1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc-emitter"
48 
49 //===----------------------------------------------------------------------===//
50 //                             CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52 
CodeGenSubRegIndex(Record * R,unsigned Enum)53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55   Name = std::string(R->getName());
56   if (R->getValue("Namespace"))
57     Namespace = std::string(R->getValueAsString("Namespace"));
58   Size = R->getValueAsInt("Size");
59   Offset = R->getValueAsInt("Offset");
60 }
61 
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                        unsigned Enum)
64     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
65       Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
66       Artificial(true) {}
67 
getQualifiedName() const68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69   std::string N = getNamespace();
70   if (!N.empty())
71     N += "::";
72   N += getName();
73   return N;
74 }
75 
updateComponents(CodeGenRegBank & RegBank)76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77   if (!TheDef)
78     return;
79 
80   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81   if (!Comps.empty()) {
82     if (Comps.size() != 2)
83       PrintFatalError(TheDef->getLoc(),
84                       "ComposedOf must have exactly two entries");
85     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87     CodeGenSubRegIndex *X = A->addComposite(B, this);
88     if (X)
89       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90   }
91 
92   std::vector<Record*> Parts =
93     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94   if (!Parts.empty()) {
95     if (Parts.size() < 2)
96       PrintFatalError(TheDef->getLoc(),
97                       "CoveredBySubRegs must have two or more entries");
98     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99     for (Record *Part : Parts)
100       IdxParts.push_back(RegBank.getSubRegIdx(Part));
101     setConcatenationOf(IdxParts);
102   }
103 }
104 
computeLaneMask() const105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106   // Already computed?
107   if (LaneMask.any())
108     return LaneMask;
109 
110   // Recursion guard, shouldn't be required.
111   LaneMask = LaneBitmask::getAll();
112 
113   // The lane mask is simply the union of all sub-indices.
114   LaneBitmask M;
115   for (const auto &C : Composed)
116     M |= C.second->computeLaneMask();
117   assert(M.any() && "Missing lane mask, sub-register cycle?");
118   LaneMask = M;
119   return LaneMask;
120 }
121 
setConcatenationOf(ArrayRef<CodeGenSubRegIndex * > Parts)122 void CodeGenSubRegIndex::setConcatenationOf(
123     ArrayRef<CodeGenSubRegIndex*> Parts) {
124   if (ConcatenationOf.empty())
125     ConcatenationOf.assign(Parts.begin(), Parts.end());
126   else
127     assert(std::equal(Parts.begin(), Parts.end(),
128                       ConcatenationOf.begin()) && "parts consistent");
129 }
130 
computeConcatTransitiveClosure()131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134     CodeGenSubRegIndex *SubIdx = *I;
135     SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
140 
141     if (SubIdx->ConcatenationOf.empty()) {
142       ++I;
143     } else {
144       I = ConcatenationOf.erase(I);
145       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146                                  SubIdx->ConcatenationOf.end());
147       I += SubIdx->ConcatenationOf.size();
148     }
149   }
150 }
151 
152 //===----------------------------------------------------------------------===//
153 //                              CodeGenRegister
154 //===----------------------------------------------------------------------===//
155 
CodeGenRegister(Record * R,unsigned Enum)156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157     : TheDef(R), EnumValue(Enum),
158       CostPerUse(R->getValueAsListOfInts("CostPerUse")),
159       CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
160       HasDisjunctSubRegs(false), SubRegsComplete(false),
161       SuperRegsComplete(false), TopoSig(~0u) {
162   Artificial = R->getValueAsBit("isArtificial");
163 }
164 
buildObjectGraph(CodeGenRegBank & RegBank)165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
166   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
167   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
168 
169   if (SRIs.size() != SRs.size())
170     PrintFatalError(TheDef->getLoc(),
171                     "SubRegs and SubRegIndices must have the same size");
172 
173   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
174     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
175     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
176   }
177 
178   // Also compute leading super-registers. Each register has a list of
179   // covered-by-subregs super-registers where it appears as the first explicit
180   // sub-register.
181   //
182   // This is used by computeSecondarySubRegs() to find candidates.
183   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
184     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
185 
186   // Add ad hoc alias links. This is a symmetric relationship between two
187   // registers, so build a symmetric graph by adding links in both ends.
188   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
189   for (Record *Alias : Aliases) {
190     CodeGenRegister *Reg = RegBank.getReg(Alias);
191     ExplicitAliases.push_back(Reg);
192     Reg->ExplicitAliases.push_back(this);
193   }
194 }
195 
getName() const196 StringRef CodeGenRegister::getName() const {
197   assert(TheDef && "no def");
198   return TheDef->getName();
199 }
200 
201 namespace {
202 
203 // Iterate over all register units in a set of registers.
204 class RegUnitIterator {
205   CodeGenRegister::Vec::const_iterator RegI, RegE;
206   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
207 
208 public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)209   RegUnitIterator(const CodeGenRegister::Vec &Regs):
210     RegI(Regs.begin()), RegE(Regs.end()) {
211 
212     if (RegI != RegE) {
213       UnitI = (*RegI)->getRegUnits().begin();
214       UnitE = (*RegI)->getRegUnits().end();
215       advance();
216     }
217   }
218 
isValid() const219   bool isValid() const { return UnitI != UnitE; }
220 
operator *() const221   unsigned operator* () const { assert(isValid()); return *UnitI; }
222 
getReg() const223   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
224 
225   /// Preincrement.  Move to the next unit.
operator ++()226   void operator++() {
227     assert(isValid() && "Cannot advance beyond the last operand");
228     ++UnitI;
229     advance();
230   }
231 
232 protected:
advance()233   void advance() {
234     while (UnitI == UnitE) {
235       if (++RegI == RegE)
236         break;
237       UnitI = (*RegI)->getRegUnits().begin();
238       UnitE = (*RegI)->getRegUnits().end();
239     }
240   }
241 };
242 
243 } // end anonymous namespace
244 
245 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)246 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
247   return RegUnits.test(Unit);
248 }
249 
250 // Inherit register units from subregisters.
251 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
253   bool changed = false;
254   for (const auto &SubReg : SubRegs) {
255     CodeGenRegister *SR = SubReg.second;
256     // Merge the subregister's units into this register's RegUnits.
257     changed |= (RegUnits |= SR->RegUnits);
258   }
259 
260   return changed;
261 }
262 
263 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)264 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
265   // Only compute this map once.
266   if (SubRegsComplete)
267     return SubRegs;
268   SubRegsComplete = true;
269 
270   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
271 
272   // First insert the explicit subregs and make sure they are fully indexed.
273   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
274     CodeGenRegister *SR = ExplicitSubRegs[i];
275     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
276     if (!SR->Artificial)
277       Idx->Artificial = false;
278     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
279       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
280                       " appears twice in Register " + getName());
281     // Map explicit sub-registers first, so the names take precedence.
282     // The inherited sub-registers are mapped below.
283     SubReg2Idx.insert(std::make_pair(SR, Idx));
284   }
285 
286   // Keep track of inherited subregs and how they can be reached.
287   SmallPtrSet<CodeGenRegister*, 8> Orphans;
288 
289   // Clone inherited subregs and place duplicate entries in Orphans.
290   // Here the order is important - earlier subregs take precedence.
291   for (CodeGenRegister *ESR : ExplicitSubRegs) {
292     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
293     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
294 
295     for (const auto &SR : Map) {
296       if (!SubRegs.insert(SR).second)
297         Orphans.insert(SR.second);
298     }
299   }
300 
301   // Expand any composed subreg indices.
302   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
303   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
304   // expanded subreg indices recursively.
305   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
306   for (unsigned i = 0; i != Indices.size(); ++i) {
307     CodeGenSubRegIndex *Idx = Indices[i];
308     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
309     CodeGenRegister *SR = SubRegs[Idx];
310     const SubRegMap &Map = SR->computeSubRegs(RegBank);
311 
312     // Look at the possible compositions of Idx.
313     // They may not all be supported by SR.
314     for (auto Comp : Comps) {
315       SubRegMap::const_iterator SRI = Map.find(Comp.first);
316       if (SRI == Map.end())
317         continue; // Idx + I->first doesn't exist in SR.
318       // Add I->second as a name for the subreg SRI->second, assuming it is
319       // orphaned, and the name isn't already used for something else.
320       if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
321         continue;
322       // We found a new name for the orphaned sub-register.
323       SubRegs.insert(std::make_pair(Comp.second, SRI->second));
324       Indices.push_back(Comp.second);
325     }
326   }
327 
328   // Now Orphans contains the inherited subregisters without a direct index.
329   // Create inferred indexes for all missing entries.
330   // Work backwards in the Indices vector in order to compose subregs bottom-up.
331   // Consider this subreg sequence:
332   //
333   //   qsub_1 -> dsub_0 -> ssub_0
334   //
335   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
336   // can be reached in two different ways:
337   //
338   //   qsub_1 -> ssub_0
339   //   dsub_2 -> ssub_0
340   //
341   // We pick the latter composition because another register may have [dsub_0,
342   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
343   // dsub_2 -> ssub_0 composition can be shared.
344   while (!Indices.empty() && !Orphans.empty()) {
345     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
346     CodeGenRegister *SR = SubRegs[Idx];
347     const SubRegMap &Map = SR->computeSubRegs(RegBank);
348     for (const auto &SubReg : Map)
349       if (Orphans.erase(SubReg.second))
350         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
351   }
352 
353   // Compute the inverse SubReg -> Idx map.
354   for (const auto &SubReg : SubRegs) {
355     if (SubReg.second == this) {
356       ArrayRef<SMLoc> Loc;
357       if (TheDef)
358         Loc = TheDef->getLoc();
359       PrintFatalError(Loc, "Register " + getName() +
360                       " has itself as a sub-register");
361     }
362 
363     // Compute AllSuperRegsCovered.
364     if (!CoveredBySubRegs)
365       SubReg.first->AllSuperRegsCovered = false;
366 
367     // Ensure that every sub-register has a unique name.
368     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
369       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
370     if (Ins->second == SubReg.first)
371       continue;
372     // Trouble: Two different names for SubReg.second.
373     ArrayRef<SMLoc> Loc;
374     if (TheDef)
375       Loc = TheDef->getLoc();
376     PrintFatalError(Loc, "Sub-register can't have two names: " +
377                   SubReg.second->getName() + " available as " +
378                   SubReg.first->getName() + " and " + Ins->second->getName());
379   }
380 
381   // Derive possible names for sub-register concatenations from any explicit
382   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
383   // that getConcatSubRegIndex() won't invent any concatenated indices that the
384   // user already specified.
385   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
386     CodeGenRegister *SR = ExplicitSubRegs[i];
387     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
388         SR->Artificial)
389       continue;
390 
391     // SR is composed of multiple sub-regs. Find their names in this register.
392     SmallVector<CodeGenSubRegIndex*, 8> Parts;
393     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
394       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
395       if (!I.Artificial)
396         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
397     }
398 
399     // Offer this as an existing spelling for the concatenation of Parts.
400     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
401     Idx.setConcatenationOf(Parts);
402   }
403 
404   // Initialize RegUnitList. Because getSubRegs is called recursively, this
405   // processes the register hierarchy in postorder.
406   //
407   // Inherit all sub-register units. It is good enough to look at the explicit
408   // sub-registers, the other registers won't contribute any more units.
409   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
410     CodeGenRegister *SR = ExplicitSubRegs[i];
411     RegUnits |= SR->RegUnits;
412   }
413 
414   // Absent any ad hoc aliasing, we create one register unit per leaf register.
415   // These units correspond to the maximal cliques in the register overlap
416   // graph which is optimal.
417   //
418   // When there is ad hoc aliasing, we simply create one unit per edge in the
419   // undirected ad hoc aliasing graph. Technically, we could do better by
420   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
421   // are extremely rare anyway (I've never seen one), so we don't bother with
422   // the added complexity.
423   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
424     CodeGenRegister *AR = ExplicitAliases[i];
425     // Only visit each edge once.
426     if (AR->SubRegsComplete)
427       continue;
428     // Create a RegUnit representing this alias edge, and add it to both
429     // registers.
430     unsigned Unit = RegBank.newRegUnit(this, AR);
431     RegUnits.set(Unit);
432     AR->RegUnits.set(Unit);
433   }
434 
435   // Finally, create units for leaf registers without ad hoc aliases. Note that
436   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
437   // necessary. This means the aliasing leaf registers can share a single unit.
438   if (RegUnits.empty())
439     RegUnits.set(RegBank.newRegUnit(this));
440 
441   // We have now computed the native register units. More may be adopted later
442   // for balancing purposes.
443   NativeRegUnits = RegUnits;
444 
445   return SubRegs;
446 }
447 
448 // In a register that is covered by its sub-registers, try to find redundant
449 // sub-registers. For example:
450 //
451 //   QQ0 = {Q0, Q1}
452 //   Q0 = {D0, D1}
453 //   Q1 = {D2, D3}
454 //
455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
456 // the register definition.
457 //
458 // The explicitly specified registers form a tree. This function discovers
459 // sub-register relationships that would force a DAG.
460 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
462   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
463 
464   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
465   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
466     SubRegQueue.push(P);
467 
468   // Look at the leading super-registers of each sub-register. Those are the
469   // candidates for new sub-registers, assuming they are fully contained in
470   // this register.
471   while (!SubRegQueue.empty()) {
472     CodeGenSubRegIndex *SubRegIdx;
473     const CodeGenRegister *SubReg;
474     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
475     SubRegQueue.pop();
476 
477     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
478     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
479       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
480       // Already got this sub-register?
481       if (Cand == this || getSubRegIndex(Cand))
482         continue;
483       // Check if each component of Cand is already a sub-register.
484       assert(!Cand->ExplicitSubRegs.empty() &&
485              "Super-register has no sub-registers");
486       if (Cand->ExplicitSubRegs.size() == 1)
487         continue;
488       SmallVector<CodeGenSubRegIndex*, 8> Parts;
489       // We know that the first component is (SubRegIdx,SubReg). However we
490       // may still need to split it into smaller subregister parts.
491       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
492       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
493       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
494         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
495           if (SubRegIdx->ConcatenationOf.empty())
496             Parts.push_back(SubRegIdx);
497           else
498             append_range(Parts, SubRegIdx->ConcatenationOf);
499         } else {
500           // Sub-register doesn't exist.
501           Parts.clear();
502           break;
503         }
504       }
505       // There is nothing to do if some Cand sub-register is not part of this
506       // register.
507       if (Parts.empty())
508         continue;
509 
510       // Each part of Cand is a sub-register of this. Make the full Cand also
511       // a sub-register with a concatenated sub-register index.
512       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
513       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
514           std::make_pair(Concat, Cand);
515 
516       if (!SubRegs.insert(NewSubReg).second)
517         continue;
518 
519       // We inserted a new subregister.
520       NewSubRegs.push_back(NewSubReg);
521       SubRegQueue.push(NewSubReg);
522       SubReg2Idx.insert(std::make_pair(Cand, Concat));
523     }
524   }
525 
526   // Create sub-register index composition maps for the synthesized indices.
527   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
528     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
529     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
530     for (auto SubReg : NewSubReg->SubRegs) {
531       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
532       if (!SubIdx)
533         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
534                                               SubReg.second->getName() +
535                                               " in " + getName());
536       NewIdx->addComposite(SubReg.first, SubIdx);
537     }
538   }
539 }
540 
computeSuperRegs(CodeGenRegBank & RegBank)541 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
542   // Only visit each register once.
543   if (SuperRegsComplete)
544     return;
545   SuperRegsComplete = true;
546 
547   // Make sure all sub-registers have been visited first, so the super-reg
548   // lists will be topologically ordered.
549   for (auto SubReg : SubRegs)
550     SubReg.second->computeSuperRegs(RegBank);
551 
552   // Now add this as a super-register on all sub-registers.
553   // Also compute the TopoSigId in post-order.
554   TopoSigId Id;
555   for (auto SubReg : SubRegs) {
556     // Topological signature computed from SubIdx, TopoId(SubReg).
557     // Loops and idempotent indices have TopoSig = ~0u.
558     Id.push_back(SubReg.first->EnumValue);
559     Id.push_back(SubReg.second->TopoSig);
560 
561     // Don't add duplicate entries.
562     if (!SubReg.second->SuperRegs.empty() &&
563         SubReg.second->SuperRegs.back() == this)
564       continue;
565     SubReg.second->SuperRegs.push_back(this);
566   }
567   TopoSig = RegBank.getTopoSig(Id);
568 }
569 
570 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const571 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
572                                     CodeGenRegBank &RegBank) const {
573   assert(SubRegsComplete && "Must precompute sub-registers");
574   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
575     CodeGenRegister *SR = ExplicitSubRegs[i];
576     if (OSet.insert(SR))
577       SR->addSubRegsPreOrder(OSet, RegBank);
578   }
579   // Add any secondary sub-registers that weren't part of the explicit tree.
580   for (auto SubReg : SubRegs)
581     OSet.insert(SubReg.second);
582 }
583 
584 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const585 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
586   unsigned Weight = 0;
587   for (unsigned RegUnit : RegUnits) {
588     Weight += RegBank.getRegUnit(RegUnit).Weight;
589   }
590   return Weight;
591 }
592 
593 //===----------------------------------------------------------------------===//
594 //                               RegisterTuples
595 //===----------------------------------------------------------------------===//
596 
597 // A RegisterTuples def is used to generate pseudo-registers from lists of
598 // sub-registers. We provide a SetTheory expander class that returns the new
599 // registers.
600 namespace {
601 
602 struct TupleExpander : SetTheory::Expander {
603   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
604   // the synthesized definitions for their lifetime.
605   std::vector<std::unique_ptr<Record>> &SynthDefs;
606 
TupleExpander__anonf901f0290211::TupleExpander607   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
608       : SynthDefs(SynthDefs) {}
609 
expand__anonf901f0290211::TupleExpander610   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
611     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
612     unsigned Dim = Indices.size();
613     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
614     if (Dim != SubRegs->size())
615       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
616     if (Dim < 2)
617       PrintFatalError(Def->getLoc(),
618                       "Tuples must have at least 2 sub-registers");
619 
620     // Evaluate the sub-register lists to be zipped.
621     unsigned Length = ~0u;
622     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
623     for (unsigned i = 0; i != Dim; ++i) {
624       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
625       Length = std::min(Length, unsigned(Lists[i].size()));
626     }
627 
628     if (Length == 0)
629       return;
630 
631     // Precompute some types.
632     Record *RegisterCl = Def->getRecords().getClass("Register");
633     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
634     std::vector<StringRef> RegNames =
635       Def->getValueAsListOfStrings("RegAsmNames");
636 
637     // Zip them up.
638     for (unsigned n = 0; n != Length; ++n) {
639       std::string Name;
640       Record *Proto = Lists[0][n];
641       std::vector<Init*> Tuple;
642       for (unsigned i = 0; i != Dim; ++i) {
643         Record *Reg = Lists[i][n];
644         if (i) Name += '_';
645         Name += Reg->getName();
646         Tuple.push_back(DefInit::get(Reg));
647       }
648 
649       // Take the cost list of the first register in the tuple.
650       ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
651       SmallVector<Init *, 2> CostPerUse;
652       CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
653 
654       StringInit *AsmName = StringInit::get("");
655       if (!RegNames.empty()) {
656         if (RegNames.size() <= n)
657           PrintFatalError(Def->getLoc(),
658                           "Register tuple definition missing name for '" +
659                             Name + "'.");
660         AsmName = StringInit::get(RegNames[n]);
661       }
662 
663       // Create a new Record representing the synthesized register. This record
664       // is only for consumption by CodeGenRegister, it is not added to the
665       // RecordKeeper.
666       SynthDefs.emplace_back(
667           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
668       Record *NewReg = SynthDefs.back().get();
669       Elts.insert(NewReg);
670 
671       // Copy Proto super-classes.
672       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
673       for (const auto &SuperPair : Supers)
674         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
675 
676       // Copy Proto fields.
677       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
678         RecordVal RV = Proto->getValues()[i];
679 
680         // Skip existing fields, like NAME.
681         if (NewReg->getValue(RV.getNameInit()))
682           continue;
683 
684         StringRef Field = RV.getName();
685 
686         // Replace the sub-register list with Tuple.
687         if (Field == "SubRegs")
688           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
689 
690         if (Field == "AsmName")
691           RV.setValue(AsmName);
692 
693         // CostPerUse is aggregated from all Tuple members.
694         if (Field == "CostPerUse")
695           RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
696 
697         // Composite registers are always covered by sub-registers.
698         if (Field == "CoveredBySubRegs")
699           RV.setValue(BitInit::get(true));
700 
701         // Copy fields from the RegisterTuples def.
702         if (Field == "SubRegIndices" ||
703             Field == "CompositeIndices") {
704           NewReg->addValue(*Def->getValue(Field));
705           continue;
706         }
707 
708         // Some fields get their default uninitialized value.
709         if (Field == "DwarfNumbers" ||
710             Field == "DwarfAlias" ||
711             Field == "Aliases") {
712           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
713             NewReg->addValue(*DefRV);
714           continue;
715         }
716 
717         // Everything else is copied from Proto.
718         NewReg->addValue(RV);
719       }
720     }
721   }
722 };
723 
724 } // end anonymous namespace
725 
726 //===----------------------------------------------------------------------===//
727 //                            CodeGenRegisterClass
728 //===----------------------------------------------------------------------===//
729 
sortAndUniqueRegisters(CodeGenRegister::Vec & M)730 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
731   llvm::sort(M, deref<std::less<>>());
732   M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
733 }
734 
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)735 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
736     : TheDef(R), Name(std::string(R->getName())),
737       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) {
738   GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
739   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
740   if (TypeList.empty())
741     PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
742   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
743     Record *Type = TypeList[i];
744     if (!Type->isSubClassOf("ValueType"))
745       PrintFatalError(R->getLoc(),
746                       "RegTypes list member '" + Type->getName() +
747                           "' does not derive from the ValueType class!");
748     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
749   }
750 
751   // Allocation order 0 is the full set. AltOrders provides others.
752   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
753   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
754   Orders.resize(1 + AltOrders->size());
755 
756   // Default allocation order always contains all registers.
757   Artificial = true;
758   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
759     Orders[0].push_back((*Elements)[i]);
760     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
761     Members.push_back(Reg);
762     Artificial &= Reg->Artificial;
763     TopoSigs.set(Reg->getTopoSig());
764   }
765   sortAndUniqueRegisters(Members);
766 
767   // Alternative allocation orders may be subsets.
768   SetTheory::RecSet Order;
769   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
770     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
771     Orders[1 + i].append(Order.begin(), Order.end());
772     // Verify that all altorder members are regclass members.
773     while (!Order.empty()) {
774       CodeGenRegister *Reg = RegBank.getReg(Order.back());
775       Order.pop_back();
776       if (!contains(Reg))
777         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
778                       " is not a class member");
779     }
780   }
781 
782   Namespace = R->getValueAsString("Namespace");
783 
784   if (const RecordVal *RV = R->getValue("RegInfos"))
785     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
786       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
787   unsigned Size = R->getValueAsInt("Size");
788   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
789          "Impossible to determine register size");
790   if (!RSI.hasDefault()) {
791     RegSizeInfo RI;
792     RI.RegSize = RI.SpillSize = Size ? Size
793                                      : VTs[0].getSimple().getSizeInBits();
794     RI.SpillAlignment = R->getValueAsInt("Alignment");
795     RSI.insertRegSizeForMode(DefaultMode, RI);
796   }
797 
798   CopyCost = R->getValueAsInt("CopyCost");
799   Allocatable = R->getValueAsBit("isAllocatable");
800   AltOrderSelect = R->getValueAsString("AltOrderSelect");
801   int AllocationPriority = R->getValueAsInt("AllocationPriority");
802   if (AllocationPriority < 0 || AllocationPriority > 63)
803     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
804   this->AllocationPriority = AllocationPriority;
805 }
806 
807 // Create an inferred register class that was missing from the .td files.
808 // Most properties will be inherited from the closest super-class after the
809 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)810 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
811                                            StringRef Name, Key Props)
812     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
813       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
814       CopyCost(0), Allocatable(true), AllocationPriority(0) {
815   Artificial = true;
816   GeneratePressureSet = false;
817   for (const auto R : Members) {
818     TopoSigs.set(R->getTopoSig());
819     Artificial &= R->Artificial;
820   }
821 }
822 
823 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)824 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
825   assert(!getDef() && "Only synthesized classes can inherit properties");
826   assert(!SuperClasses.empty() && "Synthesized class without super class");
827 
828   // The last super-class is the smallest one.
829   CodeGenRegisterClass &Super = *SuperClasses.back();
830 
831   // Most properties are copied directly.
832   // Exceptions are members, size, and alignment
833   Namespace = Super.Namespace;
834   VTs = Super.VTs;
835   CopyCost = Super.CopyCost;
836   Allocatable = Super.Allocatable;
837   AltOrderSelect = Super.AltOrderSelect;
838   AllocationPriority = Super.AllocationPriority;
839   GeneratePressureSet |= Super.GeneratePressureSet;
840 
841   // Copy all allocation orders, filter out foreign registers from the larger
842   // super-class.
843   Orders.resize(Super.Orders.size());
844   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
845     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
846       if (contains(RegBank.getReg(Super.Orders[i][j])))
847         Orders[i].push_back(Super.Orders[i][j]);
848 }
849 
contains(const CodeGenRegister * Reg) const850 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
851   return std::binary_search(Members.begin(), Members.end(), Reg,
852                             deref<std::less<>>());
853 }
854 
getWeight(const CodeGenRegBank & RegBank) const855 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
856   if (TheDef && !TheDef->isValueUnset("Weight"))
857     return TheDef->getValueAsInt("Weight");
858 
859   if (Members.empty() || Artificial)
860     return 0;
861 
862   return (*Members.begin())->getWeight(RegBank);
863 }
864 
865 namespace llvm {
866 
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)867   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
868     OS << "{ " << K.RSI;
869     for (const auto R : *K.Members)
870       OS << ", " << R->getName();
871     return OS << " }";
872   }
873 
874 } // end namespace llvm
875 
876 // This is a simple lexicographical order that can be used to search for sets.
877 // It is not the same as the topological order provided by TopoOrderRC.
878 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const879 operator<(const CodeGenRegisterClass::Key &B) const {
880   assert(Members && B.Members);
881   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
882 }
883 
884 // Returns true if RC is a strict subclass.
885 // RC is a sub-class of this class if it is a valid replacement for any
886 // instruction operand where a register of this classis required. It must
887 // satisfy these conditions:
888 //
889 // 1. All RC registers are also in this.
890 // 2. The RC spill size must not be smaller than our spill size.
891 // 3. RC spill alignment must be compatible with ours.
892 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)893 static bool testSubClass(const CodeGenRegisterClass *A,
894                          const CodeGenRegisterClass *B) {
895   return A->RSI.isSubClassOf(B->RSI) &&
896          std::includes(A->getMembers().begin(), A->getMembers().end(),
897                        B->getMembers().begin(), B->getMembers().end(),
898                        deref<std::less<>>());
899 }
900 
901 /// Sorting predicate for register classes.  This provides a topological
902 /// ordering that arranges all register classes before their sub-classes.
903 ///
904 /// Register classes with the same registers, spill size, and alignment form a
905 /// clique.  They will be ordered alphabetically.
906 ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)907 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
908                         const CodeGenRegisterClass &PB) {
909   auto *A = &PA;
910   auto *B = &PB;
911   if (A == B)
912     return false;
913 
914   if (A->RSI < B->RSI)
915     return true;
916   if (A->RSI != B->RSI)
917     return false;
918 
919   // Order by descending set size.  Note that the classes' allocation order may
920   // not have been computed yet.  The Members set is always vaild.
921   if (A->getMembers().size() > B->getMembers().size())
922     return true;
923   if (A->getMembers().size() < B->getMembers().size())
924     return false;
925 
926   // Finally order by name as a tie breaker.
927   return StringRef(A->getName()) < B->getName();
928 }
929 
getQualifiedName() const930 std::string CodeGenRegisterClass::getQualifiedName() const {
931   if (Namespace.empty())
932     return getName();
933   else
934     return (Namespace + "::" + getName()).str();
935 }
936 
937 // Compute sub-classes of all register classes.
938 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)939 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
940   auto &RegClasses = RegBank.getRegClasses();
941 
942   // Visit backwards so sub-classes are seen first.
943   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
944     CodeGenRegisterClass &RC = *I;
945     RC.SubClasses.resize(RegClasses.size());
946     RC.SubClasses.set(RC.EnumValue);
947     if (RC.Artificial)
948       continue;
949 
950     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
951     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
952       CodeGenRegisterClass &SubRC = *I2;
953       if (RC.SubClasses.test(SubRC.EnumValue))
954         continue;
955       if (!testSubClass(&RC, &SubRC))
956         continue;
957       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
958       // check them again.
959       RC.SubClasses |= SubRC.SubClasses;
960     }
961 
962     // Sweep up missed clique members.  They will be immediately preceding RC.
963     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
964       RC.SubClasses.set(I2->EnumValue);
965   }
966 
967   // Compute the SuperClasses lists from the SubClasses vectors.
968   for (auto &RC : RegClasses) {
969     const BitVector &SC = RC.getSubClasses();
970     auto I = RegClasses.begin();
971     for (int s = 0, next_s = SC.find_first(); next_s != -1;
972          next_s = SC.find_next(s)) {
973       std::advance(I, next_s - s);
974       s = next_s;
975       if (&*I == &RC)
976         continue;
977       I->SuperClasses.push_back(&RC);
978     }
979   }
980 
981   // With the class hierarchy in place, let synthesized register classes inherit
982   // properties from their closest super-class. The iteration order here can
983   // propagate properties down multiple levels.
984   for (auto &RC : RegClasses)
985     if (!RC.getDef())
986       RC.inheritProperties(RegBank);
987 }
988 
989 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const990 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
991     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
992   auto SizeOrder = [this](const CodeGenRegisterClass *A,
993                       const CodeGenRegisterClass *B) {
994     // If there are multiple, identical register classes, prefer the original
995     // register class.
996     if (A == B)
997       return false;
998     if (A->getMembers().size() == B->getMembers().size())
999       return A == this;
1000     return A->getMembers().size() > B->getMembers().size();
1001   };
1002 
1003   auto &RegClasses = RegBank.getRegClasses();
1004 
1005   // Find all the subclasses of this one that fully support the sub-register
1006   // index and order them by size. BiggestSuperRC should always be first.
1007   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1008   if (!BiggestSuperRegRC)
1009     return None;
1010   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1011   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1012   for (auto &RC : RegClasses)
1013     if (SuperRegRCsBV[RC.EnumValue])
1014       SuperRegRCs.emplace_back(&RC);
1015   llvm::stable_sort(SuperRegRCs, SizeOrder);
1016 
1017   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1018          "Biggest class wasn't first");
1019 
1020   // Find all the subreg classes and order them by size too.
1021   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1022   for (auto &RC: RegClasses) {
1023     BitVector SuperRegClassesBV(RegClasses.size());
1024     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1025     if (SuperRegClassesBV.any())
1026       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1027   }
1028   llvm::sort(SuperRegClasses,
1029              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1030                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1031                return SizeOrder(A.first, B.first);
1032              });
1033 
1034   // Find the biggest subclass and subreg class such that R:subidx is in the
1035   // subreg class for all R in subclass.
1036   //
1037   // For example:
1038   // All registers in X86's GR64 have a sub_32bit subregister but no class
1039   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1040   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1041   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1042   // having excluded RIP, we are able to find a SubRegRC (GR32).
1043   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1044   CodeGenRegisterClass *SubRegRC = nullptr;
1045   for (auto *SuperRegRC : SuperRegRCs) {
1046     for (const auto &SuperRegClassPair : SuperRegClasses) {
1047       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1048       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1049         SubRegRC = SuperRegClassPair.first;
1050         ChosenSuperRegClass = SuperRegRC;
1051 
1052         // If SubRegRC is bigger than SuperRegRC then there are members of
1053         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1054         // find a better fit and fall back on this one if there isn't one.
1055         //
1056         // This is intended to prevent X86 from making odd choices such as
1057         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1058         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1059         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1060         // mapping.
1061         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1062           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1063       }
1064     }
1065 
1066     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1067     // registers, then we're done.
1068     if (ChosenSuperRegClass)
1069       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1070   }
1071 
1072   return None;
1073 }
1074 
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const1075 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1076                                               BitVector &Out) const {
1077   auto FindI = SuperRegClasses.find(SubIdx);
1078   if (FindI == SuperRegClasses.end())
1079     return;
1080   for (CodeGenRegisterClass *RC : FindI->second)
1081     Out.set(RC->EnumValue);
1082 }
1083 
1084 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(const CodeGenRegBank & RegBank,std::vector<unsigned> & RegUnits) const1085 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1086   std::vector<unsigned> &RegUnits) const {
1087   std::vector<unsigned> TmpUnits;
1088   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1089     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1090     if (!RU.Artificial)
1091       TmpUnits.push_back(*UnitI);
1092   }
1093   llvm::sort(TmpUnits);
1094   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1095                    std::back_inserter(RegUnits));
1096 }
1097 
1098 //===----------------------------------------------------------------------===//
1099 //                               CodeGenRegBank
1100 //===----------------------------------------------------------------------===//
1101 
CodeGenRegBank(RecordKeeper & Records,const CodeGenHwModes & Modes)1102 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1103                                const CodeGenHwModes &Modes) : CGH(Modes) {
1104   // Configure register Sets to understand register classes and tuples.
1105   Sets.addFieldExpander("RegisterClass", "MemberList");
1106   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1107   Sets.addExpander("RegisterTuples",
1108                    std::make_unique<TupleExpander>(SynthDefs));
1109 
1110   // Read in the user-defined (named) sub-register indices.
1111   // More indices will be synthesized later.
1112   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1113   llvm::sort(SRIs, LessRecord());
1114   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1115     getSubRegIdx(SRIs[i]);
1116   // Build composite maps from ComposedOf fields.
1117   for (auto &Idx : SubRegIndices)
1118     Idx.updateComponents(*this);
1119 
1120   // Read in the register definitions.
1121   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1122   llvm::sort(Regs, LessRecordRegister());
1123   // Assign the enumeration values.
1124   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1125     getReg(Regs[i]);
1126 
1127   // Expand tuples and number the new registers.
1128   std::vector<Record*> Tups =
1129     Records.getAllDerivedDefinitions("RegisterTuples");
1130 
1131   for (Record *R : Tups) {
1132     std::vector<Record *> TupRegs = *Sets.expand(R);
1133     llvm::sort(TupRegs, LessRecordRegister());
1134     for (Record *RC : TupRegs)
1135       getReg(RC);
1136   }
1137 
1138   // Now all the registers are known. Build the object graph of explicit
1139   // register-register references.
1140   for (auto &Reg : Registers)
1141     Reg.buildObjectGraph(*this);
1142 
1143   // Compute register name map.
1144   for (auto &Reg : Registers)
1145     // FIXME: This could just be RegistersByName[name] = register, except that
1146     // causes some failures in MIPS - perhaps they have duplicate register name
1147     // entries? (or maybe there's a reason for it - I don't know much about this
1148     // code, just drive-by refactoring)
1149     RegistersByName.insert(
1150         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1151 
1152   // Precompute all sub-register maps.
1153   // This will create Composite entries for all inferred sub-register indices.
1154   for (auto &Reg : Registers)
1155     Reg.computeSubRegs(*this);
1156 
1157   // Compute transitive closure of subregister index ConcatenationOf vectors
1158   // and initialize ConcatIdx map.
1159   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1160     SRI.computeConcatTransitiveClosure();
1161     if (!SRI.ConcatenationOf.empty())
1162       ConcatIdx.insert(std::make_pair(
1163           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1164                                              SRI.ConcatenationOf.end()), &SRI));
1165   }
1166 
1167   // Infer even more sub-registers by combining leading super-registers.
1168   for (auto &Reg : Registers)
1169     if (Reg.CoveredBySubRegs)
1170       Reg.computeSecondarySubRegs(*this);
1171 
1172   // After the sub-register graph is complete, compute the topologically
1173   // ordered SuperRegs list.
1174   for (auto &Reg : Registers)
1175     Reg.computeSuperRegs(*this);
1176 
1177   // For each pair of Reg:SR, if both are non-artificial, mark the
1178   // corresponding sub-register index as non-artificial.
1179   for (auto &Reg : Registers) {
1180     if (Reg.Artificial)
1181       continue;
1182     for (auto P : Reg.getSubRegs()) {
1183       const CodeGenRegister *SR = P.second;
1184       if (!SR->Artificial)
1185         P.first->Artificial = false;
1186     }
1187   }
1188 
1189   // Native register units are associated with a leaf register. They've all been
1190   // discovered now.
1191   NumNativeRegUnits = RegUnits.size();
1192 
1193   // Read in register class definitions.
1194   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1195   if (RCs.empty())
1196     PrintFatalError("No 'RegisterClass' subclasses defined!");
1197 
1198   // Allocate user-defined register classes.
1199   for (auto *R : RCs) {
1200     RegClasses.emplace_back(*this, R);
1201     CodeGenRegisterClass &RC = RegClasses.back();
1202     if (!RC.Artificial)
1203       addToMaps(&RC);
1204   }
1205 
1206   // Infer missing classes to create a full algebra.
1207   computeInferredRegisterClasses();
1208 
1209   // Order register classes topologically and assign enum values.
1210   RegClasses.sort(TopoOrderRC);
1211   unsigned i = 0;
1212   for (auto &RC : RegClasses)
1213     RC.EnumValue = i++;
1214   CodeGenRegisterClass::computeSubClasses(*this);
1215 }
1216 
1217 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1218 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1219 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1220   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1221   return &SubRegIndices.back();
1222 }
1223 
getSubRegIdx(Record * Def)1224 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1225   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1226   if (Idx)
1227     return Idx;
1228   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1229   Idx = &SubRegIndices.back();
1230   return Idx;
1231 }
1232 
1233 const CodeGenSubRegIndex *
findSubRegIdx(const Record * Def) const1234 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1235   return Def2SubRegIdx.lookup(Def);
1236 }
1237 
getReg(Record * Def)1238 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1239   CodeGenRegister *&Reg = Def2Reg[Def];
1240   if (Reg)
1241     return Reg;
1242   Registers.emplace_back(Def, Registers.size() + 1);
1243   Reg = &Registers.back();
1244   return Reg;
1245 }
1246 
addToMaps(CodeGenRegisterClass * RC)1247 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1248   if (Record *Def = RC->getDef())
1249     Def2RC.insert(std::make_pair(Def, RC));
1250 
1251   // Duplicate classes are rejected by insert().
1252   // That's OK, we only care about the properties handled by CGRC::Key.
1253   CodeGenRegisterClass::Key K(*RC);
1254   Key2RC.insert(std::make_pair(K, RC));
1255 }
1256 
1257 // Create a synthetic sub-class if it is missing.
1258 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1259 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1260                                     const CodeGenRegister::Vec *Members,
1261                                     StringRef Name) {
1262   // Synthetic sub-class has the same size and alignment as RC.
1263   CodeGenRegisterClass::Key K(Members, RC->RSI);
1264   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1265   if (FoundI != Key2RC.end())
1266     return FoundI->second;
1267 
1268   // Sub-class doesn't exist, create a new one.
1269   RegClasses.emplace_back(*this, Name, K);
1270   addToMaps(&RegClasses.back());
1271   return &RegClasses.back();
1272 }
1273 
getRegClass(const Record * Def) const1274 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1275   if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1276     return RC;
1277 
1278   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1279 }
1280 
1281 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1282 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1283                                         CodeGenSubRegIndex *B) {
1284   // Look for an existing entry.
1285   CodeGenSubRegIndex *Comp = A->compose(B);
1286   if (Comp)
1287     return Comp;
1288 
1289   // None exists, synthesize one.
1290   std::string Name = A->getName() + "_then_" + B->getName();
1291   Comp = createSubRegIndex(Name, A->getNamespace());
1292   A->addComposite(B, Comp);
1293   return Comp;
1294 }
1295 
1296 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1297 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1298   assert(Parts.size() > 1 && "Need two parts to concatenate");
1299 #ifndef NDEBUG
1300   for (CodeGenSubRegIndex *Idx : Parts) {
1301     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1302   }
1303 #endif
1304 
1305   // Look for an existing entry.
1306   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1307   if (Idx)
1308     return Idx;
1309 
1310   // None exists, synthesize one.
1311   std::string Name = Parts.front()->getName();
1312   // Determine whether all parts are contiguous.
1313   bool isContinuous = true;
1314   unsigned Size = Parts.front()->Size;
1315   unsigned LastOffset = Parts.front()->Offset;
1316   unsigned LastSize = Parts.front()->Size;
1317   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1318     Name += '_';
1319     Name += Parts[i]->getName();
1320     Size += Parts[i]->Size;
1321     if (Parts[i]->Offset != (LastOffset + LastSize))
1322       isContinuous = false;
1323     LastOffset = Parts[i]->Offset;
1324     LastSize = Parts[i]->Size;
1325   }
1326   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1327   Idx->Size = Size;
1328   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1329   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1330   return Idx;
1331 }
1332 
computeComposites()1333 void CodeGenRegBank::computeComposites() {
1334   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1335 
1336   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1337   // register to (sub)register associated with the action of the left-hand
1338   // side subregister.
1339   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1340   for (const CodeGenRegister &R : Registers) {
1341     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1342     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1343       SubRegAction[P.first].insert({&R, P.second});
1344   }
1345 
1346   // Calculate the composition of two subregisters as compositions of their
1347   // associated actions.
1348   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1349                                   const CodeGenSubRegIndex *Sub2) {
1350     RegMap C;
1351     const RegMap &Img1 = SubRegAction.at(Sub1);
1352     const RegMap &Img2 = SubRegAction.at(Sub2);
1353     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1354       auto F = Img2.find(P.second);
1355       if (F != Img2.end())
1356         C.insert({P.first, F->second});
1357     }
1358     return C;
1359   };
1360 
1361   // Check if the two maps agree on the intersection of their domains.
1362   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1363     // Technically speaking, an empty map agrees with any other map, but
1364     // this could flag false positives. We're interested in non-vacuous
1365     // agreements.
1366     if (Map1.empty() || Map2.empty())
1367       return false;
1368     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1369       auto F = Map2.find(P.first);
1370       if (F == Map2.end() || P.second != F->second)
1371         return false;
1372     }
1373     return true;
1374   };
1375 
1376   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1377                                   const CodeGenSubRegIndex*>;
1378   SmallSet<CompositePair,4> UserDefined;
1379   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1380     for (auto P : Idx.getComposites())
1381       UserDefined.insert(std::make_pair(&Idx, P.first));
1382 
1383   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1384   // and many registers will share TopoSigs on regular architectures.
1385   BitVector TopoSigs(getNumTopoSigs());
1386 
1387   for (const auto &Reg1 : Registers) {
1388     // Skip identical subreg structures already processed.
1389     if (TopoSigs.test(Reg1.getTopoSig()))
1390       continue;
1391     TopoSigs.set(Reg1.getTopoSig());
1392 
1393     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1394     for (auto I1 : SRM1) {
1395       CodeGenSubRegIndex *Idx1 = I1.first;
1396       CodeGenRegister *Reg2 = I1.second;
1397       // Ignore identity compositions.
1398       if (&Reg1 == Reg2)
1399         continue;
1400       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1401       // Try composing Idx1 with another SubRegIndex.
1402       for (auto I2 : SRM2) {
1403         CodeGenSubRegIndex *Idx2 = I2.first;
1404         CodeGenRegister *Reg3 = I2.second;
1405         // Ignore identity compositions.
1406         if (Reg2 == Reg3)
1407           continue;
1408         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1409         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1410         assert(Idx3 && "Sub-register doesn't have an index");
1411 
1412         // Conflicting composition? Emit a warning but allow it.
1413         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1414           // If the composition was not user-defined, always emit a warning.
1415           if (!UserDefined.count({Idx1, Idx2}) ||
1416               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1417             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1418                          " and " + Idx2->getQualifiedName() +
1419                          " compose ambiguously as " + Prev->getQualifiedName() +
1420                          " or " + Idx3->getQualifiedName());
1421         }
1422       }
1423     }
1424   }
1425 }
1426 
1427 // Compute lane masks. This is similar to register units, but at the
1428 // sub-register index level. Each bit in the lane mask is like a register unit
1429 // class, and two lane masks will have a bit in common if two sub-register
1430 // indices overlap in some register.
1431 //
1432 // Conservatively share a lane mask bit if two sub-register indices overlap in
1433 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1434 void CodeGenRegBank::computeSubRegLaneMasks() {
1435   // First assign individual bits to all the leaf indices.
1436   unsigned Bit = 0;
1437   // Determine mask of lanes that cover their registers.
1438   CoveringLanes = LaneBitmask::getAll();
1439   for (auto &Idx : SubRegIndices) {
1440     if (Idx.getComposites().empty()) {
1441       if (Bit > LaneBitmask::BitWidth) {
1442         PrintFatalError(
1443           Twine("Ran out of lanemask bits to represent subregister ")
1444           + Idx.getName());
1445       }
1446       Idx.LaneMask = LaneBitmask::getLane(Bit);
1447       ++Bit;
1448     } else {
1449       Idx.LaneMask = LaneBitmask::getNone();
1450     }
1451   }
1452 
1453   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1454   // here is that for each possible target subregister we look at the leafs
1455   // in the subregister graph that compose for this target and create
1456   // transformation sequences for the lanemasks. Each step in the sequence
1457   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1458   // are usually the same for many subregisters we can easily combine the steps
1459   // by combining the masks.
1460   for (const auto &Idx : SubRegIndices) {
1461     const auto &Composites = Idx.getComposites();
1462     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1463 
1464     if (Composites.empty()) {
1465       // Moving from a class with no subregisters we just had a single lane:
1466       // The subregister must be a leaf subregister and only occupies 1 bit.
1467       // Move the bit from the class without subregisters into that position.
1468       unsigned DstBit = Idx.LaneMask.getHighestLane();
1469       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1470              "Must be a leaf subregister");
1471       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1472       LaneTransforms.push_back(MaskRol);
1473     } else {
1474       // Go through all leaf subregisters and find the ones that compose with
1475       // Idx. These make out all possible valid bits in the lane mask we want to
1476       // transform. Looking only at the leafs ensure that only a single bit in
1477       // the mask is set.
1478       unsigned NextBit = 0;
1479       for (auto &Idx2 : SubRegIndices) {
1480         // Skip non-leaf subregisters.
1481         if (!Idx2.getComposites().empty())
1482           continue;
1483         // Replicate the behaviour from the lane mask generation loop above.
1484         unsigned SrcBit = NextBit;
1485         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1486         if (NextBit < LaneBitmask::BitWidth-1)
1487           ++NextBit;
1488         assert(Idx2.LaneMask == SrcMask);
1489 
1490         // Get the composed subregister if there is any.
1491         auto C = Composites.find(&Idx2);
1492         if (C == Composites.end())
1493           continue;
1494         const CodeGenSubRegIndex *Composite = C->second;
1495         // The Composed subreg should be a leaf subreg too
1496         assert(Composite->getComposites().empty());
1497 
1498         // Create Mask+Rotate operation and merge with existing ops if possible.
1499         unsigned DstBit = Composite->LaneMask.getHighestLane();
1500         int Shift = DstBit - SrcBit;
1501         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1502                                         : LaneBitmask::BitWidth + Shift;
1503         for (auto &I : LaneTransforms) {
1504           if (I.RotateLeft == RotateLeft) {
1505             I.Mask |= SrcMask;
1506             SrcMask = LaneBitmask::getNone();
1507           }
1508         }
1509         if (SrcMask.any()) {
1510           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1511           LaneTransforms.push_back(MaskRol);
1512         }
1513       }
1514     }
1515 
1516     // Optimize if the transformation consists of one step only: Set mask to
1517     // 0xffffffff (including some irrelevant invalid bits) so that it should
1518     // merge with more entries later while compressing the table.
1519     if (LaneTransforms.size() == 1)
1520       LaneTransforms[0].Mask = LaneBitmask::getAll();
1521 
1522     // Further compression optimization: For invalid compositions resulting
1523     // in a sequence with 0 entries we can just pick any other. Choose
1524     // Mask 0xffffffff with Rotation 0.
1525     if (LaneTransforms.size() == 0) {
1526       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1527       LaneTransforms.push_back(P);
1528     }
1529   }
1530 
1531   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1532   // by the sub-register graph? This doesn't occur in any known targets.
1533 
1534   // Inherit lanes from composites.
1535   for (const auto &Idx : SubRegIndices) {
1536     LaneBitmask Mask = Idx.computeLaneMask();
1537     // If some super-registers without CoveredBySubRegs use this index, we can
1538     // no longer assume that the lanes are covering their registers.
1539     if (!Idx.AllSuperRegsCovered)
1540       CoveringLanes &= ~Mask;
1541   }
1542 
1543   // Compute lane mask combinations for register classes.
1544   for (auto &RegClass : RegClasses) {
1545     LaneBitmask LaneMask;
1546     for (const auto &SubRegIndex : SubRegIndices) {
1547       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1548         continue;
1549       LaneMask |= SubRegIndex.LaneMask;
1550     }
1551 
1552     // For classes without any subregisters set LaneMask to 1 instead of 0.
1553     // This makes it easier for client code to handle classes uniformly.
1554     if (LaneMask.none())
1555       LaneMask = LaneBitmask::getLane(0);
1556 
1557     RegClass.LaneMask = LaneMask;
1558   }
1559 }
1560 
1561 namespace {
1562 
1563 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1564 // the transitive closure of the union of overlapping register
1565 // classes. Together, the UberRegSets form a partition of the registers. If we
1566 // consider overlapping register classes to be connected, then each UberRegSet
1567 // is a set of connected components.
1568 //
1569 // An UberRegSet will likely be a horizontal slice of register names of
1570 // the same width. Nontrivial subregisters should then be in a separate
1571 // UberRegSet. But this property isn't required for valid computation of
1572 // register unit weights.
1573 //
1574 // A Weight field caches the max per-register unit weight in each UberRegSet.
1575 //
1576 // A set of SingularDeterminants flags single units of some register in this set
1577 // for which the unit weight equals the set weight. These units should not have
1578 // their weight increased.
1579 struct UberRegSet {
1580   CodeGenRegister::Vec Regs;
1581   unsigned Weight = 0;
1582   CodeGenRegister::RegUnitList SingularDeterminants;
1583 
1584   UberRegSet() = default;
1585 };
1586 
1587 } // end anonymous namespace
1588 
1589 // Partition registers into UberRegSets, where each set is the transitive
1590 // closure of the union of overlapping register classes.
1591 //
1592 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1593 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1594                             std::vector<UberRegSet*> &RegSets,
1595                             CodeGenRegBank &RegBank) {
1596   const auto &Registers = RegBank.getRegisters();
1597 
1598   // The Register EnumValue is one greater than its index into Registers.
1599   assert(Registers.size() == Registers.back().EnumValue &&
1600          "register enum value mismatch");
1601 
1602   // For simplicitly make the SetID the same as EnumValue.
1603   IntEqClasses UberSetIDs(Registers.size()+1);
1604   std::set<unsigned> AllocatableRegs;
1605   for (auto &RegClass : RegBank.getRegClasses()) {
1606     if (!RegClass.Allocatable)
1607       continue;
1608 
1609     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1610     if (Regs.empty())
1611       continue;
1612 
1613     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1614     assert(USetID && "register number 0 is invalid");
1615 
1616     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1617     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1618       AllocatableRegs.insert((*I)->EnumValue);
1619       UberSetIDs.join(USetID, (*I)->EnumValue);
1620     }
1621   }
1622   // Combine non-allocatable regs.
1623   for (const auto &Reg : Registers) {
1624     unsigned RegNum = Reg.EnumValue;
1625     if (AllocatableRegs.count(RegNum))
1626       continue;
1627 
1628     UberSetIDs.join(0, RegNum);
1629   }
1630   UberSetIDs.compress();
1631 
1632   // Make the first UberSet a special unallocatable set.
1633   unsigned ZeroID = UberSetIDs[0];
1634 
1635   // Insert Registers into the UberSets formed by union-find.
1636   // Do not resize after this.
1637   UberSets.resize(UberSetIDs.getNumClasses());
1638   unsigned i = 0;
1639   for (const CodeGenRegister &Reg : Registers) {
1640     unsigned USetID = UberSetIDs[Reg.EnumValue];
1641     if (!USetID)
1642       USetID = ZeroID;
1643     else if (USetID == ZeroID)
1644       USetID = 0;
1645 
1646     UberRegSet *USet = &UberSets[USetID];
1647     USet->Regs.push_back(&Reg);
1648     sortAndUniqueRegisters(USet->Regs);
1649     RegSets[i++] = USet;
1650   }
1651 }
1652 
1653 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1654 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1655                                CodeGenRegBank &RegBank) {
1656   // Skip the first unallocatable set.
1657   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1658          E = UberSets.end(); I != E; ++I) {
1659 
1660     // Initialize all unit weights in this set, and remember the max units/reg.
1661     const CodeGenRegister *Reg = nullptr;
1662     unsigned MaxWeight = 0, Weight = 0;
1663     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1664       if (Reg != UnitI.getReg()) {
1665         if (Weight > MaxWeight)
1666           MaxWeight = Weight;
1667         Reg = UnitI.getReg();
1668         Weight = 0;
1669       }
1670       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1671         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1672         if (!UWeight) {
1673           UWeight = 1;
1674           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1675         }
1676         Weight += UWeight;
1677       }
1678     }
1679     if (Weight > MaxWeight)
1680       MaxWeight = Weight;
1681     if (I->Weight != MaxWeight) {
1682       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1683                         << MaxWeight;
1684                  for (auto &Unit
1685                       : I->Regs) dbgs()
1686                  << " " << Unit->getName();
1687                  dbgs() << "\n");
1688       // Update the set weight.
1689       I->Weight = MaxWeight;
1690     }
1691 
1692     // Find singular determinants.
1693     for (const auto R : I->Regs) {
1694       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1695         I->SingularDeterminants |= R->getRegUnits();
1696       }
1697     }
1698   }
1699 }
1700 
1701 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1702 // a register and its subregisters so that they have the same weight as their
1703 // UberSet. Self-recursion processes the subregister tree in postorder so
1704 // subregisters are normalized first.
1705 //
1706 // Side effects:
1707 // - creates new adopted register units
1708 // - causes superregisters to inherit adopted units
1709 // - increases the weight of "singular" units
1710 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,BitVector & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1711 static bool normalizeWeight(CodeGenRegister *Reg,
1712                             std::vector<UberRegSet> &UberSets,
1713                             std::vector<UberRegSet*> &RegSets,
1714                             BitVector &NormalRegs,
1715                             CodeGenRegister::RegUnitList &NormalUnits,
1716                             CodeGenRegBank &RegBank) {
1717   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1718   if (NormalRegs.test(Reg->EnumValue))
1719     return false;
1720   NormalRegs.set(Reg->EnumValue);
1721 
1722   bool Changed = false;
1723   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1724   for (auto SRI : SRM) {
1725     if (SRI.second == Reg)
1726       continue; // self-cycles happen
1727 
1728     Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1729                                NormalUnits, RegBank);
1730   }
1731   // Postorder register normalization.
1732 
1733   // Inherit register units newly adopted by subregisters.
1734   if (Reg->inheritRegUnits(RegBank))
1735     computeUberWeights(UberSets, RegBank);
1736 
1737   // Check if this register is too skinny for its UberRegSet.
1738   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1739 
1740   unsigned RegWeight = Reg->getWeight(RegBank);
1741   if (UberSet->Weight > RegWeight) {
1742     // A register unit's weight can be adjusted only if it is the singular unit
1743     // for this register, has not been used to normalize a subregister's set,
1744     // and has not already been used to singularly determine this UberRegSet.
1745     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1746     if (Reg->getRegUnits().count() != 1
1747         || hasRegUnit(NormalUnits, AdjustUnit)
1748         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1749       // We don't have an adjustable unit, so adopt a new one.
1750       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1751       Reg->adoptRegUnit(AdjustUnit);
1752       // Adopting a unit does not immediately require recomputing set weights.
1753     }
1754     else {
1755       // Adjust the existing single unit.
1756       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1757         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1758       // The unit may be shared among sets and registers within this set.
1759       computeUberWeights(UberSets, RegBank);
1760     }
1761     Changed = true;
1762   }
1763 
1764   // Mark these units normalized so superregisters can't change their weights.
1765   NormalUnits |= Reg->getRegUnits();
1766 
1767   return Changed;
1768 }
1769 
1770 // Compute a weight for each register unit created during getSubRegs.
1771 //
1772 // The goal is that two registers in the same class will have the same weight,
1773 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1774 void CodeGenRegBank::computeRegUnitWeights() {
1775   std::vector<UberRegSet> UberSets;
1776   std::vector<UberRegSet*> RegSets(Registers.size());
1777   computeUberSets(UberSets, RegSets, *this);
1778   // UberSets and RegSets are now immutable.
1779 
1780   computeUberWeights(UberSets, *this);
1781 
1782   // Iterate over each Register, normalizing the unit weights until reaching
1783   // a fix point.
1784   unsigned NumIters = 0;
1785   for (bool Changed = true; Changed; ++NumIters) {
1786     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1787     Changed = false;
1788     for (auto &Reg : Registers) {
1789       CodeGenRegister::RegUnitList NormalUnits;
1790       BitVector NormalRegs;
1791       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1792                                  NormalUnits, *this);
1793     }
1794   }
1795 }
1796 
1797 // Find a set in UniqueSets with the same elements as Set.
1798 // Return an iterator into UniqueSets.
1799 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1800 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1801                const RegUnitSet &Set) {
1802   std::vector<RegUnitSet>::const_iterator
1803     I = UniqueSets.begin(), E = UniqueSets.end();
1804   for(;I != E; ++I) {
1805     if (I->Units == Set.Units)
1806       break;
1807   }
1808   return I;
1809 }
1810 
1811 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1812 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1813                             const std::vector<unsigned> &RUSuperSet) {
1814   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1815                        RUSubSet.begin(), RUSubSet.end());
1816 }
1817 
1818 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1819 /// but with one or two registers removed. We occasionally have registers like
1820 /// APSR and PC thrown in with the general registers. We also see many
1821 /// special-purpose register subsets, such as tail-call and Thumb
1822 /// encodings. Generating all possible overlapping sets is combinatorial and
1823 /// overkill for modeling pressure. Ideally we could fix this statically in
1824 /// tablegen by (1) having the target define register classes that only include
1825 /// the allocatable registers and marking other classes as non-allocatable and
1826 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1827 /// the purpose of pressure.  However, we make an attempt to handle targets that
1828 /// are not nicely defined by merging nearly identical register unit sets
1829 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1830 /// set limit by filtering the reserved registers.
1831 ///
1832 /// Merge sets only if the units have the same weight. For example, on ARM,
1833 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1834 /// should not expand the S set to include D regs.
pruneUnitSets()1835 void CodeGenRegBank::pruneUnitSets() {
1836   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1837 
1838   // Form an equivalence class of UnitSets with no significant difference.
1839   std::vector<unsigned> SuperSetIDs;
1840   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1841        SubIdx != EndIdx; ++SubIdx) {
1842     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1843     unsigned SuperIdx = 0;
1844     for (; SuperIdx != EndIdx; ++SuperIdx) {
1845       if (SuperIdx == SubIdx)
1846         continue;
1847 
1848       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1849       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1850       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1851           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1852           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1853           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1854         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1855                           << "\n");
1856         // We can pick any of the set names for the merged set. Go for the
1857         // shortest one to avoid picking the name of one of the classes that are
1858         // artificially created by tablegen. So "FPR128_lo" instead of
1859         // "QQQQ_with_qsub3_in_FPR128_lo".
1860         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1861           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1862         break;
1863       }
1864     }
1865     if (SuperIdx == EndIdx)
1866       SuperSetIDs.push_back(SubIdx);
1867   }
1868   // Populate PrunedUnitSets with each equivalence class's superset.
1869   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1870   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1871     unsigned SuperIdx = SuperSetIDs[i];
1872     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1873     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1874   }
1875   RegUnitSets.swap(PrunedUnitSets);
1876 }
1877 
1878 // Create a RegUnitSet for each RegClass that contains all units in the class
1879 // including adopted units that are necessary to model register pressure. Then
1880 // iteratively compute RegUnitSets such that the union of any two overlapping
1881 // RegUnitSets is repreresented.
1882 //
1883 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1884 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1885 void CodeGenRegBank::computeRegUnitSets() {
1886   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1887 
1888   // Compute a unique RegUnitSet for each RegClass.
1889   auto &RegClasses = getRegClasses();
1890   for (auto &RC : RegClasses) {
1891     if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1892       continue;
1893 
1894     // Speculatively grow the RegUnitSets to hold the new set.
1895     RegUnitSets.resize(RegUnitSets.size() + 1);
1896     RegUnitSets.back().Name = RC.getName();
1897 
1898     // Compute a sorted list of units in this class.
1899     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1900 
1901     // Find an existing RegUnitSet.
1902     std::vector<RegUnitSet>::const_iterator SetI =
1903       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1904     if (SetI != std::prev(RegUnitSets.end()))
1905       RegUnitSets.pop_back();
1906   }
1907 
1908   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1909                                                    USEnd = RegUnitSets.size();
1910                                                    USIdx < USEnd; ++USIdx) {
1911     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1912     for (auto &U : RegUnitSets[USIdx].Units)
1913       printRegUnitName(U);
1914     dbgs() << "\n";
1915   });
1916 
1917   // Iteratively prune unit sets.
1918   pruneUnitSets();
1919 
1920   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1921                                                  USEnd = RegUnitSets.size();
1922                                                  USIdx < USEnd; ++USIdx) {
1923     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1924     for (auto &U : RegUnitSets[USIdx].Units)
1925       printRegUnitName(U);
1926     dbgs() << "\n";
1927   } dbgs() << "\nUnion sets:\n");
1928 
1929   // Iterate over all unit sets, including new ones added by this loop.
1930   unsigned NumRegUnitSubSets = RegUnitSets.size();
1931   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1932     // In theory, this is combinatorial. In practice, it needs to be bounded
1933     // by a small number of sets for regpressure to be efficient.
1934     // If the assert is hit, we need to implement pruning.
1935     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1936 
1937     // Compare new sets with all original classes.
1938     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1939          SearchIdx != EndIdx; ++SearchIdx) {
1940       std::set<unsigned> Intersection;
1941       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1942                             RegUnitSets[Idx].Units.end(),
1943                             RegUnitSets[SearchIdx].Units.begin(),
1944                             RegUnitSets[SearchIdx].Units.end(),
1945                             std::inserter(Intersection, Intersection.begin()));
1946       if (Intersection.empty())
1947         continue;
1948 
1949       // Speculatively grow the RegUnitSets to hold the new set.
1950       RegUnitSets.resize(RegUnitSets.size() + 1);
1951       RegUnitSets.back().Name =
1952         RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
1953 
1954       std::set_union(RegUnitSets[Idx].Units.begin(),
1955                      RegUnitSets[Idx].Units.end(),
1956                      RegUnitSets[SearchIdx].Units.begin(),
1957                      RegUnitSets[SearchIdx].Units.end(),
1958                      std::inserter(RegUnitSets.back().Units,
1959                                    RegUnitSets.back().Units.begin()));
1960 
1961       // Find an existing RegUnitSet, or add the union to the unique sets.
1962       std::vector<RegUnitSet>::const_iterator SetI =
1963         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1964       if (SetI != std::prev(RegUnitSets.end()))
1965         RegUnitSets.pop_back();
1966       else {
1967         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1968                           << RegUnitSets.back().Name << ":";
1969                    for (auto &U
1970                         : RegUnitSets.back().Units) printRegUnitName(U);
1971                    dbgs() << "\n";);
1972       }
1973     }
1974   }
1975 
1976   // Iteratively prune unit sets after inferring supersets.
1977   pruneUnitSets();
1978 
1979   LLVM_DEBUG(
1980       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1981                            USIdx < USEnd; ++USIdx) {
1982         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1983         for (auto &U : RegUnitSets[USIdx].Units)
1984           printRegUnitName(U);
1985         dbgs() << "\n";
1986       });
1987 
1988   // For each register class, list the UnitSets that are supersets.
1989   RegClassUnitSets.resize(RegClasses.size());
1990   int RCIdx = -1;
1991   for (auto &RC : RegClasses) {
1992     ++RCIdx;
1993     if (!RC.Allocatable)
1994       continue;
1995 
1996     // Recompute the sorted list of units in this class.
1997     std::vector<unsigned> RCRegUnits;
1998     RC.buildRegUnitSet(*this, RCRegUnits);
1999 
2000     // Don't increase pressure for unallocatable regclasses.
2001     if (RCRegUnits.empty())
2002       continue;
2003 
2004     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2005                for (auto U
2006                     : RCRegUnits) printRegUnitName(U);
2007                dbgs() << "\n  UnitSetIDs:");
2008 
2009     // Find all supersets.
2010     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2011          USIdx != USEnd; ++USIdx) {
2012       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2013         LLVM_DEBUG(dbgs() << " " << USIdx);
2014         RegClassUnitSets[RCIdx].push_back(USIdx);
2015       }
2016     }
2017     LLVM_DEBUG(dbgs() << "\n");
2018     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
2019   }
2020 
2021   // For each register unit, ensure that we have the list of UnitSets that
2022   // contain the unit. Normally, this matches an existing list of UnitSets for a
2023   // register class. If not, we create a new entry in RegClassUnitSets as a
2024   // "fake" register class.
2025   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2026        UnitIdx < UnitEnd; ++UnitIdx) {
2027     std::vector<unsigned> RUSets;
2028     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2029       RegUnitSet &RUSet = RegUnitSets[i];
2030       if (!is_contained(RUSet.Units, UnitIdx))
2031         continue;
2032       RUSets.push_back(i);
2033     }
2034     unsigned RCUnitSetsIdx = 0;
2035     for (unsigned e = RegClassUnitSets.size();
2036          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2037       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2038         break;
2039       }
2040     }
2041     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2042     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2043       // Create a new list of UnitSets as a "fake" register class.
2044       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2045       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2046     }
2047   }
2048 }
2049 
computeRegUnitLaneMasks()2050 void CodeGenRegBank::computeRegUnitLaneMasks() {
2051   for (auto &Register : Registers) {
2052     // Create an initial lane mask for all register units.
2053     const auto &RegUnits = Register.getRegUnits();
2054     CodeGenRegister::RegUnitLaneMaskList
2055         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2056     // Iterate through SubRegisters.
2057     typedef CodeGenRegister::SubRegMap SubRegMap;
2058     const SubRegMap &SubRegs = Register.getSubRegs();
2059     for (auto S : SubRegs) {
2060       CodeGenRegister *SubReg = S.second;
2061       // Ignore non-leaf subregisters, their lane masks are fully covered by
2062       // the leaf subregisters anyway.
2063       if (!SubReg->getSubRegs().empty())
2064         continue;
2065       CodeGenSubRegIndex *SubRegIndex = S.first;
2066       const CodeGenRegister *SubRegister = S.second;
2067       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2068       // Distribute LaneMask to Register Units touched.
2069       for (unsigned SUI : SubRegister->getRegUnits()) {
2070         bool Found = false;
2071         unsigned u = 0;
2072         for (unsigned RU : RegUnits) {
2073           if (SUI == RU) {
2074             RegUnitLaneMasks[u] |= LaneMask;
2075             assert(!Found);
2076             Found = true;
2077           }
2078           ++u;
2079         }
2080         (void)Found;
2081         assert(Found);
2082       }
2083     }
2084     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2085   }
2086 }
2087 
computeDerivedInfo()2088 void CodeGenRegBank::computeDerivedInfo() {
2089   computeComposites();
2090   computeSubRegLaneMasks();
2091 
2092   // Compute a weight for each register unit created during getSubRegs.
2093   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2094   computeRegUnitWeights();
2095 
2096   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2097   // supersets for the union of overlapping sets.
2098   computeRegUnitSets();
2099 
2100   computeRegUnitLaneMasks();
2101 
2102   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2103   for (CodeGenRegisterClass &RC : RegClasses) {
2104     RC.HasDisjunctSubRegs = false;
2105     RC.CoveredBySubRegs = true;
2106     for (const CodeGenRegister *Reg : RC.getMembers()) {
2107       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2108       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2109     }
2110   }
2111 
2112   // Get the weight of each set.
2113   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2114     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2115 
2116   // Find the order of each set.
2117   RegUnitSetOrder.reserve(RegUnitSets.size());
2118   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2119     RegUnitSetOrder.push_back(Idx);
2120 
2121   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2122     return getRegPressureSet(ID1).Units.size() <
2123            getRegPressureSet(ID2).Units.size();
2124   });
2125   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2126     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2127   }
2128 }
2129 
2130 //
2131 // Synthesize missing register class intersections.
2132 //
2133 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2134 // returns a maximal register class for all X.
2135 //
inferCommonSubClass(CodeGenRegisterClass * RC)2136 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2137   assert(!RegClasses.empty());
2138   // Stash the iterator to the last element so that this loop doesn't visit
2139   // elements added by the getOrCreateSubClass call within it.
2140   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2141        I != std::next(E); ++I) {
2142     CodeGenRegisterClass *RC1 = RC;
2143     CodeGenRegisterClass *RC2 = &*I;
2144     if (RC1 == RC2)
2145       continue;
2146 
2147     // Compute the set intersection of RC1 and RC2.
2148     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2149     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2150     CodeGenRegister::Vec Intersection;
2151     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2152                           Memb2.end(),
2153                           std::inserter(Intersection, Intersection.begin()),
2154                           deref<std::less<>>());
2155 
2156     // Skip disjoint class pairs.
2157     if (Intersection.empty())
2158       continue;
2159 
2160     // If RC1 and RC2 have different spill sizes or alignments, use the
2161     // stricter one for sub-classing.  If they are equal, prefer RC1.
2162     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2163       std::swap(RC1, RC2);
2164 
2165     getOrCreateSubClass(RC1, &Intersection,
2166                         RC1->getName() + "_and_" + RC2->getName());
2167   }
2168 }
2169 
2170 //
2171 // Synthesize missing sub-classes for getSubClassWithSubReg().
2172 //
2173 // Make sure that the set of registers in RC with a given SubIdx sub-register
2174 // form a register class.  Update RC->SubClassWithSubReg.
2175 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)2176 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2177   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2178   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2179                    deref<std::less<>>>
2180       SubReg2SetMap;
2181 
2182   // Compute the set of registers supporting each SubRegIndex.
2183   SubReg2SetMap SRSets;
2184   for (const auto R : RC->getMembers()) {
2185     if (R->Artificial)
2186       continue;
2187     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2188     for (auto I : SRM) {
2189       if (!I.first->Artificial)
2190         SRSets[I.first].push_back(R);
2191     }
2192   }
2193 
2194   for (auto I : SRSets)
2195     sortAndUniqueRegisters(I.second);
2196 
2197   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2198   // numerical order to visit synthetic indices last.
2199   for (const auto &SubIdx : SubRegIndices) {
2200     if (SubIdx.Artificial)
2201       continue;
2202     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2203     // Unsupported SubRegIndex. Skip it.
2204     if (I == SRSets.end())
2205       continue;
2206     // In most cases, all RC registers support the SubRegIndex.
2207     if (I->second.size() == RC->getMembers().size()) {
2208       RC->setSubClassWithSubReg(&SubIdx, RC);
2209       continue;
2210     }
2211     // This is a real subset.  See if we have a matching class.
2212     CodeGenRegisterClass *SubRC =
2213       getOrCreateSubClass(RC, &I->second,
2214                           RC->getName() + "_with_" + I->first->getName());
2215     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2216   }
2217 }
2218 
2219 //
2220 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2221 //
2222 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2223 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2224 //
2225 
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)2226 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2227                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2228   SmallVector<std::pair<const CodeGenRegister*,
2229                         const CodeGenRegister*>, 16> SSPairs;
2230   BitVector TopoSigs(getNumTopoSigs());
2231 
2232   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2233   for (auto &SubIdx : SubRegIndices) {
2234     // Skip indexes that aren't fully supported by RC's registers. This was
2235     // computed by inferSubClassWithSubReg() above which should have been
2236     // called first.
2237     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2238       continue;
2239 
2240     // Build list of (Super, Sub) pairs for this SubIdx.
2241     SSPairs.clear();
2242     TopoSigs.reset();
2243     for (const auto Super : RC->getMembers()) {
2244       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2245       assert(Sub && "Missing sub-register");
2246       SSPairs.push_back(std::make_pair(Super, Sub));
2247       TopoSigs.set(Sub->getTopoSig());
2248     }
2249 
2250     // Iterate over sub-register class candidates.  Ignore classes created by
2251     // this loop. They will never be useful.
2252     // Store an iterator to the last element (not end) so that this loop doesn't
2253     // visit newly inserted elements.
2254     assert(!RegClasses.empty());
2255     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2256          I != std::next(E); ++I) {
2257       CodeGenRegisterClass &SubRC = *I;
2258       if (SubRC.Artificial)
2259         continue;
2260       // Topological shortcut: SubRC members have the wrong shape.
2261       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2262         continue;
2263       // Compute the subset of RC that maps into SubRC.
2264       CodeGenRegister::Vec SubSetVec;
2265       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2266         if (SubRC.contains(SSPairs[i].second))
2267           SubSetVec.push_back(SSPairs[i].first);
2268 
2269       if (SubSetVec.empty())
2270         continue;
2271 
2272       // RC injects completely into SubRC.
2273       sortAndUniqueRegisters(SubSetVec);
2274       if (SubSetVec.size() == SSPairs.size()) {
2275         SubRC.addSuperRegClass(&SubIdx, RC);
2276         continue;
2277       }
2278 
2279       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2280       // class.
2281       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2282                                           SubIdx.getName() + "_in_" +
2283                                           SubRC.getName());
2284     }
2285   }
2286 }
2287 
2288 //
2289 // Infer missing register classes.
2290 //
computeInferredRegisterClasses()2291 void CodeGenRegBank::computeInferredRegisterClasses() {
2292   assert(!RegClasses.empty());
2293   // When this function is called, the register classes have not been sorted
2294   // and assigned EnumValues yet.  That means getSubClasses(),
2295   // getSuperClasses(), and hasSubClass() functions are defunct.
2296 
2297   // Use one-before-the-end so it doesn't move forward when new elements are
2298   // added.
2299   auto FirstNewRC = std::prev(RegClasses.end());
2300 
2301   // Visit all register classes, including the ones being added by the loop.
2302   // Watch out for iterator invalidation here.
2303   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2304     CodeGenRegisterClass *RC = &*I;
2305     if (RC->Artificial)
2306       continue;
2307 
2308     // Synthesize answers for getSubClassWithSubReg().
2309     inferSubClassWithSubReg(RC);
2310 
2311     // Synthesize answers for getCommonSubClass().
2312     inferCommonSubClass(RC);
2313 
2314     // Synthesize answers for getMatchingSuperRegClass().
2315     inferMatchingSuperRegClass(RC);
2316 
2317     // New register classes are created while this loop is running, and we need
2318     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2319     // to match old super-register classes with sub-register classes created
2320     // after inferMatchingSuperRegClass was called.  At this point,
2321     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2322     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2323     if (I == FirstNewRC) {
2324       auto NextNewRC = std::prev(RegClasses.end());
2325       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2326            ++I2)
2327         inferMatchingSuperRegClass(&*I2, E2);
2328       FirstNewRC = NextNewRC;
2329     }
2330   }
2331 }
2332 
2333 /// getRegisterClassForRegister - Find the register class that contains the
2334 /// specified physical register.  If the register is not in a register class,
2335 /// return null. If the register is in multiple classes, and the classes have a
2336 /// superset-subset relationship and the same set of types, return the
2337 /// superclass.  Otherwise return null.
2338 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)2339 CodeGenRegBank::getRegClassForRegister(Record *R) {
2340   const CodeGenRegister *Reg = getReg(R);
2341   const CodeGenRegisterClass *FoundRC = nullptr;
2342   for (const auto &RC : getRegClasses()) {
2343     if (!RC.contains(Reg))
2344       continue;
2345 
2346     // If this is the first class that contains the register,
2347     // make a note of it and go on to the next class.
2348     if (!FoundRC) {
2349       FoundRC = &RC;
2350       continue;
2351     }
2352 
2353     // If a register's classes have different types, return null.
2354     if (RC.getValueTypes() != FoundRC->getValueTypes())
2355       return nullptr;
2356 
2357     // Check to see if the previously found class that contains
2358     // the register is a subclass of the current class. If so,
2359     // prefer the superclass.
2360     if (RC.hasSubClass(FoundRC)) {
2361       FoundRC = &RC;
2362       continue;
2363     }
2364 
2365     // Check to see if the previously found class that contains
2366     // the register is a superclass of the current class. If so,
2367     // prefer the superclass.
2368     if (FoundRC->hasSubClass(&RC))
2369       continue;
2370 
2371     // Multiple classes, and neither is a superclass of the other.
2372     // Return null.
2373     return nullptr;
2374   }
2375   return FoundRC;
2376 }
2377 
2378 const CodeGenRegisterClass *
getMinimalPhysRegClass(Record * RegRecord,ValueTypeByHwMode * VT)2379 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2380                                        ValueTypeByHwMode *VT) {
2381   const CodeGenRegister *Reg = getReg(RegRecord);
2382   const CodeGenRegisterClass *BestRC = nullptr;
2383   for (const auto &RC : getRegClasses()) {
2384     if ((!VT || RC.hasType(*VT)) &&
2385         RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2386       BestRC = &RC;
2387   }
2388 
2389   assert(BestRC && "Couldn't find the register class");
2390   return BestRC;
2391 }
2392 
computeCoveredRegisters(ArrayRef<Record * > Regs)2393 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2394   SetVector<const CodeGenRegister*> Set;
2395 
2396   // First add Regs with all sub-registers.
2397   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2398     CodeGenRegister *Reg = getReg(Regs[i]);
2399     if (Set.insert(Reg))
2400       // Reg is new, add all sub-registers.
2401       // The pre-ordering is not important here.
2402       Reg->addSubRegsPreOrder(Set, *this);
2403   }
2404 
2405   // Second, find all super-registers that are completely covered by the set.
2406   for (unsigned i = 0; i != Set.size(); ++i) {
2407     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2408     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2409       const CodeGenRegister *Super = SR[j];
2410       if (!Super->CoveredBySubRegs || Set.count(Super))
2411         continue;
2412       // This new super-register is covered by its sub-registers.
2413       bool AllSubsInSet = true;
2414       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2415       for (auto I : SRM)
2416         if (!Set.count(I.second)) {
2417           AllSubsInSet = false;
2418           break;
2419         }
2420       // All sub-registers in Set, add Super as well.
2421       // We will visit Super later to recheck its super-registers.
2422       if (AllSubsInSet)
2423         Set.insert(Super);
2424     }
2425   }
2426 
2427   // Convert to BitVector.
2428   BitVector BV(Registers.size() + 1);
2429   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2430     BV.set(Set[i]->EnumValue);
2431   return BV;
2432 }
2433 
printRegUnitName(unsigned Unit) const2434 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2435   if (Unit < NumNativeRegUnits)
2436     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2437   else
2438     dbgs() << " #" << Unit;
2439 }
2440