 0;
979 		path->nodes[level] = NULL;
980 		btrfs_clear_buffer_dirty(trans, mid);
981 		btrfs_tree_unlock(mid);
982 		/* once for the path */
983 		free_extent_buffer(mid);
984 
985 		root_sub_used_bytes(root);
986 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
987 		/* once for the root ptr */
988 		free_extent_buffer_stale(mid);
989 		return 0;
990 	}
991 	if (btrfs_header_nritems(mid) >
992 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
993 		return 0;
994 
995 	if (pslot) {
996 		left = btrfs_read_node_slot(parent, pslot - 1);
997 		if (IS_ERR(left)) {
998 			ret = PTR_ERR(left);
999 			left = NULL;
1000 			goto out;
1001 		}
1002 
1003 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1004 		wret = btrfs_cow_block(trans, root, left,
1005 				       parent, pslot - 1, &left,
1006 				       BTRFS_NESTING_LEFT_COW);
1007 		if (wret) {
1008 			ret = wret;
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1014 		right = btrfs_read_node_slot(parent, pslot + 1);
1015 		if (IS_ERR(right)) {
1016 			ret = PTR_ERR(right);
1017 			right = NULL;
1018 			goto out;
1019 		}
1020 
1021 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1022 		wret = btrfs_cow_block(trans, root, right,
1023 				       parent, pslot + 1, &right,
1024 				       BTRFS_NESTING_RIGHT_COW);
1025 		if (wret) {
1026 			ret = wret;
1027 			goto out;
1028 		}
1029 	}
1030 
1031 	/* first, try to make some room in the middle buffer */
1032 	if (left) {
1033 		orig_slot += btrfs_header_nritems(left);
1034 		wret = push_node_left(trans, left, mid, 1);
1035 		if (wret < 0)
1036 			ret = wret;
1037 	}
1038 
1039 	/*
1040 	 * then try to empty the right most buffer into the middle
1041 	 */
1042 	if (right) {
1043 		wret = push_node_left(trans, mid, right, 1);
1044 		if (wret < 0 && wret != -ENOSPC)
1045 			ret = wret;
1046 		if (btrfs_header_nritems(right) == 0) {
1047 			btrfs_clear_buffer_dirty(trans, right);
1048 			btrfs_tree_unlock(right);
1049 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1050 			if (ret < 0) {
1051 				free_extent_buffer_stale(right);
1052 				right = NULL;
1053 				goto out;
1054 			}
1055 			root_sub_used_bytes(root);
1056 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1057 					      0, 1);
1058 			free_extent_buffer_stale(right);
1059 			right = NULL;
1060 		} else {
1061 			struct btrfs_disk_key right_key;
1062 			btrfs_node_key(right, &right_key, 0);
1063 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1064 					BTRFS_MOD_LOG_KEY_REPLACE);
1065 			if (ret < 0) {
1066 				btrfs_abort_transaction(trans, ret);
1067 				goto out;
1068 			}
1069 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1070 			btrfs_mark_buffer_dirty(trans, parent);
1071 		}
1072 	}
1073 	if (btrfs_header_nritems(mid) == 1) {
1074 		/*
1075 		 * we're not allowed to leave a node with one item in the
1076 		 * tree during a delete.  A deletion from lower in the tree
1077 		 * could try to delete the only pointer in this node.
1078 		 * So, pull some keys from the left.
1079 		 * There has to be a left pointer at this point because
1080 		 * otherwise we would have pulled some pointers from the
1081 		 * right
1082 		 */
1083 		if (unlikely(!left)) {
1084 			btrfs_crit(fs_info,
1085 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1086 				   parent->start, btrfs_header_level(parent),
1087 				   mid->start, btrfs_root_id(root));
1088 			ret = -EUCLEAN;
1089 			btrfs_abort_transaction(trans, ret);
1090 			goto out;
1091 		}
1092 		wret = balance_node_right(trans, mid, left);
1093 		if (wret < 0) {
1094 			ret = wret;
1095 			goto out;
1096 		}
1097 		if (wret == 1) {
1098 			wret = push_node_left(trans, left, mid, 1);
1099 			if (wret < 0)
1100 				ret = wret;
1101 		}
1102 		BUG_ON(wret == 1);
1103 	}
1104 	if (btrfs_header_nritems(mid) == 0) {
1105 		btrfs_clear_buffer_dirty(trans, mid);
1106 		btrfs_tree_unlock(mid);
1107 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1108 		if (ret < 0) {
1109 			free_extent_buffer_stale(mid);
1110 			mid = NULL;
1111 			goto out;
1112 		}
1113 		root_sub_used_bytes(root);
1114 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1115 		free_extent_buffer_stale(mid);
1116 		mid = NULL;
1117 	} else {
1118 		/* update the parent key to reflect our changes */
1119 		struct btrfs_disk_key mid_key;
1120 		btrfs_node_key(mid, &mid_key, 0);
1121 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1122 						    BTRFS_MOD_LOG_KEY_REPLACE);
1123 		if (ret < 0) {
1124 			btrfs_abort_transaction(trans, ret);
1125 			goto out;
1126 		}
1127 		btrfs_set_node_key(parent, &mid_key, pslot);
1128 		btrfs_mark_buffer_dirty(trans, parent);
1129 	}
1130 
1131 	/* update the path */
1132 	if (left) {
1133 		if (btrfs_header_nritems(left) > orig_slot) {
1134 			atomic_inc(&left->refs);
1135 			/* left was locked after cow */
1136 			path->nodes[level] = left;
1137 			path->slots[level + 1] -= 1;
1138 			path->slots[level] = orig_slot;
1139 			if (mid) {
1140 				btrfs_tree_unlock(mid);
1141 				free_extent_buffer(mid);
1142 			}
1143 		} else {
1144 			orig_slot -= btrfs_header_nritems(left);
1145 			path->slots[level] = orig_slot;
1146 		}
1147 	}
1148 	/* double check we haven't messed things up */
1149 	if (orig_ptr !=
1150 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1151 		BUG();
1152 out:
1153 	if (right) {
1154 		btrfs_tree_unlock(right);
1155 		free_extent_buffer(right);
1156 	}
1157 	if (left) {
1158 		if (path->nodes[level] != left)
1159 			btrfs_tree_unlock(left);
1160 		free_extent_buffer(left);
1161 	}
1162 	return ret;
1163 }
1164 
1165 /* Node balancing for insertion.  Here we only split or push nodes around
1166  * when they are completely full.  This is also done top down, so we
1167  * have to be pessimistic.
1168  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1169 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1170 					  struct btrfs_root *root,
1171 					  struct btrfs_path *path, int level)
1172 {
1173 	struct btrfs_fs_info *fs_info = root->fs_info;
1174 	struct extent_buffer *right = NULL;
1175 	struct extent_buffer *mid;
1176 	struct extent_buffer *left = NULL;
1177 	struct extent_buffer *parent = NULL;
1178 	int ret = 0;
1179 	int wret;
1180 	int pslot;
1181 	int orig_slot = path->slots[level];
1182 
1183 	if (level == 0)
1184 		return 1;
1185 
1186 	mid = path->nodes[level];
1187 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1188 
1189 	if (level < BTRFS_MAX_LEVEL - 1) {
1190 		parent = path->nodes[level + 1];
1191 		pslot = path->slots[level + 1];
1192 	}
1193 
1194 	if (!parent)
1195 		return 1;
1196 
1197 	/* first, try to make some room in the middle buffer */
1198 	if (pslot) {
1199 		u32 left_nr;
1200 
1201 		left = btrfs_read_node_slot(parent, pslot - 1);
1202 		if (IS_ERR(left))
1203 			return PTR_ERR(left);
1204 
1205 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1206 
1207 		left_nr = btrfs_header_nritems(left);
1208 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1209 			wret = 1;
1210 		} else {
1211 			ret = btrfs_cow_block(trans, root, left, parent,
1212 					      pslot - 1, &left,
1213 					      BTRFS_NESTING_LEFT_COW);
1214 			if (ret)
1215 				wret = 1;
1216 			else {
1217 				wret = push_node_left(trans, left, mid, 0);
1218 			}
1219 		}
1220 		if (wret < 0)
1221 			ret = wret;
1222 		if (wret == 0) {
1223 			struct btrfs_disk_key disk_key;
1224 			orig_slot += left_nr;
1225 			btrfs_node_key(mid, &disk_key, 0);
1226 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1227 					BTRFS_MOD_LOG_KEY_REPLACE);
1228 			if (ret < 0) {
1229 				btrfs_tree_unlock(left);
1230 				free_extent_buffer(left);
1231 				btrfs_abort_transaction(trans, ret);
1232 				return ret;
1233 			}
1234 			btrfs_set_node_key(parent, &disk_key, pslot);
1235 			btrfs_mark_buffer_dirty(trans, parent);
1236 			if (btrfs_header_nritems(left) > orig_slot) {
1237 				path->nodes[level] = left;
1238 				path->slots[level + 1] -= 1;
1239 				path->slots[level] = orig_slot;
1240 				btrfs_tree_unlock(mid);
1241 				free_extent_buffer(mid);
1242 			} else {
1243 				orig_slot -=
1244 					btrfs_header_nritems(left);
1245 				path->slots[level] = orig_slot;
1246 				btrfs_tree_unlock(left);
1247 				free_extent_buffer(left);
1248 			}
1249 			return 0;
1250 		}
1251 		btrfs_tree_unlock(left);
1252 		free_extent_buffer(left);
1253 	}
1254 
1255 	/*
1256 	 * then try to empty the right most buffer into the middle
1257 	 */
1258 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1259 		u32 right_nr;
1260 
1261 		right = btrfs_read_node_slot(parent, pslot + 1);
1262 		if (IS_ERR(right))
1263 			return PTR_ERR(right);
1264 
1265 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1266 
1267 		right_nr = btrfs_header_nritems(right);
1268 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1269 			wret = 1;
1270 		} else {
1271 			ret = btrfs_cow_block(trans, root, right,
1272 					      parent, pslot + 1,
1273 					      &right, BTRFS_NESTING_RIGHT_COW);
1274 			if (ret)
1275 				wret = 1;
1276 			else {
1277 				wret = balance_node_right(trans, right, mid);
1278 			}
1279 		}
1280 		if (wret < 0)
1281 			ret = wret;
1282 		if (wret == 0) {
1283 			struct btrfs_disk_key disk_key;
1284 
1285 			btrfs_node_key(right, &disk_key, 0);
1286 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1287 					BTRFS_MOD_LOG_KEY_REPLACE);
1288 			if (ret < 0) {
1289 				btrfs_tree_unlock(right);
1290 				free_extent_buffer(right);
1291 				btrfs_abort_transaction(trans, ret);
1292 				return ret;
1293 			}
1294 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1295 			btrfs_mark_buffer_dirty(trans, parent);
1296 
1297 			if (btrfs_header_nritems(mid) <= orig_slot) {
1298 				path->nodes[level] = right;
1299 				path->slots[level + 1] += 1;
1300 				path->slots[level] = orig_slot -
1301 					btrfs_header_nritems(mid);
1302 				btrfs_tree_unlock(mid);
1303 				free_extent_buffer(mid);
1304 			} else {
1305 				btrfs_tree_unlock(right);
1306 				free_extent_buffer(right);
1307 			}
1308 			return 0;
1309 		}
1310 		btrfs_tree_unlock(right);
1311 		free_extent_buffer(right);
1312 	}
1313 	return 1;
1314 }
1315 
1316 /*
1317  * readahead one full node of leaves, finding things that are close
1318  * to the block in 'slot', and triggering ra on them.
1319  */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1320 static void reada_for_search(struct btrfs_fs_info *fs_info,
1321 			     struct btrfs_path *path,
1322 			     int level, int slot, u64 objectid)
1323 {
1324 	struct extent_buffer *node;
1325 	struct btrfs_disk_key disk_key;
1326 	u32 nritems;
1327 	u64 search;
1328 	u64 target;
1329 	u64 nread = 0;
1330 	u64 nread_max;
1331 	u32 nr;
1332 	u32 blocksize;
1333 	u32 nscan = 0;
1334 
1335 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1336 		return;
1337 
1338 	if (!path->nodes[level])
1339 		return;
1340 
1341 	node = path->nodes[level];
1342 
1343 	/*
1344 	 * Since the time between visiting leaves is much shorter than the time
1345 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1346 	 * much IO at once (possibly random).
1347 	 */
1348 	if (path->reada == READA_FORWARD_ALWAYS) {
1349 		if (level > 1)
1350 			nread_max = node->fs_info->nodesize;
1351 		else
1352 			nread_max = SZ_128K;
1353 	} else {
1354 		nread_max = SZ_64K;
1355 	}
1356 
1357 	search = btrfs_node_blockptr(node, slot);
1358 	blocksize = fs_info->nodesize;
1359 	if (path->reada != READA_FORWARD_ALWAYS) {
1360 		struct extent_buffer *eb;
1361 
1362 		eb = find_extent_buffer(fs_info, search);
1363 		if (eb) {
1364 			free_extent_buffer(eb);
1365 			return;
1366 		}
1367 	}
1368 
1369 	target = search;
1370 
1371 	nritems = btrfs_header_nritems(node);
1372 	nr = slot;
1373 
1374 	while (1) {
1375 		if (path->reada == READA_BACK) {
1376 			if (nr == 0)
1377 				break;
1378 			nr--;
1379 		} else if (path->reada == READA_FORWARD ||
1380 			   path->reada == READA_FORWARD_ALWAYS) {
1381 			nr++;
1382 			if (nr >= nritems)
1383 				break;
1384 		}
1385 		if (path->reada == READA_BACK && objectid) {
1386 			btrfs_node_key(node, &disk_key, nr);
1387 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1388 				break;
1389 		}
1390 		search = btrfs_node_blockptr(node, nr);
1391 		if (path->reada == READA_FORWARD_ALWAYS ||
1392 		    (search <= target && target - search <= 65536) ||
1393 		    (search > target && search - target <= 65536)) {
1394 			btrfs_readahead_node_child(node, nr);
1395 			nread += blocksize;
1396 		}
1397 		nscan++;
1398 		if (nread > nread_max || nscan > 32)
1399 			break;
1400 	}
1401 }
1402 
reada_for_balance(struct btrfs_path * path,int level)1403 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1404 {
1405 	struct extent_buffer *parent;
1406 	int slot;
1407 	int nritems;
1408 
1409 	parent = path->nodes[level + 1];
1410 	if (!parent)
1411 		return;
1412 
1413 	nritems = btrfs_header_nritems(parent);
1414 	slot = path->slots[level + 1];
1415 
1416 	if (slot > 0)
1417 		btrfs_readahead_node_child(parent, slot - 1);
1418 	if (slot + 1 < nritems)
1419 		btrfs_readahead_node_child(parent, slot + 1);
1420 }
1421 
1422 
1423 /*
1424  * when we walk down the tree, it is usually safe to unlock the higher layers
1425  * in the tree.  The exceptions are when our path goes through slot 0, because
1426  * operations on the tree might require changing key pointers higher up in the
1427  * tree.
1428  *
1429  * callers might also have set path->keep_locks, which tells this code to keep
1430  * the lock if the path points to the last slot in the block.  This is part of
1431  * walking through the tree, and selecting the next slot in the higher block.
1432  *
1433  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1434  * if lowest_unlock is 1, level 0 won't be unlocked
1435  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1436 static noinline void unlock_up(struct btrfs_path *path, int level,
1437 			       int lowest_unlock, int min_write_lock_level,
1438 			       int *write_lock_level)
1439 {
1440 	int i;
1441 	int skip_level = level;
1442 	bool check_skip = true;
1443 
1444 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1445 		if (!path->nodes[i])
1446 			break;
1447 		if (!path->locks[i])
1448 			break;
1449 
1450 		if (check_skip) {
1451 			if (path->slots[i] == 0) {
1452 				skip_level = i + 1;
1453 				continue;
1454 			}
1455 
1456 			if (path->keep_locks) {
1457 				u32 nritems;
1458 
1459 				nritems = btrfs_header_nritems(path->nodes[i]);
1460 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1461 					skip_level = i + 1;
1462 					continue;
1463 				}
1464 			}
1465 		}
1466 
1467 		if (i >= lowest_unlock && i > skip_level) {
1468 			check_skip = false;
1469 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1470 			path->locks[i] = 0;
1471 			if (write_lock_level &&
1472 			    i > min_write_lock_level &&
1473 			    i <= *write_lock_level) {
1474 				*write_lock_level = i - 1;
1475 			}
1476 		}
1477 	}
1478 }
1479 
1480 /*
1481  * Helper function for btrfs_search_slot() and other functions that do a search
1482  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1483  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1484  * its pages from disk.
1485  *
1486  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1487  * whole btree search, starting again from the current root node.
1488  */
1489 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1490 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1491 		      struct extent_buffer **eb_ret, int level, int slot,
1492 		      const struct btrfs_key *key)
1493 {
1494 	struct btrfs_fs_info *fs_info = root->fs_info;
1495 	struct btrfs_tree_parent_check check = { 0 };
1496 	u64 blocknr;
1497 	u64 gen;
1498 	struct extent_buffer *tmp;
1499 	int ret;
1500 	int parent_level;
1501 	bool unlock_up;
1502 
1503 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1504 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1505 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1506 	parent_level = btrfs_header_level(*eb_ret);
1507 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1508 	check.has_first_key = true;
1509 	check.level = parent_level - 1;
1510 	check.transid = gen;
1511 	check.owner_root = btrfs_root_id(root);
1512 
1513 	/*
1514 	 * If we need to read an extent buffer from disk and we are holding locks
1515 	 * on upper level nodes, we unlock all the upper nodes before reading the
1516 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1517 	 * restart the search. We don't release the lock on the current level
1518 	 * because we need to walk this node to figure out which blocks to read.
1519 	 */
1520 	tmp = find_extent_buffer(fs_info, blocknr);
1521 	if (tmp) {
1522 		if (p->reada == READA_FORWARD_ALWAYS)
1523 			reada_for_search(fs_info, p, level, slot, key->objectid);
1524 
1525 		/* first we do an atomic uptodate check */
1526 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1527 			/*
1528 			 * Do extra check for first_key, eb can be stale due to
1529 			 * being cached, read from scrub, or have multiple
1530 			 * parents (shared tree blocks).
1531 			 */
1532 			if (btrfs_verify_level_key(tmp,
1533 					parent_level - 1, &check.first_key, gen)) {
1534 				free_extent_buffer(tmp);
1535 				return -EUCLEAN;
1536 			}
1537 			*eb_ret = tmp;
1538 			return 0;
1539 		}
1540 
1541 		if (p->nowait) {
1542 			free_extent_buffer(tmp);
1543 			return -EAGAIN;
1544 		}
1545 
1546 		if (unlock_up)
1547 			btrfs_unlock_up_safe(p, level + 1);
1548 
1549 		/* now we're allowed to do a blocking uptodate check */
1550 		ret = btrfs_read_extent_buffer(tmp, &check);
1551 		if (ret) {
1552 			free_extent_buffer(tmp);
1553 			btrfs_release_path(p);
1554 			return -EIO;
1555 		}
1556 		if (btrfs_check_eb_owner(tmp, btrfs_root_id(root))) {
1557 			free_extent_buffer(tmp);
1558 			btrfs_release_path(p);
1559 			return -EUCLEAN;
1560 		}
1561 
1562 		if (unlock_up)
1563 			ret = -EAGAIN;
1564 
1565 		goto out;
1566 	} else if (p->nowait) {
1567 		return -EAGAIN;
1568 	}
1569 
1570 	if (unlock_up) {
1571 		btrfs_unlock_up_safe(p, level + 1);
1572 		ret = -EAGAIN;
1573 	} else {
1574 		ret = 0;
1575 	}
1576 
1577 	if (p->reada != READA_NONE)
1578 		reada_for_search(fs_info, p, level, slot, key->objectid);
1579 
1580 	tmp = read_tree_block(fs_info, blocknr, &check);
1581 	if (IS_ERR(tmp)) {
1582 		btrfs_release_path(p);
1583 		return PTR_ERR(tmp);
1584 	}
1585 	/*
1586 	 * If the read above didn't mark this buffer up to date,
1587 	 * it will never end up being up to date.  Set ret to EIO now
1588 	 * and give up so that our caller doesn't loop forever
1589 	 * on our EAGAINs.
1590 	 */
1591 	if (!extent_buffer_uptodate(tmp))
1592 		ret = -EIO;
1593 
1594 out:
1595 	if (ret == 0) {
1596 		*eb_ret = tmp;
1597 	} else {
1598 		free_extent_buffer(tmp);
1599 		btrfs_release_path(p);
1600 	}
1601 
1602 	return ret;
1603 }
1604 
1605 /*
1606  * helper function for btrfs_search_slot.  This does all of the checks
1607  * for node-level blocks and does any balancing required based on
1608  * the ins_len.
1609  *
1610  * If no extra work was required, zero is returned.  If we had to
1611  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1612  * start over
1613  */
1614 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1615 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1616 		       struct btrfs_root *root, struct btrfs_path *p,
1617 		       struct extent_buffer *b, int level, int ins_len,
1618 		       int *write_lock_level)
1619 {
1620 	struct btrfs_fs_info *fs_info = root->fs_info;
1621 	int ret = 0;
1622 
1623 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1624 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1625 
1626 		if (*write_lock_level < level + 1) {
1627 			*write_lock_level = level + 1;
1628 			btrfs_release_path(p);
1629 			return -EAGAIN;
1630 		}
1631 
1632 		reada_for_balance(p, level);
1633 		ret = split_node(trans, root, p, level);
1634 
1635 		b = p->nodes[level];
1636 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1637 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1638 
1639 		if (*write_lock_level < level + 1) {
1640 			*write_lock_level = level + 1;
1641 			btrfs_release_path(p);
1642 			return -EAGAIN;
1643 		}
1644 
1645 		reada_for_balance(p, level);
1646 		ret = balance_level(trans, root, p, level);
1647 		if (ret)
1648 			return ret;
1649 
1650 		b = p->nodes[level];
1651 		if (!b) {
1652 			btrfs_release_path(p);
1653 			return -EAGAIN;
1654 		}
1655 		BUG_ON(btrfs_header_nritems(b) == 1);
1656 	}
1657 	return ret;
1658 }
1659 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1660 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1661 		u64 iobjectid, u64 ioff, u8 key_type,
1662 		struct btrfs_key *found_key)
1663 {
1664 	int ret;
1665 	struct btrfs_key key;
1666 	struct extent_buffer *eb;
1667 
1668 	ASSERT(path);
1669 	ASSERT(found_key);
1670 
1671 	key.type = key_type;
1672 	key.objectid = iobjectid;
1673 	key.offset = ioff;
1674 
1675 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1676 	if (ret < 0)
1677 		return ret;
1678 
1679 	eb = path->nodes[0];
1680 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1681 		ret = btrfs_next_leaf(fs_root, path);
1682 		if (ret)
1683 			return ret;
1684 		eb = path->nodes[0];
1685 	}
1686 
1687 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1688 	if (found_key->type != key.type ||
1689 			found_key->objectid != key.objectid)
1690 		return 1;
1691 
1692 	return 0;
1693 }
1694 
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1695 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1696 							struct btrfs_path *p,
1697 							int write_lock_level)
1698 {
1699 	struct extent_buffer *b;
1700 	int root_lock = 0;
1701 	int level = 0;
1702 
1703 	if (p->search_commit_root) {
1704 		b = root->commit_root;
1705 		atomic_inc(&b->refs);
1706 		level = btrfs_header_level(b);
1707 		/*
1708 		 * Ensure that all callers have set skip_locking when
1709 		 * p->search_commit_root = 1.
1710 		 */
1711 		ASSERT(p->skip_locking == 1);
1712 
1713 		goto out;
1714 	}
1715 
1716 	if (p->skip_locking) {
1717 		b = btrfs_root_node(root);
1718 		level = btrfs_header_level(b);
1719 		goto out;
1720 	}
1721 
1722 	/* We try very hard to do read locks on the root */
1723 	root_lock = BTRFS_READ_LOCK;
1724 
1725 	/*
1726 	 * If the level is set to maximum, we can skip trying to get the read
1727 	 * lock.
1728 	 */
1729 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1730 		/*
1731 		 * We don't know the level of the root node until we actually
1732 		 * have it read locked
1733 		 */
1734 		if (p->nowait) {
1735 			b = btrfs_try_read_lock_root_node(root);
1736 			if (IS_ERR(b))
1737 				return b;
1738 		} else {
1739 			b = btrfs_read_lock_root_node(root);
1740 		}
1741 		level = btrfs_header_level(b);
1742 		if (level > write_lock_level)
1743 			goto out;
1744 
1745 		/* Whoops, must trade for write lock */
1746 		btrfs_tree_read_unlock(b);
1747 		free_extent_buffer(b);
1748 	}
1749 
1750 	b = btrfs_lock_root_node(root);
1751 	root_lock = BTRFS_WRITE_LOCK;
1752 
1753 	/* The level might have changed, check again */
1754 	level = btrfs_header_level(b);
1755 
1756 out:
1757 	/*
1758 	 * The root may have failed to write out at some point, and thus is no
1759 	 * longer valid, return an error in this case.
1760 	 */
1761 	if (!extent_buffer_uptodate(b)) {
1762 		if (root_lock)
1763 			btrfs_tree_unlock_rw(b, root_lock);
1764 		free_extent_buffer(b);
1765 		return ERR_PTR(-EIO);
1766 	}
1767 
1768 	p->nodes[level] = b;
1769 	if (!p->skip_locking)
1770 		p->locks[level] = root_lock;
1771 	/*
1772 	 * Callers are responsible for dropping b's references.
1773 	 */
1774 	return b;
1775 }
1776 
1777 /*
1778  * Replace the extent buffer at the lowest level of the path with a cloned
1779  * version. The purpose is to be able to use it safely, after releasing the
1780  * commit root semaphore, even if relocation is happening in parallel, the
1781  * transaction used for relocation is committed and the extent buffer is
1782  * reallocated in the next transaction.
1783  *
1784  * This is used in a context where the caller does not prevent transaction
1785  * commits from happening, either by holding a transaction handle or holding
1786  * some lock, while it's doing searches through a commit root.
1787  * At the moment it's only used for send operations.
1788  */
finish_need_commit_sem_search(struct btrfs_path * path)1789 static int finish_need_commit_sem_search(struct btrfs_path *path)
1790 {
1791 	const int i = path->lowest_level;
1792 	const int slot = path->slots[i];
1793 	struct extent_buffer *lowest = path->nodes[i];
1794 	struct extent_buffer *clone;
1795 
1796 	ASSERT(path->need_commit_sem);
1797 
1798 	if (!lowest)
1799 		return 0;
1800 
1801 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1802 
1803 	clone = btrfs_clone_extent_buffer(lowest);
1804 	if (!clone)
1805 		return -ENOMEM;
1806 
1807 	btrfs_release_path(path);
1808 	path->nodes[i] = clone;
1809 	path->slots[i] = slot;
1810 
1811 	return 0;
1812 }
1813 
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1814 static inline int search_for_key_slot(struct extent_buffer *eb,
1815 				      int search_low_slot,
1816 				      const struct btrfs_key *key,
1817 				      int prev_cmp,
1818 				      int *slot)
1819 {
1820 	/*
1821 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1822 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1823 	 * always be at slot 0 on lower levels, since each key pointer
1824 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1825 	 * subtree it points to. Thus we can skip searching lower levels.
1826 	 */
1827 	if (prev_cmp == 0) {
1828 		*slot = 0;
1829 		return 0;
1830 	}
1831 
1832 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1833 }
1834 
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1835 static int search_leaf(struct btrfs_trans_handle *trans,
1836 		       struct btrfs_root *root,
1837 		       const struct btrfs_key *key,
1838 		       struct btrfs_path *path,
1839 		       int ins_len,
1840 		       int prev_cmp)
1841 {
1842 	struct extent_buffer *leaf = path->nodes[0];
1843 	int leaf_free_space = -1;
1844 	int search_low_slot = 0;
1845 	int ret;
1846 	bool do_bin_search = true;
1847 
1848 	/*
1849 	 * If we are doing an insertion, the leaf has enough free space and the
1850 	 * destination slot for the key is not slot 0, then we can unlock our
1851 	 * write lock on the parent, and any other upper nodes, before doing the
1852 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1853 	 * tasks to lock the parent and any other upper nodes.
1854 	 */
1855 	if (ins_len > 0) {
1856 		/*
1857 		 * Cache the leaf free space, since we will need it later and it
1858 		 * will not change until then.
1859 		 */
1860 		leaf_free_space = btrfs_leaf_free_space(leaf);
1861 
1862 		/*
1863 		 * !path->locks[1] means we have a single node tree, the leaf is
1864 		 * the root of the tree.
1865 		 */
1866 		if (path->locks[1] && leaf_free_space >= ins_len) {
1867 			struct btrfs_disk_key first_key;
1868 
1869 			ASSERT(btrfs_header_nritems(leaf) > 0);
1870 			btrfs_item_key(leaf, &first_key, 0);
1871 
1872 			/*
1873 			 * Doing the extra comparison with the first key is cheap,
1874 			 * taking into account that the first key is very likely
1875 			 * already in a cache line because it immediately follows
1876 			 * the extent buffer's header and we have recently accessed
1877 			 * the header's level field.
1878 			 */
1879 			ret = btrfs_comp_keys(&first_key, key);
1880 			if (ret < 0) {
1881 				/*
1882 				 * The first key is smaller than the key we want
1883 				 * to insert, so we are safe to unlock all upper
1884 				 * nodes and we have to do the binary search.
1885 				 *
1886 				 * We do use btrfs_unlock_up_safe() and not
1887 				 * unlock_up() because the later does not unlock
1888 				 * nodes with a slot of 0 - we can safely unlock
1889 				 * any node even if its slot is 0 since in this
1890 				 * case the key does not end up at slot 0 of the
1891 				 * leaf and there's no need to split the leaf.
1892 				 */
1893 				btrfs_unlock_up_safe(path, 1);
1894 				search_low_slot = 1;
1895 			} else {
1896 				/*
1897 				 * The first key is >= then the key we want to
1898 				 * insert, so we can skip the binary search as
1899 				 * the target key will be at slot 0.
1900 				 *
1901 				 * We can not unlock upper nodes when the key is
1902 				 * less than the first key, because we will need
1903 				 * to update the key at slot 0 of the parent node
1904 				 * and possibly of other upper nodes too.
1905 				 * If the key matches the first key, then we can
1906 				 * unlock all the upper nodes, using
1907 				 * btrfs_unlock_up_safe() instead of unlock_up()
1908 				 * as stated above.
1909 				 */
1910 				if (ret == 0)
1911 					btrfs_unlock_up_safe(path, 1);
1912 				/*
1913 				 * ret is already 0 or 1, matching the result of
1914 				 * a btrfs_bin_search() call, so there is no need
1915 				 * to adjust it.
1916 				 */
1917 				do_bin_search = false;
1918 				path->slots[0] = 0;
1919 			}
1920 		}
1921 	}
1922 
1923 	if (do_bin_search) {
1924 		ret = search_for_key_slot(leaf, search_low_slot, key,
1925 					  prev_cmp, &path->slots[0]);
1926 		if (ret < 0)
1927 			return ret;
1928 	}
1929 
1930 	if (ins_len > 0) {
1931 		/*
1932 		 * Item key already exists. In this case, if we are allowed to
1933 		 * insert the item (for example, in dir_item case, item key
1934 		 * collision is allowed), it will be merged with the original
1935 		 * item. Only the item size grows, no new btrfs item will be
1936 		 * added. If search_for_extension is not set, ins_len already
1937 		 * accounts the size btrfs_item, deduct it here so leaf space
1938 		 * check will be correct.
1939 		 */
1940 		if (ret == 0 && !path->search_for_extension) {
1941 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1942 			ins_len -= sizeof(struct btrfs_item);
1943 		}
1944 
1945 		ASSERT(leaf_free_space >= 0);
1946 
1947 		if (leaf_free_space < ins_len) {
1948 			int err;
1949 
1950 			err = split_leaf(trans, root, key, path, ins_len,
1951 					 (ret == 0));
1952 			ASSERT(err <= 0);
1953 			if (WARN_ON(err > 0))
1954 				err = -EUCLEAN;
1955 			if (err)
1956 				ret = err;
1957 		}
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 /*
1964  * Look for a key in a tree and perform necessary modifications to preserve
1965  * tree invariants.
1966  *
1967  * @trans:	Handle of transaction, used when modifying the tree
1968  * @p:		Holds all btree nodes along the search path
1969  * @root:	The root node of the tree
1970  * @key:	The key we are looking for
1971  * @ins_len:	Indicates purpose of search:
1972  *              >0  for inserts it's size of item inserted (*)
1973  *              <0  for deletions
1974  *               0  for plain searches, not modifying the tree
1975  *
1976  *              (*) If size of item inserted doesn't include
1977  *              sizeof(struct btrfs_item), then p->search_for_extension must
1978  *              be set.
1979  * @cow:	boolean should CoW operations be performed. Must always be 1
1980  *		when modifying the tree.
1981  *
1982  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1983  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1984  *
1985  * If @key is found, 0 is returned and you can find the item in the leaf level
1986  * of the path (level 0)
1987  *
1988  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1989  * points to the slot where it should be inserted
1990  *
1991  * If an error is encountered while searching the tree a negative error number
1992  * is returned
1993  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)1994 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1995 		      const struct btrfs_key *key, struct btrfs_path *p,
1996 		      int ins_len, int cow)
1997 {
1998 	struct btrfs_fs_info *fs_info = root->fs_info;
1999 	struct extent_buffer *b;
2000 	int slot;
2001 	int ret;
2002 	int err;
2003 	int level;
2004 	int lowest_unlock = 1;
2005 	/* everything at write_lock_level or lower must be write locked */
2006 	int write_lock_level = 0;
2007 	u8 lowest_level = 0;
2008 	int min_write_lock_level;
2009 	int prev_cmp;
2010 
2011 	might_sleep();
2012 
2013 	lowest_level = p->lowest_level;
2014 	WARN_ON(lowest_level && ins_len > 0);
2015 	WARN_ON(p->nodes[0] != NULL);
2016 	BUG_ON(!cow && ins_len);
2017 
2018 	/*
2019 	 * For now only allow nowait for read only operations.  There's no
2020 	 * strict reason why we can't, we just only need it for reads so it's
2021 	 * only implemented for reads.
2022 	 */
2023 	ASSERT(!p->nowait || !cow);
2024 
2025 	if (ins_len < 0) {
2026 		lowest_unlock = 2;
2027 
2028 		/* when we are removing items, we might have to go up to level
2029 		 * two as we update tree pointers  Make sure we keep write
2030 		 * for those levels as well
2031 		 */
2032 		write_lock_level = 2;
2033 	} else if (ins_len > 0) {
2034 		/*
2035 		 * for inserting items, make sure we have a write lock on
2036 		 * level 1 so we can update keys
2037 		 */
2038 		write_lock_level = 1;
2039 	}
2040 
2041 	if (!cow)
2042 		write_lock_level = -1;
2043 
2044 	if (cow && (p->keep_locks || p->lowest_level))
2045 		write_lock_level = BTRFS_MAX_LEVEL;
2046 
2047 	min_write_lock_level = write_lock_level;
2048 
2049 	if (p->need_commit_sem) {
2050 		ASSERT(p->search_commit_root);
2051 		if (p->nowait) {
2052 			if (!down_read_trylock(&fs_info->commit_root_sem))
2053 				return -EAGAIN;
2054 		} else {
2055 			down_read(&fs_info->commit_root_sem);
2056 		}
2057 	}
2058 
2059 again:
2060 	prev_cmp = -1;
2061 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2062 	if (IS_ERR(b)) {
2063 		ret = PTR_ERR(b);
2064 		goto done;
2065 	}
2066 
2067 	while (b) {
2068 		int dec = 0;
2069 
2070 		level = btrfs_header_level(b);
2071 
2072 		if (cow) {
2073 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2074 
2075 			/*
2076 			 * if we don't really need to cow this block
2077 			 * then we don't want to set the path blocking,
2078 			 * so we test it here
2079 			 */
2080 			if (!should_cow_block(trans, root, b))
2081 				goto cow_done;
2082 
2083 			/*
2084 			 * must have write locks on this node and the
2085 			 * parent
2086 			 */
2087 			if (level > write_lock_level ||
2088 			    (level + 1 > write_lock_level &&
2089 			    level + 1 < BTRFS_MAX_LEVEL &&
2090 			    p->nodes[level + 1])) {
2091 				write_lock_level = level + 1;
2092 				btrfs_release_path(p);
2093 				goto again;
2094 			}
2095 
2096 			if (last_level)
2097 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2098 						      &b,
2099 						      BTRFS_NESTING_COW);
2100 			else
2101 				err = btrfs_cow_block(trans, root, b,
2102 						      p->nodes[level + 1],
2103 						      p->slots[level + 1], &b,
2104 						      BTRFS_NESTING_COW);
2105 			if (err) {
2106 				ret = err;
2107 				goto done;
2108 			}
2109 		}
2110 cow_done:
2111 		p->nodes[level] = b;
2112 
2113 		/*
2114 		 * we have a lock on b and as long as we aren't changing
2115 		 * the tree, there is no way to for the items in b to change.
2116 		 * It is safe to drop the lock on our parent before we
2117 		 * go through the expensive btree search on b.
2118 		 *
2119 		 * If we're inserting or deleting (ins_len != 0), then we might
2120 		 * be changing slot zero, which may require changing the parent.
2121 		 * So, we can't drop the lock until after we know which slot
2122 		 * we're operating on.
2123 		 */
2124 		if (!ins_len && !p->keep_locks) {
2125 			int u = level + 1;
2126 
2127 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2128 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2129 				p->locks[u] = 0;
2130 			}
2131 		}
2132 
2133 		if (level == 0) {
2134 			if (ins_len > 0)
2135 				ASSERT(write_lock_level >= 1);
2136 
2137 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2138 			if (!p->search_for_split)
2139 				unlock_up(p, level, lowest_unlock,
2140 					  min_write_lock_level, NULL);
2141 			goto done;
2142 		}
2143 
2144 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2145 		if (ret < 0)
2146 			goto done;
2147 		prev_cmp = ret;
2148 
2149 		if (ret && slot > 0) {
2150 			dec = 1;
2151 			slot--;
2152 		}
2153 		p->slots[level] = slot;
2154 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2155 					     &write_lock_level);
2156 		if (err == -EAGAIN)
2157 			goto again;
2158 		if (err) {
2159 			ret = err;
2160 			goto done;
2161 		}
2162 		b = p->nodes[level];
2163 		slot = p->slots[level];
2164 
2165 		/*
2166 		 * Slot 0 is special, if we change the key we have to update
2167 		 * the parent pointer which means we must have a write lock on
2168 		 * the parent
2169 		 */
2170 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2171 			write_lock_level = level + 1;
2172 			btrfs_release_path(p);
2173 			goto again;
2174 		}
2175 
2176 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2177 			  &write_lock_level);
2178 
2179 		if (level == lowest_level) {
2180 			if (dec)
2181 				p->slots[level]++;
2182 			goto done;
2183 		}
2184 
2185 		err = read_block_for_search(root, p, &b, level, slot, key);
2186 		if (err == -EAGAIN)
2187 			goto again;
2188 		if (err) {
2189 			ret = err;
2190 			goto done;
2191 		}
2192 
2193 		if (!p->skip_locking) {
2194 			level = btrfs_header_level(b);
2195 
2196 			btrfs_maybe_reset_lockdep_class(root, b);
2197 
2198 			if (level <= write_lock_level) {
2199 				btrfs_tree_lock(b);
2200 				p->locks[level] = BTRFS_WRITE_LOCK;
2201 			} else {
2202 				if (p->nowait) {
2203 					if (!btrfs_try_tree_read_lock(b)) {
2204 						free_extent_buffer(b);
2205 						ret = -EAGAIN;
2206 						goto done;
2207 					}
2208 				} else {
2209 					btrfs_tree_read_lock(b);
2210 				}
2211 				p->locks[level] = BTRFS_READ_LOCK;
2212 			}
2213 			p->nodes[level] = b;
2214 		}
2215 	}
2216 	ret = 1;
2217 done:
2218 	if (ret < 0 && !p->skip_release_on_error)
2219 		btrfs_release_path(p);
2220 
2221 	if (p->need_commit_sem) {
2222 		int ret2;
2223 
2224 		ret2 = finish_need_commit_sem_search(p);
2225 		up_read(&fs_info->commit_root_sem);
2226 		if (ret2)
2227 			ret = ret2;
2228 	}
2229 
2230 	return ret;
2231 }
2232 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2233 
2234 /*
2235  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2236  * current state of the tree together with the operations recorded in the tree
2237  * modification log to search for the key in a previous version of this tree, as
2238  * denoted by the time_seq parameter.
2239  *
2240  * Naturally, there is no support for insert, delete or cow operations.
2241  *
2242  * The resulting path and return value will be set up as if we called
2243  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2244  */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2245 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2246 			  struct btrfs_path *p, u64 time_seq)
2247 {
2248 	struct btrfs_fs_info *fs_info = root->fs_info;
2249 	struct extent_buffer *b;
2250 	int slot;
2251 	int ret;
2252 	int err;
2253 	int level;
2254 	int lowest_unlock = 1;
2255 	u8 lowest_level = 0;
2256 
2257 	lowest_level = p->lowest_level;
2258 	WARN_ON(p->nodes[0] != NULL);
2259 	ASSERT(!p->nowait);
2260 
2261 	if (p->search_commit_root) {
2262 		BUG_ON(time_seq);
2263 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2264 	}
2265 
2266 again:
2267 	b = btrfs_get_old_root(root, time_seq);
2268 	if (!b) {
2269 		ret = -EIO;
2270 		goto done;
2271 	}
2272 	level = btrfs_header_level(b);
2273 	p->locks[level] = BTRFS_READ_LOCK;
2274 
2275 	while (b) {
2276 		int dec = 0;
2277 
2278 		level = btrfs_header_level(b);
2279 		p->nodes[level] = b;
2280 
2281 		/*
2282 		 * we have a lock on b and as long as we aren't changing
2283 		 * the tree, there is no way to for the items in b to change.
2284 		 * It is safe to drop the lock on our parent before we
2285 		 * go through the expensive btree search on b.
2286 		 */
2287 		btrfs_unlock_up_safe(p, level + 1);
2288 
2289 		ret = btrfs_bin_search(b, 0, key, &slot);
2290 		if (ret < 0)
2291 			goto done;
2292 
2293 		if (level == 0) {
2294 			p->slots[level] = slot;
2295 			unlock_up(p, level, lowest_unlock, 0, NULL);
2296 			goto done;
2297 		}
2298 
2299 		if (ret && slot > 0) {
2300 			dec = 1;
2301 			slot--;
2302 		}
2303 		p->slots[level] = slot;
2304 		unlock_up(p, level, lowest_unlock, 0, NULL);
2305 
2306 		if (level == lowest_level) {
2307 			if (dec)
2308 				p->slots[level]++;
2309 			goto done;
2310 		}
2311 
2312 		err = read_block_for_search(root, p, &b, level, slot, key);
2313 		if (err == -EAGAIN)
2314 			goto again;
2315 		if (err) {
2316 			ret = err;
2317 			goto done;
2318 		}
2319 
2320 		level = btrfs_header_level(b);
2321 		btrfs_tree_read_lock(b);
2322 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2323 		if (!b) {
2324 			ret = -ENOMEM;
2325 			goto done;
2326 		}
2327 		p->locks[level] = BTRFS_READ_LOCK;
2328 		p->nodes[level] = b;
2329 	}
2330 	ret = 1;
2331 done:
2332 	if (ret < 0)
2333 		btrfs_release_path(p);
2334 
2335 	return ret;
2336 }
2337 
2338 /*
2339  * Search the tree again to find a leaf with smaller keys.
2340  * Returns 0 if it found something.
2341  * Returns 1 if there are no smaller keys.
2342  * Returns < 0 on error.
2343  *
2344  * This may release the path, and so you may lose any locks held at the
2345  * time you call it.
2346  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2347 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2348 {
2349 	struct btrfs_key key;
2350 	struct btrfs_key orig_key;
2351 	struct btrfs_disk_key found_key;
2352 	int ret;
2353 
2354 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2355 	orig_key = key;
2356 
2357 	if (key.offset > 0) {
2358 		key.offset--;
2359 	} else if (key.type > 0) {
2360 		key.type--;
2361 		key.offset = (u64)-1;
2362 	} else if (key.objectid > 0) {
2363 		key.objectid--;
2364 		key.type = (u8)-1;
2365 		key.offset = (u64)-1;
2366 	} else {
2367 		return 1;
2368 	}
2369 
2370 	btrfs_release_path(path);
2371 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2372 	if (ret <= 0)
2373 		return ret;
2374 
2375 	/*
2376 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2377 	 * before releasing the path and calling btrfs_search_slot(), we now may
2378 	 * be in a slot pointing to the same original key - this can happen if
2379 	 * after we released the path, one of more items were moved from a
2380 	 * sibling leaf into the front of the leaf we had due to an insertion
2381 	 * (see push_leaf_right()).
2382 	 * If we hit this case and our slot is > 0 and just decrement the slot
2383 	 * so that the caller does not process the same key again, which may or
2384 	 * may not break the caller, depending on its logic.
2385 	 */
2386 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2387 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2388 		ret = btrfs_comp_keys(&found_key, &orig_key);
2389 		if (ret == 0) {
2390 			if (path->slots[0] > 0) {
2391 				path->slots[0]--;
2392 				return 0;
2393 			}
2394 			/*
2395 			 * At slot 0, same key as before, it means orig_key is
2396 			 * the lowest, leftmost, key in the tree. We're done.
2397 			 */
2398 			return 1;
2399 		}
2400 	}
2401 
2402 	btrfs_item_key(path->nodes[0], &found_key, 0);
2403 	ret = btrfs_comp_keys(&found_key, &key);
2404 	/*
2405 	 * We might have had an item with the previous key in the tree right
2406 	 * before we released our path. And after we released our path, that
2407 	 * item might have been pushed to the first slot (0) of the leaf we
2408 	 * were holding due to a tree balance. Alternatively, an item with the
2409 	 * previous key can exist as the only element of a leaf (big fat item).
2410 	 * Therefore account for these 2 cases, so that our callers (like
2411 	 * btrfs_previous_item) don't miss an existing item with a key matching
2412 	 * the previous key we computed above.
2413 	 */
2414 	if (ret <= 0)
2415 		return 0;
2416 	return 1;
2417 }
2418 
2419 /*
2420  * helper to use instead of search slot if no exact match is needed but
2421  * instead the next or previous item should be returned.
2422  * When find_higher is true, the next higher item is returned, the next lower
2423  * otherwise.
2424  * When return_any and find_higher are both true, and no higher item is found,
2425  * return the next lower instead.
2426  * When return_any is true and find_higher is false, and no lower item is found,
2427  * return the next higher instead.
2428  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2429  * < 0 on error
2430  */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2431 int btrfs_search_slot_for_read(struct btrfs_root *root,
2432 			       const struct btrfs_key *key,
2433 			       struct btrfs_path *p, int find_higher,
2434 			       int return_any)
2435 {
2436 	int ret;
2437 	struct extent_buffer *leaf;
2438 
2439 again:
2440 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2441 	if (ret <= 0)
2442 		return ret;
2443 	/*
2444 	 * a return value of 1 means the path is at the position where the
2445 	 * item should be inserted. Normally this is the next bigger item,
2446 	 * but in case the previous item is the last in a leaf, path points
2447 	 * to the first free slot in the previous leaf, i.e. at an invalid
2448 	 * item.
2449 	 */
2450 	leaf = p->nodes[0];
2451 
2452 	if (find_higher) {
2453 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2454 			ret = btrfs_next_leaf(root, p);
2455 			if (ret <= 0)
2456 				return ret;
2457 			if (!return_any)
2458 				return 1;
2459 			/*
2460 			 * no higher item found, return the next
2461 			 * lower instead
2462 			 */
2463 			return_any = 0;
2464 			find_higher = 0;
2465 			btrfs_release_path(p);
2466 			goto again;
2467 		}
2468 	} else {
2469 		if (p->slots[0] == 0) {
2470 			ret = btrfs_prev_leaf(root, p);
2471 			if (ret < 0)
2472 				return ret;
2473 			if (!ret) {
2474 				leaf = p->nodes[0];
2475 				if (p->slots[0] == btrfs_header_nritems(leaf))
2476 					p->slots[0]--;
2477 				return 0;
2478 			}
2479 			if (!return_any)
2480 				return 1;
2481 			/*
2482 			 * no lower item found, return the next
2483 			 * higher instead
2484 			 */
2485 			return_any = 0;
2486 			find_higher = 1;
2487 			btrfs_release_path(p);
2488 			goto again;
2489 		} else {
2490 			--p->slots[0];
2491 		}
2492 	}
2493 	return 0;
2494 }
2495 
2496 /*
2497  * Execute search and call btrfs_previous_item to traverse backwards if the item
2498  * was not found.
2499  *
2500  * Return 0 if found, 1 if not found and < 0 if error.
2501  */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2502 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2503 			   struct btrfs_path *path)
2504 {
2505 	int ret;
2506 
2507 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2508 	if (ret > 0)
2509 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2510 
2511 	if (ret == 0)
2512 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2513 
2514 	return ret;
2515 }
2516 
2517 /*
2518  * Search for a valid slot for the given path.
2519  *
2520  * @root:	The root node of the tree.
2521  * @key:	Will contain a valid item if found.
2522  * @path:	The starting point to validate the slot.
2523  *
2524  * Return: 0  if the item is valid
2525  *         1  if not found
2526  *         <0 if error.
2527  */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2528 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2529 			      struct btrfs_path *path)
2530 {
2531 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2532 		int ret;
2533 
2534 		ret = btrfs_next_leaf(root, path);
2535 		if (ret)
2536 			return ret;
2537 	}
2538 
2539 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2540 	return 0;
2541 }
2542 
2543 /*
2544  * adjust the pointers going up the tree, starting at level
2545  * making sure the right key of each node is points to 'key'.
2546  * This is used after shifting pointers to the left, so it stops
2547  * fixing up pointers when a given leaf/node is not in slot 0 of the
2548  * higher levels
2549  *
2550  */
fixup_low_keys(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,int level)2551 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2552 			   struct btrfs_path *path,
2553 			   struct btrfs_disk_key *key, int level)
2554 {
2555 	int i;
2556 	struct extent_buffer *t;
2557 	int ret;
2558 
2559 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2560 		int tslot = path->slots[i];
2561 
2562 		if (!path->nodes[i])
2563 			break;
2564 		t = path->nodes[i];
2565 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2566 						    BTRFS_MOD_LOG_KEY_REPLACE);
2567 		BUG_ON(ret < 0);
2568 		btrfs_set_node_key(t, key, tslot);
2569 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2570 		if (tslot != 0)
2571 			break;
2572 	}
2573 }
2574 
2575 /*
2576  * update item key.
2577  *
2578  * This function isn't completely safe. It's the caller's responsibility
2579  * that the new key won't break the order
2580  */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key)2581 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2582 			     struct btrfs_path *path,
2583 			     const struct btrfs_key *new_key)
2584 {
2585 	struct btrfs_fs_info *fs_info = trans->fs_info;
2586 	struct btrfs_disk_key disk_key;
2587 	struct extent_buffer *eb;
2588 	int slot;
2589 
2590 	eb = path->nodes[0];
2591 	slot = path->slots[0];
2592 	if (slot > 0) {
2593 		btrfs_item_key(eb, &disk_key, slot - 1);
2594 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2595 			btrfs_print_leaf(eb);
2596 			btrfs_crit(fs_info,
2597 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2598 				   slot, btrfs_disk_key_objectid(&disk_key),
2599 				   btrfs_disk_key_type(&disk_key),
2600 				   btrfs_disk_key_offset(&disk_key),
2601 				   new_key->objectid, new_key->type,
2602 				   new_key->offset);
2603 			BUG();
2604 		}
2605 	}
2606 	if (slot < btrfs_header_nritems(eb) - 1) {
2607 		btrfs_item_key(eb, &disk_key, slot + 1);
2608 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2609 			btrfs_print_leaf(eb);
2610 			btrfs_crit(fs_info,
2611 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2612 				   slot, btrfs_disk_key_objectid(&disk_key),
2613 				   btrfs_disk_key_type(&disk_key),
2614 				   btrfs_disk_key_offset(&disk_key),
2615 				   new_key->objectid, new_key->type,
2616 				   new_key->offset);
2617 			BUG();
2618 		}
2619 	}
2620 
2621 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2622 	btrfs_set_item_key(eb, &disk_key, slot);
2623 	btrfs_mark_buffer_dirty(trans, eb);
2624 	if (slot == 0)
2625 		fixup_low_keys(trans, path, &disk_key, 1);
2626 }
2627 
2628 /*
2629  * Check key order of two sibling extent buffers.
2630  *
2631  * Return true if something is wrong.
2632  * Return false if everything is fine.
2633  *
2634  * Tree-checker only works inside one tree block, thus the following
2635  * corruption can not be detected by tree-checker:
2636  *
2637  * Leaf @left			| Leaf @right
2638  * --------------------------------------------------------------
2639  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2640  *
2641  * Key f6 in leaf @left itself is valid, but not valid when the next
2642  * key in leaf @right is 7.
2643  * This can only be checked at tree block merge time.
2644  * And since tree checker has ensured all key order in each tree block
2645  * is correct, we only need to bother the last key of @left and the first
2646  * key of @right.
2647  */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2648 static bool check_sibling_keys(struct extent_buffer *left,
2649 			       struct extent_buffer *right)
2650 {
2651 	struct btrfs_key left_last;
2652 	struct btrfs_key right_first;
2653 	int level = btrfs_header_level(left);
2654 	int nr_left = btrfs_header_nritems(left);
2655 	int nr_right = btrfs_header_nritems(right);
2656 
2657 	/* No key to check in one of the tree blocks */
2658 	if (!nr_left || !nr_right)
2659 		return false;
2660 
2661 	if (level) {
2662 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2663 		btrfs_node_key_to_cpu(right, &right_first, 0);
2664 	} else {
2665 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2666 		btrfs_item_key_to_cpu(right, &right_first, 0);
2667 	}
2668 
2669 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2670 		btrfs_crit(left->fs_info, "left extent buffer:");
2671 		btrfs_print_tree(left, false);
2672 		btrfs_crit(left->fs_info, "right extent buffer:");
2673 		btrfs_print_tree(right, false);
2674 		btrfs_crit(left->fs_info,
2675 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2676 			   left_last.objectid, left_last.type,
2677 			   left_last.offset, right_first.objectid,
2678 			   right_first.type, right_first.offset);
2679 		return true;
2680 	}
2681 	return false;
2682 }
2683 
2684 /*
2685  * try to push data from one node into the next node left in the
2686  * tree.
2687  *
2688  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2689  * error, and > 0 if there was no room in the left hand block.
2690  */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2691 static int push_node_left(struct btrfs_trans_handle *trans,
2692 			  struct extent_buffer *dst,
2693 			  struct extent_buffer *src, int empty)
2694 {
2695 	struct btrfs_fs_info *fs_info = trans->fs_info;
2696 	int push_items = 0;
2697 	int src_nritems;
2698 	int dst_nritems;
2699 	int ret = 0;
2700 
2701 	src_nritems = btrfs_header_nritems(src);
2702 	dst_nritems = btrfs_header_nritems(dst);
2703 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2704 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2705 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2706 
2707 	if (!empty && src_nritems <= 8)
2708 		return 1;
2709 
2710 	if (push_items <= 0)
2711 		return 1;
2712 
2713 	if (empty) {
2714 		push_items = min(src_nritems, push_items);
2715 		if (push_items < src_nritems) {
2716 			/* leave at least 8 pointers in the node if
2717 			 * we aren't going to empty it
2718 			 */
2719 			if (src_nritems - push_items < 8) {
2720 				if (push_items <= 8)
2721 					return 1;
2722 				push_items -= 8;
2723 			}
2724 		}
2725 	} else
2726 		push_items = min(src_nritems - 8, push_items);
2727 
2728 	/* dst is the left eb, src is the middle eb */
2729 	if (check_sibling_keys(dst, src)) {
2730 		ret = -EUCLEAN;
2731 		btrfs_abort_transaction(trans, ret);
2732 		return ret;
2733 	}
2734 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2735 	if (ret) {
2736 		btrfs_abort_transaction(trans, ret);
2737 		return ret;
2738 	}
2739 	copy_extent_buffer(dst, src,
2740 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2741 			   btrfs_node_key_ptr_offset(src, 0),
2742 			   push_items * sizeof(struct btrfs_key_ptr));
2743 
2744 	if (push_items < src_nritems) {
2745 		/*
2746 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2747 		 * don't need to do an explicit tree mod log operation for it.
2748 		 */
2749 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2750 				      btrfs_node_key_ptr_offset(src, push_items),
2751 				      (src_nritems - push_items) *
2752 				      sizeof(struct btrfs_key_ptr));
2753 	}
2754 	btrfs_set_header_nritems(src, src_nritems - push_items);
2755 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2756 	btrfs_mark_buffer_dirty(trans, src);
2757 	btrfs_mark_buffer_dirty(trans, dst);
2758 
2759 	return ret;
2760 }
2761 
2762 /*
2763  * try to push data from one node into the next node right in the
2764  * tree.
2765  *
2766  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2767  * error, and > 0 if there was no room in the right hand block.
2768  *
2769  * this will  only push up to 1/2 the contents of the left node over
2770  */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2771 static int balance_node_right(struct btrfs_trans_handle *trans,
2772 			      struct extent_buffer *dst,
2773 			      struct extent_buffer *src)
2774 {
2775 	struct btrfs_fs_info *fs_info = trans->fs_info;
2776 	int push_items = 0;
2777 	int max_push;
2778 	int src_nritems;
2779 	int dst_nritems;
2780 	int ret = 0;
2781 
2782 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2783 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2784 
2785 	src_nritems = btrfs_header_nritems(src);
2786 	dst_nritems = btrfs_header_nritems(dst);
2787 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2788 	if (push_items <= 0)
2789 		return 1;
2790 
2791 	if (src_nritems < 4)
2792 		return 1;
2793 
2794 	max_push = src_nritems / 2 + 1;
2795 	/* don't try to empty the node */
2796 	if (max_push >= src_nritems)
2797 		return 1;
2798 
2799 	if (max_push < push_items)
2800 		push_items = max_push;
2801 
2802 	/* dst is the right eb, src is the middle eb */
2803 	if (check_sibling_keys(src, dst)) {
2804 		ret = -EUCLEAN;
2805 		btrfs_abort_transaction(trans, ret);
2806 		return ret;
2807 	}
2808 
2809 	/*
2810 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2811 	 * need to do an explicit tree mod log operation for it.
2812 	 */
2813 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2814 				      btrfs_node_key_ptr_offset(dst, 0),
2815 				      (dst_nritems) *
2816 				      sizeof(struct btrfs_key_ptr));
2817 
2818 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2819 					 push_items);
2820 	if (ret) {
2821 		btrfs_abort_transaction(trans, ret);
2822 		return ret;
2823 	}
2824 	copy_extent_buffer(dst, src,
2825 			   btrfs_node_key_ptr_offset(dst, 0),
2826 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2827 			   push_items * sizeof(struct btrfs_key_ptr));
2828 
2829 	btrfs_set_header_nritems(src, src_nritems - push_items);
2830 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2831 
2832 	btrfs_mark_buffer_dirty(trans, src);
2833 	btrfs_mark_buffer_dirty(trans, dst);
2834 
2835 	return ret;
2836 }
2837 
2838 /*
2839  * helper function to insert a new root level in the tree.
2840  * A new node is allocated, and a single item is inserted to
2841  * point to the existing root
2842  *
2843  * returns zero on success or < 0 on failure.
2844  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2845 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2846 			   struct btrfs_root *root,
2847 			   struct btrfs_path *path, int level)
2848 {
2849 	u64 lower_gen;
2850 	struct extent_buffer *lower;
2851 	struct extent_buffer *c;
2852 	struct extent_buffer *old;
2853 	struct btrfs_disk_key lower_key;
2854 	int ret;
2855 
2856 	BUG_ON(path->nodes[level]);
2857 	BUG_ON(path->nodes[level-1] != root->node);
2858 
2859 	lower = path->nodes[level-1];
2860 	if (level == 1)
2861 		btrfs_item_key(lower, &lower_key, 0);
2862 	else
2863 		btrfs_node_key(lower, &lower_key, 0);
2864 
2865 	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2866 				   &lower_key, level, root->node->start, 0,
2867 				   0, BTRFS_NESTING_NEW_ROOT);
2868 	if (IS_ERR(c))
2869 		return PTR_ERR(c);
2870 
2871 	root_add_used_bytes(root);
2872 
2873 	btrfs_set_header_nritems(c, 1);
2874 	btrfs_set_node_key(c, &lower_key, 0);
2875 	btrfs_set_node_blockptr(c, 0, lower->start);
2876 	lower_gen = btrfs_header_generation(lower);
2877 	WARN_ON(lower_gen != trans->transid);
2878 
2879 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2880 
2881 	btrfs_mark_buffer_dirty(trans, c);
2882 
2883 	old = root->node;
2884 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2885 	if (ret < 0) {
2886 		btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2887 		btrfs_tree_unlock(c);
2888 		free_extent_buffer(c);
2889 		return ret;
2890 	}
2891 	rcu_assign_pointer(root->node, c);
2892 
2893 	/* the super has an extra ref to root->node */
2894 	free_extent_buffer(old);
2895 
2896 	add_root_to_dirty_list(root);
2897 	atomic_inc(&c->refs);
2898 	path->nodes[level] = c;
2899 	path->locks[level] = BTRFS_WRITE_LOCK;
2900 	path->slots[level] = 0;
2901 	return 0;
2902 }
2903 
2904 /*
2905  * worker function to insert a single pointer in a node.
2906  * the node should have enough room for the pointer already
2907  *
2908  * slot and level indicate where you want the key to go, and
2909  * blocknr is the block the key points to.
2910  */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2911 static int insert_ptr(struct btrfs_trans_handle *trans,
2912 		      struct btrfs_path *path,
2913 		      struct btrfs_disk_key *key, u64 bytenr,
2914 		      int slot, int level)
2915 {
2916 	struct extent_buffer *lower;
2917 	int nritems;
2918 	int ret;
2919 
2920 	BUG_ON(!path->nodes[level]);
2921 	btrfs_assert_tree_write_locked(path->nodes[level]);
2922 	lower = path->nodes[level];
2923 	nritems = btrfs_header_nritems(lower);
2924 	BUG_ON(slot > nritems);
2925 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2926 	if (slot != nritems) {
2927 		if (level) {
2928 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2929 					slot, nritems - slot);
2930 			if (ret < 0) {
2931 				btrfs_abort_transaction(trans, ret);
2932 				return ret;
2933 			}
2934 		}
2935 		memmove_extent_buffer(lower,
2936 			      btrfs_node_key_ptr_offset(lower, slot + 1),
2937 			      btrfs_node_key_ptr_offset(lower, slot),
2938 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2939 	}
2940 	if (level) {
2941 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2942 						    BTRFS_MOD_LOG_KEY_ADD);
2943 		if (ret < 0) {
2944 			btrfs_abort_transaction(trans, ret);
2945 			return ret;
2946 		}
2947 	}
2948 	btrfs_set_node_key(lower, key, slot);
2949 	btrfs_set_node_blockptr(lower, slot, bytenr);
2950 	WARN_ON(trans->transid == 0);
2951 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2952 	btrfs_set_header_nritems(lower, nritems + 1);
2953 	btrfs_mark_buffer_dirty(trans, lower);
2954 
2955 	return 0;
2956 }
2957 
2958 /*
2959  * split the node at the specified level in path in two.
2960  * The path is corrected to point to the appropriate node after the split
2961  *
2962  * Before splitting this tries to make some room in the node by pushing
2963  * left and right, if either one works, it returns right away.
2964  *
2965  * returns 0 on success and < 0 on failure
2966  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2967 static noinline int split_node(struct btrfs_trans_handle *trans,
2968 			       struct btrfs_root *root,
2969 			       struct btrfs_path *path, int level)
2970 {
2971 	struct btrfs_fs_info *fs_info = root->fs_info;
2972 	struct extent_buffer *c;
2973 	struct extent_buffer *split;
2974 	struct btrfs_disk_key disk_key;
2975 	int mid;
2976 	int ret;
2977 	u32 c_nritems;
2978 
2979 	c = path->nodes[level];
2980 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2981 	if (c == root->node) {
2982 		/*
2983 		 * trying to split the root, lets make a new one
2984 		 *
2985 		 * tree mod log: We don't log_removal old root in
2986 		 * insert_new_root, because that root buffer will be kept as a
2987 		 * normal node. We are going to log removal of half of the
2988 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2989 		 * holding a tree lock on the buffer, which is why we cannot
2990 		 * race with other tree_mod_log users.
2991 		 */
2992 		ret = insert_new_root(trans, root, path, level + 1);
2993 		if (ret)
2994 			return ret;
2995 	} else {
2996 		ret = push_nodes_for_insert(trans, root, path, level);
2997 		c = path->nodes[level];
2998 		if (!ret && btrfs_header_nritems(c) <
2999 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3000 			return 0;
3001 		if (ret < 0)
3002 			return ret;
3003 	}
3004 
3005 	c_nritems = btrfs_header_nritems(c);
3006 	mid = (c_nritems + 1) / 2;
3007 	btrfs_node_key(c, &disk_key, mid);
3008 
3009 	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3010 				       &disk_key, level, c->start, 0,
3011 				       0, BTRFS_NESTING_SPLIT);
3012 	if (IS_ERR(split))
3013 		return PTR_ERR(split);
3014 
3015 	root_add_used_bytes(root);
3016 	ASSERT(btrfs_header_level(c) == level);
3017 
3018 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3019 	if (ret) {
3020 		btrfs_tree_unlock(split);
3021 		free_extent_buffer(split);
3022 		btrfs_abort_transaction(trans, ret);
3023 		return ret;
3024 	}
3025 	copy_extent_buffer(split, c,
3026 			   btrfs_node_key_ptr_offset(split, 0),
3027 			   btrfs_node_key_ptr_offset(c, mid),
3028 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3029 	btrfs_set_header_nritems(split, c_nritems - mid);
3030 	btrfs_set_header_nritems(c, mid);
3031 
3032 	btrfs_mark_buffer_dirty(trans, c);
3033 	btrfs_mark_buffer_dirty(trans, split);
3034 
3035 	ret = insert_ptr(trans, path, &disk_key, split->start,
3036 			 path->slots[level + 1] + 1, level + 1);
3037 	if (ret < 0) {
3038 		btrfs_tree_unlock(split);
3039 		free_extent_buffer(split);
3040 		return ret;
3041 	}
3042 
3043 	if (path->slots[level] >= mid) {
3044 		path->slots[level] -= mid;
3045 		btrfs_tree_unlock(c);
3046 		free_extent_buffer(c);
3047 		path->nodes[level] = split;
3048 		path->slots[level + 1] += 1;
3049 	} else {
3050 		btrfs_tree_unlock(split);
3051 		free_extent_buffer(split);
3052 	}
3053 	return 0;
3054 }
3055 
3056 /*
3057  * how many bytes are required to store the items in a leaf.  start
3058  * and nr indicate which items in the leaf to check.  This totals up the
3059  * space used both by the item structs and the item data
3060  */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3061 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3062 {
3063 	int data_len;
3064 	int nritems = btrfs_header_nritems(l);
3065 	int end = min(nritems, start + nr) - 1;
3066 
3067 	if (!nr)
3068 		return 0;
3069 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3070 	data_len = data_len - btrfs_item_offset(l, end);
3071 	data_len += sizeof(struct btrfs_item) * nr;
3072 	WARN_ON(data_len < 0);
3073 	return data_len;
3074 }
3075 
3076 /*
3077  * The space between the end of the leaf items and
3078  * the start of the leaf data.  IOW, how much room
3079  * the leaf has left for both items and data
3080  */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3081 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3082 {
3083 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3084 	int nritems = btrfs_header_nritems(leaf);
3085 	int ret;
3086 
3087 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3088 	if (ret < 0) {
3089 		btrfs_crit(fs_info,
3090 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3091 			   ret,
3092 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3093 			   leaf_space_used(leaf, 0, nritems), nritems);
3094 	}
3095 	return ret;
3096 }
3097 
3098 /*
3099  * min slot controls the lowest index we're willing to push to the
3100  * right.  We'll push up to and including min_slot, but no lower
3101  */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3102 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3103 				      struct btrfs_path *path,
3104 				      int data_size, int empty,
3105 				      struct extent_buffer *right,
3106 				      int free_space, u32 left_nritems,
3107 				      u32 min_slot)
3108 {
3109 	struct btrfs_fs_info *fs_info = right->fs_info;
3110 	struct extent_buffer *left = path->nodes[0];
3111 	struct extent_buffer *upper = path->nodes[1];
3112 	struct btrfs_map_token token;
3113 	struct btrfs_disk_key disk_key;
3114 	int slot;
3115 	u32 i;
3116 	int push_space = 0;
3117 	int push_items = 0;
3118 	u32 nr;
3119 	u32 right_nritems;
3120 	u32 data_end;
3121 	u32 this_item_size;
3122 
3123 	if (empty)
3124 		nr = 0;
3125 	else
3126 		nr = max_t(u32, 1, min_slot);
3127 
3128 	if (path->slots[0] >= left_nritems)
3129 		push_space += data_size;
3130 
3131 	slot = path->slots[1];
3132 	i = left_nritems - 1;
3133 	while (i >= nr) {
3134 		if (!empty && push_items > 0) {
3135 			if (path->slots[0] > i)
3136 				break;
3137 			if (path->slots[0] == i) {
3138 				int space = btrfs_leaf_free_space(left);
3139 
3140 				if (space + push_space * 2 > free_space)
3141 					break;
3142 			}
3143 		}
3144 
3145 		if (path->slots[0] == i)
3146 			push_space += data_size;
3147 
3148 		this_item_size = btrfs_item_size(left, i);
3149 		if (this_item_size + sizeof(struct btrfs_item) +
3150 		    push_space > free_space)
3151 			break;
3152 
3153 		push_items++;
3154 		push_space += this_item_size + sizeof(struct btrfs_item);
3155 		if (i == 0)
3156 			break;
3157 		i--;
3158 	}
3159 
3160 	if (push_items == 0)
3161 		goto out_unlock;
3162 
3163 	WARN_ON(!empty && push_items == left_nritems);
3164 
3165 	/* push left to right */
3166 	right_nritems = btrfs_header_nritems(right);
3167 
3168 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3169 	push_space -= leaf_data_end(left);
3170 
3171 	/* make room in the right data area */
3172 	data_end = leaf_data_end(right);
3173 	memmove_leaf_data(right, data_end - push_space, data_end,
3174 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3175 
3176 	/* copy from the left data area */
3177 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3178 		       leaf_data_end(left), push_space);
3179 
3180 	memmove_leaf_items(right, push_items, 0, right_nritems);
3181 
3182 	/* copy the items from left to right */
3183 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3184 
3185 	/* update the item pointers */
3186 	btrfs_init_map_token(&token, right);
3187 	right_nritems += push_items;
3188 	btrfs_set_header_nritems(right, right_nritems);
3189 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3190 	for (i = 0; i < right_nritems; i++) {
3191 		push_space -= btrfs_token_item_size(&token, i);
3192 		btrfs_set_token_item_offset(&token, i, push_space);
3193 	}
3194 
3195 	left_nritems -= push_items;
3196 	btrfs_set_header_nritems(left, left_nritems);
3197 
3198 	if (left_nritems)
3199 		btrfs_mark_buffer_dirty(trans, left);
3200 	else
3201 		btrfs_clear_buffer_dirty(trans, left);
3202 
3203 	btrfs_mark_buffer_dirty(trans, right);
3204 
3205 	btrfs_item_key(right, &disk_key, 0);
3206 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3207 	btrfs_mark_buffer_dirty(trans, upper);
3208 
3209 	/* then fixup the leaf pointer in the path */
3210 	if (path->slots[0] >= left_nritems) {
3211 		path->slots[0] -= left_nritems;
3212 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3213 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3214 		btrfs_tree_unlock(path->nodes[0]);
3215 		free_extent_buffer(path->nodes[0]);
3216 		path->nodes[0] = right;
3217 		path->slots[1] += 1;
3218 	} else {
3219 		btrfs_tree_unlock(right);
3220 		free_extent_buffer(right);
3221 	}
3222 	return 0;
3223 
3224 out_unlock:
3225 	btrfs_tree_unlock(right);
3226 	free_extent_buffer(right);
3227 	return 1;
3228 }
3229 
3230 /*
3231  * push some data in the path leaf to the right, trying to free up at
3232  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3233  *
3234  * returns 1 if the push failed because the other node didn't have enough
3235  * room, 0 if everything worked out and < 0 if there were major errors.
3236  *
3237  * this will push starting from min_slot to the end of the leaf.  It won't
3238  * push any slot lower than min_slot
3239  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3240 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3241 			   *root, struct btrfs_path *path,
3242 			   int min_data_size, int data_size,
3243 			   int empty, u32 min_slot)
3244 {
3245 	struct extent_buffer *left = path->nodes[0];
3246 	struct extent_buffer *right;
3247 	struct extent_buffer *upper;
3248 	int slot;
3249 	int free_space;
3250 	u32 left_nritems;
3251 	int ret;
3252 
3253 	if (!path->nodes[1])
3254 		return 1;
3255 
3256 	slot = path->slots[1];
3257 	upper = path->nodes[1];
3258 	if (slot >= btrfs_header_nritems(upper) - 1)
3259 		return 1;
3260 
3261 	btrfs_assert_tree_write_locked(path->nodes[1]);
3262 
3263 	right = btrfs_read_node_slot(upper, slot + 1);
3264 	if (IS_ERR(right))
3265 		return PTR_ERR(right);
3266 
3267 	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3268 
3269 	free_space = btrfs_leaf_free_space(right);
3270 	if (free_space < data_size)
3271 		goto out_unlock;
3272 
3273 	ret = btrfs_cow_block(trans, root, right, upper,
3274 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3275 	if (ret)
3276 		goto out_unlock;
3277 
3278 	left_nritems = btrfs_header_nritems(left);
3279 	if (left_nritems == 0)
3280 		goto out_unlock;
3281 
3282 	if (check_sibling_keys(left, right)) {
3283 		ret = -EUCLEAN;
3284 		btrfs_abort_transaction(trans, ret);
3285 		btrfs_tree_unlock(right);
3286 		free_extent_buffer(right);
3287 		return ret;
3288 	}
3289 	if (path->slots[0] == left_nritems && !empty) {
3290 		/* Key greater than all keys in the leaf, right neighbor has
3291 		 * enough room for it and we're not emptying our leaf to delete
3292 		 * it, therefore use right neighbor to insert the new item and
3293 		 * no need to touch/dirty our left leaf. */
3294 		btrfs_tree_unlock(left);
3295 		free_extent_buffer(left);
3296 		path->nodes[0] = right;
3297 		path->slots[0] = 0;
3298 		path->slots[1]++;
3299 		return 0;
3300 	}
3301 
3302 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3303 				 free_space, left_nritems, min_slot);
3304 out_unlock:
3305 	btrfs_tree_unlock(right);
3306 	free_extent_buffer(right);
3307 	return 1;
3308 }
3309 
3310 /*
3311  * push some data in the path leaf to the left, trying to free up at
3312  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3313  *
3314  * max_slot can put a limit on how far into the leaf we'll push items.  The
3315  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3316  * items
3317  */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3318 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3319 				     struct btrfs_path *path, int data_size,
3320 				     int empty, struct extent_buffer *left,
3321 				     int free_space, u32 right_nritems,
3322 				     u32 max_slot)
3323 {
3324 	struct btrfs_fs_info *fs_info = left->fs_info;
3325 	struct btrfs_disk_key disk_key;
3326 	struct extent_buffer *right = path->nodes[0];
3327 	int i;
3328 	int push_space = 0;
3329 	int push_items = 0;
3330 	u32 old_left_nritems;
3331 	u32 nr;
3332 	int ret = 0;
3333 	u32 this_item_size;
3334 	u32 old_left_item_size;
3335 	struct btrfs_map_token token;
3336 
3337 	if (empty)
3338 		nr = min(right_nritems, max_slot);
3339 	else
3340 		nr = min(right_nritems - 1, max_slot);
3341 
3342 	for (i = 0; i < nr; i++) {
3343 		if (!empty && push_items > 0) {
3344 			if (path->slots[0] < i)
3345 				break;
3346 			if (path->slots[0] == i) {
3347 				int space = btrfs_leaf_free_space(right);
3348 
3349 				if (space + push_space * 2 > free_space)
3350 					break;
3351 			}
3352 		}
3353 
3354 		if (path->slots[0] == i)
3355 			push_space += data_size;
3356 
3357 		this_item_size = btrfs_item_size(right, i);
3358 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3359 		    free_space)
3360 			break;
3361 
3362 		push_items++;
3363 		push_space += this_item_size + sizeof(struct btrfs_item);
3364 	}
3365 
3366 	if (push_items == 0) {
3367 		ret = 1;
3368 		goto out;
3369 	}
3370 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3371 
3372 	/* push data from right to left */
3373 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3374 
3375 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3376 		     btrfs_item_offset(right, push_items - 1);
3377 
3378 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3379 		       btrfs_item_offset(right, push_items - 1), push_space);
3380 	old_left_nritems = btrfs_header_nritems(left);
3381 	BUG_ON(old_left_nritems <= 0);
3382 
3383 	btrfs_init_map_token(&token, left);
3384 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3385 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3386 		u32 ioff;
3387 
3388 		ioff = btrfs_token_item_offset(&token, i);
3389 		btrfs_set_token_item_offset(&token, i,
3390 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3391 	}
3392 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3393 
3394 	/* fixup right node */
3395 	if (push_items > right_nritems)
3396 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3397 		       right_nritems);
3398 
3399 	if (push_items < right_nritems) {
3400 		push_space = btrfs_item_offset(right, push_items - 1) -
3401 						  leaf_data_end(right);
3402 		memmove_leaf_data(right,
3403 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3404 				  leaf_data_end(right), push_space);
3405 
3406 		memmove_leaf_items(right, 0, push_items,
3407 				   btrfs_header_nritems(right) - push_items);
3408 	}
3409 
3410 	btrfs_init_map_token(&token, right);
3411 	right_nritems -= push_items;
3412 	btrfs_set_header_nritems(right, right_nritems);
3413 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3414 	for (i = 0; i < right_nritems; i++) {
3415 		push_space = push_space - btrfs_token_item_size(&token, i);
3416 		btrfs_set_token_item_offset(&token, i, push_space);
3417 	}
3418 
3419 	btrfs_mark_buffer_dirty(trans, left);
3420 	if (right_nritems)
3421 		btrfs_mark_buffer_dirty(trans, right);
3422 	else
3423 		btrfs_clear_buffer_dirty(trans, right);
3424 
3425 	btrfs_item_key(right, &disk_key, 0);
3426 	fixup_low_keys(trans, path, &disk_key, 1);
3427 
3428 	/* then fixup the leaf pointer in the path */
3429 	if (path->slots[0] < push_items) {
3430 		path->slots[0] += old_left_nritems;
3431 		btrfs_tree_unlock(path->nodes[0]);
3432 		free_extent_buffer(path->nodes[0]);
3433 		path->nodes[0] = left;
3434 		path->slots[1] -= 1;
3435 	} else {
3436 		btrfs_tree_unlock(left);
3437 		free_extent_buffer(left);
3438 		path->slots[0] -= push_items;
3439 	}
3440 	BUG_ON(path->slots[0] < 0);
3441 	return ret;
3442 out:
3443 	btrfs_tree_unlock(left);
3444 	free_extent_buffer(left);
3445 	return ret;
3446 }
3447 
3448 /*
3449  * push some data in the path leaf to the left, trying to free up at
3450  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3451  *
3452  * max_slot can put a limit on how far into the leaf we'll push items.  The
3453  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3454  * items
3455  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3456 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3457 			  *root, struct btrfs_path *path, int min_data_size,
3458 			  int data_size, int empty, u32 max_slot)
3459 {
3460 	struct extent_buffer *right = path->nodes[0];
3461 	struct extent_buffer *left;
3462 	int slot;
3463 	int free_space;
3464 	u32 right_nritems;
3465 	int ret = 0;
3466 
3467 	slot = path->slots[1];
3468 	if (slot == 0)
3469 		return 1;
3470 	if (!path->nodes[1])
3471 		return 1;
3472 
3473 	right_nritems = btrfs_header_nritems(right);
3474 	if (right_nritems == 0)
3475 		return 1;
3476 
3477 	btrfs_assert_tree_write_locked(path->nodes[1]);
3478 
3479 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3480 	if (IS_ERR(left))
3481 		return PTR_ERR(left);
3482 
3483 	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3484 
3485 	free_space = btrfs_leaf_free_space(left);
3486 	if (free_space < data_size) {
3487 		ret = 1;
3488 		goto out;
3489 	}
3490 
3491 	ret = btrfs_cow_block(trans, root, left,
3492 			      path->nodes[1], slot - 1, &left,
3493 			      BTRFS_NESTING_LEFT_COW);
3494 	if (ret) {
3495 		/* we hit -ENOSPC, but it isn't fatal here */
3496 		if (ret == -ENOSPC)
3497 			ret = 1;
3498 		goto out;
3499 	}
3500 
3501 	if (check_sibling_keys(left, right)) {
3502 		ret = -EUCLEAN;
3503 		btrfs_abort_transaction(trans, ret);
3504 		goto out;
3505 	}
3506 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3507 				free_space, right_nritems, max_slot);
3508 out:
3509 	btrfs_tree_unlock(left);
3510 	free_extent_buffer(left);
3511 	return ret;
3512 }
3513 
3514 /*
3515  * split the path's leaf in two, making sure there is at least data_size
3516  * available for the resulting leaf level of the path.
3517  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3518 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3519 				   struct btrfs_path *path,
3520 				   struct extent_buffer *l,
3521 				   struct extent_buffer *right,
3522 				   int slot, int mid, int nritems)
3523 {
3524 	struct btrfs_fs_info *fs_info = trans->fs_info;
3525 	int data_copy_size;
3526 	int rt_data_off;
3527 	int i;
3528 	int ret;
3529 	struct btrfs_disk_key disk_key;
3530 	struct btrfs_map_token token;
3531 
3532 	nritems = nritems - mid;
3533 	btrfs_set_header_nritems(right, nritems);
3534 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3535 
3536 	copy_leaf_items(right, l, 0, mid, nritems);
3537 
3538 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3539 		       leaf_data_end(l), data_copy_size);
3540 
3541 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3542 
3543 	btrfs_init_map_token(&token, right);
3544 	for (i = 0; i < nritems; i++) {
3545 		u32 ioff;
3546 
3547 		ioff = btrfs_token_item_offset(&token, i);
3548 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3549 	}
3550 
3551 	btrfs_set_header_nritems(l, mid);
3552 	btrfs_item_key(right, &disk_key, 0);
3553 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3554 	if (ret < 0)
3555 		return ret;
3556 
3557 	btrfs_mark_buffer_dirty(trans, right);
3558 	btrfs_mark_buffer_dirty(trans, l);
3559 	BUG_ON(path->slots[0] != slot);
3560 
3561 	if (mid <= slot) {
3562 		btrfs_tree_unlock(path->nodes[0]);
3563 		free_extent_buffer(path->nodes[0]);
3564 		path->nodes[0] = right;
3565 		path->slots[0] -= mid;
3566 		path->slots[1] += 1;
3567 	} else {
3568 		btrfs_tree_unlock(right);
3569 		free_extent_buffer(right);
3570 	}
3571 
3572 	BUG_ON(path->slots[0] < 0);
3573 
3574 	return 0;
3575 }
3576 
3577 /*
3578  * double splits happen when we need to insert a big item in the middle
3579  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3580  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3581  *          A                 B                 C
3582  *
3583  * We avoid this by trying to push the items on either side of our target
3584  * into the adjacent leaves.  If all goes well we can avoid the double split
3585  * completely.
3586  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3587 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3588 					  struct btrfs_root *root,
3589 					  struct btrfs_path *path,
3590 					  int data_size)
3591 {
3592 	int ret;
3593 	int progress = 0;
3594 	int slot;
3595 	u32 nritems;
3596 	int space_needed = data_size;
3597 
3598 	slot = path->slots[0];
3599 	if (slot < btrfs_header_nritems(path->nodes[0]))
3600 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3601 
3602 	/*
3603 	 * try to push all the items after our slot into the
3604 	 * right leaf
3605 	 */
3606 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3607 	if (ret < 0)
3608 		return ret;
3609 
3610 	if (ret == 0)
3611 		progress++;
3612 
3613 	nritems = btrfs_header_nritems(path->nodes[0]);
3614 	/*
3615 	 * our goal is to get our slot at the start or end of a leaf.  If
3616 	 * we've done so we're done
3617 	 */
3618 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3619 		return 0;
3620 
3621 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3622 		return 0;
3623 
3624 	/* try to push all the items before our slot into the next leaf */
3625 	slot = path->slots[0];
3626 	space_needed = data_size;
3627 	if (slot > 0)
3628 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3629 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3630 	if (ret < 0)
3631 		return ret;
3632 
3633 	if (ret == 0)
3634 		progress++;
3635 
3636 	if (progress)
3637 		return 0;
3638 	return 1;
3639 }
3640 
3641 /*
3642  * split the path's leaf in two, making sure there is at least data_size
3643  * available for the resulting leaf level of the path.
3644  *
3645  * returns 0 if all went well and < 0 on failure.
3646  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3647 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3648 			       struct btrfs_root *root,
3649 			       const struct btrfs_key *ins_key,
3650 			       struct btrfs_path *path, int data_size,
3651 			       int extend)
3652 {
3653 	struct btrfs_disk_key disk_key;
3654 	struct extent_buffer *l;
3655 	u32 nritems;
3656 	int mid;
3657 	int slot;
3658 	struct extent_buffer *right;
3659 	struct btrfs_fs_info *fs_info = root->fs_info;
3660 	int ret = 0;
3661 	int wret;
3662 	int split;
3663 	int num_doubles = 0;
3664 	int tried_avoid_double = 0;
3665 
3666 	l = path->nodes[0];
3667 	slot = path->slots[0];
3668 	if (extend && data_size + btrfs_item_size(l, slot) +
3669 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3670 		return -EOVERFLOW;
3671 
3672 	/* first try to make some room by pushing left and right */
3673 	if (data_size && path->nodes[1]) {
3674 		int space_needed = data_size;
3675 
3676 		if (slot < btrfs_header_nritems(l))
3677 			space_needed -= btrfs_leaf_free_space(l);
3678 
3679 		wret = push_leaf_right(trans, root, path, space_needed,
3680 				       space_needed, 0, 0);
3681 		if (wret < 0)
3682 			return wret;
3683 		if (wret) {
3684 			space_needed = data_size;
3685 			if (slot > 0)
3686 				space_needed -= btrfs_leaf_free_space(l);
3687 			wret = push_leaf_left(trans, root, path, space_needed,
3688 					      space_needed, 0, (u32)-1);
3689 			if (wret < 0)
3690 				return wret;
3691 		}
3692 		l = path->nodes[0];
3693 
3694 		/* did the pushes work? */
3695 		if (btrfs_leaf_free_space(l) >= data_size)
3696 			return 0;
3697 	}
3698 
3699 	if (!path->nodes[1]) {
3700 		ret = insert_new_root(trans, root, path, 1);
3701 		if (ret)
3702 			return ret;
3703 	}
3704 again:
3705 	split = 1;
3706 	l = path->nodes[0];
3707 	slot = path->slots[0];
3708 	nritems = btrfs_header_nritems(l);
3709 	mid = (nritems + 1) / 2;
3710 
3711 	if (mid <= slot) {
3712 		if (nritems == 1 ||
3713 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3714 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3715 			if (slot >= nritems) {
3716 				split = 0;
3717 			} else {
3718 				mid = slot;
3719 				if (mid != nritems &&
3720 				    leaf_space_used(l, mid, nritems - mid) +
3721 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3722 					if (data_size && !tried_avoid_double)
3723 						goto push_for_double;
3724 					split = 2;
3725 				}
3726 			}
3727 		}
3728 	} else {
3729 		if (leaf_space_used(l, 0, mid) + data_size >
3730 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3731 			if (!extend && data_size && slot == 0) {
3732 				split = 0;
3733 			} else if ((extend || !data_size) && slot == 0) {
3734 				mid = 1;
3735 			} else {
3736 				mid = slot;
3737 				if (mid != nritems &&
3738 				    leaf_space_used(l, mid, nritems - mid) +
3739 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3740 					if (data_size && !tried_avoid_double)
3741 						goto push_for_double;
3742 					split = 2;
3743 				}
3744 			}
3745 		}
3746 	}
3747 
3748 	if (split == 0)
3749 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3750 	else
3751 		btrfs_item_key(l, &disk_key, mid);
3752 
3753 	/*
3754 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3755 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3756 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3757 	 * out.  In the future we could add a
3758 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3759 	 * use BTRFS_NESTING_NEW_ROOT.
3760 	 */
3761 	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3762 				       &disk_key, 0, l->start, 0, 0,
3763 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3764 				       BTRFS_NESTING_SPLIT);
3765 	if (IS_ERR(right))
3766 		return PTR_ERR(right);
3767 
3768 	root_add_used_bytes(root);
3769 
3770 	if (split == 0) {
3771 		if (mid <= slot) {
3772 			btrfs_set_header_nritems(right, 0);
3773 			ret = insert_ptr(trans, path, &disk_key,
3774 					 right->start, path->slots[1] + 1, 1);
3775 			if (ret < 0) {
3776 				btrfs_tree_unlock(right);
3777 				free_extent_buffer(right);
3778 				return ret;
3779 			}
3780 			btrfs_tree_unlock(path->nodes[0]);
3781 			free_extent_buffer(path->nodes[0]);
3782 			path->nodes[0] = right;
3783 			path->slots[0] = 0;
3784 			path->slots[1] += 1;
3785 		} else {
3786 			btrfs_set_header_nritems(right, 0);
3787 			ret = insert_ptr(trans, path, &disk_key,
3788 					 right->start, path->slots[1], 1);
3789 			if (ret < 0) {
3790 				btrfs_tree_unlock(right);
3791 				free_extent_buffer(right);
3792 				return ret;
3793 			}
3794 			btrfs_tree_unlock(path->nodes[0]);
3795 			free_extent_buffer(path->nodes[0]);
3796 			path->nodes[0] = right;
3797 			path->slots[0] = 0;
3798 			if (path->slots[1] == 0)
3799 				fixup_low_keys(trans, path, &disk_key, 1);
3800 		}
3801 		/*
3802 		 * We create a new leaf 'right' for the required ins_len and
3803 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3804 		 * the content of ins_len to 'right'.
3805 		 */
3806 		return ret;
3807 	}
3808 
3809 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3810 	if (ret < 0) {
3811 		btrfs_tree_unlock(right);
3812 		free_extent_buffer(right);
3813 		return ret;
3814 	}
3815 
3816 	if (split == 2) {
3817 		BUG_ON(num_doubles != 0);
3818 		num_doubles++;
3819 		goto again;
3820 	}
3821 
3822 	return 0;
3823 
3824 push_for_double:
3825 	push_for_double_split(trans, root, path, data_size);
3826 	tried_avoid_double = 1;
3827 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3828 		return 0;
3829 	goto again;
3830 }
3831 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3832 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3833 					 struct btrfs_root *root,
3834 					 struct btrfs_path *path, int ins_len)
3835 {
3836 	struct btrfs_key key;
3837 	struct extent_buffer *leaf;
3838 	struct btrfs_file_extent_item *fi;
3839 	u64 extent_len = 0;
3840 	u32 item_size;
3841 	int ret;
3842 
3843 	leaf = path->nodes[0];
3844 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3845 
3846 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3847 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3848 
3849 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3850 		return 0;
3851 
3852 	item_size = btrfs_item_size(leaf, path->slots[0]);
3853 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3854 		fi = btrfs_item_ptr(leaf, path->slots[0],
3855 				    struct btrfs_file_extent_item);
3856 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3857 	}
3858 	btrfs_release_path(path);
3859 
3860 	path->keep_locks = 1;
3861 	path->search_for_split = 1;
3862 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3863 	path->search_for_split = 0;
3864 	if (ret > 0)
3865 		ret = -EAGAIN;
3866 	if (ret < 0)
3867 		goto err;
3868 
3869 	ret = -EAGAIN;
3870 	leaf = path->nodes[0];
3871 	/* if our item isn't there, return now */
3872 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3873 		goto err;
3874 
3875 	/* the leaf has  changed, it now has room.  return now */
3876 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3877 		goto err;
3878 
3879 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3880 		fi = btrfs_item_ptr(leaf, path->slots[0],
3881 				    struct btrfs_file_extent_item);
3882 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3883 			goto err;
3884 	}
3885 
3886 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3887 	if (ret)
3888 		goto err;
3889 
3890 	path->keep_locks = 0;
3891 	btrfs_unlock_up_safe(path, 1);
3892 	return 0;
3893 err:
3894 	path->keep_locks = 0;
3895 	return ret;
3896 }
3897 
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3898 static noinline int split_item(struct btrfs_trans_handle *trans,
3899 			       struct btrfs_path *path,
3900 			       const struct btrfs_key *new_key,
3901 			       unsigned long split_offset)
3902 {
3903 	struct extent_buffer *leaf;
3904 	int orig_slot, slot;
3905 	char *buf;
3906 	u32 nritems;
3907 	u32 item_size;
3908 	u32 orig_offset;
3909 	struct btrfs_disk_key disk_key;
3910 
3911 	leaf = path->nodes[0];
3912 	/*
3913 	 * Shouldn't happen because the caller must have previously called
3914 	 * setup_leaf_for_split() to make room for the new item in the leaf.
3915 	 */
3916 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3917 		return -ENOSPC;
3918 
3919 	orig_slot = path->slots[0];
3920 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3921 	item_size = btrfs_item_size(leaf, path->slots[0]);
3922 
3923 	buf = kmalloc(item_size, GFP_NOFS);
3924 	if (!buf)
3925 		return -ENOMEM;
3926 
3927 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3928 			    path->slots[0]), item_size);
3929 
3930 	slot = path->slots[0] + 1;
3931 	nritems = btrfs_header_nritems(leaf);
3932 	if (slot != nritems) {
3933 		/* shift the items */
3934 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3935 	}
3936 
3937 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3938 	btrfs_set_item_key(leaf, &disk_key, slot);
3939 
3940 	btrfs_set_item_offset(leaf, slot, orig_offset);
3941 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3942 
3943 	btrfs_set_item_offset(leaf, orig_slot,
3944 				 orig_offset + item_size - split_offset);
3945 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3946 
3947 	btrfs_set_header_nritems(leaf, nritems + 1);
3948 
3949 	/* write the data for the start of the original item */
3950 	write_extent_buffer(leaf, buf,
3951 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3952 			    split_offset);
3953 
3954 	/* write the data for the new item */
3955 	write_extent_buffer(leaf, buf + split_offset,
3956 			    btrfs_item_ptr_offset(leaf, slot),
3957 			    item_size - split_offset);
3958 	btrfs_mark_buffer_dirty(trans, leaf);
3959 
3960 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3961 	kfree(buf);
3962 	return 0;
3963 }
3964 
3965 /*
3966  * This function splits a single item into two items,
3967  * giving 'new_key' to the new item and splitting the
3968  * old one at split_offset (from the start of the item).
3969  *
3970  * The path may be released by this operation.  After
3971  * the split, the path is pointing to the old item.  The
3972  * new item is going to be in the same node as the old one.
3973  *
3974  * Note, the item being split must be smaller enough to live alone on
3975  * a tree block with room for one extra struct btrfs_item
3976  *
3977  * This allows us to split the item in place, keeping a lock on the
3978  * leaf the entire time.
3979  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3980 int btrfs_split_item(struct btrfs_trans_handle *trans,
3981 		     struct btrfs_root *root,
3982 		     struct btrfs_path *path,
3983 		     const struct btrfs_key *new_key,
3984 		     unsigned long split_offset)
3985 {
3986 	int ret;
3987 	ret = setup_leaf_for_split(trans, root, path,
3988 				   sizeof(struct btrfs_item));
3989 	if (ret)
3990 		return ret;
3991 
3992 	ret = split_item(trans, path, new_key, split_offset);
3993 	return ret;
3994 }
3995 
3996 /*
3997  * make the item pointed to by the path smaller.  new_size indicates
3998  * how small to make it, and from_end tells us if we just chop bytes
3999  * off the end of the item or if we shift the item to chop bytes off
4000  * the front.
4001  */
btrfs_truncate_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 new_size,int from_end)4002 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4003 			 struct btrfs_path *path, u32 new_size, int from_end)
4004 {
4005 	int slot;
4006 	struct extent_buffer *leaf;
4007 	u32 nritems;
4008 	unsigned int data_end;
4009 	unsigned int old_data_start;
4010 	unsigned int old_size;
4011 	unsigned int size_diff;
4012 	int i;
4013 	struct btrfs_map_token token;
4014 
4015 	leaf = path->nodes[0];
4016 	slot = path->slots[0];
4017 
4018 	old_size = btrfs_item_size(leaf, slot);
4019 	if (old_size == new_size)
4020 		return;
4021 
4022 	nritems = btrfs_header_nritems(leaf);
4023 	data_end = leaf_data_end(leaf);
4024 
4025 	old_data_start = btrfs_item_offset(leaf, slot);
4026 
4027 	size_diff = old_size - new_size;
4028 
4029 	BUG_ON(slot < 0);
4030 	BUG_ON(slot >= nritems);
4031 
4032 	/*
4033 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4034 	 */
4035 	/* first correct the data pointers */
4036 	btrfs_init_map_token(&token, leaf);
4037 	for (i = slot; i < nritems; i++) {
4038 		u32 ioff;
4039 
4040 		ioff = btrfs_token_item_offset(&token, i);
4041 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4042 	}
4043 
4044 	/* shift the data */
4045 	if (from_end) {
4046 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4047 				  old_data_start + new_size - data_end);
4048 	} else {
4049 		struct btrfs_disk_key disk_key;
4050 		u64 offset;
4051 
4052 		btrfs_item_key(leaf, &disk_key, slot);
4053 
4054 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4055 			unsigned long ptr;
4056 			struct btrfs_file_extent_item *fi;
4057 
4058 			fi = btrfs_item_ptr(leaf, slot,
4059 					    struct btrfs_file_extent_item);
4060 			fi = (struct btrfs_file_extent_item *)(
4061 			     (unsigned long)fi - size_diff);
4062 
4063 			if (btrfs_file_extent_type(leaf, fi) ==
4064 			    BTRFS_FILE_EXTENT_INLINE) {
4065 				ptr = btrfs_item_ptr_offset(leaf, slot);
4066 				memmove_extent_buffer(leaf, ptr,
4067 				      (unsigned long)fi,
4068 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4069 			}
4070 		}
4071 
4072 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4073 				  old_data_start - data_end);
4074 
4075 		offset = btrfs_disk_key_offset(&disk_key);
4076 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4077 		btrfs_set_item_key(leaf, &disk_key, slot);
4078 		if (slot == 0)
4079 			fixup_low_keys(trans, path, &disk_key, 1);
4080 	}
4081 
4082 	btrfs_set_item_size(leaf, slot, new_size);
4083 	btrfs_mark_buffer_dirty(trans, leaf);
4084 
4085 	if (btrfs_leaf_free_space(leaf) < 0) {
4086 		btrfs_print_leaf(leaf);
4087 		BUG();
4088 	}
4089 }
4090 
4091 /*
4092  * make the item pointed to by the path bigger, data_size is the added size.
4093  */
btrfs_extend_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 data_size)4094 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4095 		       struct btrfs_path *path, u32 data_size)
4096 {
4097 	int slot;
4098 	struct extent_buffer *leaf;
4099 	u32 nritems;
4100 	unsigned int data_end;
4101 	unsigned int old_data;
4102 	unsigned int old_size;
4103 	int i;
4104 	struct btrfs_map_token token;
4105 
4106 	leaf = path->nodes[0];
4107 
4108 	nritems = btrfs_header_nritems(leaf);
4109 	data_end = leaf_data_end(leaf);
4110 
4111 	if (btrfs_leaf_free_space(leaf) < data_size) {
4112 		btrfs_print_leaf(leaf);
4113 		BUG();
4114 	}
4115 	slot = path->slots[0];
4116 	old_data = btrfs_item_data_end(leaf, slot);
4117 
4118 	BUG_ON(slot < 0);
4119 	if (slot >= nritems) {
4120 		btrfs_print_leaf(leaf);
4121 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4122 			   slot, nritems);
4123 		BUG();
4124 	}
4125 
4126 	/*
4127 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4128 	 */
4129 	/* first correct the data pointers */
4130 	btrfs_init_map_token(&token, leaf);
4131 	for (i = slot; i < nritems; i++) {
4132 		u32 ioff;
4133 
4134 		ioff = btrfs_token_item_offset(&token, i);
4135 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4136 	}
4137 
4138 	/* shift the data */
4139 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4140 			  old_data - data_end);
4141 
4142 	data_end = old_data;
4143 	old_size = btrfs_item_size(leaf, slot);
4144 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4145 	btrfs_mark_buffer_dirty(trans, leaf);
4146 
4147 	if (btrfs_leaf_free_space(leaf) < 0) {
4148 		btrfs_print_leaf(leaf);
4149 		BUG();
4150 	}
4151 }
4152 
4153 /*
4154  * Make space in the node before inserting one or more items.
4155  *
4156  * @trans:	transaction handle
4157  * @root:	root we are inserting items to
4158  * @path:	points to the leaf/slot where we are going to insert new items
4159  * @batch:      information about the batch of items to insert
4160  *
4161  * Main purpose is to save stack depth by doing the bulk of the work in a
4162  * function that doesn't call btrfs_search_slot
4163  */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4164 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4165 				   struct btrfs_root *root, struct btrfs_path *path,
4166 				   const struct btrfs_item_batch *batch)
4167 {
4168 	struct btrfs_fs_info *fs_info = root->fs_info;
4169 	int i;
4170 	u32 nritems;
4171 	unsigned int data_end;
4172 	struct btrfs_disk_key disk_key;
4173 	struct extent_buffer *leaf;
4174 	int slot;
4175 	struct btrfs_map_token token;
4176 	u32 total_size;
4177 
4178 	/*
4179 	 * Before anything else, update keys in the parent and other ancestors
4180 	 * if needed, then release the write locks on them, so that other tasks
4181 	 * can use them while we modify the leaf.
4182 	 */
4183 	if (path->slots[0] == 0) {
4184 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4185 		fixup_low_keys(trans, path, &disk_key, 1);
4186 	}
4187 	btrfs_unlock_up_safe(path, 1);
4188 
4189 	leaf = path->nodes[0];
4190 	slot = path->slots[0];
4191 
4192 	nritems = btrfs_header_nritems(leaf);
4193 	data_end = leaf_data_end(leaf);
4194 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4195 
4196 	if (btrfs_leaf_free_space(leaf) < total_size) {
4197 		btrfs_print_leaf(leaf);
4198 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4199 			   total_size, btrfs_leaf_free_space(leaf));
4200 		BUG();
4201 	}
4202 
4203 	btrfs_init_map_token(&token, leaf);
4204 	if (slot != nritems) {
4205 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4206 
4207 		if (old_data < data_end) {
4208 			btrfs_print_leaf(leaf);
4209 			btrfs_crit(fs_info,
4210 		"item at slot %d with data offset %u beyond data end of leaf %u",
4211 				   slot, old_data, data_end);
4212 			BUG();
4213 		}
4214 		/*
4215 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4216 		 */
4217 		/* first correct the data pointers */
4218 		for (i = slot; i < nritems; i++) {
4219 			u32 ioff;
4220 
4221 			ioff = btrfs_token_item_offset(&token, i);
4222 			btrfs_set_token_item_offset(&token, i,
4223 						       ioff - batch->total_data_size);
4224 		}
4225 		/* shift the items */
4226 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4227 
4228 		/* shift the data */
4229 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4230 				  data_end, old_data - data_end);
4231 		data_end = old_data;
4232 	}
4233 
4234 	/* setup the item for the new data */
4235 	for (i = 0; i < batch->nr; i++) {
4236 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4237 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4238 		data_end -= batch->data_sizes[i];
4239 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4240 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4241 	}
4242 
4243 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4244 	btrfs_mark_buffer_dirty(trans, leaf);
4245 
4246 	if (btrfs_leaf_free_space(leaf) < 0) {
4247 		btrfs_print_leaf(leaf);
4248 		BUG();
4249 	}
4250 }
4251 
4252 /*
4253  * Insert a new item into a leaf.
4254  *
4255  * @trans:     Transaction handle.
4256  * @root:      The root of the btree.
4257  * @path:      A path pointing to the target leaf and slot.
4258  * @key:       The key of the new item.
4259  * @data_size: The size of the data associated with the new key.
4260  */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4261 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4262 				 struct btrfs_root *root,
4263 				 struct btrfs_path *path,
4264 				 const struct btrfs_key *key,
4265 				 u32 data_size)
4266 {
4267 	struct btrfs_item_batch batch;
4268 
4269 	batch.keys = key;
4270 	batch.data_sizes = &data_size;
4271 	batch.total_data_size = data_size;
4272 	batch.nr = 1;
4273 
4274 	setup_items_for_insert(trans, root, path, &batch);
4275 }
4276 
4277 /*
4278  * Given a key and some data, insert items into the tree.
4279  * This does all the path init required, making room in the tree if needed.
4280  *
4281  * Returns: 0        on success
4282  *          -EEXIST  if the first key already exists
4283  *          < 0      on other errors
4284  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4285 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4286 			    struct btrfs_root *root,
4287 			    struct btrfs_path *path,
4288 			    const struct btrfs_item_batch *batch)
4289 {
4290 	int ret = 0;
4291 	int slot;
4292 	u32 total_size;
4293 
4294 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4295 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4296 	if (ret == 0)
4297 		return -EEXIST;
4298 	if (ret < 0)
4299 		return ret;
4300 
4301 	slot = path->slots[0];
4302 	BUG_ON(slot < 0);
4303 
4304 	setup_items_for_insert(trans, root, path, batch);
4305 	return 0;
4306 }
4307 
4308 /*
4309  * Given a key and some data, insert an item into the tree.
4310  * This does all the path init required, making room in the tree if needed.
4311  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4312 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4313 		      const struct btrfs_key *cpu_key, void *data,
4314 		      u32 data_size)
4315 {
4316 	int ret = 0;
4317 	struct btrfs_path *path;
4318 	struct extent_buffer *leaf;
4319 	unsigned long ptr;
4320 
4321 	path = btrfs_alloc_path();
4322 	if (!path)
4323 		return -ENOMEM;
4324 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4325 	if (!ret) {
4326 		leaf = path->nodes[0];
4327 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4328 		write_extent_buffer(leaf, data, ptr, data_size);
4329 		btrfs_mark_buffer_dirty(trans, leaf);
4330 	}
4331 	btrfs_free_path(path);
4332 	return ret;
4333 }
4334 
4335 /*
4336  * This function duplicates an item, giving 'new_key' to the new item.
4337  * It guarantees both items live in the same tree leaf and the new item is
4338  * contiguous with the original item.
4339  *
4340  * This allows us to split a file extent in place, keeping a lock on the leaf
4341  * the entire time.
4342  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4343 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4344 			 struct btrfs_root *root,
4345 			 struct btrfs_path *path,
4346 			 const struct btrfs_key *new_key)
4347 {
4348 	struct extent_buffer *leaf;
4349 	int ret;
4350 	u32 item_size;
4351 
4352 	leaf = path->nodes[0];
4353 	item_size = btrfs_item_size(leaf, path->slots[0]);
4354 	ret = setup_leaf_for_split(trans, root, path,
4355 				   item_size + sizeof(struct btrfs_item));
4356 	if (ret)
4357 		return ret;
4358 
4359 	path->slots[0]++;
4360 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4361 	leaf = path->nodes[0];
4362 	memcpy_extent_buffer(leaf,
4363 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4364 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4365 			     item_size);
4366 	return 0;
4367 }
4368 
4369 /*
4370  * delete the pointer from a given node.
4371  *
4372  * the tree should have been previously balanced so the deletion does not
4373  * empty a node.
4374  *
4375  * This is exported for use inside btrfs-progs, don't un-export it.
4376  */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4377 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4378 		  struct btrfs_path *path, int level, int slot)
4379 {
4380 	struct extent_buffer *parent = path->nodes[level];
4381 	u32 nritems;
4382 	int ret;
4383 
4384 	nritems = btrfs_header_nritems(parent);
4385 	if (slot != nritems - 1) {
4386 		if (level) {
4387 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4388 					slot + 1, nritems - slot - 1);
4389 			if (ret < 0) {
4390 				btrfs_abort_transaction(trans, ret);
4391 				return ret;
4392 			}
4393 		}
4394 		memmove_extent_buffer(parent,
4395 			      btrfs_node_key_ptr_offset(parent, slot),
4396 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4397 			      sizeof(struct btrfs_key_ptr) *
4398 			      (nritems - slot - 1));
4399 	} else if (level) {
4400 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4401 						    BTRFS_MOD_LOG_KEY_REMOVE);
4402 		if (ret < 0) {
4403 			btrfs_abort_transaction(trans, ret);
4404 			return ret;
4405 		}
4406 	}
4407 
4408 	nritems--;
4409 	btrfs_set_header_nritems(parent, nritems);
4410 	if (nritems == 0 && parent == root->node) {
4411 		BUG_ON(btrfs_header_level(root->node) != 1);
4412 		/* just turn the root into a leaf and break */
4413 		btrfs_set_header_level(root->node, 0);
4414 	} else if (slot == 0) {
4415 		struct btrfs_disk_key disk_key;
4416 
4417 		btrfs_node_key(parent, &disk_key, 0);
4418 		fixup_low_keys(trans, path, &disk_key, level + 1);
4419 	}
4420 	btrfs_mark_buffer_dirty(trans, parent);
4421 	return 0;
4422 }
4423 
4424 /*
4425  * a helper function to delete the leaf pointed to by path->slots[1] and
4426  * path->nodes[1].
4427  *
4428  * This deletes the pointer in path->nodes[1] and frees the leaf
4429  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4430  *
4431  * The path must have already been setup for deleting the leaf, including
4432  * all the proper balancing.  path->nodes[1] must be locked.
4433  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4434 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4435 				   struct btrfs_root *root,
4436 				   struct btrfs_path *path,
4437 				   struct extent_buffer *leaf)
4438 {
4439 	int ret;
4440 
4441 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4442 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4443 	if (ret < 0)
4444 		return ret;
4445 
4446 	/*
4447 	 * btrfs_free_extent is expensive, we want to make sure we
4448 	 * aren't holding any locks when we call it
4449 	 */
4450 	btrfs_unlock_up_safe(path, 0);
4451 
4452 	root_sub_used_bytes(root);
4453 
4454 	atomic_inc(&leaf->refs);
4455 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4456 	free_extent_buffer_stale(leaf);
4457 	return 0;
4458 }
4459 /*
4460  * delete the item at the leaf level in path.  If that empties
4461  * the leaf, remove it from the tree
4462  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4463 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4464 		    struct btrfs_path *path, int slot, int nr)
4465 {
4466 	struct btrfs_fs_info *fs_info = root->fs_info;
4467 	struct extent_buffer *leaf;
4468 	int ret = 0;
4469 	int wret;
4470 	u32 nritems;
4471 
4472 	leaf = path->nodes[0];
4473 	nritems = btrfs_header_nritems(leaf);
4474 
4475 	if (slot + nr != nritems) {
4476 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4477 		const int data_end = leaf_data_end(leaf);
4478 		struct btrfs_map_token token;
4479 		u32 dsize = 0;
4480 		int i;
4481 
4482 		for (i = 0; i < nr; i++)
4483 			dsize += btrfs_item_size(leaf, slot + i);
4484 
4485 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4486 				  last_off - data_end);
4487 
4488 		btrfs_init_map_token(&token, leaf);
4489 		for (i = slot + nr; i < nritems; i++) {
4490 			u32 ioff;
4491 
4492 			ioff = btrfs_token_item_offset(&token, i);
4493 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4494 		}
4495 
4496 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4497 	}
4498 	btrfs_set_header_nritems(leaf, nritems - nr);
4499 	nritems -= nr;
4500 
4501 	/* delete the leaf if we've emptied it */
4502 	if (nritems == 0) {
4503 		if (leaf == root->node) {
4504 			btrfs_set_header_level(leaf, 0);
4505 		} else {
4506 			btrfs_clear_buffer_dirty(trans, leaf);
4507 			ret = btrfs_del_leaf(trans, root, path, leaf);
4508 			if (ret < 0)
4509 				return ret;
4510 		}
4511 	} else {
4512 		int used = leaf_space_used(leaf, 0, nritems);
4513 		if (slot == 0) {
4514 			struct btrfs_disk_key disk_key;
4515 
4516 			btrfs_item_key(leaf, &disk_key, 0);
4517 			fixup_low_keys(trans, path, &disk_key, 1);
4518 		}
4519 
4520 		/*
4521 		 * Try to delete the leaf if it is mostly empty. We do this by
4522 		 * trying to move all its items into its left and right neighbours.
4523 		 * If we can't move all the items, then we don't delete it - it's
4524 		 * not ideal, but future insertions might fill the leaf with more
4525 		 * items, or items from other leaves might be moved later into our
4526 		 * leaf due to deletions on those leaves.
4527 		 */
4528 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4529 			u32 min_push_space;
4530 
4531 			/* push_leaf_left fixes the path.
4532 			 * make sure the path still points to our leaf
4533 			 * for possible call to btrfs_del_ptr below
4534 			 */
4535 			slot = path->slots[1];
4536 			atomic_inc(&leaf->refs);
4537 			/*
4538 			 * We want to be able to at least push one item to the
4539 			 * left neighbour leaf, and that's the first item.
4540 			 */
4541 			min_push_space = sizeof(struct btrfs_item) +
4542 				btrfs_item_size(leaf, 0);
4543 			wret = push_leaf_left(trans, root, path, 0,
4544 					      min_push_space, 1, (u32)-1);
4545 			if (wret < 0 && wret != -ENOSPC)
4546 				ret = wret;
4547 
4548 			if (path->nodes[0] == leaf &&
4549 			    btrfs_header_nritems(leaf)) {
4550 				/*
4551 				 * If we were not able to push all items from our
4552 				 * leaf to its left neighbour, then attempt to
4553 				 * either push all the remaining items to the
4554 				 * right neighbour or none. There's no advantage
4555 				 * in pushing only some items, instead of all, as
4556 				 * it's pointless to end up with a leaf having
4557 				 * too few items while the neighbours can be full
4558 				 * or nearly full.
4559 				 */
4560 				nritems = btrfs_header_nritems(leaf);
4561 				min_push_space = leaf_space_used(leaf, 0, nritems);
4562 				wret = push_leaf_right(trans, root, path, 0,
4563 						       min_push_space, 1, 0);
4564 				if (wret < 0 && wret != -ENOSPC)
4565 					ret = wret;
4566 			}
4567 
4568 			if (btrfs_header_nritems(leaf) == 0) {
4569 				path->slots[1] = slot;
4570 				ret = btrfs_del_leaf(trans, root, path, leaf);
4571 				if (ret < 0)
4572 					return ret;
4573 				free_extent_buffer(leaf);
4574 				ret = 0;
4575 			} else {
4576 				/* if we're still in the path, make sure
4577 				 * we're dirty.  Otherwise, one of the
4578 				 * push_leaf functions must have already
4579 				 * dirtied this buffer
4580 				 */
4581 				if (path->nodes[0] == leaf)
4582 					btrfs_mark_buffer_dirty(trans, leaf);
4583 				free_extent_buffer(leaf);
4584 			}
4585 		} else {
4586 			btrfs_mark_buffer_dirty(trans, leaf);
4587 		}
4588 	}
4589 	return ret;
4590 }
4591 
4592 /*
4593  * A helper function to walk down the tree starting at min_key, and looking
4594  * for nodes or leaves that are have a minimum transaction id.
4595  * This is used by the btree defrag code, and tree logging
4596  *
4597  * This does not cow, but it does stuff the starting key it finds back
4598  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4599  * key and get a writable path.
4600  *
4601  * This honors path->lowest_level to prevent descent past a given level
4602  * of the tree.
4603  *
4604  * min_trans indicates the oldest transaction that you are interested
4605  * in walking through.  Any nodes or leaves older than min_trans are
4606  * skipped over (without reading them).
4607  *
4608  * returns zero if something useful was found, < 0 on error and 1 if there
4609  * was nothing in the tree that matched the search criteria.
4610  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4611 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4612 			 struct btrfs_path *path,
4613 			 u64 min_trans)
4614 {
4615 	struct extent_buffer *cur;
4616 	struct btrfs_key found_key;
4617 	int slot;
4618 	int sret;
4619 	u32 nritems;
4620 	int level;
4621 	int ret = 1;
4622 	int keep_locks = path->keep_locks;
4623 
4624 	ASSERT(!path->nowait);
4625 	path->keep_locks = 1;
4626 again:
4627 	cur = btrfs_read_lock_root_node(root);
4628 	level = btrfs_header_level(cur);
4629 	WARN_ON(path->nodes[level]);
4630 	path->nodes[level] = cur;
4631 	path->locks[level] = BTRFS_READ_LOCK;
4632 
4633 	if (btrfs_header_generation(cur) < min_trans) {
4634 		ret = 1;
4635 		goto out;
4636 	}
4637 	while (1) {
4638 		nritems = btrfs_header_nritems(cur);
4639 		level = btrfs_header_level(cur);
4640 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4641 		if (sret < 0) {
4642 			ret = sret;
4643 			goto out;
4644 		}
4645 
4646 		/* at the lowest level, we're done, setup the path and exit */
4647 		if (level == path->lowest_level) {
4648 			if (slot >= nritems)
4649 				goto find_next_key;
4650 			ret = 0;
4651 			path->slots[level] = slot;
4652 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4653 			goto out;
4654 		}
4655 		if (sret && slot > 0)
4656 			slot--;
4657 		/*
4658 		 * check this node pointer against the min_trans parameters.
4659 		 * If it is too old, skip to the next one.
4660 		 */
4661 		while (slot < nritems) {
4662 			u64 gen;
4663 
4664 			gen = btrfs_node_ptr_generation(cur, slot);
4665 			if (gen < min_trans) {
4666 				slot++;
4667 				continue;
4668 			}
4669 			break;
4670 		}
4671 find_next_key:
4672 		/*
4673 		 * we didn't find a candidate key in this node, walk forward
4674 		 * and find another one
4675 		 */
4676 		if (slot >= nritems) {
4677 			path->slots[level] = slot;
4678 			sret = btrfs_find_next_key(root, path, min_key, level,
4679 						  min_trans);
4680 			if (sret == 0) {
4681 				btrfs_release_path(path);
4682 				goto again;
4683 			} else {
4684 				goto out;
4685 			}
4686 		}
4687 		/* save our key for returning back */
4688 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4689 		path->slots[level] = slot;
4690 		if (level == path->lowest_level) {
4691 			ret = 0;
4692 			goto out;
4693 		}
4694 		cur = btrfs_read_node_slot(cur, slot);
4695 		if (IS_ERR(cur)) {
4696 			ret = PTR_ERR(cur);
4697 			goto out;
4698 		}
4699 
4700 		btrfs_tree_read_lock(cur);
4701 
4702 		path->locks[level - 1] = BTRFS_READ_LOCK;
4703 		path->nodes[level - 1] = cur;
4704 		unlock_up(path, level, 1, 0, NULL);
4705 	}
4706 out:
4707 	path->keep_locks = keep_locks;
4708 	if (ret == 0) {
4709 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4710 		memcpy(min_key, &found_key, sizeof(found_key));
4711 	}
4712 	return ret;
4713 }
4714 
4715 /*
4716  * this is similar to btrfs_next_leaf, but does not try to preserve
4717  * and fixup the path.  It looks for and returns the next key in the
4718  * tree based on the current path and the min_trans parameters.
4719  *
4720  * 0 is returned if another key is found, < 0 if there are any errors
4721  * and 1 is returned if there are no higher keys in the tree
4722  *
4723  * path->keep_locks should be set to 1 on the search made before
4724  * calling this function.
4725  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4726 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4727 			struct btrfs_key *key, int level, u64 min_trans)
4728 {
4729 	int slot;
4730 	struct extent_buffer *c;
4731 
4732 	WARN_ON(!path->keep_locks && !path->skip_locking);
4733 	while (level < BTRFS_MAX_LEVEL) {
4734 		if (!path->nodes[level])
4735 			return 1;
4736 
4737 		slot = path->slots[level] + 1;
4738 		c = path->nodes[level];
4739 next:
4740 		if (slot >= btrfs_header_nritems(c)) {
4741 			int ret;
4742 			int orig_lowest;
4743 			struct btrfs_key cur_key;
4744 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4745 			    !path->nodes[level + 1])
4746 				return 1;
4747 
4748 			if (path->locks[level + 1] || path->skip_locking) {
4749 				level++;
4750 				continue;
4751 			}
4752 
4753 			slot = btrfs_header_nritems(c) - 1;
4754 			if (level == 0)
4755 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4756 			else
4757 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4758 
4759 			orig_lowest = path->lowest_level;
4760 			btrfs_release_path(path);
4761 			path->lowest_level = level;
4762 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4763 						0, 0);
4764 			path->lowest_level = orig_lowest;
4765 			if (ret < 0)
4766 				return ret;
4767 
4768 			c = path->nodes[level];
4769 			slot = path->slots[level];
4770 			if (ret == 0)
4771 				slot++;
4772 			goto next;
4773 		}
4774 
4775 		if (level == 0)
4776 			btrfs_item_key_to_cpu(c, key, slot);
4777 		else {
4778 			u64 gen = btrfs_node_ptr_generation(c, slot);
4779 
4780 			if (gen < min_trans) {
4781 				slot++;
4782 				goto next;
4783 			}
4784 			btrfs_node_key_to_cpu(c, key, slot);
4785 		}
4786 		return 0;
4787 	}
4788 	return 1;
4789 }
4790 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4791 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4792 			u64 time_seq)
4793 {
4794 	int slot;
4795 	int level;
4796 	struct extent_buffer *c;
4797 	struct extent_buffer *next;
4798 	struct btrfs_fs_info *fs_info = root->fs_info;
4799 	struct btrfs_key key;
4800 	bool need_commit_sem = false;
4801 	u32 nritems;
4802 	int ret;
4803 	int i;
4804 
4805 	/*
4806 	 * The nowait semantics are used only for write paths, where we don't
4807 	 * use the tree mod log and sequence numbers.
4808 	 */
4809 	if (time_seq)
4810 		ASSERT(!path->nowait);
4811 
4812 	nritems = btrfs_header_nritems(path->nodes[0]);
4813 	if (nritems == 0)
4814 		return 1;
4815 
4816 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4817 again:
4818 	level = 1;
4819 	next = NULL;
4820 	btrfs_release_path(path);
4821 
4822 	path->keep_locks = 1;
4823 
4824 	if (time_seq) {
4825 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4826 	} else {
4827 		if (path->need_commit_sem) {
4828 			path->need_commit_sem = 0;
4829 			need_commit_sem = true;
4830 			if (path->nowait) {
4831 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4832 					ret = -EAGAIN;
4833 					goto done;
4834 				}
4835 			} else {
4836 				down_read(&fs_info->commit_root_sem);
4837 			}
4838 		}
4839 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4840 	}
4841 	path->keep_locks = 0;
4842 
4843 	if (ret < 0)
4844 		goto done;
4845 
4846 	nritems = btrfs_header_nritems(path->nodes[0]);
4847 	/*
4848 	 * by releasing the path above we dropped all our locks.  A balance
4849 	 * could have added more items next to the key that used to be
4850 	 * at the very end of the block.  So, check again here and
4851 	 * advance the path if there are now more items available.
4852 	 */
4853 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4854 		if (ret == 0)
4855 			path->slots[0]++;
4856 		ret = 0;
4857 		goto done;
4858 	}
4859 	/*
4860 	 * So the above check misses one case:
4861 	 * - after releasing the path above, someone has removed the item that
4862 	 *   used to be at the very end of the block, and balance between leafs
4863 	 *   gets another one with bigger key.offset to replace it.
4864 	 *
4865 	 * This one should be returned as well, or we can get leaf corruption
4866 	 * later(esp. in __btrfs_drop_extents()).
4867 	 *
4868 	 * And a bit more explanation about this check,
4869 	 * with ret > 0, the key isn't found, the path points to the slot
4870 	 * where it should be inserted, so the path->slots[0] item must be the
4871 	 * bigger one.
4872 	 */
4873 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4874 		ret = 0;
4875 		goto done;
4876 	}
4877 
4878 	while (level < BTRFS_MAX_LEVEL) {
4879 		if (!path->nodes[level]) {
4880 			ret = 1;
4881 			goto done;
4882 		}
4883 
4884 		slot = path->slots[level] + 1;
4885 		c = path->nodes[level];
4886 		if (slot >= btrfs_header_nritems(c)) {
4887 			level++;
4888 			if (level == BTRFS_MAX_LEVEL) {
4889 				ret = 1;
4890 				goto done;
4891 			}
4892 			continue;
4893 		}
4894 
4895 
4896 		/*
4897 		 * Our current level is where we're going to start from, and to
4898 		 * make sure lockdep doesn't complain we need to drop our locks
4899 		 * and nodes from 0 to our current level.
4900 		 */
4901 		for (i = 0; i < level; i++) {
4902 			if (path->locks[level]) {
4903 				btrfs_tree_read_unlock(path->nodes[i]);
4904 				path->locks[i] = 0;
4905 			}
4906 			free_extent_buffer(path->nodes[i]);
4907 			path->nodes[i] = NULL;
4908 		}
4909 
4910 		next = c;
4911 		ret = read_block_for_search(root, path, &next, level,
4912 					    slot, &key);
4913 		if (ret == -EAGAIN && !path->nowait)
4914 			goto again;
4915 
4916 		if (ret < 0) {
4917 			btrfs_release_path(path);
4918 			goto done;
4919 		}
4920 
4921 		if (!path->skip_locking) {
4922 			ret = btrfs_try_tree_read_lock(next);
4923 			if (!ret && path->nowait) {
4924 				ret = -EAGAIN;
4925 				goto done;
4926 			}
4927 			if (!ret && time_seq) {
4928 				/*
4929 				 * If we don't get the lock, we may be racing
4930 				 * with push_leaf_left, holding that lock while
4931 				 * itself waiting for the leaf we've currently
4932 				 * locked. To solve this situation, we give up
4933 				 * on our lock and cycle.
4934 				 */
4935 				free_extent_buffer(next);
4936 				btrfs_release_path(path);
4937 				cond_resched();
4938 				goto again;
4939 			}
4940 			if (!ret)
4941 				btrfs_tree_read_lock(next);
4942 		}
4943 		break;
4944 	}
4945 	path->slots[level] = slot;
4946 	while (1) {
4947 		level--;
4948 		path->nodes[level] = next;
4949 		path->slots[level] = 0;
4950 		if (!path->skip_locking)
4951 			path->locks[level] = BTRFS_READ_LOCK;
4952 		if (!level)
4953 			break;
4954 
4955 		ret = read_block_for_search(root, path, &next, level,
4956 					    0, &key);
4957 		if (ret == -EAGAIN && !path->nowait)
4958 			goto again;
4959 
4960 		if (ret < 0) {
4961 			btrfs_release_path(path);
4962 			goto done;
4963 		}
4964 
4965 		if (!path->skip_locking) {
4966 			if (path->nowait) {
4967 				if (!btrfs_try_tree_read_lock(next)) {
4968 					ret = -EAGAIN;
4969 					goto done;
4970 				}
4971 			} else {
4972 				btrfs_tree_read_lock(next);
4973 			}
4974 		}
4975 	}
4976 	ret = 0;
4977 done:
4978 	unlock_up(path, 0, 1, 0, NULL);
4979 	if (need_commit_sem) {
4980 		int ret2;
4981 
4982 		path->need_commit_sem = 1;
4983 		ret2 = finish_need_commit_sem_search(path);
4984 		up_read(&fs_info->commit_root_sem);
4985 		if (ret2)
4986 			ret = ret2;
4987 	}
4988 
4989 	return ret;
4990 }
4991 
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4992 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4993 {
4994 	path->slots[0]++;
4995 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4996 		return btrfs_next_old_leaf(root, path, time_seq);
4997 	return 0;
4998 }
4999 
5000 /*
5001  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5002  * searching until it gets past min_objectid or finds an item of 'type'
5003  *
5004  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5005  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5006 int btrfs_previous_item(struct btrfs_root *root,
5007 			struct btrfs_path *path, u64 min_objectid,
5008 			int type)
5009 {
5010 	struct btrfs_key found_key;
5011 	struct extent_buffer *leaf;
5012 	u32 nritems;
5013 	int ret;
5014 
5015 	while (1) {
5016 		if (path->slots[0] == 0) {
5017 			ret = btrfs_prev_leaf(root, path);
5018 			if (ret != 0)
5019 				return ret;
5020 		} else {
5021 			path->slots[0]--;
5022 		}
5023 		leaf = path->nodes[0];
5024 		nritems = btrfs_header_nritems(leaf);
5025 		if (nritems == 0)
5026 			return 1;
5027 		if (path->slots[0] == nritems)
5028 			path->slots[0]--;
5029 
5030 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5031 		if (found_key.objectid < min_objectid)
5032 			break;
5033 		if (found_key.type == type)
5034 			return 0;
5035 		if (found_key.objectid == min_objectid &&
5036 		    found_key.type < type)
5037 			break;
5038 	}
5039 	return 1;
5040 }
5041 
5042 /*
5043  * search in extent tree to find a previous Metadata/Data extent item with
5044  * min objecitd.
5045  *
5046  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5047  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5048 int btrfs_previous_extent_item(struct btrfs_root *root,
5049 			struct btrfs_path *path, u64 min_objectid)
5050 {
5051 	struct btrfs_key found_key;
5052 	struct extent_buffer *leaf;
5053 	u32 nritems;
5054 	int ret;
5055 
5056 	while (1) {
5057 		if (path->slots[0] == 0) {
5058 			ret = btrfs_prev_leaf(root, path);
5059 			if (ret != 0)
5060 				return ret;
5061 		} else {
5062 			path->slots[0]--;
5063 		}
5064 		leaf = path->nodes[0];
5065 		nritems = btrfs_header_nritems(leaf);
5066 		if (nritems == 0)
5067 			return 1;
5068 		if (path->slots[0] == nritems)
5069 			path->slots[0]--;
5070 
5071 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072 		if (found_key.objectid < min_objectid)
5073 			break;
5074 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5075 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5076 			return 0;
5077 		if (found_key.objectid == min_objectid &&
5078 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5079 			break;
5080 	}
5081 	return 1;
5082 }
5083 
btrfs_ctree_init(void)5084 int __init btrfs_ctree_init(void)
5085 {
5086 	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5087 	if (!btrfs_path_cachep)
5088 		return -ENOMEM;
5089 	return 0;
5090 }
5091 
btrfs_ctree_exit(void)5092 void __cold btrfs_ctree_exit(void)
5093 {
5094 	kmem_cache_destroy(btrfs_path_cachep);
5095 }
5096