xref: /openbsd/gnu/gcc/gcc/tree.c (revision 404b540a)
1 /* Language-independent node constructors for parse phase of GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22 
23 /* This file contains the low level primitives for operating on tree nodes,
24    including allocation, list operations, interning of identifiers,
25    construction of data type nodes and statement nodes,
26    and construction of type conversion nodes.  It also contains
27    tables index by tree code that describe how to take apart
28    nodes of that code.
29 
30    It is intended to be language-independent, but occasionally
31    calls language-dependent routines defined (for C) in typecheck.c.  */
32 
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 
55 /* Each tree code class has an associated string representation.
56    These must correspond to the tree_code_class entries.  */
57 
58 const char *const tree_code_class_strings[] =
59 {
60   "exceptional",
61   "constant",
62   "type",
63   "declaration",
64   "reference",
65   "comparison",
66   "unary",
67   "binary",
68   "statement",
69   "expression",
70 };
71 
72 /* obstack.[ch] explicitly declined to prototype this.  */
73 extern int _obstack_allocated_p (struct obstack *h, void *obj);
74 
75 #ifdef GATHER_STATISTICS
76 /* Statistics-gathering stuff.  */
77 
78 int tree_node_counts[(int) all_kinds];
79 int tree_node_sizes[(int) all_kinds];
80 
81 /* Keep in sync with tree.h:enum tree_node_kind.  */
82 static const char * const tree_node_kind_names[] = {
83   "decls",
84   "types",
85   "blocks",
86   "stmts",
87   "refs",
88   "exprs",
89   "constants",
90   "identifiers",
91   "perm_tree_lists",
92   "temp_tree_lists",
93   "vecs",
94   "binfos",
95   "phi_nodes",
96   "ssa names",
97   "constructors",
98   "random kinds",
99   "lang_decl kinds",
100   "lang_type kinds",
101   "omp clauses"
102 };
103 #endif /* GATHER_STATISTICS */
104 
105 /* Unique id for next decl created.  */
106 static GTY(()) int next_decl_uid;
107 /* Unique id for next type created.  */
108 static GTY(()) int next_type_uid = 1;
109 
110 /* Since we cannot rehash a type after it is in the table, we have to
111    keep the hash code.  */
112 
113 struct type_hash GTY(())
114 {
115   unsigned long hash;
116   tree type;
117 };
118 
119 /* Initial size of the hash table (rounded to next prime).  */
120 #define TYPE_HASH_INITIAL_SIZE 1000
121 
122 /* Now here is the hash table.  When recording a type, it is added to
123    the slot whose index is the hash code.  Note that the hash table is
124    used for several kinds of types (function types, array types and
125    array index range types, for now).  While all these live in the
126    same table, they are completely independent, and the hash code is
127    computed differently for each of these.  */
128 
129 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
130      htab_t type_hash_table;
131 
132 /* Hash table and temporary node for larger integer const values.  */
133 static GTY (()) tree int_cst_node;
134 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
135      htab_t int_cst_hash_table;
136 
137 /* General tree->tree mapping  structure for use in hash tables.  */
138 
139 
140 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
141      htab_t debug_expr_for_decl;
142 
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144      htab_t value_expr_for_decl;
145 
146 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
147   htab_t init_priority_for_decl;
148 
149 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
150   htab_t restrict_base_for_decl;
151 
152 struct tree_int_map GTY(())
153 {
154   tree from;
155   unsigned short to;
156 };
157 static unsigned int tree_int_map_hash (const void *);
158 static int tree_int_map_eq (const void *, const void *);
159 static int tree_int_map_marked_p (const void *);
160 static void set_type_quals (tree, int);
161 static int type_hash_eq (const void *, const void *);
162 static hashval_t type_hash_hash (const void *);
163 static hashval_t int_cst_hash_hash (const void *);
164 static int int_cst_hash_eq (const void *, const void *);
165 static void print_type_hash_statistics (void);
166 static void print_debug_expr_statistics (void);
167 static void print_value_expr_statistics (void);
168 static int type_hash_marked_p (const void *);
169 static unsigned int type_hash_list (tree, hashval_t);
170 static unsigned int attribute_hash_list (tree, hashval_t);
171 
172 tree global_trees[TI_MAX];
173 tree integer_types[itk_none];
174 
175 unsigned char tree_contains_struct[256][64];
176 
177 /* Number of operands for each OpenMP clause.  */
178 unsigned const char omp_clause_num_ops[] =
179 {
180   0, /* OMP_CLAUSE_ERROR  */
181   1, /* OMP_CLAUSE_PRIVATE  */
182   1, /* OMP_CLAUSE_SHARED  */
183   1, /* OMP_CLAUSE_FIRSTPRIVATE  */
184   1, /* OMP_CLAUSE_LASTPRIVATE  */
185   4, /* OMP_CLAUSE_REDUCTION  */
186   1, /* OMP_CLAUSE_COPYIN  */
187   1, /* OMP_CLAUSE_COPYPRIVATE  */
188   1, /* OMP_CLAUSE_IF  */
189   1, /* OMP_CLAUSE_NUM_THREADS  */
190   1, /* OMP_CLAUSE_SCHEDULE  */
191   0, /* OMP_CLAUSE_NOWAIT  */
192   0, /* OMP_CLAUSE_ORDERED  */
193   0  /* OMP_CLAUSE_DEFAULT  */
194 };
195 
196 const char * const omp_clause_code_name[] =
197 {
198   "error_clause",
199   "private",
200   "shared",
201   "firstprivate",
202   "lastprivate",
203   "reduction",
204   "copyin",
205   "copyprivate",
206   "if",
207   "num_threads",
208   "schedule",
209   "nowait",
210   "ordered",
211   "default"
212 };
213 
214 /* Init tree.c.  */
215 
216 void
init_ttree(void)217 init_ttree (void)
218 {
219   /* Initialize the hash table of types.  */
220   type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
221 				     type_hash_eq, 0);
222 
223   debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
224 					 tree_map_eq, 0);
225 
226   value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
227 					 tree_map_eq, 0);
228   init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
229 					    tree_int_map_eq, 0);
230   restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
231 					    tree_map_eq, 0);
232 
233   int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
234 					int_cst_hash_eq, NULL);
235 
236   int_cst_node = make_node (INTEGER_CST);
237 
238   tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
239   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
240   tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
241 
242 
243   tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
244   tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
245   tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
246   tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
247   tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
248   tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
249   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
250   tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
251   tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
252 
253 
254   tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
255   tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
256   tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
257   tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
258   tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
259   tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
260 
261   tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
262   tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
263   tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
264   tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
265   tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
266   tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
267   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
268   tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
269   tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
270   tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
271   tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
272   tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
273 
274   tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
275   tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
276   tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
277 
278   tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
279 
280   tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
281   tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
282   tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
283   tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
284 
285   tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
286   tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
287   tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
288   tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
289   tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
290   tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
291   tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
292   tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
293 
294   lang_hooks.init_ts ();
295 }
296 
297 
298 /* The name of the object as the assembler will see it (but before any
299    translations made by ASM_OUTPUT_LABELREF).  Often this is the same
300    as DECL_NAME.  It is an IDENTIFIER_NODE.  */
301 tree
decl_assembler_name(tree decl)302 decl_assembler_name (tree decl)
303 {
304   if (!DECL_ASSEMBLER_NAME_SET_P (decl))
305     lang_hooks.set_decl_assembler_name (decl);
306   return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
307 }
308 
309 /* Compute the number of bytes occupied by a tree with code CODE.
310    This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
311    codes, which are of variable length.  */
312 size_t
tree_code_size(enum tree_code code)313 tree_code_size (enum tree_code code)
314 {
315   switch (TREE_CODE_CLASS (code))
316     {
317     case tcc_declaration:  /* A decl node */
318       {
319 	switch (code)
320 	  {
321 	  case FIELD_DECL:
322 	    return sizeof (struct tree_field_decl);
323 	  case PARM_DECL:
324 	    return sizeof (struct tree_parm_decl);
325 	  case VAR_DECL:
326 	    return sizeof (struct tree_var_decl);
327 	  case LABEL_DECL:
328 	    return sizeof (struct tree_label_decl);
329 	  case RESULT_DECL:
330 	    return sizeof (struct tree_result_decl);
331 	  case CONST_DECL:
332 	    return sizeof (struct tree_const_decl);
333 	  case TYPE_DECL:
334 	    return sizeof (struct tree_type_decl);
335 	  case FUNCTION_DECL:
336 	    return sizeof (struct tree_function_decl);
337 	  case NAME_MEMORY_TAG:
338 	  case SYMBOL_MEMORY_TAG:
339 	    return sizeof (struct tree_memory_tag);
340 	  case STRUCT_FIELD_TAG:
341 	    return sizeof (struct tree_struct_field_tag);
342 	  default:
343 	    return sizeof (struct tree_decl_non_common);
344 	  }
345       }
346 
347     case tcc_type:  /* a type node */
348       return sizeof (struct tree_type);
349 
350     case tcc_reference:   /* a reference */
351     case tcc_expression:  /* an expression */
352     case tcc_statement:   /* an expression with side effects */
353     case tcc_comparison:  /* a comparison expression */
354     case tcc_unary:       /* a unary arithmetic expression */
355     case tcc_binary:      /* a binary arithmetic expression */
356       return (sizeof (struct tree_exp)
357 	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
358 
359     case tcc_constant:  /* a constant */
360       switch (code)
361 	{
362 	case INTEGER_CST:	return sizeof (struct tree_int_cst);
363 	case REAL_CST:		return sizeof (struct tree_real_cst);
364 	case COMPLEX_CST:	return sizeof (struct tree_complex);
365 	case VECTOR_CST:	return sizeof (struct tree_vector);
366 	case STRING_CST:	gcc_unreachable ();
367 	default:
368 	  return lang_hooks.tree_size (code);
369 	}
370 
371     case tcc_exceptional:  /* something random, like an identifier.  */
372       switch (code)
373 	{
374 	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
375 	case TREE_LIST:		return sizeof (struct tree_list);
376 
377 	case ERROR_MARK:
378 	case PLACEHOLDER_EXPR:	return sizeof (struct tree_common);
379 
380 	case TREE_VEC:
381 	case OMP_CLAUSE:
382 	case PHI_NODE:		gcc_unreachable ();
383 
384 	case SSA_NAME:		return sizeof (struct tree_ssa_name);
385 
386 	case STATEMENT_LIST:	return sizeof (struct tree_statement_list);
387 	case BLOCK:		return sizeof (struct tree_block);
388 	case VALUE_HANDLE:	return sizeof (struct tree_value_handle);
389 	case CONSTRUCTOR:	return sizeof (struct tree_constructor);
390 
391 	default:
392 	  return lang_hooks.tree_size (code);
393 	}
394 
395     default:
396       gcc_unreachable ();
397     }
398 }
399 
400 /* Compute the number of bytes occupied by NODE.  This routine only
401    looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes.  */
402 size_t
tree_size(tree node)403 tree_size (tree node)
404 {
405   enum tree_code code = TREE_CODE (node);
406   switch (code)
407     {
408     case PHI_NODE:
409       return (sizeof (struct tree_phi_node)
410 	      + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
411 
412     case TREE_BINFO:
413       return (offsetof (struct tree_binfo, base_binfos)
414 	      + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
415 
416     case TREE_VEC:
417       return (sizeof (struct tree_vec)
418 	      + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
419 
420     case STRING_CST:
421       return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
422 
423     case OMP_CLAUSE:
424       return (sizeof (struct tree_omp_clause)
425 	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
426 	        * sizeof (tree));
427 
428     default:
429       return tree_code_size (code);
430     }
431 }
432 
433 /* Return a newly allocated node of code CODE.  For decl and type
434    nodes, some other fields are initialized.  The rest of the node is
435    initialized to zero.  This function cannot be used for PHI_NODE,
436    TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
437    tree_code_size.
438 
439    Achoo!  I got a code in the node.  */
440 
441 tree
make_node_stat(enum tree_code code MEM_STAT_DECL)442 make_node_stat (enum tree_code code MEM_STAT_DECL)
443 {
444   tree t;
445   enum tree_code_class type = TREE_CODE_CLASS (code);
446   size_t length = tree_code_size (code);
447 #ifdef GATHER_STATISTICS
448   tree_node_kind kind;
449 
450   switch (type)
451     {
452     case tcc_declaration:  /* A decl node */
453       kind = d_kind;
454       break;
455 
456     case tcc_type:  /* a type node */
457       kind = t_kind;
458       break;
459 
460     case tcc_statement:  /* an expression with side effects */
461       kind = s_kind;
462       break;
463 
464     case tcc_reference:  /* a reference */
465       kind = r_kind;
466       break;
467 
468     case tcc_expression:  /* an expression */
469     case tcc_comparison:  /* a comparison expression */
470     case tcc_unary:  /* a unary arithmetic expression */
471     case tcc_binary:  /* a binary arithmetic expression */
472       kind = e_kind;
473       break;
474 
475     case tcc_constant:  /* a constant */
476       kind = c_kind;
477       break;
478 
479     case tcc_exceptional:  /* something random, like an identifier.  */
480       switch (code)
481 	{
482 	case IDENTIFIER_NODE:
483 	  kind = id_kind;
484 	  break;
485 
486 	case TREE_VEC:
487 	  kind = vec_kind;
488 	  break;
489 
490 	case TREE_BINFO:
491 	  kind = binfo_kind;
492 	  break;
493 
494 	case PHI_NODE:
495 	  kind = phi_kind;
496 	  break;
497 
498 	case SSA_NAME:
499 	  kind = ssa_name_kind;
500 	  break;
501 
502 	case BLOCK:
503 	  kind = b_kind;
504 	  break;
505 
506 	case CONSTRUCTOR:
507 	  kind = constr_kind;
508 	  break;
509 
510 	default:
511 	  kind = x_kind;
512 	  break;
513 	}
514       break;
515 
516     default:
517       gcc_unreachable ();
518     }
519 
520   tree_node_counts[(int) kind]++;
521   tree_node_sizes[(int) kind] += length;
522 #endif
523 
524   if (code == IDENTIFIER_NODE)
525     t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
526   else
527     t = ggc_alloc_zone_pass_stat (length, &tree_zone);
528 
529   memset (t, 0, length);
530 
531   TREE_SET_CODE (t, code);
532 
533   switch (type)
534     {
535     case tcc_statement:
536       TREE_SIDE_EFFECTS (t) = 1;
537       break;
538 
539     case tcc_declaration:
540       if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
541 	DECL_IN_SYSTEM_HEADER (t) = in_system_header;
542       if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
543 	{
544 	  if (code != FUNCTION_DECL)
545 	    DECL_ALIGN (t) = 1;
546 	  DECL_USER_ALIGN (t) = 0;
547 	  /* We have not yet computed the alias set for this declaration.  */
548 	  DECL_POINTER_ALIAS_SET (t) = -1;
549 	}
550       DECL_SOURCE_LOCATION (t) = input_location;
551       DECL_UID (t) = next_decl_uid++;
552 
553       break;
554 
555     case tcc_type:
556       TYPE_UID (t) = next_type_uid++;
557       TYPE_ALIGN (t) = BITS_PER_UNIT;
558       TYPE_USER_ALIGN (t) = 0;
559       TYPE_MAIN_VARIANT (t) = t;
560 
561       /* Default to no attributes for type, but let target change that.  */
562       TYPE_ATTRIBUTES (t) = NULL_TREE;
563       targetm.set_default_type_attributes (t);
564 
565       /* We have not yet computed the alias set for this type.  */
566       TYPE_ALIAS_SET (t) = -1;
567       break;
568 
569     case tcc_constant:
570       TREE_CONSTANT (t) = 1;
571       TREE_INVARIANT (t) = 1;
572       break;
573 
574     case tcc_expression:
575       switch (code)
576 	{
577 	case INIT_EXPR:
578 	case MODIFY_EXPR:
579 	case VA_ARG_EXPR:
580 	case PREDECREMENT_EXPR:
581 	case PREINCREMENT_EXPR:
582 	case POSTDECREMENT_EXPR:
583 	case POSTINCREMENT_EXPR:
584 	  /* All of these have side-effects, no matter what their
585 	     operands are.  */
586 	  TREE_SIDE_EFFECTS (t) = 1;
587 	  break;
588 
589 	default:
590 	  break;
591 	}
592       break;
593 
594     default:
595       /* Other classes need no special treatment.  */
596       break;
597     }
598 
599   return t;
600 }
601 
602 /* Return a new node with the same contents as NODE except that its
603    TREE_CHAIN is zero and it has a fresh uid.  */
604 
605 tree
copy_node_stat(tree node MEM_STAT_DECL)606 copy_node_stat (tree node MEM_STAT_DECL)
607 {
608   tree t;
609   enum tree_code code = TREE_CODE (node);
610   size_t length;
611 
612   gcc_assert (code != STATEMENT_LIST);
613 
614   length = tree_size (node);
615   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
616   memcpy (t, node, length);
617 
618   TREE_CHAIN (t) = 0;
619   TREE_ASM_WRITTEN (t) = 0;
620   TREE_VISITED (t) = 0;
621   t->common.ann = 0;
622 
623   if (TREE_CODE_CLASS (code) == tcc_declaration)
624     {
625       DECL_UID (t) = next_decl_uid++;
626       if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
627 	  && DECL_HAS_VALUE_EXPR_P (node))
628 	{
629 	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
630 	  DECL_HAS_VALUE_EXPR_P (t) = 1;
631 	}
632       if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
633 	{
634 	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
635 	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
636 	}
637       if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
638 	{
639 	  SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
640 	  DECL_BASED_ON_RESTRICT_P (t) = 1;
641 	}
642     }
643   else if (TREE_CODE_CLASS (code) == tcc_type)
644     {
645       TYPE_UID (t) = next_type_uid++;
646       /* The following is so that the debug code for
647 	 the copy is different from the original type.
648 	 The two statements usually duplicate each other
649 	 (because they clear fields of the same union),
650 	 but the optimizer should catch that.  */
651       TYPE_SYMTAB_POINTER (t) = 0;
652       TYPE_SYMTAB_ADDRESS (t) = 0;
653 
654       /* Do not copy the values cache.  */
655       if (TYPE_CACHED_VALUES_P(t))
656 	{
657 	  TYPE_CACHED_VALUES_P (t) = 0;
658 	  TYPE_CACHED_VALUES (t) = NULL_TREE;
659 	}
660     }
661 
662   return t;
663 }
664 
665 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
666    For example, this can copy a list made of TREE_LIST nodes.  */
667 
668 tree
copy_list(tree list)669 copy_list (tree list)
670 {
671   tree head;
672   tree prev, next;
673 
674   if (list == 0)
675     return 0;
676 
677   head = prev = copy_node (list);
678   next = TREE_CHAIN (list);
679   while (next)
680     {
681       TREE_CHAIN (prev) = copy_node (next);
682       prev = TREE_CHAIN (prev);
683       next = TREE_CHAIN (next);
684     }
685   return head;
686 }
687 
688 
689 /* Create an INT_CST node with a LOW value sign extended.  */
690 
691 tree
build_int_cst(tree type,HOST_WIDE_INT low)692 build_int_cst (tree type, HOST_WIDE_INT low)
693 {
694   return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
695 }
696 
697 /* Create an INT_CST node with a LOW value zero extended.  */
698 
699 tree
build_int_cstu(tree type,unsigned HOST_WIDE_INT low)700 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
701 {
702   return build_int_cst_wide (type, low, 0);
703 }
704 
705 /* Create an INT_CST node with a LOW value in TYPE.  The value is sign extended
706    if it is negative.  This function is similar to build_int_cst, but
707    the extra bits outside of the type precision are cleared.  Constants
708    with these extra bits may confuse the fold so that it detects overflows
709    even in cases when they do not occur, and in general should be avoided.
710    We cannot however make this a default behavior of build_int_cst without
711    more intrusive changes, since there are parts of gcc that rely on the extra
712    precision of the integer constants.  */
713 
714 tree
build_int_cst_type(tree type,HOST_WIDE_INT low)715 build_int_cst_type (tree type, HOST_WIDE_INT low)
716 {
717   unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
718   unsigned HOST_WIDE_INT hi, mask;
719   unsigned bits;
720   bool signed_p;
721   bool negative;
722 
723   if (!type)
724     type = integer_type_node;
725 
726   bits = TYPE_PRECISION (type);
727   signed_p = !TYPE_UNSIGNED (type);
728 
729   if (bits >= HOST_BITS_PER_WIDE_INT)
730     negative = (low < 0);
731   else
732     {
733       /* If the sign bit is inside precision of LOW, use it to determine
734 	 the sign of the constant.  */
735       negative = ((val >> (bits - 1)) & 1) != 0;
736 
737       /* Mask out the bits outside of the precision of the constant.  */
738       mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
739 
740       if (signed_p && negative)
741 	val |= ~mask;
742       else
743 	val &= mask;
744     }
745 
746   /* Determine the high bits.  */
747   hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
748 
749   /* For unsigned type we need to mask out the bits outside of the type
750      precision.  */
751   if (!signed_p)
752     {
753       if (bits <= HOST_BITS_PER_WIDE_INT)
754 	hi = 0;
755       else
756 	{
757 	  bits -= HOST_BITS_PER_WIDE_INT;
758 	  mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
759 	  hi &= mask;
760 	}
761     }
762 
763   return build_int_cst_wide (type, val, hi);
764 }
765 
766 /* These are the hash table functions for the hash table of INTEGER_CST
767    nodes of a sizetype.  */
768 
769 /* Return the hash code code X, an INTEGER_CST.  */
770 
771 static hashval_t
int_cst_hash_hash(const void * x)772 int_cst_hash_hash (const void *x)
773 {
774   tree t = (tree) x;
775 
776   return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
777 	  ^ htab_hash_pointer (TREE_TYPE (t)));
778 }
779 
780 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
781    is the same as that given by *Y, which is the same.  */
782 
783 static int
int_cst_hash_eq(const void * x,const void * y)784 int_cst_hash_eq (const void *x, const void *y)
785 {
786   tree xt = (tree) x;
787   tree yt = (tree) y;
788 
789   return (TREE_TYPE (xt) == TREE_TYPE (yt)
790 	  && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
791 	  && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
792 }
793 
794 /* Create an INT_CST node of TYPE and value HI:LOW.  If TYPE is NULL,
795    integer_type_node is used.  The returned node is always shared.
796    For small integers we use a per-type vector cache, for larger ones
797    we use a single hash table.  */
798 
799 tree
build_int_cst_wide(tree type,unsigned HOST_WIDE_INT low,HOST_WIDE_INT hi)800 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
801 {
802   tree t;
803   int ix = -1;
804   int limit = 0;
805 
806   if (!type)
807     type = integer_type_node;
808 
809   switch (TREE_CODE (type))
810     {
811     case POINTER_TYPE:
812     case REFERENCE_TYPE:
813       /* Cache NULL pointer.  */
814       if (!hi && !low)
815 	{
816 	  limit = 1;
817 	  ix = 0;
818 	}
819       break;
820 
821     case BOOLEAN_TYPE:
822       /* Cache false or true.  */
823       limit = 2;
824       if (!hi && low < 2)
825 	ix = low;
826       break;
827 
828     case INTEGER_TYPE:
829     case OFFSET_TYPE:
830       if (TYPE_UNSIGNED (type))
831 	{
832 	  /* Cache 0..N */
833 	  limit = INTEGER_SHARE_LIMIT;
834 	  if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
835 	    ix = low;
836 	}
837       else
838 	{
839 	  /* Cache -1..N */
840 	  limit = INTEGER_SHARE_LIMIT + 1;
841 	  if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
842 	    ix = low + 1;
843 	  else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
844 	    ix = 0;
845 	}
846       break;
847     default:
848       break;
849     }
850 
851   if (ix >= 0)
852     {
853       /* Look for it in the type's vector of small shared ints.  */
854       if (!TYPE_CACHED_VALUES_P (type))
855 	{
856 	  TYPE_CACHED_VALUES_P (type) = 1;
857 	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
858 	}
859 
860       t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
861       if (t)
862 	{
863 	  /* Make sure no one is clobbering the shared constant.  */
864 	  gcc_assert (TREE_TYPE (t) == type);
865 	  gcc_assert (TREE_INT_CST_LOW (t) == low);
866 	  gcc_assert (TREE_INT_CST_HIGH (t) == hi);
867 	}
868       else
869 	{
870 	  /* Create a new shared int.  */
871 	  t = make_node (INTEGER_CST);
872 
873 	  TREE_INT_CST_LOW (t) = low;
874 	  TREE_INT_CST_HIGH (t) = hi;
875 	  TREE_TYPE (t) = type;
876 
877 	  TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
878 	}
879     }
880   else
881     {
882       /* Use the cache of larger shared ints.  */
883       void **slot;
884 
885       TREE_INT_CST_LOW (int_cst_node) = low;
886       TREE_INT_CST_HIGH (int_cst_node) = hi;
887       TREE_TYPE (int_cst_node) = type;
888 
889       slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
890       t = *slot;
891       if (!t)
892 	{
893 	  /* Insert this one into the hash table.  */
894 	  t = int_cst_node;
895 	  *slot = t;
896 	  /* Make a new node for next time round.  */
897 	  int_cst_node = make_node (INTEGER_CST);
898 	}
899     }
900 
901   return t;
902 }
903 
904 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
905    and the rest are zeros.  */
906 
907 tree
build_low_bits_mask(tree type,unsigned bits)908 build_low_bits_mask (tree type, unsigned bits)
909 {
910   unsigned HOST_WIDE_INT low;
911   HOST_WIDE_INT high;
912   unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
913 
914   gcc_assert (bits <= TYPE_PRECISION (type));
915 
916   if (bits == TYPE_PRECISION (type)
917       && !TYPE_UNSIGNED (type))
918     {
919       /* Sign extended all-ones mask.  */
920       low = all_ones;
921       high = -1;
922     }
923   else if (bits <= HOST_BITS_PER_WIDE_INT)
924     {
925       low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
926       high = 0;
927     }
928   else
929     {
930       bits -= HOST_BITS_PER_WIDE_INT;
931       low = all_ones;
932       high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
933     }
934 
935   return build_int_cst_wide (type, low, high);
936 }
937 
938 /* Checks that X is integer constant that can be expressed in (unsigned)
939    HOST_WIDE_INT without loss of precision.  */
940 
941 bool
cst_and_fits_in_hwi(tree x)942 cst_and_fits_in_hwi (tree x)
943 {
944   if (TREE_CODE (x) != INTEGER_CST)
945     return false;
946 
947   if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
948     return false;
949 
950   return (TREE_INT_CST_HIGH (x) == 0
951 	  || TREE_INT_CST_HIGH (x) == -1);
952 }
953 
954 /* Return a new VECTOR_CST node whose type is TYPE and whose values
955    are in a list pointed to by VALS.  */
956 
957 tree
build_vector(tree type,tree vals)958 build_vector (tree type, tree vals)
959 {
960   tree v = make_node (VECTOR_CST);
961   int over1 = 0, over2 = 0;
962   tree link;
963 
964   TREE_VECTOR_CST_ELTS (v) = vals;
965   TREE_TYPE (v) = type;
966 
967   /* Iterate through elements and check for overflow.  */
968   for (link = vals; link; link = TREE_CHAIN (link))
969     {
970       tree value = TREE_VALUE (link);
971 
972       /* Don't crash if we get an address constant.  */
973       if (!CONSTANT_CLASS_P (value))
974 	continue;
975 
976       over1 |= TREE_OVERFLOW (value);
977       over2 |= TREE_CONSTANT_OVERFLOW (value);
978     }
979 
980   TREE_OVERFLOW (v) = over1;
981   TREE_CONSTANT_OVERFLOW (v) = over2;
982 
983   return v;
984 }
985 
986 /* Return a new VECTOR_CST node whose type is TYPE and whose values
987    are extracted from V, a vector of CONSTRUCTOR_ELT.  */
988 
989 tree
build_vector_from_ctor(tree type,VEC (constructor_elt,gc)* v)990 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
991 {
992   tree list = NULL_TREE;
993   unsigned HOST_WIDE_INT idx;
994   tree value;
995 
996   FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
997     list = tree_cons (NULL_TREE, value, list);
998   return build_vector (type, nreverse (list));
999 }
1000 
1001 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1002    are in the VEC pointed to by VALS.  */
1003 tree
build_constructor(tree type,VEC (constructor_elt,gc)* vals)1004 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1005 {
1006   tree c = make_node (CONSTRUCTOR);
1007   TREE_TYPE (c) = type;
1008   CONSTRUCTOR_ELTS (c) = vals;
1009   return c;
1010 }
1011 
1012 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1013    INDEX and VALUE.  */
1014 tree
build_constructor_single(tree type,tree index,tree value)1015 build_constructor_single (tree type, tree index, tree value)
1016 {
1017   VEC(constructor_elt,gc) *v;
1018   constructor_elt *elt;
1019   tree t;
1020 
1021   v = VEC_alloc (constructor_elt, gc, 1);
1022   elt = VEC_quick_push (constructor_elt, v, NULL);
1023   elt->index = index;
1024   elt->value = value;
1025 
1026   t = build_constructor (type, v);
1027   TREE_CONSTANT (t) = TREE_CONSTANT (value);
1028   return t;
1029 }
1030 
1031 
1032 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1033    are in a list pointed to by VALS.  */
1034 tree
build_constructor_from_list(tree type,tree vals)1035 build_constructor_from_list (tree type, tree vals)
1036 {
1037   tree t, val;
1038   VEC(constructor_elt,gc) *v = NULL;
1039   bool constant_p = true;
1040 
1041   if (vals)
1042     {
1043       v = VEC_alloc (constructor_elt, gc, list_length (vals));
1044       for (t = vals; t; t = TREE_CHAIN (t))
1045 	{
1046 	  constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1047 	  val = TREE_VALUE (t);
1048 	  elt->index = TREE_PURPOSE (t);
1049 	  elt->value = val;
1050 	  if (!TREE_CONSTANT (val))
1051 	    constant_p = false;
1052 	}
1053     }
1054 
1055   t = build_constructor (type, v);
1056   TREE_CONSTANT (t) = constant_p;
1057   return t;
1058 }
1059 
1060 
1061 /* Return a new REAL_CST node whose type is TYPE and value is D.  */
1062 
1063 tree
build_real(tree type,REAL_VALUE_TYPE d)1064 build_real (tree type, REAL_VALUE_TYPE d)
1065 {
1066   tree v;
1067   REAL_VALUE_TYPE *dp;
1068   int overflow = 0;
1069 
1070   /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1071      Consider doing it via real_convert now.  */
1072 
1073   v = make_node (REAL_CST);
1074   dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1075   memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1076 
1077   TREE_TYPE (v) = type;
1078   TREE_REAL_CST_PTR (v) = dp;
1079   TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1080   return v;
1081 }
1082 
1083 /* Return a new REAL_CST node whose type is TYPE
1084    and whose value is the integer value of the INTEGER_CST node I.  */
1085 
1086 REAL_VALUE_TYPE
real_value_from_int_cst(tree type,tree i)1087 real_value_from_int_cst (tree type, tree i)
1088 {
1089   REAL_VALUE_TYPE d;
1090 
1091   /* Clear all bits of the real value type so that we can later do
1092      bitwise comparisons to see if two values are the same.  */
1093   memset (&d, 0, sizeof d);
1094 
1095   real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1096 		     TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1097 		     TYPE_UNSIGNED (TREE_TYPE (i)));
1098   return d;
1099 }
1100 
1101 /* Given a tree representing an integer constant I, return a tree
1102    representing the same value as a floating-point constant of type TYPE.  */
1103 
1104 tree
build_real_from_int_cst(tree type,tree i)1105 build_real_from_int_cst (tree type, tree i)
1106 {
1107   tree v;
1108   int overflow = TREE_OVERFLOW (i);
1109 
1110   v = build_real (type, real_value_from_int_cst (type, i));
1111 
1112   TREE_OVERFLOW (v) |= overflow;
1113   TREE_CONSTANT_OVERFLOW (v) |= overflow;
1114   return v;
1115 }
1116 
1117 /* Return a newly constructed STRING_CST node whose value is
1118    the LEN characters at STR.
1119    The TREE_TYPE is not initialized.  */
1120 
1121 tree
build_string(int len,const char * str)1122 build_string (int len, const char *str)
1123 {
1124   tree s;
1125   size_t length;
1126 
1127   /* Do not waste bytes provided by padding of struct tree_string.  */
1128   length = len + offsetof (struct tree_string, str) + 1;
1129 
1130 #ifdef GATHER_STATISTICS
1131   tree_node_counts[(int) c_kind]++;
1132   tree_node_sizes[(int) c_kind] += length;
1133 #endif
1134 
1135   s = ggc_alloc_tree (length);
1136 
1137   memset (s, 0, sizeof (struct tree_common));
1138   TREE_SET_CODE (s, STRING_CST);
1139   TREE_CONSTANT (s) = 1;
1140   TREE_INVARIANT (s) = 1;
1141   TREE_STRING_LENGTH (s) = len;
1142   memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1143   ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1144 
1145   return s;
1146 }
1147 
1148 /* Return a newly constructed COMPLEX_CST node whose value is
1149    specified by the real and imaginary parts REAL and IMAG.
1150    Both REAL and IMAG should be constant nodes.  TYPE, if specified,
1151    will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
1152 
1153 tree
build_complex(tree type,tree real,tree imag)1154 build_complex (tree type, tree real, tree imag)
1155 {
1156   tree t = make_node (COMPLEX_CST);
1157 
1158   TREE_REALPART (t) = real;
1159   TREE_IMAGPART (t) = imag;
1160   TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1161   TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1162   TREE_CONSTANT_OVERFLOW (t)
1163     = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1164   return t;
1165 }
1166 
1167 /* Return a constant of arithmetic type TYPE which is the
1168    multiplicative identity of the set TYPE.  */
1169 
1170 tree
build_one_cst(tree type)1171 build_one_cst (tree type)
1172 {
1173   switch (TREE_CODE (type))
1174     {
1175     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1176     case POINTER_TYPE: case REFERENCE_TYPE:
1177     case OFFSET_TYPE:
1178       return build_int_cst (type, 1);
1179 
1180     case REAL_TYPE:
1181       return build_real (type, dconst1);
1182 
1183     case VECTOR_TYPE:
1184       {
1185 	tree scalar, cst;
1186 	int i;
1187 
1188 	scalar = build_one_cst (TREE_TYPE (type));
1189 
1190 	/* Create 'vect_cst_ = {cst,cst,...,cst}'  */
1191 	cst = NULL_TREE;
1192 	for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1193 	  cst = tree_cons (NULL_TREE, scalar, cst);
1194 
1195 	return build_vector (type, cst);
1196       }
1197 
1198     case COMPLEX_TYPE:
1199       return build_complex (type,
1200 			    build_one_cst (TREE_TYPE (type)),
1201 			    fold_convert (TREE_TYPE (type), integer_zero_node));
1202 
1203     default:
1204       gcc_unreachable ();
1205     }
1206 }
1207 
1208 /* Build a BINFO with LEN language slots.  */
1209 
1210 tree
make_tree_binfo_stat(unsigned base_binfos MEM_STAT_DECL)1211 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1212 {
1213   tree t;
1214   size_t length = (offsetof (struct tree_binfo, base_binfos)
1215 		   + VEC_embedded_size (tree, base_binfos));
1216 
1217 #ifdef GATHER_STATISTICS
1218   tree_node_counts[(int) binfo_kind]++;
1219   tree_node_sizes[(int) binfo_kind] += length;
1220 #endif
1221 
1222   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1223 
1224   memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1225 
1226   TREE_SET_CODE (t, TREE_BINFO);
1227 
1228   VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1229 
1230   return t;
1231 }
1232 
1233 
1234 /* Build a newly constructed TREE_VEC node of length LEN.  */
1235 
1236 tree
make_tree_vec_stat(int len MEM_STAT_DECL)1237 make_tree_vec_stat (int len MEM_STAT_DECL)
1238 {
1239   tree t;
1240   int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1241 
1242 #ifdef GATHER_STATISTICS
1243   tree_node_counts[(int) vec_kind]++;
1244   tree_node_sizes[(int) vec_kind] += length;
1245 #endif
1246 
1247   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1248 
1249   memset (t, 0, length);
1250 
1251   TREE_SET_CODE (t, TREE_VEC);
1252   TREE_VEC_LENGTH (t) = len;
1253 
1254   return t;
1255 }
1256 
1257 /* Return 1 if EXPR is the integer constant zero or a complex constant
1258    of zero.  */
1259 
1260 int
integer_zerop(tree expr)1261 integer_zerop (tree expr)
1262 {
1263   STRIP_NOPS (expr);
1264 
1265   return ((TREE_CODE (expr) == INTEGER_CST
1266 	   && TREE_INT_CST_LOW (expr) == 0
1267 	   && TREE_INT_CST_HIGH (expr) == 0)
1268 	  || (TREE_CODE (expr) == COMPLEX_CST
1269 	      && integer_zerop (TREE_REALPART (expr))
1270 	      && integer_zerop (TREE_IMAGPART (expr))));
1271 }
1272 
1273 /* Return 1 if EXPR is the integer constant one or the corresponding
1274    complex constant.  */
1275 
1276 int
integer_onep(tree expr)1277 integer_onep (tree expr)
1278 {
1279   STRIP_NOPS (expr);
1280 
1281   return ((TREE_CODE (expr) == INTEGER_CST
1282 	   && TREE_INT_CST_LOW (expr) == 1
1283 	   && TREE_INT_CST_HIGH (expr) == 0)
1284 	  || (TREE_CODE (expr) == COMPLEX_CST
1285 	      && integer_onep (TREE_REALPART (expr))
1286 	      && integer_zerop (TREE_IMAGPART (expr))));
1287 }
1288 
1289 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1290    it contains.  Likewise for the corresponding complex constant.  */
1291 
1292 int
integer_all_onesp(tree expr)1293 integer_all_onesp (tree expr)
1294 {
1295   int prec;
1296   int uns;
1297 
1298   STRIP_NOPS (expr);
1299 
1300   if (TREE_CODE (expr) == COMPLEX_CST
1301       && integer_all_onesp (TREE_REALPART (expr))
1302       && integer_zerop (TREE_IMAGPART (expr)))
1303     return 1;
1304 
1305   else if (TREE_CODE (expr) != INTEGER_CST)
1306     return 0;
1307 
1308   uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1309   if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1310       && TREE_INT_CST_HIGH (expr) == -1)
1311     return 1;
1312   if (!uns)
1313     return 0;
1314 
1315   /* Note that using TYPE_PRECISION here is wrong.  We care about the
1316      actual bits, not the (arbitrary) range of the type.  */
1317   prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1318   if (prec >= HOST_BITS_PER_WIDE_INT)
1319     {
1320       HOST_WIDE_INT high_value;
1321       int shift_amount;
1322 
1323       shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1324 
1325       /* Can not handle precisions greater than twice the host int size.  */
1326       gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1327       if (shift_amount == HOST_BITS_PER_WIDE_INT)
1328 	/* Shifting by the host word size is undefined according to the ANSI
1329 	   standard, so we must handle this as a special case.  */
1330 	high_value = -1;
1331       else
1332 	high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1333 
1334       return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1335 	      && TREE_INT_CST_HIGH (expr) == high_value);
1336     }
1337   else
1338     return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1339 }
1340 
1341 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1342    one bit on).  */
1343 
1344 int
integer_pow2p(tree expr)1345 integer_pow2p (tree expr)
1346 {
1347   int prec;
1348   HOST_WIDE_INT high, low;
1349 
1350   STRIP_NOPS (expr);
1351 
1352   if (TREE_CODE (expr) == COMPLEX_CST
1353       && integer_pow2p (TREE_REALPART (expr))
1354       && integer_zerop (TREE_IMAGPART (expr)))
1355     return 1;
1356 
1357   if (TREE_CODE (expr) != INTEGER_CST)
1358     return 0;
1359 
1360   prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1361 	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1362   high = TREE_INT_CST_HIGH (expr);
1363   low = TREE_INT_CST_LOW (expr);
1364 
1365   /* First clear all bits that are beyond the type's precision in case
1366      we've been sign extended.  */
1367 
1368   if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1369     ;
1370   else if (prec > HOST_BITS_PER_WIDE_INT)
1371     high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1372   else
1373     {
1374       high = 0;
1375       if (prec < HOST_BITS_PER_WIDE_INT)
1376 	low &= ~((HOST_WIDE_INT) (-1) << prec);
1377     }
1378 
1379   if (high == 0 && low == 0)
1380     return 0;
1381 
1382   return ((high == 0 && (low & (low - 1)) == 0)
1383 	  || (low == 0 && (high & (high - 1)) == 0));
1384 }
1385 
1386 /* Return 1 if EXPR is an integer constant other than zero or a
1387    complex constant other than zero.  */
1388 
1389 int
integer_nonzerop(tree expr)1390 integer_nonzerop (tree expr)
1391 {
1392   STRIP_NOPS (expr);
1393 
1394   return ((TREE_CODE (expr) == INTEGER_CST
1395 	   && (TREE_INT_CST_LOW (expr) != 0
1396 	       || TREE_INT_CST_HIGH (expr) != 0))
1397 	  || (TREE_CODE (expr) == COMPLEX_CST
1398 	      && (integer_nonzerop (TREE_REALPART (expr))
1399 		  || integer_nonzerop (TREE_IMAGPART (expr)))));
1400 }
1401 
1402 /* Return the power of two represented by a tree node known to be a
1403    power of two.  */
1404 
1405 int
tree_log2(tree expr)1406 tree_log2 (tree expr)
1407 {
1408   int prec;
1409   HOST_WIDE_INT high, low;
1410 
1411   STRIP_NOPS (expr);
1412 
1413   if (TREE_CODE (expr) == COMPLEX_CST)
1414     return tree_log2 (TREE_REALPART (expr));
1415 
1416   prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1417 	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1418 
1419   high = TREE_INT_CST_HIGH (expr);
1420   low = TREE_INT_CST_LOW (expr);
1421 
1422   /* First clear all bits that are beyond the type's precision in case
1423      we've been sign extended.  */
1424 
1425   if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1426     ;
1427   else if (prec > HOST_BITS_PER_WIDE_INT)
1428     high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1429   else
1430     {
1431       high = 0;
1432       if (prec < HOST_BITS_PER_WIDE_INT)
1433 	low &= ~((HOST_WIDE_INT) (-1) << prec);
1434     }
1435 
1436   return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1437 	  : exact_log2 (low));
1438 }
1439 
1440 /* Similar, but return the largest integer Y such that 2 ** Y is less
1441    than or equal to EXPR.  */
1442 
1443 int
tree_floor_log2(tree expr)1444 tree_floor_log2 (tree expr)
1445 {
1446   int prec;
1447   HOST_WIDE_INT high, low;
1448 
1449   STRIP_NOPS (expr);
1450 
1451   if (TREE_CODE (expr) == COMPLEX_CST)
1452     return tree_log2 (TREE_REALPART (expr));
1453 
1454   prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1455 	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1456 
1457   high = TREE_INT_CST_HIGH (expr);
1458   low = TREE_INT_CST_LOW (expr);
1459 
1460   /* First clear all bits that are beyond the type's precision in case
1461      we've been sign extended.  Ignore if type's precision hasn't been set
1462      since what we are doing is setting it.  */
1463 
1464   if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1465     ;
1466   else if (prec > HOST_BITS_PER_WIDE_INT)
1467     high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1468   else
1469     {
1470       high = 0;
1471       if (prec < HOST_BITS_PER_WIDE_INT)
1472 	low &= ~((HOST_WIDE_INT) (-1) << prec);
1473     }
1474 
1475   return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1476 	  : floor_log2 (low));
1477 }
1478 
1479 /* Return 1 if EXPR is the real constant zero.  */
1480 
1481 int
real_zerop(tree expr)1482 real_zerop (tree expr)
1483 {
1484   STRIP_NOPS (expr);
1485 
1486   return ((TREE_CODE (expr) == REAL_CST
1487 	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1488 	  || (TREE_CODE (expr) == COMPLEX_CST
1489 	      && real_zerop (TREE_REALPART (expr))
1490 	      && real_zerop (TREE_IMAGPART (expr))));
1491 }
1492 
1493 /* Return 1 if EXPR is the real constant one in real or complex form.  */
1494 
1495 int
real_onep(tree expr)1496 real_onep (tree expr)
1497 {
1498   STRIP_NOPS (expr);
1499 
1500   return ((TREE_CODE (expr) == REAL_CST
1501 	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1502 	  || (TREE_CODE (expr) == COMPLEX_CST
1503 	      && real_onep (TREE_REALPART (expr))
1504 	      && real_zerop (TREE_IMAGPART (expr))));
1505 }
1506 
1507 /* Return 1 if EXPR is the real constant two.  */
1508 
1509 int
real_twop(tree expr)1510 real_twop (tree expr)
1511 {
1512   STRIP_NOPS (expr);
1513 
1514   return ((TREE_CODE (expr) == REAL_CST
1515 	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1516 	  || (TREE_CODE (expr) == COMPLEX_CST
1517 	      && real_twop (TREE_REALPART (expr))
1518 	      && real_zerop (TREE_IMAGPART (expr))));
1519 }
1520 
1521 /* Return 1 if EXPR is the real constant minus one.  */
1522 
1523 int
real_minus_onep(tree expr)1524 real_minus_onep (tree expr)
1525 {
1526   STRIP_NOPS (expr);
1527 
1528   return ((TREE_CODE (expr) == REAL_CST
1529 	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1530 	  || (TREE_CODE (expr) == COMPLEX_CST
1531 	      && real_minus_onep (TREE_REALPART (expr))
1532 	      && real_zerop (TREE_IMAGPART (expr))));
1533 }
1534 
1535 /* Nonzero if EXP is a constant or a cast of a constant.  */
1536 
1537 int
really_constant_p(tree exp)1538 really_constant_p (tree exp)
1539 {
1540   /* This is not quite the same as STRIP_NOPS.  It does more.  */
1541   while (TREE_CODE (exp) == NOP_EXPR
1542 	 || TREE_CODE (exp) == CONVERT_EXPR
1543 	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1544     exp = TREE_OPERAND (exp, 0);
1545   return TREE_CONSTANT (exp);
1546 }
1547 
1548 /* Return first list element whose TREE_VALUE is ELEM.
1549    Return 0 if ELEM is not in LIST.  */
1550 
1551 tree
value_member(tree elem,tree list)1552 value_member (tree elem, tree list)
1553 {
1554   while (list)
1555     {
1556       if (elem == TREE_VALUE (list))
1557 	return list;
1558       list = TREE_CHAIN (list);
1559     }
1560   return NULL_TREE;
1561 }
1562 
1563 /* Return first list element whose TREE_PURPOSE is ELEM.
1564    Return 0 if ELEM is not in LIST.  */
1565 
1566 tree
purpose_member(tree elem,tree list)1567 purpose_member (tree elem, tree list)
1568 {
1569   while (list)
1570     {
1571       if (elem == TREE_PURPOSE (list))
1572 	return list;
1573       list = TREE_CHAIN (list);
1574     }
1575   return NULL_TREE;
1576 }
1577 
1578 /* Return nonzero if ELEM is part of the chain CHAIN.  */
1579 
1580 int
chain_member(tree elem,tree chain)1581 chain_member (tree elem, tree chain)
1582 {
1583   while (chain)
1584     {
1585       if (elem == chain)
1586 	return 1;
1587       chain = TREE_CHAIN (chain);
1588     }
1589 
1590   return 0;
1591 }
1592 
1593 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1594    We expect a null pointer to mark the end of the chain.
1595    This is the Lisp primitive `length'.  */
1596 
1597 int
list_length(tree t)1598 list_length (tree t)
1599 {
1600   tree p = t;
1601 #ifdef ENABLE_TREE_CHECKING
1602   tree q = t;
1603 #endif
1604   int len = 0;
1605 
1606   while (p)
1607     {
1608       p = TREE_CHAIN (p);
1609 #ifdef ENABLE_TREE_CHECKING
1610       if (len % 2)
1611 	q = TREE_CHAIN (q);
1612       gcc_assert (p != q);
1613 #endif
1614       len++;
1615     }
1616 
1617   return len;
1618 }
1619 
1620 /* Returns the number of FIELD_DECLs in TYPE.  */
1621 
1622 int
fields_length(tree type)1623 fields_length (tree type)
1624 {
1625   tree t = TYPE_FIELDS (type);
1626   int count = 0;
1627 
1628   for (; t; t = TREE_CHAIN (t))
1629     if (TREE_CODE (t) == FIELD_DECL)
1630       ++count;
1631 
1632   return count;
1633 }
1634 
1635 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1636    by modifying the last node in chain 1 to point to chain 2.
1637    This is the Lisp primitive `nconc'.  */
1638 
1639 tree
chainon(tree op1,tree op2)1640 chainon (tree op1, tree op2)
1641 {
1642   tree t1;
1643 
1644   if (!op1)
1645     return op2;
1646   if (!op2)
1647     return op1;
1648 
1649   for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1650     continue;
1651   TREE_CHAIN (t1) = op2;
1652 
1653 #ifdef ENABLE_TREE_CHECKING
1654   {
1655     tree t2;
1656     for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1657       gcc_assert (t2 != t1);
1658   }
1659 #endif
1660 
1661   return op1;
1662 }
1663 
1664 /* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
1665 
1666 tree
tree_last(tree chain)1667 tree_last (tree chain)
1668 {
1669   tree next;
1670   if (chain)
1671     while ((next = TREE_CHAIN (chain)))
1672       chain = next;
1673   return chain;
1674 }
1675 
1676 /* Reverse the order of elements in the chain T,
1677    and return the new head of the chain (old last element).  */
1678 
1679 tree
nreverse(tree t)1680 nreverse (tree t)
1681 {
1682   tree prev = 0, decl, next;
1683   for (decl = t; decl; decl = next)
1684     {
1685       next = TREE_CHAIN (decl);
1686       TREE_CHAIN (decl) = prev;
1687       prev = decl;
1688     }
1689   return prev;
1690 }
1691 
1692 /* Return a newly created TREE_LIST node whose
1693    purpose and value fields are PARM and VALUE.  */
1694 
1695 tree
build_tree_list_stat(tree parm,tree value MEM_STAT_DECL)1696 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1697 {
1698   tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1699   TREE_PURPOSE (t) = parm;
1700   TREE_VALUE (t) = value;
1701   return t;
1702 }
1703 
1704 /* Return a newly created TREE_LIST node whose
1705    purpose and value fields are PURPOSE and VALUE
1706    and whose TREE_CHAIN is CHAIN.  */
1707 
1708 tree
tree_cons_stat(tree purpose,tree value,tree chain MEM_STAT_DECL)1709 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1710 {
1711   tree node;
1712 
1713   node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1714 
1715   memset (node, 0, sizeof (struct tree_common));
1716 
1717 #ifdef GATHER_STATISTICS
1718   tree_node_counts[(int) x_kind]++;
1719   tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1720 #endif
1721 
1722   TREE_SET_CODE (node, TREE_LIST);
1723   TREE_CHAIN (node) = chain;
1724   TREE_PURPOSE (node) = purpose;
1725   TREE_VALUE (node) = value;
1726   return node;
1727 }
1728 
1729 
1730 /* Return the size nominally occupied by an object of type TYPE
1731    when it resides in memory.  The value is measured in units of bytes,
1732    and its data type is that normally used for type sizes
1733    (which is the first type created by make_signed_type or
1734    make_unsigned_type).  */
1735 
1736 tree
size_in_bytes(tree type)1737 size_in_bytes (tree type)
1738 {
1739   tree t;
1740 
1741   if (type == error_mark_node)
1742     return integer_zero_node;
1743 
1744   type = TYPE_MAIN_VARIANT (type);
1745   t = TYPE_SIZE_UNIT (type);
1746 
1747   if (t == 0)
1748     {
1749       lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1750       return size_zero_node;
1751     }
1752 
1753   if (TREE_CODE (t) == INTEGER_CST)
1754     t = force_fit_type (t, 0, false, false);
1755 
1756   return t;
1757 }
1758 
1759 /* Return the size of TYPE (in bytes) as a wide integer
1760    or return -1 if the size can vary or is larger than an integer.  */
1761 
1762 HOST_WIDE_INT
int_size_in_bytes(tree type)1763 int_size_in_bytes (tree type)
1764 {
1765   tree t;
1766 
1767   if (type == error_mark_node)
1768     return 0;
1769 
1770   type = TYPE_MAIN_VARIANT (type);
1771   t = TYPE_SIZE_UNIT (type);
1772   if (t == 0
1773       || TREE_CODE (t) != INTEGER_CST
1774       || TREE_INT_CST_HIGH (t) != 0
1775       /* If the result would appear negative, it's too big to represent.  */
1776       || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1777     return -1;
1778 
1779   return TREE_INT_CST_LOW (t);
1780 }
1781 
1782 /* Return the maximum size of TYPE (in bytes) as a wide integer
1783    or return -1 if the size can vary or is larger than an integer.  */
1784 
1785 HOST_WIDE_INT
max_int_size_in_bytes(tree type)1786 max_int_size_in_bytes (tree type)
1787 {
1788   HOST_WIDE_INT size = -1;
1789   tree size_tree;
1790 
1791   /* If this is an array type, check for a possible MAX_SIZE attached.  */
1792 
1793   if (TREE_CODE (type) == ARRAY_TYPE)
1794     {
1795       size_tree = TYPE_ARRAY_MAX_SIZE (type);
1796 
1797       if (size_tree && host_integerp (size_tree, 1))
1798 	size = tree_low_cst (size_tree, 1);
1799     }
1800 
1801   /* If we still haven't been able to get a size, see if the language
1802      can compute a maximum size.  */
1803 
1804   if (size == -1)
1805     {
1806       size_tree = lang_hooks.types.max_size (type);
1807 
1808       if (size_tree && host_integerp (size_tree, 1))
1809 	size = tree_low_cst (size_tree, 1);
1810     }
1811 
1812   return size;
1813 }
1814 
1815 /* Return the bit position of FIELD, in bits from the start of the record.
1816    This is a tree of type bitsizetype.  */
1817 
1818 tree
bit_position(tree field)1819 bit_position (tree field)
1820 {
1821   return bit_from_pos (DECL_FIELD_OFFSET (field),
1822 		       DECL_FIELD_BIT_OFFSET (field));
1823 }
1824 
1825 /* Likewise, but return as an integer.  It must be representable in
1826    that way (since it could be a signed value, we don't have the
1827    option of returning -1 like int_size_in_byte can.  */
1828 
1829 HOST_WIDE_INT
int_bit_position(tree field)1830 int_bit_position (tree field)
1831 {
1832   return tree_low_cst (bit_position (field), 0);
1833 }
1834 
1835 /* Return the byte position of FIELD, in bytes from the start of the record.
1836    This is a tree of type sizetype.  */
1837 
1838 tree
byte_position(tree field)1839 byte_position (tree field)
1840 {
1841   return byte_from_pos (DECL_FIELD_OFFSET (field),
1842 			DECL_FIELD_BIT_OFFSET (field));
1843 }
1844 
1845 /* Likewise, but return as an integer.  It must be representable in
1846    that way (since it could be a signed value, we don't have the
1847    option of returning -1 like int_size_in_byte can.  */
1848 
1849 HOST_WIDE_INT
int_byte_position(tree field)1850 int_byte_position (tree field)
1851 {
1852   return tree_low_cst (byte_position (field), 0);
1853 }
1854 
1855 /* Return the strictest alignment, in bits, that T is known to have.  */
1856 
1857 unsigned int
expr_align(tree t)1858 expr_align (tree t)
1859 {
1860   unsigned int align0, align1;
1861 
1862   switch (TREE_CODE (t))
1863     {
1864     case NOP_EXPR:  case CONVERT_EXPR:  case NON_LVALUE_EXPR:
1865       /* If we have conversions, we know that the alignment of the
1866 	 object must meet each of the alignments of the types.  */
1867       align0 = expr_align (TREE_OPERAND (t, 0));
1868       align1 = TYPE_ALIGN (TREE_TYPE (t));
1869       return MAX (align0, align1);
1870 
1871     case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
1872     case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
1873     case CLEANUP_POINT_EXPR:
1874       /* These don't change the alignment of an object.  */
1875       return expr_align (TREE_OPERAND (t, 0));
1876 
1877     case COND_EXPR:
1878       /* The best we can do is say that the alignment is the least aligned
1879 	 of the two arms.  */
1880       align0 = expr_align (TREE_OPERAND (t, 1));
1881       align1 = expr_align (TREE_OPERAND (t, 2));
1882       return MIN (align0, align1);
1883 
1884     case LABEL_DECL:     case CONST_DECL:
1885     case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
1886       if (DECL_ALIGN (t) != 0)
1887 	return DECL_ALIGN (t);
1888       break;
1889 
1890     case FUNCTION_DECL:
1891       return FUNCTION_BOUNDARY;
1892 
1893     default:
1894       break;
1895     }
1896 
1897   /* Otherwise take the alignment from that of the type.  */
1898   return TYPE_ALIGN (TREE_TYPE (t));
1899 }
1900 
1901 /* Return, as a tree node, the number of elements for TYPE (which is an
1902    ARRAY_TYPE) minus one. This counts only elements of the top array.  */
1903 
1904 tree
array_type_nelts(tree type)1905 array_type_nelts (tree type)
1906 {
1907   tree index_type, min, max;
1908 
1909   /* If they did it with unspecified bounds, then we should have already
1910      given an error about it before we got here.  */
1911   if (! TYPE_DOMAIN (type))
1912     return error_mark_node;
1913 
1914   index_type = TYPE_DOMAIN (type);
1915   min = TYPE_MIN_VALUE (index_type);
1916   max = TYPE_MAX_VALUE (index_type);
1917 
1918   return (integer_zerop (min)
1919 	  ? max
1920 	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1921 }
1922 
1923 /* If arg is static -- a reference to an object in static storage -- then
1924    return the object.  This is not the same as the C meaning of `static'.
1925    If arg isn't static, return NULL.  */
1926 
1927 tree
staticp(tree arg)1928 staticp (tree arg)
1929 {
1930   switch (TREE_CODE (arg))
1931     {
1932     case FUNCTION_DECL:
1933       /* Nested functions are static, even though taking their address will
1934 	 involve a trampoline as we unnest the nested function and create
1935 	 the trampoline on the tree level.  */
1936       return arg;
1937 
1938     case VAR_DECL:
1939       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1940 	      && ! DECL_THREAD_LOCAL_P (arg)
1941 	      && ! DECL_DLLIMPORT_P (arg)
1942 	      ? arg : NULL);
1943 
1944     case CONST_DECL:
1945       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1946 	      ? arg : NULL);
1947 
1948     case CONSTRUCTOR:
1949       return TREE_STATIC (arg) ? arg : NULL;
1950 
1951     case LABEL_DECL:
1952     case STRING_CST:
1953       return arg;
1954 
1955     case COMPONENT_REF:
1956       /* If the thing being referenced is not a field, then it is
1957 	 something language specific.  */
1958       if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1959 	return (*lang_hooks.staticp) (arg);
1960 
1961       /* If we are referencing a bitfield, we can't evaluate an
1962 	 ADDR_EXPR at compile time and so it isn't a constant.  */
1963       if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1964 	return NULL;
1965 
1966       return staticp (TREE_OPERAND (arg, 0));
1967 
1968     case BIT_FIELD_REF:
1969       return NULL;
1970 
1971     case MISALIGNED_INDIRECT_REF:
1972     case ALIGN_INDIRECT_REF:
1973     case INDIRECT_REF:
1974       return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1975 
1976     case ARRAY_REF:
1977     case ARRAY_RANGE_REF:
1978       if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1979 	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1980 	return staticp (TREE_OPERAND (arg, 0));
1981       else
1982 	return false;
1983 
1984     default:
1985       if ((unsigned int) TREE_CODE (arg)
1986 	  >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1987 	return lang_hooks.staticp (arg);
1988       else
1989 	return NULL;
1990     }
1991 }
1992 
1993 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1994    Do this to any expression which may be used in more than one place,
1995    but must be evaluated only once.
1996 
1997    Normally, expand_expr would reevaluate the expression each time.
1998    Calling save_expr produces something that is evaluated and recorded
1999    the first time expand_expr is called on it.  Subsequent calls to
2000    expand_expr just reuse the recorded value.
2001 
2002    The call to expand_expr that generates code that actually computes
2003    the value is the first call *at compile time*.  Subsequent calls
2004    *at compile time* generate code to use the saved value.
2005    This produces correct result provided that *at run time* control
2006    always flows through the insns made by the first expand_expr
2007    before reaching the other places where the save_expr was evaluated.
2008    You, the caller of save_expr, must make sure this is so.
2009 
2010    Constants, and certain read-only nodes, are returned with no
2011    SAVE_EXPR because that is safe.  Expressions containing placeholders
2012    are not touched; see tree.def for an explanation of what these
2013    are used for.  */
2014 
2015 tree
save_expr(tree expr)2016 save_expr (tree expr)
2017 {
2018   tree t = fold (expr);
2019   tree inner;
2020 
2021   /* If the tree evaluates to a constant, then we don't want to hide that
2022      fact (i.e. this allows further folding, and direct checks for constants).
2023      However, a read-only object that has side effects cannot be bypassed.
2024      Since it is no problem to reevaluate literals, we just return the
2025      literal node.  */
2026   inner = skip_simple_arithmetic (t);
2027 
2028   if (TREE_INVARIANT (inner)
2029       || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2030       || TREE_CODE (inner) == SAVE_EXPR
2031       || TREE_CODE (inner) == ERROR_MARK)
2032     return t;
2033 
2034   /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2035      it means that the size or offset of some field of an object depends on
2036      the value within another field.
2037 
2038      Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2039      and some variable since it would then need to be both evaluated once and
2040      evaluated more than once.  Front-ends must assure this case cannot
2041      happen by surrounding any such subexpressions in their own SAVE_EXPR
2042      and forcing evaluation at the proper time.  */
2043   if (contains_placeholder_p (inner))
2044     return t;
2045 
2046   t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2047 
2048   /* This expression might be placed ahead of a jump to ensure that the
2049      value was computed on both sides of the jump.  So make sure it isn't
2050      eliminated as dead.  */
2051   TREE_SIDE_EFFECTS (t) = 1;
2052   TREE_INVARIANT (t) = 1;
2053   return t;
2054 }
2055 
2056 /* Look inside EXPR and into any simple arithmetic operations.  Return
2057    the innermost non-arithmetic node.  */
2058 
2059 tree
skip_simple_arithmetic(tree expr)2060 skip_simple_arithmetic (tree expr)
2061 {
2062   tree inner;
2063 
2064   /* We don't care about whether this can be used as an lvalue in this
2065      context.  */
2066   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2067     expr = TREE_OPERAND (expr, 0);
2068 
2069   /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2070      a constant, it will be more efficient to not make another SAVE_EXPR since
2071      it will allow better simplification and GCSE will be able to merge the
2072      computations if they actually occur.  */
2073   inner = expr;
2074   while (1)
2075     {
2076       if (UNARY_CLASS_P (inner))
2077 	inner = TREE_OPERAND (inner, 0);
2078       else if (BINARY_CLASS_P (inner))
2079 	{
2080 	  if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2081 	    inner = TREE_OPERAND (inner, 0);
2082 	  else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2083 	    inner = TREE_OPERAND (inner, 1);
2084 	  else
2085 	    break;
2086 	}
2087       else
2088 	break;
2089     }
2090 
2091   return inner;
2092 }
2093 
2094 /* Return which tree structure is used by T.  */
2095 
2096 enum tree_node_structure_enum
tree_node_structure(tree t)2097 tree_node_structure (tree t)
2098 {
2099   enum tree_code code = TREE_CODE (t);
2100 
2101   switch (TREE_CODE_CLASS (code))
2102     {
2103     case tcc_declaration:
2104       {
2105 	switch (code)
2106 	  {
2107 	  case FIELD_DECL:
2108 	    return TS_FIELD_DECL;
2109 	  case PARM_DECL:
2110 	    return TS_PARM_DECL;
2111 	  case VAR_DECL:
2112 	    return TS_VAR_DECL;
2113 	  case LABEL_DECL:
2114 	    return TS_LABEL_DECL;
2115 	  case RESULT_DECL:
2116 	    return TS_RESULT_DECL;
2117 	  case CONST_DECL:
2118 	    return TS_CONST_DECL;
2119 	  case TYPE_DECL:
2120 	    return TS_TYPE_DECL;
2121 	  case FUNCTION_DECL:
2122 	    return TS_FUNCTION_DECL;
2123 	  case SYMBOL_MEMORY_TAG:
2124 	  case NAME_MEMORY_TAG:
2125 	  case STRUCT_FIELD_TAG:
2126 	    return TS_MEMORY_TAG;
2127 	  default:
2128 	    return TS_DECL_NON_COMMON;
2129 	  }
2130       }
2131     case tcc_type:
2132       return TS_TYPE;
2133     case tcc_reference:
2134     case tcc_comparison:
2135     case tcc_unary:
2136     case tcc_binary:
2137     case tcc_expression:
2138     case tcc_statement:
2139       return TS_EXP;
2140     default:  /* tcc_constant and tcc_exceptional */
2141       break;
2142     }
2143   switch (code)
2144     {
2145       /* tcc_constant cases.  */
2146     case INTEGER_CST:		return TS_INT_CST;
2147     case REAL_CST:		return TS_REAL_CST;
2148     case COMPLEX_CST:		return TS_COMPLEX;
2149     case VECTOR_CST:		return TS_VECTOR;
2150     case STRING_CST:		return TS_STRING;
2151       /* tcc_exceptional cases.  */
2152     case ERROR_MARK:		return TS_COMMON;
2153     case IDENTIFIER_NODE:	return TS_IDENTIFIER;
2154     case TREE_LIST:		return TS_LIST;
2155     case TREE_VEC:		return TS_VEC;
2156     case PHI_NODE:		return TS_PHI_NODE;
2157     case SSA_NAME:		return TS_SSA_NAME;
2158     case PLACEHOLDER_EXPR:	return TS_COMMON;
2159     case STATEMENT_LIST:	return TS_STATEMENT_LIST;
2160     case BLOCK:			return TS_BLOCK;
2161     case CONSTRUCTOR:		return TS_CONSTRUCTOR;
2162     case TREE_BINFO:		return TS_BINFO;
2163     case VALUE_HANDLE:		return TS_VALUE_HANDLE;
2164     case OMP_CLAUSE:		return TS_OMP_CLAUSE;
2165 
2166     default:
2167       gcc_unreachable ();
2168     }
2169 }
2170 
2171 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2172    or offset that depends on a field within a record.  */
2173 
2174 bool
contains_placeholder_p(tree exp)2175 contains_placeholder_p (tree exp)
2176 {
2177   enum tree_code code;
2178 
2179   if (!exp)
2180     return 0;
2181 
2182   code = TREE_CODE (exp);
2183   if (code == PLACEHOLDER_EXPR)
2184     return 1;
2185 
2186   switch (TREE_CODE_CLASS (code))
2187     {
2188     case tcc_reference:
2189       /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2190 	 position computations since they will be converted into a
2191 	 WITH_RECORD_EXPR involving the reference, which will assume
2192 	 here will be valid.  */
2193       return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2194 
2195     case tcc_exceptional:
2196       if (code == TREE_LIST)
2197 	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2198 		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2199       break;
2200 
2201     case tcc_unary:
2202     case tcc_binary:
2203     case tcc_comparison:
2204     case tcc_expression:
2205       switch (code)
2206 	{
2207 	case COMPOUND_EXPR:
2208 	  /* Ignoring the first operand isn't quite right, but works best.  */
2209 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2210 
2211 	case COND_EXPR:
2212 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2213 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2214 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2215 
2216 	case CALL_EXPR:
2217 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2218 
2219 	default:
2220 	  break;
2221 	}
2222 
2223       switch (TREE_CODE_LENGTH (code))
2224 	{
2225 	case 1:
2226 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2227 	case 2:
2228 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2229 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2230 	default:
2231 	  return 0;
2232 	}
2233 
2234     default:
2235       return 0;
2236     }
2237   return 0;
2238 }
2239 
2240 /* Return true if any part of the computation of TYPE involves a
2241    PLACEHOLDER_EXPR.  This includes size, bounds, qualifiers
2242    (for QUAL_UNION_TYPE) and field positions.  */
2243 
2244 static bool
type_contains_placeholder_1(tree type)2245 type_contains_placeholder_1 (tree type)
2246 {
2247   /* If the size contains a placeholder or the parent type (component type in
2248      the case of arrays) type involves a placeholder, this type does.  */
2249   if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2250       || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2251       || (TREE_TYPE (type) != 0
2252 	  && type_contains_placeholder_p (TREE_TYPE (type))))
2253     return true;
2254 
2255   /* Now do type-specific checks.  Note that the last part of the check above
2256      greatly limits what we have to do below.  */
2257   switch (TREE_CODE (type))
2258     {
2259     case VOID_TYPE:
2260     case COMPLEX_TYPE:
2261     case ENUMERAL_TYPE:
2262     case BOOLEAN_TYPE:
2263     case POINTER_TYPE:
2264     case OFFSET_TYPE:
2265     case REFERENCE_TYPE:
2266     case METHOD_TYPE:
2267     case FUNCTION_TYPE:
2268     case VECTOR_TYPE:
2269       return false;
2270 
2271     case INTEGER_TYPE:
2272     case REAL_TYPE:
2273       /* Here we just check the bounds.  */
2274       return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2275 	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2276 
2277     case ARRAY_TYPE:
2278       /* We're already checked the component type (TREE_TYPE), so just check
2279 	 the index type.  */
2280       return type_contains_placeholder_p (TYPE_DOMAIN (type));
2281 
2282     case RECORD_TYPE:
2283     case UNION_TYPE:
2284     case QUAL_UNION_TYPE:
2285       {
2286 	tree field;
2287 
2288 	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2289 	  if (TREE_CODE (field) == FIELD_DECL
2290 	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2291 		  || (TREE_CODE (type) == QUAL_UNION_TYPE
2292 		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2293 		  || type_contains_placeholder_p (TREE_TYPE (field))))
2294 	    return true;
2295 
2296 	return false;
2297       }
2298 
2299     default:
2300       gcc_unreachable ();
2301     }
2302 }
2303 
2304 bool
type_contains_placeholder_p(tree type)2305 type_contains_placeholder_p (tree type)
2306 {
2307   bool result;
2308 
2309   /* If the contains_placeholder_bits field has been initialized,
2310      then we know the answer.  */
2311   if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2312     return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2313 
2314   /* Indicate that we've seen this type node, and the answer is false.
2315      This is what we want to return if we run into recursion via fields.  */
2316   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2317 
2318   /* Compute the real value.  */
2319   result = type_contains_placeholder_1 (type);
2320 
2321   /* Store the real value.  */
2322   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2323 
2324   return result;
2325 }
2326 
2327 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2328    return a tree with all occurrences of references to F in a
2329    PLACEHOLDER_EXPR replaced by R.   Note that we assume here that EXP
2330    contains only arithmetic expressions or a CALL_EXPR with a
2331    PLACEHOLDER_EXPR occurring only in its arglist.  */
2332 
2333 tree
substitute_in_expr(tree exp,tree f,tree r)2334 substitute_in_expr (tree exp, tree f, tree r)
2335 {
2336   enum tree_code code = TREE_CODE (exp);
2337   tree op0, op1, op2, op3;
2338   tree new;
2339   tree inner;
2340 
2341   /* We handle TREE_LIST and COMPONENT_REF separately.  */
2342   if (code == TREE_LIST)
2343     {
2344       op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2345       op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2346       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2347 	return exp;
2348 
2349       return tree_cons (TREE_PURPOSE (exp), op1, op0);
2350     }
2351   else if (code == COMPONENT_REF)
2352    {
2353      /* If this expression is getting a value from a PLACEHOLDER_EXPR
2354 	and it is the right field, replace it with R.  */
2355      for (inner = TREE_OPERAND (exp, 0);
2356 	  REFERENCE_CLASS_P (inner);
2357 	  inner = TREE_OPERAND (inner, 0))
2358        ;
2359      if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2360 	 && TREE_OPERAND (exp, 1) == f)
2361        return r;
2362 
2363      /* If this expression hasn't been completed let, leave it alone.  */
2364      if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2365        return exp;
2366 
2367      op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2368      if (op0 == TREE_OPERAND (exp, 0))
2369        return exp;
2370 
2371      new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2372 			op0, TREE_OPERAND (exp, 1), NULL_TREE);
2373    }
2374   else
2375     switch (TREE_CODE_CLASS (code))
2376       {
2377       case tcc_constant:
2378       case tcc_declaration:
2379 	return exp;
2380 
2381       case tcc_exceptional:
2382       case tcc_unary:
2383       case tcc_binary:
2384       case tcc_comparison:
2385       case tcc_expression:
2386       case tcc_reference:
2387 	switch (TREE_CODE_LENGTH (code))
2388 	  {
2389 	  case 0:
2390 	    return exp;
2391 
2392 	  case 1:
2393 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2394 	    if (op0 == TREE_OPERAND (exp, 0))
2395 	      return exp;
2396 
2397 	    new = fold_build1 (code, TREE_TYPE (exp), op0);
2398 	    break;
2399 
2400 	  case 2:
2401 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2402 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2403 
2404 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2405 	      return exp;
2406 
2407 	    new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2408 	    break;
2409 
2410 	  case 3:
2411 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2412 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2413 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2414 
2415 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2416 		&& op2 == TREE_OPERAND (exp, 2))
2417 	      return exp;
2418 
2419 	    new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2420 	    break;
2421 
2422 	  case 4:
2423 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2424 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2425 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2426 	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2427 
2428 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2429 		&& op2 == TREE_OPERAND (exp, 2)
2430 		&& op3 == TREE_OPERAND (exp, 3))
2431 	      return exp;
2432 
2433 	    new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2434 	    break;
2435 
2436 	  default:
2437 	    gcc_unreachable ();
2438 	  }
2439 	break;
2440 
2441       default:
2442 	gcc_unreachable ();
2443       }
2444 
2445   TREE_READONLY (new) = TREE_READONLY (exp);
2446   return new;
2447 }
2448 
2449 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2450    for it within OBJ, a tree that is an object or a chain of references.  */
2451 
2452 tree
substitute_placeholder_in_expr(tree exp,tree obj)2453 substitute_placeholder_in_expr (tree exp, tree obj)
2454 {
2455   enum tree_code code = TREE_CODE (exp);
2456   tree op0, op1, op2, op3;
2457 
2458   /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2459      in the chain of OBJ.  */
2460   if (code == PLACEHOLDER_EXPR)
2461     {
2462       tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2463       tree elt;
2464 
2465       for (elt = obj; elt != 0;
2466 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2467 		   || TREE_CODE (elt) == COND_EXPR)
2468 		  ? TREE_OPERAND (elt, 1)
2469 		  : (REFERENCE_CLASS_P (elt)
2470 		     || UNARY_CLASS_P (elt)
2471 		     || BINARY_CLASS_P (elt)
2472 		     || EXPRESSION_CLASS_P (elt))
2473 		  ? TREE_OPERAND (elt, 0) : 0))
2474 	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2475 	  return elt;
2476 
2477       for (elt = obj; elt != 0;
2478 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2479 		   || TREE_CODE (elt) == COND_EXPR)
2480 		  ? TREE_OPERAND (elt, 1)
2481 		  : (REFERENCE_CLASS_P (elt)
2482 		     || UNARY_CLASS_P (elt)
2483 		     || BINARY_CLASS_P (elt)
2484 		     || EXPRESSION_CLASS_P (elt))
2485 		  ? TREE_OPERAND (elt, 0) : 0))
2486 	if (POINTER_TYPE_P (TREE_TYPE (elt))
2487 	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2488 		== need_type))
2489 	  return fold_build1 (INDIRECT_REF, need_type, elt);
2490 
2491       /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
2492 	 survives until RTL generation, there will be an error.  */
2493       return exp;
2494     }
2495 
2496   /* TREE_LIST is special because we need to look at TREE_VALUE
2497      and TREE_CHAIN, not TREE_OPERANDS.  */
2498   else if (code == TREE_LIST)
2499     {
2500       op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2501       op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2502       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2503 	return exp;
2504 
2505       return tree_cons (TREE_PURPOSE (exp), op1, op0);
2506     }
2507   else
2508     switch (TREE_CODE_CLASS (code))
2509       {
2510       case tcc_constant:
2511       case tcc_declaration:
2512 	return exp;
2513 
2514       case tcc_exceptional:
2515       case tcc_unary:
2516       case tcc_binary:
2517       case tcc_comparison:
2518       case tcc_expression:
2519       case tcc_reference:
2520       case tcc_statement:
2521 	switch (TREE_CODE_LENGTH (code))
2522 	  {
2523 	  case 0:
2524 	    return exp;
2525 
2526 	  case 1:
2527 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2528 	    if (op0 == TREE_OPERAND (exp, 0))
2529 	      return exp;
2530 	    else
2531 	      return fold_build1 (code, TREE_TYPE (exp), op0);
2532 
2533 	  case 2:
2534 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2535 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2536 
2537 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2538 	      return exp;
2539 	    else
2540 	      return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2541 
2542 	  case 3:
2543 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2544 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2545 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2546 
2547 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2548 		&& op2 == TREE_OPERAND (exp, 2))
2549 	      return exp;
2550 	    else
2551 	      return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2552 
2553 	  case 4:
2554 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2555 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2556 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2557 	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2558 
2559 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2560 		&& op2 == TREE_OPERAND (exp, 2)
2561 		&& op3 == TREE_OPERAND (exp, 3))
2562 	      return exp;
2563 	    else
2564 	      return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2565 
2566 	  default:
2567 	    gcc_unreachable ();
2568 	  }
2569 	break;
2570 
2571       default:
2572 	gcc_unreachable ();
2573       }
2574 }
2575 
2576 /* Stabilize a reference so that we can use it any number of times
2577    without causing its operands to be evaluated more than once.
2578    Returns the stabilized reference.  This works by means of save_expr,
2579    so see the caveats in the comments about save_expr.
2580 
2581    Also allows conversion expressions whose operands are references.
2582    Any other kind of expression is returned unchanged.  */
2583 
2584 tree
stabilize_reference(tree ref)2585 stabilize_reference (tree ref)
2586 {
2587   tree result;
2588   enum tree_code code = TREE_CODE (ref);
2589 
2590   switch (code)
2591     {
2592     case VAR_DECL:
2593     case PARM_DECL:
2594     case RESULT_DECL:
2595       /* No action is needed in this case.  */
2596       return ref;
2597 
2598     case NOP_EXPR:
2599     case CONVERT_EXPR:
2600     case FLOAT_EXPR:
2601     case FIX_TRUNC_EXPR:
2602     case FIX_FLOOR_EXPR:
2603     case FIX_ROUND_EXPR:
2604     case FIX_CEIL_EXPR:
2605       result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2606       break;
2607 
2608     case INDIRECT_REF:
2609       result = build_nt (INDIRECT_REF,
2610 			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2611       break;
2612 
2613     case COMPONENT_REF:
2614       result = build_nt (COMPONENT_REF,
2615 			 stabilize_reference (TREE_OPERAND (ref, 0)),
2616 			 TREE_OPERAND (ref, 1), NULL_TREE);
2617       break;
2618 
2619     case BIT_FIELD_REF:
2620       result = build_nt (BIT_FIELD_REF,
2621 			 stabilize_reference (TREE_OPERAND (ref, 0)),
2622 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2623 			 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2624       break;
2625 
2626     case ARRAY_REF:
2627       result = build_nt (ARRAY_REF,
2628 			 stabilize_reference (TREE_OPERAND (ref, 0)),
2629 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2630 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2631       break;
2632 
2633     case ARRAY_RANGE_REF:
2634       result = build_nt (ARRAY_RANGE_REF,
2635 			 stabilize_reference (TREE_OPERAND (ref, 0)),
2636 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2637 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2638       break;
2639 
2640     case COMPOUND_EXPR:
2641       /* We cannot wrap the first expression in a SAVE_EXPR, as then
2642 	 it wouldn't be ignored.  This matters when dealing with
2643 	 volatiles.  */
2644       return stabilize_reference_1 (ref);
2645 
2646       /* If arg isn't a kind of lvalue we recognize, make no change.
2647 	 Caller should recognize the error for an invalid lvalue.  */
2648     default:
2649       return ref;
2650 
2651     case ERROR_MARK:
2652       return error_mark_node;
2653     }
2654 
2655   TREE_TYPE (result) = TREE_TYPE (ref);
2656   TREE_READONLY (result) = TREE_READONLY (ref);
2657   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2658   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2659 
2660   return result;
2661 }
2662 
2663 /* Subroutine of stabilize_reference; this is called for subtrees of
2664    references.  Any expression with side-effects must be put in a SAVE_EXPR
2665    to ensure that it is only evaluated once.
2666 
2667    We don't put SAVE_EXPR nodes around everything, because assigning very
2668    simple expressions to temporaries causes us to miss good opportunities
2669    for optimizations.  Among other things, the opportunity to fold in the
2670    addition of a constant into an addressing mode often gets lost, e.g.
2671    "y[i+1] += x;".  In general, we take the approach that we should not make
2672    an assignment unless we are forced into it - i.e., that any non-side effect
2673    operator should be allowed, and that cse should take care of coalescing
2674    multiple utterances of the same expression should that prove fruitful.  */
2675 
2676 tree
stabilize_reference_1(tree e)2677 stabilize_reference_1 (tree e)
2678 {
2679   tree result;
2680   enum tree_code code = TREE_CODE (e);
2681 
2682   /* We cannot ignore const expressions because it might be a reference
2683      to a const array but whose index contains side-effects.  But we can
2684      ignore things that are actual constant or that already have been
2685      handled by this function.  */
2686 
2687   if (TREE_INVARIANT (e))
2688     return e;
2689 
2690   switch (TREE_CODE_CLASS (code))
2691     {
2692     case tcc_exceptional:
2693     case tcc_type:
2694     case tcc_declaration:
2695     case tcc_comparison:
2696     case tcc_statement:
2697     case tcc_expression:
2698     case tcc_reference:
2699       /* If the expression has side-effects, then encase it in a SAVE_EXPR
2700 	 so that it will only be evaluated once.  */
2701       /* The reference (r) and comparison (<) classes could be handled as
2702 	 below, but it is generally faster to only evaluate them once.  */
2703       if (TREE_SIDE_EFFECTS (e))
2704 	return save_expr (e);
2705       return e;
2706 
2707     case tcc_constant:
2708       /* Constants need no processing.  In fact, we should never reach
2709 	 here.  */
2710       return e;
2711 
2712     case tcc_binary:
2713       /* Division is slow and tends to be compiled with jumps,
2714 	 especially the division by powers of 2 that is often
2715 	 found inside of an array reference.  So do it just once.  */
2716       if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2717 	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2718 	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2719 	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2720 	return save_expr (e);
2721       /* Recursively stabilize each operand.  */
2722       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2723 			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2724       break;
2725 
2726     case tcc_unary:
2727       /* Recursively stabilize each operand.  */
2728       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2729       break;
2730 
2731     default:
2732       gcc_unreachable ();
2733     }
2734 
2735   TREE_TYPE (result) = TREE_TYPE (e);
2736   TREE_READONLY (result) = TREE_READONLY (e);
2737   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2738   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2739   TREE_INVARIANT (result) = 1;
2740 
2741   return result;
2742 }
2743 
2744 /* Low-level constructors for expressions.  */
2745 
2746 /* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
2747    TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
2748 
2749 void
recompute_tree_invariant_for_addr_expr(tree t)2750 recompute_tree_invariant_for_addr_expr (tree t)
2751 {
2752   tree node;
2753   bool tc = true, ti = true, se = false;
2754 
2755   /* We started out assuming this address is both invariant and constant, but
2756      does not have side effects.  Now go down any handled components and see if
2757      any of them involve offsets that are either non-constant or non-invariant.
2758      Also check for side-effects.
2759 
2760      ??? Note that this code makes no attempt to deal with the case where
2761      taking the address of something causes a copy due to misalignment.  */
2762 
2763 #define UPDATE_TITCSE(NODE)  \
2764 do { tree _node = (NODE); \
2765      if (_node && !TREE_INVARIANT (_node)) ti = false; \
2766      if (_node && !TREE_CONSTANT (_node)) tc = false; \
2767      if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2768 
2769   for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2770        node = TREE_OPERAND (node, 0))
2771     {
2772       /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2773 	 array reference (probably made temporarily by the G++ front end),
2774 	 so ignore all the operands.  */
2775       if ((TREE_CODE (node) == ARRAY_REF
2776 	   || TREE_CODE (node) == ARRAY_RANGE_REF)
2777 	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2778 	{
2779 	  UPDATE_TITCSE (TREE_OPERAND (node, 1));
2780 	  if (TREE_OPERAND (node, 2))
2781 	    UPDATE_TITCSE (TREE_OPERAND (node, 2));
2782 	  if (TREE_OPERAND (node, 3))
2783 	    UPDATE_TITCSE (TREE_OPERAND (node, 3));
2784 	}
2785       /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2786 	 FIELD_DECL, apparently.  The G++ front end can put something else
2787 	 there, at least temporarily.  */
2788       else if (TREE_CODE (node) == COMPONENT_REF
2789 	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2790 	{
2791 	  if (TREE_OPERAND (node, 2))
2792 	    UPDATE_TITCSE (TREE_OPERAND (node, 2));
2793 	}
2794       else if (TREE_CODE (node) == BIT_FIELD_REF)
2795 	UPDATE_TITCSE (TREE_OPERAND (node, 2));
2796     }
2797 
2798   node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2799 
2800   /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
2801      the address, since &(*a)->b is a form of addition.  If it's a decl, it's
2802      invariant and constant if the decl is static.  It's also invariant if it's
2803      a decl in the current function.  Taking the address of a volatile variable
2804      is not volatile.  If it's a constant, the address is both invariant and
2805      constant.  Otherwise it's neither.  */
2806   if (TREE_CODE (node) == INDIRECT_REF)
2807     UPDATE_TITCSE (TREE_OPERAND (node, 0));
2808   else if (DECL_P (node))
2809     {
2810       if (staticp (node))
2811 	;
2812       else if (decl_function_context (node) == current_function_decl
2813 	       /* Addresses of thread-local variables are invariant.  */
2814 	       || (TREE_CODE (node) == VAR_DECL
2815 		   && DECL_THREAD_LOCAL_P (node)))
2816 	tc = false;
2817       else
2818 	ti = tc = false;
2819     }
2820   else if (CONSTANT_CLASS_P (node))
2821     ;
2822   else
2823     {
2824       ti = tc = false;
2825       se |= TREE_SIDE_EFFECTS (node);
2826     }
2827 
2828   TREE_CONSTANT (t) = tc;
2829   TREE_INVARIANT (t) = ti;
2830   TREE_SIDE_EFFECTS (t) = se;
2831 #undef UPDATE_TITCSE
2832 }
2833 
2834 /* Build an expression of code CODE, data type TYPE, and operands as
2835    specified.  Expressions and reference nodes can be created this way.
2836    Constants, decls, types and misc nodes cannot be.
2837 
2838    We define 5 non-variadic functions, from 0 to 4 arguments.  This is
2839    enough for all extant tree codes.  */
2840 
2841 tree
build0_stat(enum tree_code code,tree tt MEM_STAT_DECL)2842 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2843 {
2844   tree t;
2845 
2846   gcc_assert (TREE_CODE_LENGTH (code) == 0);
2847 
2848   t = make_node_stat (code PASS_MEM_STAT);
2849   TREE_TYPE (t) = tt;
2850 
2851   return t;
2852 }
2853 
2854 tree
build1_stat(enum tree_code code,tree type,tree node MEM_STAT_DECL)2855 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2856 {
2857   int length = sizeof (struct tree_exp);
2858 #ifdef GATHER_STATISTICS
2859   tree_node_kind kind;
2860 #endif
2861   tree t;
2862 
2863 #ifdef GATHER_STATISTICS
2864   switch (TREE_CODE_CLASS (code))
2865     {
2866     case tcc_statement:  /* an expression with side effects */
2867       kind = s_kind;
2868       break;
2869     case tcc_reference:  /* a reference */
2870       kind = r_kind;
2871       break;
2872     default:
2873       kind = e_kind;
2874       break;
2875     }
2876 
2877   tree_node_counts[(int) kind]++;
2878   tree_node_sizes[(int) kind] += length;
2879 #endif
2880 
2881   gcc_assert (TREE_CODE_LENGTH (code) == 1);
2882 
2883   t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2884 
2885   memset (t, 0, sizeof (struct tree_common));
2886 
2887   TREE_SET_CODE (t, code);
2888 
2889   TREE_TYPE (t) = type;
2890 #ifdef USE_MAPPED_LOCATION
2891   SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2892 #else
2893   SET_EXPR_LOCUS (t, NULL);
2894 #endif
2895   TREE_COMPLEXITY (t) = 0;
2896   TREE_OPERAND (t, 0) = node;
2897   TREE_BLOCK (t) = NULL_TREE;
2898   if (node && !TYPE_P (node))
2899     {
2900       TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2901       TREE_READONLY (t) = TREE_READONLY (node);
2902     }
2903 
2904   if (TREE_CODE_CLASS (code) == tcc_statement)
2905     TREE_SIDE_EFFECTS (t) = 1;
2906   else switch (code)
2907     {
2908     case VA_ARG_EXPR:
2909       /* All of these have side-effects, no matter what their
2910 	 operands are.  */
2911       TREE_SIDE_EFFECTS (t) = 1;
2912       TREE_READONLY (t) = 0;
2913       break;
2914 
2915     case MISALIGNED_INDIRECT_REF:
2916     case ALIGN_INDIRECT_REF:
2917     case INDIRECT_REF:
2918       /* Whether a dereference is readonly has nothing to do with whether
2919 	 its operand is readonly.  */
2920       TREE_READONLY (t) = 0;
2921       break;
2922 
2923     case ADDR_EXPR:
2924       if (node)
2925 	recompute_tree_invariant_for_addr_expr (t);
2926       break;
2927 
2928     default:
2929       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2930 	  && node && !TYPE_P (node)
2931 	  && TREE_CONSTANT (node))
2932 	TREE_CONSTANT (t) = 1;
2933       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2934 	  && node && TREE_INVARIANT (node))
2935 	TREE_INVARIANT (t) = 1;
2936       if (TREE_CODE_CLASS (code) == tcc_reference
2937 	  && node && TREE_THIS_VOLATILE (node))
2938 	TREE_THIS_VOLATILE (t) = 1;
2939       break;
2940     }
2941 
2942   return t;
2943 }
2944 
2945 #define PROCESS_ARG(N)			\
2946   do {					\
2947     TREE_OPERAND (t, N) = arg##N;	\
2948     if (arg##N &&!TYPE_P (arg##N))	\
2949       {					\
2950         if (TREE_SIDE_EFFECTS (arg##N))	\
2951 	  side_effects = 1;		\
2952         if (!TREE_READONLY (arg##N))	\
2953 	  read_only = 0;		\
2954         if (!TREE_CONSTANT (arg##N))	\
2955 	  constant = 0;			\
2956 	if (!TREE_INVARIANT (arg##N))	\
2957 	  invariant = 0;		\
2958       }					\
2959   } while (0)
2960 
2961 tree
build2_stat(enum tree_code code,tree tt,tree arg0,tree arg1 MEM_STAT_DECL)2962 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2963 {
2964   bool constant, read_only, side_effects, invariant;
2965   tree t;
2966 
2967   gcc_assert (TREE_CODE_LENGTH (code) == 2);
2968 
2969   t = make_node_stat (code PASS_MEM_STAT);
2970   TREE_TYPE (t) = tt;
2971 
2972   /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2973      result based on those same flags for the arguments.  But if the
2974      arguments aren't really even `tree' expressions, we shouldn't be trying
2975      to do this.  */
2976 
2977   /* Expressions without side effects may be constant if their
2978      arguments are as well.  */
2979   constant = (TREE_CODE_CLASS (code) == tcc_comparison
2980 	      || TREE_CODE_CLASS (code) == tcc_binary);
2981   read_only = 1;
2982   side_effects = TREE_SIDE_EFFECTS (t);
2983   invariant = constant;
2984 
2985   PROCESS_ARG(0);
2986   PROCESS_ARG(1);
2987 
2988   TREE_READONLY (t) = read_only;
2989   TREE_CONSTANT (t) = constant;
2990   TREE_INVARIANT (t) = invariant;
2991   TREE_SIDE_EFFECTS (t) = side_effects;
2992   TREE_THIS_VOLATILE (t)
2993     = (TREE_CODE_CLASS (code) == tcc_reference
2994        && arg0 && TREE_THIS_VOLATILE (arg0));
2995 
2996   return t;
2997 }
2998 
2999 tree
build3_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2 MEM_STAT_DECL)3000 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3001 	     tree arg2 MEM_STAT_DECL)
3002 {
3003   bool constant, read_only, side_effects, invariant;
3004   tree t;
3005 
3006   gcc_assert (TREE_CODE_LENGTH (code) == 3);
3007 
3008   t = make_node_stat (code PASS_MEM_STAT);
3009   TREE_TYPE (t) = tt;
3010 
3011   side_effects = TREE_SIDE_EFFECTS (t);
3012 
3013   PROCESS_ARG(0);
3014   PROCESS_ARG(1);
3015   PROCESS_ARG(2);
3016 
3017   if (code == CALL_EXPR && !side_effects)
3018     {
3019       tree node;
3020       int i;
3021 
3022       /* Calls have side-effects, except those to const or
3023 	 pure functions.  */
3024       i = call_expr_flags (t);
3025       if (!(i & (ECF_CONST | ECF_PURE)))
3026 	side_effects = 1;
3027 
3028       /* And even those have side-effects if their arguments do.  */
3029       else for (node = arg1; node; node = TREE_CHAIN (node))
3030 	if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3031 	  {
3032 	    side_effects = 1;
3033 	    break;
3034 	  }
3035     }
3036 
3037   TREE_SIDE_EFFECTS (t) = side_effects;
3038   TREE_THIS_VOLATILE (t)
3039     = (TREE_CODE_CLASS (code) == tcc_reference
3040        && arg0 && TREE_THIS_VOLATILE (arg0));
3041 
3042   return t;
3043 }
3044 
3045 tree
build4_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2,tree arg3 MEM_STAT_DECL)3046 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3047 	     tree arg2, tree arg3 MEM_STAT_DECL)
3048 {
3049   bool constant, read_only, side_effects, invariant;
3050   tree t;
3051 
3052   gcc_assert (TREE_CODE_LENGTH (code) == 4);
3053 
3054   t = make_node_stat (code PASS_MEM_STAT);
3055   TREE_TYPE (t) = tt;
3056 
3057   side_effects = TREE_SIDE_EFFECTS (t);
3058 
3059   PROCESS_ARG(0);
3060   PROCESS_ARG(1);
3061   PROCESS_ARG(2);
3062   PROCESS_ARG(3);
3063 
3064   TREE_SIDE_EFFECTS (t) = side_effects;
3065   TREE_THIS_VOLATILE (t)
3066     = (TREE_CODE_CLASS (code) == tcc_reference
3067        && arg0 && TREE_THIS_VOLATILE (arg0));
3068 
3069   return t;
3070 }
3071 
3072 tree
build5_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2,tree arg3,tree arg4 MEM_STAT_DECL)3073 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3074 	     tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3075 {
3076   bool constant, read_only, side_effects, invariant;
3077   tree t;
3078 
3079   gcc_assert (TREE_CODE_LENGTH (code) == 5);
3080 
3081   t = make_node_stat (code PASS_MEM_STAT);
3082   TREE_TYPE (t) = tt;
3083 
3084   side_effects = TREE_SIDE_EFFECTS (t);
3085 
3086   PROCESS_ARG(0);
3087   PROCESS_ARG(1);
3088   PROCESS_ARG(2);
3089   PROCESS_ARG(3);
3090   PROCESS_ARG(4);
3091 
3092   TREE_SIDE_EFFECTS (t) = side_effects;
3093   TREE_THIS_VOLATILE (t)
3094     = (TREE_CODE_CLASS (code) == tcc_reference
3095        && arg0 && TREE_THIS_VOLATILE (arg0));
3096 
3097   return t;
3098 }
3099 
3100 tree
build7_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2,tree arg3,tree arg4,tree arg5,tree arg6 MEM_STAT_DECL)3101 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3102 	     tree arg2, tree arg3, tree arg4, tree arg5,
3103 	     tree arg6 MEM_STAT_DECL)
3104 {
3105   bool constant, read_only, side_effects, invariant;
3106   tree t;
3107 
3108   gcc_assert (code == TARGET_MEM_REF);
3109 
3110   t = make_node_stat (code PASS_MEM_STAT);
3111   TREE_TYPE (t) = tt;
3112 
3113   side_effects = TREE_SIDE_EFFECTS (t);
3114 
3115   PROCESS_ARG(0);
3116   PROCESS_ARG(1);
3117   PROCESS_ARG(2);
3118   PROCESS_ARG(3);
3119   PROCESS_ARG(4);
3120   PROCESS_ARG(5);
3121   PROCESS_ARG(6);
3122 
3123   TREE_SIDE_EFFECTS (t) = side_effects;
3124   TREE_THIS_VOLATILE (t) = 0;
3125 
3126   return t;
3127 }
3128 
3129 /* Similar except don't specify the TREE_TYPE
3130    and leave the TREE_SIDE_EFFECTS as 0.
3131    It is permissible for arguments to be null,
3132    or even garbage if their values do not matter.  */
3133 
3134 tree
build_nt(enum tree_code code,...)3135 build_nt (enum tree_code code, ...)
3136 {
3137   tree t;
3138   int length;
3139   int i;
3140   va_list p;
3141 
3142   va_start (p, code);
3143 
3144   t = make_node (code);
3145   length = TREE_CODE_LENGTH (code);
3146 
3147   for (i = 0; i < length; i++)
3148     TREE_OPERAND (t, i) = va_arg (p, tree);
3149 
3150   va_end (p);
3151   return t;
3152 }
3153 
3154 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3155    We do NOT enter this node in any sort of symbol table.
3156 
3157    layout_decl is used to set up the decl's storage layout.
3158    Other slots are initialized to 0 or null pointers.  */
3159 
3160 tree
build_decl_stat(enum tree_code code,tree name,tree type MEM_STAT_DECL)3161 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3162 {
3163   tree t;
3164 
3165   t = make_node_stat (code PASS_MEM_STAT);
3166 
3167 /*  if (type == error_mark_node)
3168     type = integer_type_node; */
3169 /* That is not done, deliberately, so that having error_mark_node
3170    as the type can suppress useless errors in the use of this variable.  */
3171 
3172   DECL_NAME (t) = name;
3173   TREE_TYPE (t) = type;
3174 
3175   if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3176     layout_decl (t, 0);
3177   else if (code == FUNCTION_DECL)
3178     DECL_MODE (t) = FUNCTION_MODE;
3179 
3180   return t;
3181 }
3182 
3183 /* Builds and returns function declaration with NAME and TYPE.  */
3184 
3185 tree
build_fn_decl(const char * name,tree type)3186 build_fn_decl (const char *name, tree type)
3187 {
3188   tree id = get_identifier (name);
3189   tree decl = build_decl (FUNCTION_DECL, id, type);
3190 
3191   DECL_EXTERNAL (decl) = 1;
3192   TREE_PUBLIC (decl) = 1;
3193   DECL_ARTIFICIAL (decl) = 1;
3194   TREE_NOTHROW (decl) = 1;
3195 
3196   return decl;
3197 }
3198 
3199 
3200 /* BLOCK nodes are used to represent the structure of binding contours
3201    and declarations, once those contours have been exited and their contents
3202    compiled.  This information is used for outputting debugging info.  */
3203 
3204 tree
build_block(tree vars,tree subblocks,tree supercontext,tree chain)3205 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3206 {
3207   tree block = make_node (BLOCK);
3208 
3209   BLOCK_VARS (block) = vars;
3210   BLOCK_SUBBLOCKS (block) = subblocks;
3211   BLOCK_SUPERCONTEXT (block) = supercontext;
3212   BLOCK_CHAIN (block) = chain;
3213   return block;
3214 }
3215 
3216 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3217 /* ??? gengtype doesn't handle conditionals */
3218 static GTY(()) source_locus last_annotated_node;
3219 #endif
3220 
3221 #ifdef USE_MAPPED_LOCATION
3222 
3223 expanded_location
expand_location(source_location loc)3224 expand_location (source_location loc)
3225 {
3226   expanded_location xloc;
3227   if (loc == 0) { xloc.file = NULL; xloc.line = 0;  xloc.column = 0; }
3228   else
3229     {
3230       const struct line_map *map = linemap_lookup (&line_table, loc);
3231       xloc.file = map->to_file;
3232       xloc.line = SOURCE_LINE (map, loc);
3233       xloc.column = SOURCE_COLUMN (map, loc);
3234     };
3235   return xloc;
3236 }
3237 
3238 #else
3239 
3240 /* Record the exact location where an expression or an identifier were
3241    encountered.  */
3242 
3243 void
annotate_with_file_line(tree node,const char * file,int line)3244 annotate_with_file_line (tree node, const char *file, int line)
3245 {
3246   /* Roughly one percent of the calls to this function are to annotate
3247      a node with the same information already attached to that node!
3248      Just return instead of wasting memory.  */
3249   if (EXPR_LOCUS (node)
3250       && EXPR_LINENO (node) == line
3251       && (EXPR_FILENAME (node) == file
3252 	  || !strcmp (EXPR_FILENAME (node), file)))
3253     {
3254       last_annotated_node = EXPR_LOCUS (node);
3255       return;
3256     }
3257 
3258   /* In heavily macroized code (such as GCC itself) this single
3259      entry cache can reduce the number of allocations by more
3260      than half.  */
3261   if (last_annotated_node
3262       && last_annotated_node->line == line
3263       && (last_annotated_node->file == file
3264 	  || !strcmp (last_annotated_node->file, file)))
3265     {
3266       SET_EXPR_LOCUS (node, last_annotated_node);
3267       return;
3268     }
3269 
3270   SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3271   EXPR_LINENO (node) = line;
3272   EXPR_FILENAME (node) = file;
3273   last_annotated_node = EXPR_LOCUS (node);
3274 }
3275 
3276 void
annotate_with_locus(tree node,location_t locus)3277 annotate_with_locus (tree node, location_t locus)
3278 {
3279   annotate_with_file_line (node, locus.file, locus.line);
3280 }
3281 #endif
3282 
3283 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3284    is ATTRIBUTE.  */
3285 
3286 tree
build_decl_attribute_variant(tree ddecl,tree attribute)3287 build_decl_attribute_variant (tree ddecl, tree attribute)
3288 {
3289   DECL_ATTRIBUTES (ddecl) = attribute;
3290   return ddecl;
3291 }
3292 
3293 /* Borrowed from hashtab.c iterative_hash implementation.  */
3294 #define mix(a,b,c) \
3295 { \
3296   a -= b; a -= c; a ^= (c>>13); \
3297   b -= c; b -= a; b ^= (a<< 8); \
3298   c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3299   a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3300   b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3301   c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3302   a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3303   b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3304   c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3305 }
3306 
3307 
3308 /* Produce good hash value combining VAL and VAL2.  */
3309 static inline hashval_t
iterative_hash_hashval_t(hashval_t val,hashval_t val2)3310 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3311 {
3312   /* the golden ratio; an arbitrary value.  */
3313   hashval_t a = 0x9e3779b9;
3314 
3315   mix (a, val, val2);
3316   return val2;
3317 }
3318 
3319 /* Produce good hash value combining PTR and VAL2.  */
3320 static inline hashval_t
iterative_hash_pointer(void * ptr,hashval_t val2)3321 iterative_hash_pointer (void *ptr, hashval_t val2)
3322 {
3323   if (sizeof (ptr) == sizeof (hashval_t))
3324     return iterative_hash_hashval_t ((size_t) ptr, val2);
3325   else
3326     {
3327       hashval_t a = (hashval_t) (size_t) ptr;
3328       /* Avoid warnings about shifting of more than the width of the type on
3329          hosts that won't execute this path.  */
3330       int zero = 0;
3331       hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3332       mix (a, b, val2);
3333       return val2;
3334     }
3335 }
3336 
3337 /* Produce good hash value combining VAL and VAL2.  */
3338 static inline hashval_t
iterative_hash_host_wide_int(HOST_WIDE_INT val,hashval_t val2)3339 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3340 {
3341   if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3342     return iterative_hash_hashval_t (val, val2);
3343   else
3344     {
3345       hashval_t a = (hashval_t) val;
3346       /* Avoid warnings about shifting of more than the width of the type on
3347          hosts that won't execute this path.  */
3348       int zero = 0;
3349       hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3350       mix (a, b, val2);
3351       if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3352 	{
3353 	  hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3354 	  hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3355 	  mix (a, b, val2);
3356 	}
3357       return val2;
3358     }
3359 }
3360 
3361 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3362    is ATTRIBUTE and its qualifiers are QUALS.
3363 
3364    Record such modified types already made so we don't make duplicates.  */
3365 
3366 static tree
build_type_attribute_qual_variant(tree ttype,tree attribute,int quals)3367 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3368 {
3369   if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3370     {
3371       hashval_t hashcode = 0;
3372       tree ntype;
3373       enum tree_code code = TREE_CODE (ttype);
3374 
3375       ntype = copy_node (ttype);
3376 
3377       TYPE_POINTER_TO (ntype) = 0;
3378       TYPE_REFERENCE_TO (ntype) = 0;
3379       TYPE_ATTRIBUTES (ntype) = attribute;
3380 
3381       /* Create a new main variant of TYPE.  */
3382       TYPE_MAIN_VARIANT (ntype) = ntype;
3383       TYPE_NEXT_VARIANT (ntype) = 0;
3384       set_type_quals (ntype, TYPE_UNQUALIFIED);
3385 
3386       hashcode = iterative_hash_object (code, hashcode);
3387       if (TREE_TYPE (ntype))
3388 	hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3389 					  hashcode);
3390       hashcode = attribute_hash_list (attribute, hashcode);
3391 
3392       switch (TREE_CODE (ntype))
3393 	{
3394 	case FUNCTION_TYPE:
3395 	  hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3396 	  break;
3397 	case ARRAY_TYPE:
3398 	  hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3399 					    hashcode);
3400 	  break;
3401 	case INTEGER_TYPE:
3402 	  hashcode = iterative_hash_object
3403 	    (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3404 	  hashcode = iterative_hash_object
3405 	    (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3406 	  break;
3407 	case REAL_TYPE:
3408 	  {
3409 	    unsigned int precision = TYPE_PRECISION (ntype);
3410 	    hashcode = iterative_hash_object (precision, hashcode);
3411 	  }
3412 	  break;
3413 	default:
3414 	  break;
3415 	}
3416 
3417       ntype = type_hash_canon (hashcode, ntype);
3418       ttype = build_qualified_type (ntype, quals);
3419     }
3420 
3421   return ttype;
3422 }
3423 
3424 
3425 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3426    is ATTRIBUTE.
3427 
3428    Record such modified types already made so we don't make duplicates.  */
3429 
3430 tree
build_type_attribute_variant(tree ttype,tree attribute)3431 build_type_attribute_variant (tree ttype, tree attribute)
3432 {
3433   return build_type_attribute_qual_variant (ttype, attribute,
3434 					    TYPE_QUALS (ttype));
3435 }
3436 
3437 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3438    or zero if not.
3439 
3440    We try both `text' and `__text__', ATTR may be either one.  */
3441 /* ??? It might be a reasonable simplification to require ATTR to be only
3442    `text'.  One might then also require attribute lists to be stored in
3443    their canonicalized form.  */
3444 
3445 static int
is_attribute_with_length_p(const char * attr,int attr_len,tree ident)3446 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3447 {
3448   int ident_len;
3449   const char *p;
3450 
3451   if (TREE_CODE (ident) != IDENTIFIER_NODE)
3452     return 0;
3453 
3454   p = IDENTIFIER_POINTER (ident);
3455   ident_len = IDENTIFIER_LENGTH (ident);
3456 
3457   if (ident_len == attr_len
3458       && strcmp (attr, p) == 0)
3459     return 1;
3460 
3461   /* If ATTR is `__text__', IDENT must be `text'; and vice versa.  */
3462   if (attr[0] == '_')
3463     {
3464       gcc_assert (attr[1] == '_');
3465       gcc_assert (attr[attr_len - 2] == '_');
3466       gcc_assert (attr[attr_len - 1] == '_');
3467       if (ident_len == attr_len - 4
3468 	  && strncmp (attr + 2, p, attr_len - 4) == 0)
3469 	return 1;
3470     }
3471   else
3472     {
3473       if (ident_len == attr_len + 4
3474 	  && p[0] == '_' && p[1] == '_'
3475 	  && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3476 	  && strncmp (attr, p + 2, attr_len) == 0)
3477 	return 1;
3478     }
3479 
3480   return 0;
3481 }
3482 
3483 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3484    or zero if not.
3485 
3486    We try both `text' and `__text__', ATTR may be either one.  */
3487 
3488 int
is_attribute_p(const char * attr,tree ident)3489 is_attribute_p (const char *attr, tree ident)
3490 {
3491   return is_attribute_with_length_p (attr, strlen (attr), ident);
3492 }
3493 
3494 /* Given an attribute name and a list of attributes, return a pointer to the
3495    attribute's list element if the attribute is part of the list, or NULL_TREE
3496    if not found.  If the attribute appears more than once, this only
3497    returns the first occurrence; the TREE_CHAIN of the return value should
3498    be passed back in if further occurrences are wanted.  */
3499 
3500 tree
lookup_attribute(const char * attr_name,tree list)3501 lookup_attribute (const char *attr_name, tree list)
3502 {
3503   tree l;
3504   size_t attr_len = strlen (attr_name);
3505 
3506   for (l = list; l; l = TREE_CHAIN (l))
3507     {
3508       gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3509       if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3510 	return l;
3511     }
3512 
3513   return NULL_TREE;
3514 }
3515 
3516 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3517    modified list.  */
3518 
3519 tree
remove_attribute(const char * attr_name,tree list)3520 remove_attribute (const char *attr_name, tree list)
3521 {
3522   tree *p;
3523   size_t attr_len = strlen (attr_name);
3524 
3525   for (p = &list; *p; )
3526     {
3527       tree l = *p;
3528       gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3529       if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3530 	*p = TREE_CHAIN (l);
3531       else
3532 	p = &TREE_CHAIN (l);
3533     }
3534 
3535   return list;
3536 }
3537 
3538 /* Return an attribute list that is the union of a1 and a2.  */
3539 
3540 tree
merge_attributes(tree a1,tree a2)3541 merge_attributes (tree a1, tree a2)
3542 {
3543   tree attributes;
3544 
3545   /* Either one unset?  Take the set one.  */
3546 
3547   if ((attributes = a1) == 0)
3548     attributes = a2;
3549 
3550   /* One that completely contains the other?  Take it.  */
3551 
3552   else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3553     {
3554       if (attribute_list_contained (a2, a1))
3555 	attributes = a2;
3556       else
3557 	{
3558 	  /* Pick the longest list, and hang on the other list.  */
3559 
3560 	  if (list_length (a1) < list_length (a2))
3561 	    attributes = a2, a2 = a1;
3562 
3563 	  for (; a2 != 0; a2 = TREE_CHAIN (a2))
3564 	    {
3565 	      tree a;
3566 	      for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3567 					 attributes);
3568 		   a != NULL_TREE;
3569 		   a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3570 					 TREE_CHAIN (a)))
3571 		{
3572 		  if (TREE_VALUE (a) != NULL
3573 		      && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3574 		      && TREE_VALUE (a2) != NULL
3575 		      && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3576 		    {
3577 		      if (simple_cst_list_equal (TREE_VALUE (a),
3578 						 TREE_VALUE (a2)) == 1)
3579 			break;
3580 		    }
3581 		  else if (simple_cst_equal (TREE_VALUE (a),
3582 					     TREE_VALUE (a2)) == 1)
3583 		    break;
3584 		}
3585 	      if (a == NULL_TREE)
3586 		{
3587 		  a1 = copy_node (a2);
3588 		  TREE_CHAIN (a1) = attributes;
3589 		  attributes = a1;
3590 		}
3591 	    }
3592 	}
3593     }
3594   return attributes;
3595 }
3596 
3597 /* Given types T1 and T2, merge their attributes and return
3598   the result.  */
3599 
3600 tree
merge_type_attributes(tree t1,tree t2)3601 merge_type_attributes (tree t1, tree t2)
3602 {
3603   return merge_attributes (TYPE_ATTRIBUTES (t1),
3604 			   TYPE_ATTRIBUTES (t2));
3605 }
3606 
3607 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3608    the result.  */
3609 
3610 tree
merge_decl_attributes(tree olddecl,tree newdecl)3611 merge_decl_attributes (tree olddecl, tree newdecl)
3612 {
3613   return merge_attributes (DECL_ATTRIBUTES (olddecl),
3614 			   DECL_ATTRIBUTES (newdecl));
3615 }
3616 
3617 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3618 
3619 /* Specialization of merge_decl_attributes for various Windows targets.
3620 
3621    This handles the following situation:
3622 
3623      __declspec (dllimport) int foo;
3624      int foo;
3625 
3626    The second instance of `foo' nullifies the dllimport.  */
3627 
3628 tree
merge_dllimport_decl_attributes(tree old,tree new)3629 merge_dllimport_decl_attributes (tree old, tree new)
3630 {
3631   tree a;
3632   int delete_dllimport_p = 1;
3633 
3634   /* What we need to do here is remove from `old' dllimport if it doesn't
3635      appear in `new'.  dllimport behaves like extern: if a declaration is
3636      marked dllimport and a definition appears later, then the object
3637      is not dllimport'd.  We also remove a `new' dllimport if the old list
3638      contains dllexport:  dllexport always overrides dllimport, regardless
3639      of the order of declaration.  */
3640   if (!VAR_OR_FUNCTION_DECL_P (new))
3641     delete_dllimport_p = 0;
3642   else if (DECL_DLLIMPORT_P (new)
3643      	   && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3644     {
3645       DECL_DLLIMPORT_P (new) = 0;
3646       warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3647 	      "dllimport ignored", new);
3648     }
3649   else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3650     {
3651       /* Warn about overriding a symbol that has already been used. eg:
3652            extern int __attribute__ ((dllimport)) foo;
3653 	   int* bar () {return &foo;}
3654 	   int foo;
3655       */
3656       if (TREE_USED (old))
3657 	{
3658 	  warning (0, "%q+D redeclared without dllimport attribute "
3659 		   "after being referenced with dll linkage", new);
3660 	  /* If we have used a variable's address with dllimport linkage,
3661 	      keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3662 	      decl may already have had TREE_INVARIANT and TREE_CONSTANT
3663 	      computed.
3664 	      We still remove the attribute so that assembler code refers
3665 	      to '&foo rather than '_imp__foo'.  */
3666 	  if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3667 	    DECL_DLLIMPORT_P (new) = 1;
3668 	}
3669 
3670       /* Let an inline definition silently override the external reference,
3671 	 but otherwise warn about attribute inconsistency.  */
3672       else if (TREE_CODE (new) == VAR_DECL
3673 	       || !DECL_DECLARED_INLINE_P (new))
3674 	warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3675 		  "previous dllimport ignored", new);
3676     }
3677   else
3678     delete_dllimport_p = 0;
3679 
3680   a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3681 
3682   if (delete_dllimport_p)
3683     {
3684       tree prev, t;
3685       const size_t attr_len = strlen ("dllimport");
3686 
3687       /* Scan the list for dllimport and delete it.  */
3688       for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3689 	{
3690 	  if (is_attribute_with_length_p ("dllimport", attr_len,
3691 					  TREE_PURPOSE (t)))
3692 	    {
3693 	      if (prev == NULL_TREE)
3694 		a = TREE_CHAIN (a);
3695 	      else
3696 		TREE_CHAIN (prev) = TREE_CHAIN (t);
3697 	      break;
3698 	    }
3699 	}
3700     }
3701 
3702   return a;
3703 }
3704 
3705 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3706    struct attribute_spec.handler.  */
3707 
3708 tree
handle_dll_attribute(tree * pnode,tree name,tree args,int flags,bool * no_add_attrs)3709 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3710 		      bool *no_add_attrs)
3711 {
3712   tree node = *pnode;
3713 
3714   /* These attributes may apply to structure and union types being created,
3715      but otherwise should pass to the declaration involved.  */
3716   if (!DECL_P (node))
3717     {
3718       if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3719 		   | (int) ATTR_FLAG_ARRAY_NEXT))
3720 	{
3721 	  *no_add_attrs = true;
3722 	  return tree_cons (name, args, NULL_TREE);
3723 	}
3724       if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3725 	{
3726 	  warning (OPT_Wattributes, "%qs attribute ignored",
3727 		   IDENTIFIER_POINTER (name));
3728 	  *no_add_attrs = true;
3729 	}
3730 
3731       return NULL_TREE;
3732     }
3733 
3734   if (TREE_CODE (node) != FUNCTION_DECL
3735       && TREE_CODE (node) != VAR_DECL)
3736     {
3737       *no_add_attrs = true;
3738       warning (OPT_Wattributes, "%qs attribute ignored",
3739 	       IDENTIFIER_POINTER (name));
3740       return NULL_TREE;
3741     }
3742 
3743   /* Report error on dllimport ambiguities seen now before they cause
3744      any damage.  */
3745   else if (is_attribute_p ("dllimport", name))
3746     {
3747       /* Honor any target-specific overrides. */
3748       if (!targetm.valid_dllimport_attribute_p (node))
3749 	*no_add_attrs = true;
3750 
3751      else if (TREE_CODE (node) == FUNCTION_DECL
3752 	        && DECL_DECLARED_INLINE_P (node))
3753 	{
3754 	  warning (OPT_Wattributes, "inline function %q+D declared as "
3755 		  " dllimport: attribute ignored", node);
3756 	  *no_add_attrs = true;
3757 	}
3758       /* Like MS, treat definition of dllimported variables and
3759 	 non-inlined functions on declaration as syntax errors. */
3760      else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3761 	{
3762 	  error ("function %q+D definition is marked dllimport", node);
3763 	  *no_add_attrs = true;
3764 	}
3765 
3766      else if (TREE_CODE (node) == VAR_DECL)
3767 	{
3768 	  if (DECL_INITIAL (node))
3769 	    {
3770 	      error ("variable %q+D definition is marked dllimport",
3771 		     node);
3772 	      *no_add_attrs = true;
3773 	    }
3774 
3775 	  /* `extern' needn't be specified with dllimport.
3776 	     Specify `extern' now and hope for the best.  Sigh.  */
3777 	  DECL_EXTERNAL (node) = 1;
3778 	  /* Also, implicitly give dllimport'd variables declared within
3779 	     a function global scope, unless declared static.  */
3780 	  if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3781 	    TREE_PUBLIC (node) = 1;
3782 	}
3783 
3784       if (*no_add_attrs == false)
3785         DECL_DLLIMPORT_P (node) = 1;
3786     }
3787 
3788   /*  Report error if symbol is not accessible at global scope.  */
3789   if (!TREE_PUBLIC (node)
3790       && (TREE_CODE (node) == VAR_DECL
3791 	  || TREE_CODE (node) == FUNCTION_DECL))
3792     {
3793       error ("external linkage required for symbol %q+D because of "
3794 	     "%qs attribute", node, IDENTIFIER_POINTER (name));
3795       *no_add_attrs = true;
3796     }
3797 
3798   return NULL_TREE;
3799 }
3800 
3801 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES  */
3802 
3803 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3804    of the various TYPE_QUAL values.  */
3805 
3806 static void
set_type_quals(tree type,int type_quals)3807 set_type_quals (tree type, int type_quals)
3808 {
3809   TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3810   TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3811   TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3812 }
3813 
3814 /* Returns true iff cand is equivalent to base with type_quals.  */
3815 
3816 bool
check_qualified_type(tree cand,tree base,int type_quals)3817 check_qualified_type (tree cand, tree base, int type_quals)
3818 {
3819   return (TYPE_QUALS (cand) == type_quals
3820 	  && TYPE_NAME (cand) == TYPE_NAME (base)
3821 	  /* Apparently this is needed for Objective-C.  */
3822 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3823 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3824 				   TYPE_ATTRIBUTES (base)));
3825 }
3826 
3827 /* Return a version of the TYPE, qualified as indicated by the
3828    TYPE_QUALS, if one exists.  If no qualified version exists yet,
3829    return NULL_TREE.  */
3830 
3831 tree
get_qualified_type(tree type,int type_quals)3832 get_qualified_type (tree type, int type_quals)
3833 {
3834   tree t;
3835 
3836   if (TYPE_QUALS (type) == type_quals)
3837     return type;
3838 
3839   /* Search the chain of variants to see if there is already one there just
3840      like the one we need to have.  If so, use that existing one.  We must
3841      preserve the TYPE_NAME, since there is code that depends on this.  */
3842   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3843     if (check_qualified_type (t, type, type_quals))
3844       return t;
3845 
3846   return NULL_TREE;
3847 }
3848 
3849 /* Like get_qualified_type, but creates the type if it does not
3850    exist.  This function never returns NULL_TREE.  */
3851 
3852 tree
build_qualified_type(tree type,int type_quals)3853 build_qualified_type (tree type, int type_quals)
3854 {
3855   tree t;
3856 
3857   /* See if we already have the appropriate qualified variant.  */
3858   t = get_qualified_type (type, type_quals);
3859 
3860   /* If not, build it.  */
3861   if (!t)
3862     {
3863       t = build_variant_type_copy (type);
3864       set_type_quals (t, type_quals);
3865     }
3866 
3867   return t;
3868 }
3869 
3870 /* Create a new distinct copy of TYPE.  The new type is made its own
3871    MAIN_VARIANT.  */
3872 
3873 tree
build_distinct_type_copy(tree type)3874 build_distinct_type_copy (tree type)
3875 {
3876   tree t = copy_node (type);
3877 
3878   TYPE_POINTER_TO (t) = 0;
3879   TYPE_REFERENCE_TO (t) = 0;
3880 
3881   /* Make it its own variant.  */
3882   TYPE_MAIN_VARIANT (t) = t;
3883   TYPE_NEXT_VARIANT (t) = 0;
3884 
3885   /* Note that it is now possible for TYPE_MIN_VALUE to be a value
3886      whose TREE_TYPE is not t.  This can also happen in the Ada
3887      frontend when using subtypes.  */
3888 
3889   return t;
3890 }
3891 
3892 /* Create a new variant of TYPE, equivalent but distinct.
3893    This is so the caller can modify it.  */
3894 
3895 tree
build_variant_type_copy(tree type)3896 build_variant_type_copy (tree type)
3897 {
3898   tree t, m = TYPE_MAIN_VARIANT (type);
3899 
3900   t = build_distinct_type_copy (type);
3901 
3902   /* Add the new type to the chain of variants of TYPE.  */
3903   TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3904   TYPE_NEXT_VARIANT (m) = t;
3905   TYPE_MAIN_VARIANT (t) = m;
3906 
3907   return t;
3908 }
3909 
3910 /* Return true if the from tree in both tree maps are equal.  */
3911 
3912 int
tree_map_eq(const void * va,const void * vb)3913 tree_map_eq (const void *va, const void *vb)
3914 {
3915   const struct tree_map  *a = va, *b = vb;
3916   return (a->from == b->from);
3917 }
3918 
3919 /* Hash a from tree in a tree_map.  */
3920 
3921 unsigned int
tree_map_hash(const void * item)3922 tree_map_hash (const void *item)
3923 {
3924   return (((const struct tree_map *) item)->hash);
3925 }
3926 
3927 /* Return true if this tree map structure is marked for garbage collection
3928    purposes.  We simply return true if the from tree is marked, so that this
3929    structure goes away when the from tree goes away.  */
3930 
3931 int
tree_map_marked_p(const void * p)3932 tree_map_marked_p (const void *p)
3933 {
3934   tree from = ((struct tree_map *) p)->from;
3935 
3936   return ggc_marked_p (from);
3937 }
3938 
3939 /* Return true if the trees in the tree_int_map *'s VA and VB are equal.  */
3940 
3941 static int
tree_int_map_eq(const void * va,const void * vb)3942 tree_int_map_eq (const void *va, const void *vb)
3943 {
3944   const struct tree_int_map  *a = va, *b = vb;
3945   return (a->from == b->from);
3946 }
3947 
3948 /* Hash a from tree in the tree_int_map * ITEM.  */
3949 
3950 static unsigned int
tree_int_map_hash(const void * item)3951 tree_int_map_hash (const void *item)
3952 {
3953   return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3954 }
3955 
3956 /* Return true if this tree int map structure is marked for garbage collection
3957    purposes.  We simply return true if the from tree_int_map *P's from tree is marked, so that this
3958    structure goes away when the from tree goes away.  */
3959 
3960 static int
tree_int_map_marked_p(const void * p)3961 tree_int_map_marked_p (const void *p)
3962 {
3963   tree from = ((struct tree_int_map *) p)->from;
3964 
3965   return ggc_marked_p (from);
3966 }
3967 /* Lookup an init priority for FROM, and return it if we find one.  */
3968 
3969 unsigned short
decl_init_priority_lookup(tree from)3970 decl_init_priority_lookup (tree from)
3971 {
3972   struct tree_int_map *h, in;
3973   in.from = from;
3974 
3975   h = htab_find_with_hash (init_priority_for_decl,
3976 			   &in, htab_hash_pointer (from));
3977   if (h)
3978     return h->to;
3979   return 0;
3980 }
3981 
3982 /* Insert a mapping FROM->TO in the init priority hashtable.  */
3983 
3984 void
decl_init_priority_insert(tree from,unsigned short to)3985 decl_init_priority_insert (tree from, unsigned short to)
3986 {
3987   struct tree_int_map *h;
3988   void **loc;
3989 
3990   h = ggc_alloc (sizeof (struct tree_int_map));
3991   h->from = from;
3992   h->to = to;
3993   loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3994 				  htab_hash_pointer (from), INSERT);
3995   *(struct tree_int_map **) loc = h;
3996 }
3997 
3998 /* Look up a restrict qualified base decl for FROM.  */
3999 
4000 tree
decl_restrict_base_lookup(tree from)4001 decl_restrict_base_lookup (tree from)
4002 {
4003   struct tree_map *h;
4004   struct tree_map in;
4005 
4006   in.from = from;
4007   h = htab_find_with_hash (restrict_base_for_decl, &in,
4008 			   htab_hash_pointer (from));
4009   return h ? h->to : NULL_TREE;
4010 }
4011 
4012 /* Record the restrict qualified base TO for FROM.  */
4013 
4014 void
decl_restrict_base_insert(tree from,tree to)4015 decl_restrict_base_insert (tree from, tree to)
4016 {
4017   struct tree_map *h;
4018   void **loc;
4019 
4020   h = ggc_alloc (sizeof (struct tree_map));
4021   h->hash = htab_hash_pointer (from);
4022   h->from = from;
4023   h->to = to;
4024   loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4025   *(struct tree_map **) loc = h;
4026 }
4027 
4028 /* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
4029 
4030 static void
print_debug_expr_statistics(void)4031 print_debug_expr_statistics (void)
4032 {
4033   fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4034 	   (long) htab_size (debug_expr_for_decl),
4035 	   (long) htab_elements (debug_expr_for_decl),
4036 	   htab_collisions (debug_expr_for_decl));
4037 }
4038 
4039 /* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
4040 
4041 static void
print_value_expr_statistics(void)4042 print_value_expr_statistics (void)
4043 {
4044   fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4045 	   (long) htab_size (value_expr_for_decl),
4046 	   (long) htab_elements (value_expr_for_decl),
4047 	   htab_collisions (value_expr_for_decl));
4048 }
4049 
4050 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4051    don't print anything if the table is empty.  */
4052 
4053 static void
print_restrict_base_statistics(void)4054 print_restrict_base_statistics (void)
4055 {
4056   if (htab_elements (restrict_base_for_decl) != 0)
4057     fprintf (stderr,
4058 	     "RESTRICT_BASE    hash: size %ld, %ld elements, %f collisions\n",
4059 	     (long) htab_size (restrict_base_for_decl),
4060 	     (long) htab_elements (restrict_base_for_decl),
4061 	     htab_collisions (restrict_base_for_decl));
4062 }
4063 
4064 /* Lookup a debug expression for FROM, and return it if we find one.  */
4065 
4066 tree
decl_debug_expr_lookup(tree from)4067 decl_debug_expr_lookup (tree from)
4068 {
4069   struct tree_map *h, in;
4070   in.from = from;
4071 
4072   h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4073   if (h)
4074     return h->to;
4075   return NULL_TREE;
4076 }
4077 
4078 /* Insert a mapping FROM->TO in the debug expression hashtable.  */
4079 
4080 void
decl_debug_expr_insert(tree from,tree to)4081 decl_debug_expr_insert (tree from, tree to)
4082 {
4083   struct tree_map *h;
4084   void **loc;
4085 
4086   h = ggc_alloc (sizeof (struct tree_map));
4087   h->hash = htab_hash_pointer (from);
4088   h->from = from;
4089   h->to = to;
4090   loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4091   *(struct tree_map **) loc = h;
4092 }
4093 
4094 /* Lookup a value expression for FROM, and return it if we find one.  */
4095 
4096 tree
decl_value_expr_lookup(tree from)4097 decl_value_expr_lookup (tree from)
4098 {
4099   struct tree_map *h, in;
4100   in.from = from;
4101 
4102   h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4103   if (h)
4104     return h->to;
4105   return NULL_TREE;
4106 }
4107 
4108 /* Insert a mapping FROM->TO in the value expression hashtable.  */
4109 
4110 void
decl_value_expr_insert(tree from,tree to)4111 decl_value_expr_insert (tree from, tree to)
4112 {
4113   struct tree_map *h;
4114   void **loc;
4115 
4116   h = ggc_alloc (sizeof (struct tree_map));
4117   h->hash = htab_hash_pointer (from);
4118   h->from = from;
4119   h->to = to;
4120   loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4121   *(struct tree_map **) loc = h;
4122 }
4123 
4124 /* Hashing of types so that we don't make duplicates.
4125    The entry point is `type_hash_canon'.  */
4126 
4127 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4128    with types in the TREE_VALUE slots), by adding the hash codes
4129    of the individual types.  */
4130 
4131 unsigned int
type_hash_list(tree list,hashval_t hashcode)4132 type_hash_list (tree list, hashval_t hashcode)
4133 {
4134   tree tail;
4135 
4136   for (tail = list; tail; tail = TREE_CHAIN (tail))
4137     if (TREE_VALUE (tail) != error_mark_node)
4138       hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4139 					hashcode);
4140 
4141   return hashcode;
4142 }
4143 
4144 /* These are the Hashtable callback functions.  */
4145 
4146 /* Returns true iff the types are equivalent.  */
4147 
4148 static int
type_hash_eq(const void * va,const void * vb)4149 type_hash_eq (const void *va, const void *vb)
4150 {
4151   const struct type_hash *a = va, *b = vb;
4152 
4153   /* First test the things that are the same for all types.  */
4154   if (a->hash != b->hash
4155       || TREE_CODE (a->type) != TREE_CODE (b->type)
4156       || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4157       || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4158 				 TYPE_ATTRIBUTES (b->type))
4159       || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4160       || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4161     return 0;
4162 
4163   switch (TREE_CODE (a->type))
4164     {
4165     case VOID_TYPE:
4166     case COMPLEX_TYPE:
4167     case POINTER_TYPE:
4168     case REFERENCE_TYPE:
4169       return 1;
4170 
4171     case VECTOR_TYPE:
4172       return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4173 
4174     case ENUMERAL_TYPE:
4175       if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4176 	  && !(TYPE_VALUES (a->type)
4177 	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4178 	       && TYPE_VALUES (b->type)
4179 	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4180 	       && type_list_equal (TYPE_VALUES (a->type),
4181 				   TYPE_VALUES (b->type))))
4182 	return 0;
4183 
4184       /* ... fall through ... */
4185 
4186     case INTEGER_TYPE:
4187     case REAL_TYPE:
4188     case BOOLEAN_TYPE:
4189       return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4190 	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4191 				      TYPE_MAX_VALUE (b->type)))
4192 	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4193 		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4194 					 TYPE_MIN_VALUE (b->type))));
4195 
4196     case OFFSET_TYPE:
4197       return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4198 
4199     case METHOD_TYPE:
4200       return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4201 	      && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4202 		  || (TYPE_ARG_TYPES (a->type)
4203 		      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4204 		      && TYPE_ARG_TYPES (b->type)
4205 		      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4206 		      && type_list_equal (TYPE_ARG_TYPES (a->type),
4207 					  TYPE_ARG_TYPES (b->type)))));
4208 
4209     case ARRAY_TYPE:
4210       return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4211 
4212     case RECORD_TYPE:
4213     case UNION_TYPE:
4214     case QUAL_UNION_TYPE:
4215       return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4216 	      || (TYPE_FIELDS (a->type)
4217 		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4218 		  && TYPE_FIELDS (b->type)
4219 		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4220 		  && type_list_equal (TYPE_FIELDS (a->type),
4221 				      TYPE_FIELDS (b->type))));
4222 
4223     case FUNCTION_TYPE:
4224       return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4225 	      || (TYPE_ARG_TYPES (a->type)
4226 		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4227 		  && TYPE_ARG_TYPES (b->type)
4228 		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4229 		  && type_list_equal (TYPE_ARG_TYPES (a->type),
4230 				      TYPE_ARG_TYPES (b->type))));
4231 
4232     default:
4233       return 0;
4234     }
4235 }
4236 
4237 /* Return the cached hash value.  */
4238 
4239 static hashval_t
type_hash_hash(const void * item)4240 type_hash_hash (const void *item)
4241 {
4242   return ((const struct type_hash *) item)->hash;
4243 }
4244 
4245 /* Look in the type hash table for a type isomorphic to TYPE.
4246    If one is found, return it.  Otherwise return 0.  */
4247 
4248 tree
type_hash_lookup(hashval_t hashcode,tree type)4249 type_hash_lookup (hashval_t hashcode, tree type)
4250 {
4251   struct type_hash *h, in;
4252 
4253   /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4254      must call that routine before comparing TYPE_ALIGNs.  */
4255   layout_type (type);
4256 
4257   in.hash = hashcode;
4258   in.type = type;
4259 
4260   h = htab_find_with_hash (type_hash_table, &in, hashcode);
4261   if (h)
4262     return h->type;
4263   return NULL_TREE;
4264 }
4265 
4266 /* Add an entry to the type-hash-table
4267    for a type TYPE whose hash code is HASHCODE.  */
4268 
4269 void
type_hash_add(hashval_t hashcode,tree type)4270 type_hash_add (hashval_t hashcode, tree type)
4271 {
4272   struct type_hash *h;
4273   void **loc;
4274 
4275   h = ggc_alloc (sizeof (struct type_hash));
4276   h->hash = hashcode;
4277   h->type = type;
4278   loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4279   *(struct type_hash **) loc = h;
4280 }
4281 
4282 /* Given TYPE, and HASHCODE its hash code, return the canonical
4283    object for an identical type if one already exists.
4284    Otherwise, return TYPE, and record it as the canonical object.
4285 
4286    To use this function, first create a type of the sort you want.
4287    Then compute its hash code from the fields of the type that
4288    make it different from other similar types.
4289    Then call this function and use the value.  */
4290 
4291 tree
type_hash_canon(unsigned int hashcode,tree type)4292 type_hash_canon (unsigned int hashcode, tree type)
4293 {
4294   tree t1;
4295 
4296   /* The hash table only contains main variants, so ensure that's what we're
4297      being passed.  */
4298   gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4299 
4300   if (!lang_hooks.types.hash_types)
4301     return type;
4302 
4303   /* See if the type is in the hash table already.  If so, return it.
4304      Otherwise, add the type.  */
4305   t1 = type_hash_lookup (hashcode, type);
4306   if (t1 != 0)
4307     {
4308 #ifdef GATHER_STATISTICS
4309       tree_node_counts[(int) t_kind]--;
4310       tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4311 #endif
4312       return t1;
4313     }
4314   else
4315     {
4316       type_hash_add (hashcode, type);
4317       return type;
4318     }
4319 }
4320 
4321 /* See if the data pointed to by the type hash table is marked.  We consider
4322    it marked if the type is marked or if a debug type number or symbol
4323    table entry has been made for the type.  This reduces the amount of
4324    debugging output and eliminates that dependency of the debug output on
4325    the number of garbage collections.  */
4326 
4327 static int
type_hash_marked_p(const void * p)4328 type_hash_marked_p (const void *p)
4329 {
4330   tree type = ((struct type_hash *) p)->type;
4331 
4332   return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4333 }
4334 
4335 static void
print_type_hash_statistics(void)4336 print_type_hash_statistics (void)
4337 {
4338   fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4339 	   (long) htab_size (type_hash_table),
4340 	   (long) htab_elements (type_hash_table),
4341 	   htab_collisions (type_hash_table));
4342 }
4343 
4344 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4345    with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4346    by adding the hash codes of the individual attributes.  */
4347 
4348 unsigned int
attribute_hash_list(tree list,hashval_t hashcode)4349 attribute_hash_list (tree list, hashval_t hashcode)
4350 {
4351   tree tail;
4352 
4353   for (tail = list; tail; tail = TREE_CHAIN (tail))
4354     /* ??? Do we want to add in TREE_VALUE too? */
4355     hashcode = iterative_hash_object
4356       (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4357   return hashcode;
4358 }
4359 
4360 /* Given two lists of attributes, return true if list l2 is
4361    equivalent to l1.  */
4362 
4363 int
attribute_list_equal(tree l1,tree l2)4364 attribute_list_equal (tree l1, tree l2)
4365 {
4366   return attribute_list_contained (l1, l2)
4367 	 && attribute_list_contained (l2, l1);
4368 }
4369 
4370 /* Given two lists of attributes, return true if list L2 is
4371    completely contained within L1.  */
4372 /* ??? This would be faster if attribute names were stored in a canonicalized
4373    form.  Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4374    must be used to show these elements are equivalent (which they are).  */
4375 /* ??? It's not clear that attributes with arguments will always be handled
4376    correctly.  */
4377 
4378 int
attribute_list_contained(tree l1,tree l2)4379 attribute_list_contained (tree l1, tree l2)
4380 {
4381   tree t1, t2;
4382 
4383   /* First check the obvious, maybe the lists are identical.  */
4384   if (l1 == l2)
4385     return 1;
4386 
4387   /* Maybe the lists are similar.  */
4388   for (t1 = l1, t2 = l2;
4389        t1 != 0 && t2 != 0
4390         && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4391         && TREE_VALUE (t1) == TREE_VALUE (t2);
4392        t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4393 
4394   /* Maybe the lists are equal.  */
4395   if (t1 == 0 && t2 == 0)
4396     return 1;
4397 
4398   for (; t2 != 0; t2 = TREE_CHAIN (t2))
4399     {
4400       tree attr;
4401       for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4402 	   attr != NULL_TREE;
4403 	   attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4404 				    TREE_CHAIN (attr)))
4405 	{
4406 	  if (TREE_VALUE (t2) != NULL
4407 	      && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4408 	      && TREE_VALUE (attr) != NULL
4409 	      && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4410 	    {
4411 	      if (simple_cst_list_equal (TREE_VALUE (t2),
4412 					 TREE_VALUE (attr)) == 1)
4413 		break;
4414 	    }
4415 	  else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4416 	    break;
4417 	}
4418 
4419       if (attr == 0)
4420 	return 0;
4421     }
4422 
4423   return 1;
4424 }
4425 
4426 /* Given two lists of types
4427    (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4428    return 1 if the lists contain the same types in the same order.
4429    Also, the TREE_PURPOSEs must match.  */
4430 
4431 int
type_list_equal(tree l1,tree l2)4432 type_list_equal (tree l1, tree l2)
4433 {
4434   tree t1, t2;
4435 
4436   for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4437     if (TREE_VALUE (t1) != TREE_VALUE (t2)
4438 	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4439 	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4440 		  && (TREE_TYPE (TREE_PURPOSE (t1))
4441 		      == TREE_TYPE (TREE_PURPOSE (t2))))))
4442       return 0;
4443 
4444   return t1 == t2;
4445 }
4446 
4447 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4448    given by TYPE.  If the argument list accepts variable arguments,
4449    then this function counts only the ordinary arguments.  */
4450 
4451 int
type_num_arguments(tree type)4452 type_num_arguments (tree type)
4453 {
4454   int i = 0;
4455   tree t;
4456 
4457   for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4458     /* If the function does not take a variable number of arguments,
4459        the last element in the list will have type `void'.  */
4460     if (VOID_TYPE_P (TREE_VALUE (t)))
4461       break;
4462     else
4463       ++i;
4464 
4465   return i;
4466 }
4467 
4468 /* Nonzero if integer constants T1 and T2
4469    represent the same constant value.  */
4470 
4471 int
tree_int_cst_equal(tree t1,tree t2)4472 tree_int_cst_equal (tree t1, tree t2)
4473 {
4474   if (t1 == t2)
4475     return 1;
4476 
4477   if (t1 == 0 || t2 == 0)
4478     return 0;
4479 
4480   if (TREE_CODE (t1) == INTEGER_CST
4481       && TREE_CODE (t2) == INTEGER_CST
4482       && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4483       && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4484     return 1;
4485 
4486   return 0;
4487 }
4488 
4489 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4490    The precise way of comparison depends on their data type.  */
4491 
4492 int
tree_int_cst_lt(tree t1,tree t2)4493 tree_int_cst_lt (tree t1, tree t2)
4494 {
4495   if (t1 == t2)
4496     return 0;
4497 
4498   if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4499     {
4500       int t1_sgn = tree_int_cst_sgn (t1);
4501       int t2_sgn = tree_int_cst_sgn (t2);
4502 
4503       if (t1_sgn < t2_sgn)
4504 	return 1;
4505       else if (t1_sgn > t2_sgn)
4506 	return 0;
4507       /* Otherwise, both are non-negative, so we compare them as
4508 	 unsigned just in case one of them would overflow a signed
4509 	 type.  */
4510     }
4511   else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4512     return INT_CST_LT (t1, t2);
4513 
4514   return INT_CST_LT_UNSIGNED (t1, t2);
4515 }
4516 
4517 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2.  */
4518 
4519 int
tree_int_cst_compare(tree t1,tree t2)4520 tree_int_cst_compare (tree t1, tree t2)
4521 {
4522   if (tree_int_cst_lt (t1, t2))
4523     return -1;
4524   else if (tree_int_cst_lt (t2, t1))
4525     return 1;
4526   else
4527     return 0;
4528 }
4529 
4530 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4531    the host.  If POS is zero, the value can be represented in a single
4532    HOST_WIDE_INT.  If POS is nonzero, the value must be non-negative and can
4533    be represented in a single unsigned HOST_WIDE_INT.  */
4534 
4535 int
host_integerp(tree t,int pos)4536 host_integerp (tree t, int pos)
4537 {
4538   return (TREE_CODE (t) == INTEGER_CST
4539 	  && ((TREE_INT_CST_HIGH (t) == 0
4540 	       && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4541 	      || (! pos && TREE_INT_CST_HIGH (t) == -1
4542 		  && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4543 		  && !TYPE_UNSIGNED (TREE_TYPE (t)))
4544 	      || (pos && TREE_INT_CST_HIGH (t) == 0)));
4545 }
4546 
4547 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4548    INTEGER_CST and there is no overflow.  POS is nonzero if the result must
4549    be non-negative.  We must be able to satisfy the above conditions.  */
4550 
4551 HOST_WIDE_INT
tree_low_cst(tree t,int pos)4552 tree_low_cst (tree t, int pos)
4553 {
4554   gcc_assert (host_integerp (t, pos));
4555   return TREE_INT_CST_LOW (t);
4556 }
4557 
4558 /* Return the most significant bit of the integer constant T.  */
4559 
4560 int
tree_int_cst_msb(tree t)4561 tree_int_cst_msb (tree t)
4562 {
4563   int prec;
4564   HOST_WIDE_INT h;
4565   unsigned HOST_WIDE_INT l;
4566 
4567   /* Note that using TYPE_PRECISION here is wrong.  We care about the
4568      actual bits, not the (arbitrary) range of the type.  */
4569   prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4570   rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4571 		 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4572   return (l & 1) == 1;
4573 }
4574 
4575 /* Return an indication of the sign of the integer constant T.
4576    The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4577    Note that -1 will never be returned if T's type is unsigned.  */
4578 
4579 int
tree_int_cst_sgn(tree t)4580 tree_int_cst_sgn (tree t)
4581 {
4582   if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4583     return 0;
4584   else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4585     return 1;
4586   else if (TREE_INT_CST_HIGH (t) < 0)
4587     return -1;
4588   else
4589     return 1;
4590 }
4591 
4592 /* Compare two constructor-element-type constants.  Return 1 if the lists
4593    are known to be equal; otherwise return 0.  */
4594 
4595 int
simple_cst_list_equal(tree l1,tree l2)4596 simple_cst_list_equal (tree l1, tree l2)
4597 {
4598   while (l1 != NULL_TREE && l2 != NULL_TREE)
4599     {
4600       if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4601 	return 0;
4602 
4603       l1 = TREE_CHAIN (l1);
4604       l2 = TREE_CHAIN (l2);
4605     }
4606 
4607   return l1 == l2;
4608 }
4609 
4610 /* Return truthvalue of whether T1 is the same tree structure as T2.
4611    Return 1 if they are the same.
4612    Return 0 if they are understandably different.
4613    Return -1 if either contains tree structure not understood by
4614    this function.  */
4615 
4616 int
simple_cst_equal(tree t1,tree t2)4617 simple_cst_equal (tree t1, tree t2)
4618 {
4619   enum tree_code code1, code2;
4620   int cmp;
4621   int i;
4622 
4623   if (t1 == t2)
4624     return 1;
4625   if (t1 == 0 || t2 == 0)
4626     return 0;
4627 
4628   code1 = TREE_CODE (t1);
4629   code2 = TREE_CODE (t2);
4630 
4631   if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4632     {
4633       if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4634 	  || code2 == NON_LVALUE_EXPR)
4635 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4636       else
4637 	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4638     }
4639 
4640   else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4641 	   || code2 == NON_LVALUE_EXPR)
4642     return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4643 
4644   if (code1 != code2)
4645     return 0;
4646 
4647   switch (code1)
4648     {
4649     case INTEGER_CST:
4650       return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4651 	      && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4652 
4653     case REAL_CST:
4654       return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4655 
4656     case STRING_CST:
4657       return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4658 	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4659 			 TREE_STRING_LENGTH (t1)));
4660 
4661     case CONSTRUCTOR:
4662       {
4663 	unsigned HOST_WIDE_INT idx;
4664 	VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4665 	VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4666 
4667 	if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4668 	  return false;
4669 
4670         for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4671 	  /* ??? Should we handle also fields here? */
4672 	  if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4673 				 VEC_index (constructor_elt, v2, idx)->value))
4674 	    return false;
4675 	return true;
4676       }
4677 
4678     case SAVE_EXPR:
4679       return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4680 
4681     case CALL_EXPR:
4682       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4683       if (cmp <= 0)
4684 	return cmp;
4685       return
4686 	simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4687 
4688     case TARGET_EXPR:
4689       /* Special case: if either target is an unallocated VAR_DECL,
4690 	 it means that it's going to be unified with whatever the
4691 	 TARGET_EXPR is really supposed to initialize, so treat it
4692 	 as being equivalent to anything.  */
4693       if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4694 	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4695 	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4696 	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4697 	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4698 	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4699 	cmp = 1;
4700       else
4701 	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4702 
4703       if (cmp <= 0)
4704 	return cmp;
4705 
4706       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4707 
4708     case WITH_CLEANUP_EXPR:
4709       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4710       if (cmp <= 0)
4711 	return cmp;
4712 
4713       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4714 
4715     case COMPONENT_REF:
4716       if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4717 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4718 
4719       return 0;
4720 
4721     case VAR_DECL:
4722     case PARM_DECL:
4723     case CONST_DECL:
4724     case FUNCTION_DECL:
4725       return 0;
4726 
4727     default:
4728       break;
4729     }
4730 
4731   /* This general rule works for most tree codes.  All exceptions should be
4732      handled above.  If this is a language-specific tree code, we can't
4733      trust what might be in the operand, so say we don't know
4734      the situation.  */
4735   if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4736     return -1;
4737 
4738   switch (TREE_CODE_CLASS (code1))
4739     {
4740     case tcc_unary:
4741     case tcc_binary:
4742     case tcc_comparison:
4743     case tcc_expression:
4744     case tcc_reference:
4745     case tcc_statement:
4746       cmp = 1;
4747       for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4748 	{
4749 	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4750 	  if (cmp <= 0)
4751 	    return cmp;
4752 	}
4753 
4754       return cmp;
4755 
4756     default:
4757       return -1;
4758     }
4759 }
4760 
4761 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4762    Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4763    than U, respectively.  */
4764 
4765 int
compare_tree_int(tree t,unsigned HOST_WIDE_INT u)4766 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4767 {
4768   if (tree_int_cst_sgn (t) < 0)
4769     return -1;
4770   else if (TREE_INT_CST_HIGH (t) != 0)
4771     return 1;
4772   else if (TREE_INT_CST_LOW (t) == u)
4773     return 0;
4774   else if (TREE_INT_CST_LOW (t) < u)
4775     return -1;
4776   else
4777     return 1;
4778 }
4779 
4780 /* Return true if CODE represents an associative tree code.  Otherwise
4781    return false.  */
4782 bool
associative_tree_code(enum tree_code code)4783 associative_tree_code (enum tree_code code)
4784 {
4785   switch (code)
4786     {
4787     case BIT_IOR_EXPR:
4788     case BIT_AND_EXPR:
4789     case BIT_XOR_EXPR:
4790     case PLUS_EXPR:
4791     case MULT_EXPR:
4792     case MIN_EXPR:
4793     case MAX_EXPR:
4794       return true;
4795 
4796     default:
4797       break;
4798     }
4799   return false;
4800 }
4801 
4802 /* Return true if CODE represents a commutative tree code.  Otherwise
4803    return false.  */
4804 bool
commutative_tree_code(enum tree_code code)4805 commutative_tree_code (enum tree_code code)
4806 {
4807   switch (code)
4808     {
4809     case PLUS_EXPR:
4810     case MULT_EXPR:
4811     case MIN_EXPR:
4812     case MAX_EXPR:
4813     case BIT_IOR_EXPR:
4814     case BIT_XOR_EXPR:
4815     case BIT_AND_EXPR:
4816     case NE_EXPR:
4817     case EQ_EXPR:
4818     case UNORDERED_EXPR:
4819     case ORDERED_EXPR:
4820     case UNEQ_EXPR:
4821     case LTGT_EXPR:
4822     case TRUTH_AND_EXPR:
4823     case TRUTH_XOR_EXPR:
4824     case TRUTH_OR_EXPR:
4825       return true;
4826 
4827     default:
4828       break;
4829     }
4830   return false;
4831 }
4832 
4833 /* Generate a hash value for an expression.  This can be used iteratively
4834    by passing a previous result as the "val" argument.
4835 
4836    This function is intended to produce the same hash for expressions which
4837    would compare equal using operand_equal_p.  */
4838 
4839 hashval_t
iterative_hash_expr(tree t,hashval_t val)4840 iterative_hash_expr (tree t, hashval_t val)
4841 {
4842   int i;
4843   enum tree_code code;
4844   char class;
4845 
4846   if (t == NULL_TREE)
4847     return iterative_hash_pointer (t, val);
4848 
4849   code = TREE_CODE (t);
4850 
4851   switch (code)
4852     {
4853     /* Alas, constants aren't shared, so we can't rely on pointer
4854        identity.  */
4855     case INTEGER_CST:
4856       val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4857       return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4858     case REAL_CST:
4859       {
4860 	unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4861 
4862 	return iterative_hash_hashval_t (val2, val);
4863       }
4864     case STRING_CST:
4865       return iterative_hash (TREE_STRING_POINTER (t),
4866 			     TREE_STRING_LENGTH (t), val);
4867     case COMPLEX_CST:
4868       val = iterative_hash_expr (TREE_REALPART (t), val);
4869       return iterative_hash_expr (TREE_IMAGPART (t), val);
4870     case VECTOR_CST:
4871       return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4872 
4873     case SSA_NAME:
4874     case VALUE_HANDLE:
4875       /* we can just compare by pointer.  */
4876       return iterative_hash_pointer (t, val);
4877 
4878     case TREE_LIST:
4879       /* A list of expressions, for a CALL_EXPR or as the elements of a
4880 	 VECTOR_CST.  */
4881       for (; t; t = TREE_CHAIN (t))
4882 	val = iterative_hash_expr (TREE_VALUE (t), val);
4883       return val;
4884     case CONSTRUCTOR:
4885       {
4886 	unsigned HOST_WIDE_INT idx;
4887 	tree field, value;
4888 	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4889 	  {
4890 	    val = iterative_hash_expr (field, val);
4891 	    val = iterative_hash_expr (value, val);
4892 	  }
4893 	return val;
4894       }
4895     case FUNCTION_DECL:
4896       /* When referring to a built-in FUNCTION_DECL, use the
4897 	 __builtin__ form.  Otherwise nodes that compare equal
4898 	 according to operand_equal_p might get different
4899 	 hash codes.  */
4900       if (DECL_BUILT_IN (t))
4901 	{
4902 	  val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4903 				      val);
4904 	  return val;
4905 	}
4906       /* else FALL THROUGH */
4907     default:
4908       class = TREE_CODE_CLASS (code);
4909 
4910       if (class == tcc_declaration)
4911 	{
4912 	  /* DECL's have a unique ID */
4913 	  val = iterative_hash_host_wide_int (DECL_UID (t), val);
4914 	}
4915       else
4916 	{
4917 	  gcc_assert (IS_EXPR_CODE_CLASS (class));
4918 
4919 	  val = iterative_hash_object (code, val);
4920 
4921 	  /* Don't hash the type, that can lead to having nodes which
4922 	     compare equal according to operand_equal_p, but which
4923 	     have different hash codes.  */
4924 	  if (code == NOP_EXPR
4925 	      || code == CONVERT_EXPR
4926 	      || code == NON_LVALUE_EXPR)
4927 	    {
4928 	      /* Make sure to include signness in the hash computation.  */
4929 	      val += TYPE_UNSIGNED (TREE_TYPE (t));
4930 	      val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4931 	    }
4932 
4933 	  else if (commutative_tree_code (code))
4934 	    {
4935 	      /* It's a commutative expression.  We want to hash it the same
4936 		 however it appears.  We do this by first hashing both operands
4937 		 and then rehashing based on the order of their independent
4938 		 hashes.  */
4939 	      hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4940 	      hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4941 	      hashval_t t;
4942 
4943 	      if (one > two)
4944 		t = one, one = two, two = t;
4945 
4946 	      val = iterative_hash_hashval_t (one, val);
4947 	      val = iterative_hash_hashval_t (two, val);
4948 	    }
4949 	  else
4950 	    for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4951 	      val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4952 	}
4953       return val;
4954       break;
4955     }
4956 }
4957 
4958 /* Constructors for pointer, array and function types.
4959    (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4960    constructed by language-dependent code, not here.)  */
4961 
4962 /* Construct, lay out and return the type of pointers to TO_TYPE with
4963    mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
4964    reference all of memory. If such a type has already been
4965    constructed, reuse it.  */
4966 
4967 tree
build_pointer_type_for_mode(tree to_type,enum machine_mode mode,bool can_alias_all)4968 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4969 			     bool can_alias_all)
4970 {
4971   tree t;
4972 
4973   if (to_type == error_mark_node)
4974     return error_mark_node;
4975 
4976   /* In some cases, languages will have things that aren't a POINTER_TYPE
4977      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4978      In that case, return that type without regard to the rest of our
4979      operands.
4980 
4981      ??? This is a kludge, but consistent with the way this function has
4982      always operated and there doesn't seem to be a good way to avoid this
4983      at the moment.  */
4984   if (TYPE_POINTER_TO (to_type) != 0
4985       && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4986     return TYPE_POINTER_TO (to_type);
4987 
4988   /* First, if we already have a type for pointers to TO_TYPE and it's
4989      the proper mode, use it.  */
4990   for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4991     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4992       return t;
4993 
4994   t = make_node (POINTER_TYPE);
4995 
4996   TREE_TYPE (t) = to_type;
4997   TYPE_MODE (t) = mode;
4998   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4999   TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5000   TYPE_POINTER_TO (to_type) = t;
5001 
5002   /* Lay out the type.  This function has many callers that are concerned
5003      with expression-construction, and this simplifies them all.  */
5004   layout_type (t);
5005 
5006   return t;
5007 }
5008 
5009 /* By default build pointers in ptr_mode.  */
5010 
5011 tree
build_pointer_type(tree to_type)5012 build_pointer_type (tree to_type)
5013 {
5014   return build_pointer_type_for_mode (to_type, ptr_mode, false);
5015 }
5016 
5017 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
5018 
5019 tree
build_reference_type_for_mode(tree to_type,enum machine_mode mode,bool can_alias_all)5020 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5021 			       bool can_alias_all)
5022 {
5023   tree t;
5024 
5025   /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5026      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5027      In that case, return that type without regard to the rest of our
5028      operands.
5029 
5030      ??? This is a kludge, but consistent with the way this function has
5031      always operated and there doesn't seem to be a good way to avoid this
5032      at the moment.  */
5033   if (TYPE_REFERENCE_TO (to_type) != 0
5034       && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5035     return TYPE_REFERENCE_TO (to_type);
5036 
5037   /* First, if we already have a type for pointers to TO_TYPE and it's
5038      the proper mode, use it.  */
5039   for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5040     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5041       return t;
5042 
5043   t = make_node (REFERENCE_TYPE);
5044 
5045   TREE_TYPE (t) = to_type;
5046   TYPE_MODE (t) = mode;
5047   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5048   TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5049   TYPE_REFERENCE_TO (to_type) = t;
5050 
5051   layout_type (t);
5052 
5053   return t;
5054 }
5055 
5056 
5057 /* Build the node for the type of references-to-TO_TYPE by default
5058    in ptr_mode.  */
5059 
5060 tree
build_reference_type(tree to_type)5061 build_reference_type (tree to_type)
5062 {
5063   return build_reference_type_for_mode (to_type, ptr_mode, false);
5064 }
5065 
5066 /* Build a type that is compatible with t but has no cv quals anywhere
5067    in its type, thus
5068 
5069    const char *const *const *  ->  char ***.  */
5070 
5071 tree
build_type_no_quals(tree t)5072 build_type_no_quals (tree t)
5073 {
5074   switch (TREE_CODE (t))
5075     {
5076     case POINTER_TYPE:
5077       return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5078 					  TYPE_MODE (t),
5079 					  TYPE_REF_CAN_ALIAS_ALL (t));
5080     case REFERENCE_TYPE:
5081       return
5082 	build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5083 				       TYPE_MODE (t),
5084 				       TYPE_REF_CAN_ALIAS_ALL (t));
5085     default:
5086       return TYPE_MAIN_VARIANT (t);
5087     }
5088 }
5089 
5090 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5091    MAXVAL should be the maximum value in the domain
5092    (one less than the length of the array).
5093 
5094    The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5095    We don't enforce this limit, that is up to caller (e.g. language front end).
5096    The limit exists because the result is a signed type and we don't handle
5097    sizes that use more than one HOST_WIDE_INT.  */
5098 
5099 tree
build_index_type(tree maxval)5100 build_index_type (tree maxval)
5101 {
5102   tree itype = make_node (INTEGER_TYPE);
5103 
5104   TREE_TYPE (itype) = sizetype;
5105   TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5106   TYPE_MIN_VALUE (itype) = size_zero_node;
5107   TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5108   TYPE_MODE (itype) = TYPE_MODE (sizetype);
5109   TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5110   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5111   TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5112   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5113 
5114   if (host_integerp (maxval, 1))
5115     return type_hash_canon (tree_low_cst (maxval, 1), itype);
5116   else
5117     return itype;
5118 }
5119 
5120 /* Builds a signed or unsigned integer type of precision PRECISION.
5121    Used for C bitfields whose precision does not match that of
5122    built-in target types.  */
5123 tree
build_nonstandard_integer_type(unsigned HOST_WIDE_INT precision,int unsignedp)5124 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5125 				int unsignedp)
5126 {
5127   tree itype = make_node (INTEGER_TYPE);
5128 
5129   TYPE_PRECISION (itype) = precision;
5130 
5131   if (unsignedp)
5132     fixup_unsigned_type (itype);
5133   else
5134     fixup_signed_type (itype);
5135 
5136   if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5137     return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5138 
5139   return itype;
5140 }
5141 
5142 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5143    ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5144    high bound HIGHVAL.  If TYPE is NULL, sizetype is used.  */
5145 
5146 tree
build_range_type(tree type,tree lowval,tree highval)5147 build_range_type (tree type, tree lowval, tree highval)
5148 {
5149   tree itype = make_node (INTEGER_TYPE);
5150 
5151   TREE_TYPE (itype) = type;
5152   if (type == NULL_TREE)
5153     type = sizetype;
5154 
5155   TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5156   TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5157 
5158   TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5159   TYPE_MODE (itype) = TYPE_MODE (type);
5160   TYPE_SIZE (itype) = TYPE_SIZE (type);
5161   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5162   TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5163   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5164 
5165   if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5166     return type_hash_canon (tree_low_cst (highval, 0)
5167 			    - tree_low_cst (lowval, 0),
5168 			    itype);
5169   else
5170     return itype;
5171 }
5172 
5173 /* Just like build_index_type, but takes lowval and highval instead
5174    of just highval (maxval).  */
5175 
5176 tree
build_index_2_type(tree lowval,tree highval)5177 build_index_2_type (tree lowval, tree highval)
5178 {
5179   return build_range_type (sizetype, lowval, highval);
5180 }
5181 
5182 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5183    and number of elements specified by the range of values of INDEX_TYPE.
5184    If such a type has already been constructed, reuse it.  */
5185 
5186 tree
build_array_type(tree elt_type,tree index_type)5187 build_array_type (tree elt_type, tree index_type)
5188 {
5189   tree t;
5190   hashval_t hashcode = 0;
5191 
5192   if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5193     {
5194       error ("arrays of functions are not meaningful");
5195       elt_type = integer_type_node;
5196     }
5197 
5198   t = make_node (ARRAY_TYPE);
5199   TREE_TYPE (t) = elt_type;
5200   TYPE_DOMAIN (t) = index_type;
5201 
5202   if (index_type == 0)
5203     {
5204       tree save = t;
5205       hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5206       t = type_hash_canon (hashcode, t);
5207       if (save == t)
5208 	layout_type (t);
5209       return t;
5210     }
5211 
5212   hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5213   hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5214   t = type_hash_canon (hashcode, t);
5215 
5216   if (!COMPLETE_TYPE_P (t))
5217     layout_type (t);
5218   return t;
5219 }
5220 
5221 /* Return the TYPE of the elements comprising
5222    the innermost dimension of ARRAY.  */
5223 
5224 tree
get_inner_array_type(tree array)5225 get_inner_array_type (tree array)
5226 {
5227   tree type = TREE_TYPE (array);
5228 
5229   while (TREE_CODE (type) == ARRAY_TYPE)
5230     type = TREE_TYPE (type);
5231 
5232   return type;
5233 }
5234 
5235 /* Construct, lay out and return
5236    the type of functions returning type VALUE_TYPE
5237    given arguments of types ARG_TYPES.
5238    ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5239    are data type nodes for the arguments of the function.
5240    If such a type has already been constructed, reuse it.  */
5241 
5242 tree
build_function_type(tree value_type,tree arg_types)5243 build_function_type (tree value_type, tree arg_types)
5244 {
5245   tree t;
5246   hashval_t hashcode = 0;
5247 
5248   if (TREE_CODE (value_type) == FUNCTION_TYPE)
5249     {
5250       error ("function return type cannot be function");
5251       value_type = integer_type_node;
5252     }
5253 
5254   /* Make a node of the sort we want.  */
5255   t = make_node (FUNCTION_TYPE);
5256   TREE_TYPE (t) = value_type;
5257   TYPE_ARG_TYPES (t) = arg_types;
5258 
5259   /* If we already have such a type, use the old one.  */
5260   hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5261   hashcode = type_hash_list (arg_types, hashcode);
5262   t = type_hash_canon (hashcode, t);
5263 
5264   if (!COMPLETE_TYPE_P (t))
5265     layout_type (t);
5266   return t;
5267 }
5268 
5269 /* Build a function type.  The RETURN_TYPE is the type returned by the
5270    function.  If additional arguments are provided, they are
5271    additional argument types.  The list of argument types must always
5272    be terminated by NULL_TREE.  */
5273 
5274 tree
build_function_type_list(tree return_type,...)5275 build_function_type_list (tree return_type, ...)
5276 {
5277   tree t, args, last;
5278   va_list p;
5279 
5280   va_start (p, return_type);
5281 
5282   t = va_arg (p, tree);
5283   for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5284     args = tree_cons (NULL_TREE, t, args);
5285 
5286   if (args == NULL_TREE)
5287     args = void_list_node;
5288   else
5289     {
5290       last = args;
5291       args = nreverse (args);
5292       TREE_CHAIN (last) = void_list_node;
5293     }
5294   args = build_function_type (return_type, args);
5295 
5296   va_end (p);
5297   return args;
5298 }
5299 
5300 /* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
5301    and ARGTYPES (a TREE_LIST) are the return type and arguments types
5302    for the method.  An implicit additional parameter (of type
5303    pointer-to-BASETYPE) is added to the ARGTYPES.  */
5304 
5305 tree
build_method_type_directly(tree basetype,tree rettype,tree argtypes)5306 build_method_type_directly (tree basetype,
5307 			    tree rettype,
5308 			    tree argtypes)
5309 {
5310   tree t;
5311   tree ptype;
5312   int hashcode = 0;
5313 
5314   /* Make a node of the sort we want.  */
5315   t = make_node (METHOD_TYPE);
5316 
5317   TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5318   TREE_TYPE (t) = rettype;
5319   ptype = build_pointer_type (basetype);
5320 
5321   /* The actual arglist for this function includes a "hidden" argument
5322      which is "this".  Put it into the list of argument types.  */
5323   argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5324   TYPE_ARG_TYPES (t) = argtypes;
5325 
5326   /* If we already have such a type, use the old one.  */
5327   hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5328   hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5329   hashcode = type_hash_list (argtypes, hashcode);
5330   t = type_hash_canon (hashcode, t);
5331 
5332   if (!COMPLETE_TYPE_P (t))
5333     layout_type (t);
5334 
5335   return t;
5336 }
5337 
5338 /* Construct, lay out and return the type of methods belonging to class
5339    BASETYPE and whose arguments and values are described by TYPE.
5340    If that type exists already, reuse it.
5341    TYPE must be a FUNCTION_TYPE node.  */
5342 
5343 tree
build_method_type(tree basetype,tree type)5344 build_method_type (tree basetype, tree type)
5345 {
5346   gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5347 
5348   return build_method_type_directly (basetype,
5349 				     TREE_TYPE (type),
5350 				     TYPE_ARG_TYPES (type));
5351 }
5352 
5353 /* Construct, lay out and return the type of offsets to a value
5354    of type TYPE, within an object of type BASETYPE.
5355    If a suitable offset type exists already, reuse it.  */
5356 
5357 tree
build_offset_type(tree basetype,tree type)5358 build_offset_type (tree basetype, tree type)
5359 {
5360   tree t;
5361   hashval_t hashcode = 0;
5362 
5363   /* Make a node of the sort we want.  */
5364   t = make_node (OFFSET_TYPE);
5365 
5366   TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5367   TREE_TYPE (t) = type;
5368 
5369   /* If we already have such a type, use the old one.  */
5370   hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5371   hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5372   t = type_hash_canon (hashcode, t);
5373 
5374   if (!COMPLETE_TYPE_P (t))
5375     layout_type (t);
5376 
5377   return t;
5378 }
5379 
5380 /* Create a complex type whose components are COMPONENT_TYPE.  */
5381 
5382 tree
build_complex_type(tree component_type)5383 build_complex_type (tree component_type)
5384 {
5385   tree t;
5386   hashval_t hashcode;
5387 
5388   /* Make a node of the sort we want.  */
5389   t = make_node (COMPLEX_TYPE);
5390 
5391   TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5392 
5393   /* If we already have such a type, use the old one.  */
5394   hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5395   t = type_hash_canon (hashcode, t);
5396 
5397   if (!COMPLETE_TYPE_P (t))
5398     layout_type (t);
5399 
5400   /* If we are writing Dwarf2 output we need to create a name,
5401      since complex is a fundamental type.  */
5402   if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5403       && ! TYPE_NAME (t))
5404     {
5405       const char *name;
5406       if (component_type == char_type_node)
5407 	name = "complex char";
5408       else if (component_type == signed_char_type_node)
5409 	name = "complex signed char";
5410       else if (component_type == unsigned_char_type_node)
5411 	name = "complex unsigned char";
5412       else if (component_type == short_integer_type_node)
5413 	name = "complex short int";
5414       else if (component_type == short_unsigned_type_node)
5415 	name = "complex short unsigned int";
5416       else if (component_type == integer_type_node)
5417 	name = "complex int";
5418       else if (component_type == unsigned_type_node)
5419 	name = "complex unsigned int";
5420       else if (component_type == long_integer_type_node)
5421 	name = "complex long int";
5422       else if (component_type == long_unsigned_type_node)
5423 	name = "complex long unsigned int";
5424       else if (component_type == long_long_integer_type_node)
5425 	name = "complex long long int";
5426       else if (component_type == long_long_unsigned_type_node)
5427 	name = "complex long long unsigned int";
5428       else
5429 	name = 0;
5430 
5431       if (name != 0)
5432 	TYPE_NAME (t) = get_identifier (name);
5433     }
5434 
5435   return build_qualified_type (t, TYPE_QUALS (component_type));
5436 }
5437 
5438 /* Return OP, stripped of any conversions to wider types as much as is safe.
5439    Converting the value back to OP's type makes a value equivalent to OP.
5440 
5441    If FOR_TYPE is nonzero, we return a value which, if converted to
5442    type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5443 
5444    If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5445    narrowest type that can hold the value, even if they don't exactly fit.
5446    Otherwise, bit-field references are changed to a narrower type
5447    only if they can be fetched directly from memory in that type.
5448 
5449    OP must have integer, real or enumeral type.  Pointers are not allowed!
5450 
5451    There are some cases where the obvious value we could return
5452    would regenerate to OP if converted to OP's type,
5453    but would not extend like OP to wider types.
5454    If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5455    For example, if OP is (unsigned short)(signed char)-1,
5456    we avoid returning (signed char)-1 if FOR_TYPE is int,
5457    even though extending that to an unsigned short would regenerate OP,
5458    since the result of extending (signed char)-1 to (int)
5459    is different from (int) OP.  */
5460 
5461 tree
get_unwidened(tree op,tree for_type)5462 get_unwidened (tree op, tree for_type)
5463 {
5464   /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
5465   tree type = TREE_TYPE (op);
5466   unsigned final_prec
5467     = TYPE_PRECISION (for_type != 0 ? for_type : type);
5468   int uns
5469     = (for_type != 0 && for_type != type
5470        && final_prec > TYPE_PRECISION (type)
5471        && TYPE_UNSIGNED (type));
5472   tree win = op;
5473 
5474   while (TREE_CODE (op) == NOP_EXPR
5475 	 || TREE_CODE (op) == CONVERT_EXPR)
5476     {
5477       int bitschange;
5478 
5479       /* TYPE_PRECISION on vector types has different meaning
5480 	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5481 	 so avoid them here.  */
5482       if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5483 	break;
5484 
5485       bitschange = TYPE_PRECISION (TREE_TYPE (op))
5486 		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5487 
5488       /* Truncations are many-one so cannot be removed.
5489 	 Unless we are later going to truncate down even farther.  */
5490       if (bitschange < 0
5491 	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5492 	break;
5493 
5494       /* See what's inside this conversion.  If we decide to strip it,
5495 	 we will set WIN.  */
5496       op = TREE_OPERAND (op, 0);
5497 
5498       /* If we have not stripped any zero-extensions (uns is 0),
5499 	 we can strip any kind of extension.
5500 	 If we have previously stripped a zero-extension,
5501 	 only zero-extensions can safely be stripped.
5502 	 Any extension can be stripped if the bits it would produce
5503 	 are all going to be discarded later by truncating to FOR_TYPE.  */
5504 
5505       if (bitschange > 0)
5506 	{
5507 	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5508 	    win = op;
5509 	  /* TYPE_UNSIGNED says whether this is a zero-extension.
5510 	     Let's avoid computing it if it does not affect WIN
5511 	     and if UNS will not be needed again.  */
5512 	  if ((uns
5513 	       || TREE_CODE (op) == NOP_EXPR
5514 	       || TREE_CODE (op) == CONVERT_EXPR)
5515 	      && TYPE_UNSIGNED (TREE_TYPE (op)))
5516 	    {
5517 	      uns = 1;
5518 	      win = op;
5519 	    }
5520 	}
5521     }
5522 
5523   if (TREE_CODE (op) == COMPONENT_REF
5524       /* Since type_for_size always gives an integer type.  */
5525       && TREE_CODE (type) != REAL_TYPE
5526       /* Don't crash if field not laid out yet.  */
5527       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5528       && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5529     {
5530       unsigned int innerprec
5531 	= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5532       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5533 		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5534       type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5535 
5536       /* We can get this structure field in the narrowest type it fits in.
5537 	 If FOR_TYPE is 0, do this only for a field that matches the
5538 	 narrower type exactly and is aligned for it
5539 	 The resulting extension to its nominal type (a fullword type)
5540 	 must fit the same conditions as for other extensions.  */
5541 
5542       if (type != 0
5543 	  && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5544 	  && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5545 	  && (! uns || final_prec <= innerprec || unsignedp))
5546 	{
5547 	  win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5548 			TREE_OPERAND (op, 1), NULL_TREE);
5549 	  TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5550 	  TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5551 	}
5552     }
5553 
5554   return win;
5555 }
5556 
5557 /* Return OP or a simpler expression for a narrower value
5558    which can be sign-extended or zero-extended to give back OP.
5559    Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5560    or 0 if the value should be sign-extended.  */
5561 
5562 tree
get_narrower(tree op,int * unsignedp_ptr)5563 get_narrower (tree op, int *unsignedp_ptr)
5564 {
5565   int uns = 0;
5566   int first = 1;
5567   tree win = op;
5568   bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5569 
5570   while (TREE_CODE (op) == NOP_EXPR)
5571     {
5572       int bitschange
5573 	= (TYPE_PRECISION (TREE_TYPE (op))
5574 	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5575 
5576       /* Truncations are many-one so cannot be removed.  */
5577       if (bitschange < 0)
5578 	break;
5579 
5580       /* See what's inside this conversion.  If we decide to strip it,
5581 	 we will set WIN.  */
5582 
5583       if (bitschange > 0)
5584 	{
5585 	  op = TREE_OPERAND (op, 0);
5586 	  /* An extension: the outermost one can be stripped,
5587 	     but remember whether it is zero or sign extension.  */
5588 	  if (first)
5589 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
5590 	  /* Otherwise, if a sign extension has been stripped,
5591 	     only sign extensions can now be stripped;
5592 	     if a zero extension has been stripped, only zero-extensions.  */
5593 	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5594 	    break;
5595 	  first = 0;
5596 	}
5597       else /* bitschange == 0 */
5598 	{
5599 	  /* A change in nominal type can always be stripped, but we must
5600 	     preserve the unsignedness.  */
5601 	  if (first)
5602 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
5603 	  first = 0;
5604 	  op = TREE_OPERAND (op, 0);
5605 	  /* Keep trying to narrow, but don't assign op to win if it
5606 	     would turn an integral type into something else.  */
5607 	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5608 	    continue;
5609 	}
5610 
5611       win = op;
5612     }
5613 
5614   if (TREE_CODE (op) == COMPONENT_REF
5615       /* Since type_for_size always gives an integer type.  */
5616       && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5617       /* Ensure field is laid out already.  */
5618       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5619       && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5620     {
5621       unsigned HOST_WIDE_INT innerprec
5622 	= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5623       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5624 		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5625       tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5626 
5627       /* We can get this structure field in a narrower type that fits it,
5628 	 but the resulting extension to its nominal type (a fullword type)
5629 	 must satisfy the same conditions as for other extensions.
5630 
5631 	 Do this only for fields that are aligned (not bit-fields),
5632 	 because when bit-field insns will be used there is no
5633 	 advantage in doing this.  */
5634 
5635       if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5636 	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5637 	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5638 	  && type != 0)
5639 	{
5640 	  if (first)
5641 	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5642 	  win = fold_convert (type, op);
5643 	}
5644     }
5645 
5646   *unsignedp_ptr = uns;
5647   return win;
5648 }
5649 
5650 /* Nonzero if integer constant C has a value that is permissible
5651    for type TYPE (an INTEGER_TYPE).  */
5652 
5653 int
int_fits_type_p(tree c,tree type)5654 int_fits_type_p (tree c, tree type)
5655 {
5656   tree type_low_bound = TYPE_MIN_VALUE (type);
5657   tree type_high_bound = TYPE_MAX_VALUE (type);
5658   bool ok_for_low_bound, ok_for_high_bound;
5659   tree tmp;
5660 
5661   /* If at least one bound of the type is a constant integer, we can check
5662      ourselves and maybe make a decision. If no such decision is possible, but
5663      this type is a subtype, try checking against that.  Otherwise, use
5664      force_fit_type, which checks against the precision.
5665 
5666      Compute the status for each possibly constant bound, and return if we see
5667      one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5668      for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5669      for "constant known to fit".  */
5670 
5671   /* Check if C >= type_low_bound.  */
5672   if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5673     {
5674       if (tree_int_cst_lt (c, type_low_bound))
5675 	return 0;
5676       ok_for_low_bound = true;
5677     }
5678   else
5679     ok_for_low_bound = false;
5680 
5681   /* Check if c <= type_high_bound.  */
5682   if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5683     {
5684       if (tree_int_cst_lt (type_high_bound, c))
5685 	return 0;
5686       ok_for_high_bound = true;
5687     }
5688   else
5689     ok_for_high_bound = false;
5690 
5691   /* If the constant fits both bounds, the result is known.  */
5692   if (ok_for_low_bound && ok_for_high_bound)
5693     return 1;
5694 
5695   /* Perform some generic filtering which may allow making a decision
5696      even if the bounds are not constant.  First, negative integers
5697      never fit in unsigned types, */
5698   if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5699     return 0;
5700 
5701   /* Second, narrower types always fit in wider ones.  */
5702   if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5703     return 1;
5704 
5705   /* Third, unsigned integers with top bit set never fit signed types.  */
5706   if (! TYPE_UNSIGNED (type)
5707       && TYPE_UNSIGNED (TREE_TYPE (c))
5708       && tree_int_cst_msb (c))
5709     return 0;
5710 
5711   /* If we haven't been able to decide at this point, there nothing more we
5712      can check ourselves here.  Look at the base type if we have one and it
5713      has the same precision.  */
5714   if (TREE_CODE (type) == INTEGER_TYPE
5715       && TREE_TYPE (type) != 0
5716       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5717     return int_fits_type_p (c, TREE_TYPE (type));
5718 
5719   /* Or to force_fit_type, if nothing else.  */
5720   tmp = copy_node (c);
5721   TREE_TYPE (tmp) = type;
5722   tmp = force_fit_type (tmp, -1, false, false);
5723   return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5724          && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5725 }
5726 
5727 /* Subprogram of following function.  Called by walk_tree.
5728 
5729    Return *TP if it is an automatic variable or parameter of the
5730    function passed in as DATA.  */
5731 
5732 static tree
find_var_from_fn(tree * tp,int * walk_subtrees,void * data)5733 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5734 {
5735   tree fn = (tree) data;
5736 
5737   if (TYPE_P (*tp))
5738     *walk_subtrees = 0;
5739 
5740   else if (DECL_P (*tp)
5741 	   && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5742     return *tp;
5743 
5744   return NULL_TREE;
5745 }
5746 
5747 /* Returns true if T is, contains, or refers to a type with variable
5748    size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
5749    arguments, but not the return type.  If FN is nonzero, only return
5750    true if a modifier of the type or position of FN is a variable or
5751    parameter inside FN.
5752 
5753    This concept is more general than that of C99 'variably modified types':
5754    in C99, a struct type is never variably modified because a VLA may not
5755    appear as a structure member.  However, in GNU C code like:
5756 
5757      struct S { int i[f()]; };
5758 
5759    is valid, and other languages may define similar constructs.  */
5760 
5761 bool
variably_modified_type_p(tree type,tree fn)5762 variably_modified_type_p (tree type, tree fn)
5763 {
5764   tree t;
5765 
5766 /* Test if T is either variable (if FN is zero) or an expression containing
5767    a variable in FN.  */
5768 #define RETURN_TRUE_IF_VAR(T)						\
5769   do { tree _t = (T);							\
5770     if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST	\
5771         && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL)))	\
5772       return true;  } while (0)
5773 
5774   if (type == error_mark_node)
5775     return false;
5776 
5777   /* If TYPE itself has variable size, it is variably modified.  */
5778   RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5779   RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
5780 
5781   switch (TREE_CODE (type))
5782     {
5783     case POINTER_TYPE:
5784     case REFERENCE_TYPE:
5785     case VECTOR_TYPE:
5786       if (variably_modified_type_p (TREE_TYPE (type), fn))
5787 	return true;
5788       break;
5789 
5790     case FUNCTION_TYPE:
5791     case METHOD_TYPE:
5792       /* If TYPE is a function type, it is variably modified if the
5793 	 return type is variably modified.  */
5794       if (variably_modified_type_p (TREE_TYPE (type), fn))
5795 	  return true;
5796       break;
5797 
5798     case INTEGER_TYPE:
5799     case REAL_TYPE:
5800     case ENUMERAL_TYPE:
5801     case BOOLEAN_TYPE:
5802       /* Scalar types are variably modified if their end points
5803 	 aren't constant.  */
5804       RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5805       RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5806       break;
5807 
5808     case RECORD_TYPE:
5809     case UNION_TYPE:
5810     case QUAL_UNION_TYPE:
5811       /* We can't see if any of the fields are variably-modified by the
5812 	 definition we normally use, since that would produce infinite
5813 	 recursion via pointers.  */
5814       /* This is variably modified if some field's type is.  */
5815       for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5816 	if (TREE_CODE (t) == FIELD_DECL)
5817 	  {
5818 	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5819 	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5820 	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5821 
5822 	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
5823 	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5824 	  }
5825 	break;
5826 
5827     case ARRAY_TYPE:
5828       /* Do not call ourselves to avoid infinite recursion.  This is
5829 	 variably modified if the element type is.  */
5830       RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
5831       RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
5832       break;
5833 
5834     default:
5835       break;
5836     }
5837 
5838   /* The current language may have other cases to check, but in general,
5839      all other types are not variably modified.  */
5840   return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5841 
5842 #undef RETURN_TRUE_IF_VAR
5843 }
5844 
5845 /* Given a DECL or TYPE, return the scope in which it was declared, or
5846    NULL_TREE if there is no containing scope.  */
5847 
5848 tree
get_containing_scope(tree t)5849 get_containing_scope (tree t)
5850 {
5851   return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5852 }
5853 
5854 /* Return the innermost context enclosing DECL that is
5855    a FUNCTION_DECL, or zero if none.  */
5856 
5857 tree
decl_function_context(tree decl)5858 decl_function_context (tree decl)
5859 {
5860   tree context;
5861 
5862   if (TREE_CODE (decl) == ERROR_MARK)
5863     return 0;
5864 
5865   /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5866      where we look up the function at runtime.  Such functions always take
5867      a first argument of type 'pointer to real context'.
5868 
5869      C++ should really be fixed to use DECL_CONTEXT for the real context,
5870      and use something else for the "virtual context".  */
5871   else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5872     context
5873       = TYPE_MAIN_VARIANT
5874 	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5875   else
5876     context = DECL_CONTEXT (decl);
5877 
5878   while (context && TREE_CODE (context) != FUNCTION_DECL)
5879     {
5880       if (TREE_CODE (context) == BLOCK)
5881 	context = BLOCK_SUPERCONTEXT (context);
5882       else
5883 	context = get_containing_scope (context);
5884     }
5885 
5886   return context;
5887 }
5888 
5889 /* Return the innermost context enclosing DECL that is
5890    a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5891    TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
5892 
5893 tree
decl_type_context(tree decl)5894 decl_type_context (tree decl)
5895 {
5896   tree context = DECL_CONTEXT (decl);
5897 
5898   while (context)
5899     switch (TREE_CODE (context))
5900       {
5901       case NAMESPACE_DECL:
5902       case TRANSLATION_UNIT_DECL:
5903 	return NULL_TREE;
5904 
5905       case RECORD_TYPE:
5906       case UNION_TYPE:
5907       case QUAL_UNION_TYPE:
5908 	return context;
5909 
5910       case TYPE_DECL:
5911       case FUNCTION_DECL:
5912 	context = DECL_CONTEXT (context);
5913 	break;
5914 
5915       case BLOCK:
5916 	context = BLOCK_SUPERCONTEXT (context);
5917 	break;
5918 
5919       default:
5920 	gcc_unreachable ();
5921       }
5922 
5923   return NULL_TREE;
5924 }
5925 
5926 /* CALL is a CALL_EXPR.  Return the declaration for the function
5927    called, or NULL_TREE if the called function cannot be
5928    determined.  */
5929 
5930 tree
get_callee_fndecl(tree call)5931 get_callee_fndecl (tree call)
5932 {
5933   tree addr;
5934 
5935   if (call == error_mark_node)
5936     return call;
5937 
5938   /* It's invalid to call this function with anything but a
5939      CALL_EXPR.  */
5940   gcc_assert (TREE_CODE (call) == CALL_EXPR);
5941 
5942   /* The first operand to the CALL is the address of the function
5943      called.  */
5944   addr = TREE_OPERAND (call, 0);
5945 
5946   STRIP_NOPS (addr);
5947 
5948   /* If this is a readonly function pointer, extract its initial value.  */
5949   if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5950       && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5951       && DECL_INITIAL (addr))
5952     addr = DECL_INITIAL (addr);
5953 
5954   /* If the address is just `&f' for some function `f', then we know
5955      that `f' is being called.  */
5956   if (TREE_CODE (addr) == ADDR_EXPR
5957       && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5958     return TREE_OPERAND (addr, 0);
5959 
5960   /* We couldn't figure out what was being called.  Maybe the front
5961      end has some idea.  */
5962   return lang_hooks.lang_get_callee_fndecl (call);
5963 }
5964 
5965 /* Print debugging information about tree nodes generated during the compile,
5966    and any language-specific information.  */
5967 
5968 void
dump_tree_statistics(void)5969 dump_tree_statistics (void)
5970 {
5971 #ifdef GATHER_STATISTICS
5972   int i;
5973   int total_nodes, total_bytes;
5974 #endif
5975 
5976   fprintf (stderr, "\n??? tree nodes created\n\n");
5977 #ifdef GATHER_STATISTICS
5978   fprintf (stderr, "Kind                   Nodes      Bytes\n");
5979   fprintf (stderr, "---------------------------------------\n");
5980   total_nodes = total_bytes = 0;
5981   for (i = 0; i < (int) all_kinds; i++)
5982     {
5983       fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5984 	       tree_node_counts[i], tree_node_sizes[i]);
5985       total_nodes += tree_node_counts[i];
5986       total_bytes += tree_node_sizes[i];
5987     }
5988   fprintf (stderr, "---------------------------------------\n");
5989   fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5990   fprintf (stderr, "---------------------------------------\n");
5991   ssanames_print_statistics ();
5992   phinodes_print_statistics ();
5993 #else
5994   fprintf (stderr, "(No per-node statistics)\n");
5995 #endif
5996   print_type_hash_statistics ();
5997   print_debug_expr_statistics ();
5998   print_value_expr_statistics ();
5999   print_restrict_base_statistics ();
6000   lang_hooks.print_statistics ();
6001 }
6002 
6003 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6004 
6005 /* Generate a crc32 of a string.  */
6006 
6007 unsigned
crc32_string(unsigned chksum,const char * string)6008 crc32_string (unsigned chksum, const char *string)
6009 {
6010   do
6011     {
6012       unsigned value = *string << 24;
6013       unsigned ix;
6014 
6015       for (ix = 8; ix--; value <<= 1)
6016   	{
6017   	  unsigned feedback;
6018 
6019   	  feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6020  	  chksum <<= 1;
6021  	  chksum ^= feedback;
6022   	}
6023     }
6024   while (*string++);
6025   return chksum;
6026 }
6027 
6028 /* P is a string that will be used in a symbol.  Mask out any characters
6029    that are not valid in that context.  */
6030 
6031 void
clean_symbol_name(char * p)6032 clean_symbol_name (char *p)
6033 {
6034   for (; *p; p++)
6035     if (! (ISALNUM (*p)
6036 #ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
6037 	    || *p == '$'
6038 #endif
6039 #ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
6040 	    || *p == '.'
6041 #endif
6042 	   ))
6043       *p = '_';
6044 }
6045 
6046 /* Generate a name for a function unique to this translation unit.
6047    TYPE is some string to identify the purpose of this function to the
6048    linker or collect2.  */
6049 
6050 tree
get_file_function_name_long(const char * type)6051 get_file_function_name_long (const char *type)
6052 {
6053   char *buf;
6054   const char *p;
6055   char *q;
6056 
6057   if (first_global_object_name)
6058     {
6059       p = first_global_object_name;
6060 
6061       /* For type 'F', the generated name must be unique not only to this
6062 	 translation unit but also to any given link.  Since global names
6063 	 can be overloaded, we concatenate the first global object name
6064 	 with a string derived from the file name of this object.  */
6065       if (!strcmp (type, "F"))
6066 	{
6067 	  const char *file = main_input_filename;
6068 
6069 	  if (! file)
6070 	    file = input_filename;
6071 
6072 	  q = alloca (strlen (p) + 10);
6073 	  sprintf (q, "%s_%08X", p, crc32_string (0, file));
6074 
6075 	  p = q;
6076 	}
6077     }
6078   else
6079     {
6080       /* We don't have anything that we know to be unique to this translation
6081 	 unit, so use what we do have and throw in some randomness.  */
6082       unsigned len;
6083       const char *name = weak_global_object_name;
6084       const char *file = main_input_filename;
6085 
6086       if (! name)
6087 	name = "";
6088       if (! file)
6089 	file = input_filename;
6090 
6091       len = strlen (file);
6092       q = alloca (9 * 2 + len + 1);
6093       memcpy (q, file, len + 1);
6094       clean_symbol_name (q);
6095 
6096       sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6097 	       crc32_string (0, flag_random_seed));
6098 
6099       p = q;
6100     }
6101 
6102   buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6103 
6104   /* Set up the name of the file-level functions we may need.
6105      Use a global object (which is already required to be unique over
6106      the program) rather than the file name (which imposes extra
6107      constraints).  */
6108   sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6109 
6110   return get_identifier (buf);
6111 }
6112 
6113 /* If KIND=='I', return a suitable global initializer (constructor) name.
6114    If KIND=='D', return a suitable global clean-up (destructor) name.  */
6115 
6116 tree
get_file_function_name(int kind)6117 get_file_function_name (int kind)
6118 {
6119   char p[2];
6120 
6121   p[0] = kind;
6122   p[1] = 0;
6123 
6124   return get_file_function_name_long (p);
6125 }
6126 
6127 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6128 
6129 /* Complain that the tree code of NODE does not match the expected 0
6130    terminated list of trailing codes. The trailing code list can be
6131    empty, for a more vague error message.  FILE, LINE, and FUNCTION
6132    are of the caller.  */
6133 
6134 void
tree_check_failed(const tree node,const char * file,int line,const char * function,...)6135 tree_check_failed (const tree node, const char *file,
6136 		   int line, const char *function, ...)
6137 {
6138   va_list args;
6139   char *buffer;
6140   unsigned length = 0;
6141   int code;
6142 
6143   va_start (args, function);
6144   while ((code = va_arg (args, int)))
6145     length += 4 + strlen (tree_code_name[code]);
6146   va_end (args);
6147   if (length)
6148     {
6149       va_start (args, function);
6150       length += strlen ("expected ");
6151       buffer = alloca (length);
6152       length = 0;
6153       while ((code = va_arg (args, int)))
6154 	{
6155 	  const char *prefix = length ? " or " : "expected ";
6156 
6157 	  strcpy (buffer + length, prefix);
6158 	  length += strlen (prefix);
6159 	  strcpy (buffer + length, tree_code_name[code]);
6160 	  length += strlen (tree_code_name[code]);
6161 	}
6162       va_end (args);
6163     }
6164   else
6165     buffer = (char *)"unexpected node";
6166 
6167   internal_error ("tree check: %s, have %s in %s, at %s:%d",
6168 		  buffer, tree_code_name[TREE_CODE (node)],
6169 		  function, trim_filename (file), line);
6170 }
6171 
6172 /* Complain that the tree code of NODE does match the expected 0
6173    terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6174    the caller.  */
6175 
6176 void
tree_not_check_failed(const tree node,const char * file,int line,const char * function,...)6177 tree_not_check_failed (const tree node, const char *file,
6178 		       int line, const char *function, ...)
6179 {
6180   va_list args;
6181   char *buffer;
6182   unsigned length = 0;
6183   int code;
6184 
6185   va_start (args, function);
6186   while ((code = va_arg (args, int)))
6187     length += 4 + strlen (tree_code_name[code]);
6188   va_end (args);
6189   va_start (args, function);
6190   buffer = alloca (length);
6191   length = 0;
6192   while ((code = va_arg (args, int)))
6193     {
6194       if (length)
6195 	{
6196 	  strcpy (buffer + length, " or ");
6197 	  length += 4;
6198 	}
6199       strcpy (buffer + length, tree_code_name[code]);
6200       length += strlen (tree_code_name[code]);
6201     }
6202   va_end (args);
6203 
6204   internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6205 		  buffer, tree_code_name[TREE_CODE (node)],
6206 		  function, trim_filename (file), line);
6207 }
6208 
6209 /* Similar to tree_check_failed, except that we check for a class of tree
6210    code, given in CL.  */
6211 
6212 void
tree_class_check_failed(const tree node,const enum tree_code_class cl,const char * file,int line,const char * function)6213 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6214 			 const char *file, int line, const char *function)
6215 {
6216   internal_error
6217     ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6218      TREE_CODE_CLASS_STRING (cl),
6219      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6220      tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6221 }
6222 
6223 /* Similar to tree_check_failed, except that instead of specifying a
6224    dozen codes, use the knowledge that they're all sequential.  */
6225 
6226 void
tree_range_check_failed(const tree node,const char * file,int line,const char * function,enum tree_code c1,enum tree_code c2)6227 tree_range_check_failed (const tree node, const char *file, int line,
6228 			 const char *function, enum tree_code c1,
6229 			 enum tree_code c2)
6230 {
6231   char *buffer;
6232   unsigned length = 0;
6233   enum tree_code c;
6234 
6235   for (c = c1; c <= c2; ++c)
6236     length += 4 + strlen (tree_code_name[c]);
6237 
6238   length += strlen ("expected ");
6239   buffer = alloca (length);
6240   length = 0;
6241 
6242   for (c = c1; c <= c2; ++c)
6243     {
6244       const char *prefix = length ? " or " : "expected ";
6245 
6246       strcpy (buffer + length, prefix);
6247       length += strlen (prefix);
6248       strcpy (buffer + length, tree_code_name[c]);
6249       length += strlen (tree_code_name[c]);
6250     }
6251 
6252   internal_error ("tree check: %s, have %s in %s, at %s:%d",
6253 		  buffer, tree_code_name[TREE_CODE (node)],
6254 		  function, trim_filename (file), line);
6255 }
6256 
6257 
6258 /* Similar to tree_check_failed, except that we check that a tree does
6259    not have the specified code, given in CL.  */
6260 
6261 void
tree_not_class_check_failed(const tree node,const enum tree_code_class cl,const char * file,int line,const char * function)6262 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6263 			     const char *file, int line, const char *function)
6264 {
6265   internal_error
6266     ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6267      TREE_CODE_CLASS_STRING (cl),
6268      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6269      tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6270 }
6271 
6272 
6273 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
6274 
6275 void
omp_clause_check_failed(const tree node,const char * file,int line,const char * function,enum omp_clause_code code)6276 omp_clause_check_failed (const tree node, const char *file, int line,
6277                          const char *function, enum omp_clause_code code)
6278 {
6279   internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6280 		  omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6281 		  function, trim_filename (file), line);
6282 }
6283 
6284 
6285 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
6286 
6287 void
omp_clause_range_check_failed(const tree node,const char * file,int line,const char * function,enum omp_clause_code c1,enum omp_clause_code c2)6288 omp_clause_range_check_failed (const tree node, const char *file, int line,
6289 			       const char *function, enum omp_clause_code c1,
6290 			       enum omp_clause_code c2)
6291 {
6292   char *buffer;
6293   unsigned length = 0;
6294   enum omp_clause_code c;
6295 
6296   for (c = c1; c <= c2; ++c)
6297     length += 4 + strlen (omp_clause_code_name[c]);
6298 
6299   length += strlen ("expected ");
6300   buffer = alloca (length);
6301   length = 0;
6302 
6303   for (c = c1; c <= c2; ++c)
6304     {
6305       const char *prefix = length ? " or " : "expected ";
6306 
6307       strcpy (buffer + length, prefix);
6308       length += strlen (prefix);
6309       strcpy (buffer + length, omp_clause_code_name[c]);
6310       length += strlen (omp_clause_code_name[c]);
6311     }
6312 
6313   internal_error ("tree check: %s, have %s in %s, at %s:%d",
6314 		  buffer, omp_clause_code_name[TREE_CODE (node)],
6315 		  function, trim_filename (file), line);
6316 }
6317 
6318 
6319 #undef DEFTREESTRUCT
6320 #define DEFTREESTRUCT(VAL, NAME) NAME,
6321 
6322 static const char *ts_enum_names[] = {
6323 #include "treestruct.def"
6324 };
6325 #undef DEFTREESTRUCT
6326 
6327 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6328 
6329 /* Similar to tree_class_check_failed, except that we check for
6330    whether CODE contains the tree structure identified by EN.  */
6331 
6332 void
tree_contains_struct_check_failed(const tree node,const enum tree_node_structure_enum en,const char * file,int line,const char * function)6333 tree_contains_struct_check_failed (const tree node,
6334 				   const enum tree_node_structure_enum en,
6335 				   const char *file, int line,
6336 				   const char *function)
6337 {
6338   internal_error
6339     ("tree check: expected tree that contains %qs structure, have %qs  in %s, at %s:%d",
6340      TS_ENUM_NAME(en),
6341      tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6342 }
6343 
6344 
6345 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6346    (dynamically sized) vector.  */
6347 
6348 void
tree_vec_elt_check_failed(int idx,int len,const char * file,int line,const char * function)6349 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6350 			   const char *function)
6351 {
6352   internal_error
6353     ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6354      idx + 1, len, function, trim_filename (file), line);
6355 }
6356 
6357 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6358    (dynamically sized) vector.  */
6359 
6360 void
phi_node_elt_check_failed(int idx,int len,const char * file,int line,const char * function)6361 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6362 			    const char *function)
6363 {
6364   internal_error
6365     ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6366      idx + 1, len, function, trim_filename (file), line);
6367 }
6368 
6369 /* Similar to above, except that the check is for the bounds of the operand
6370    vector of an expression node.  */
6371 
6372 void
tree_operand_check_failed(int idx,enum tree_code code,const char * file,int line,const char * function)6373 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6374 			   int line, const char *function)
6375 {
6376   internal_error
6377     ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6378      idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6379      function, trim_filename (file), line);
6380 }
6381 
6382 /* Similar to above, except that the check is for the number of
6383    operands of an OMP_CLAUSE node.  */
6384 
6385 void
omp_clause_operand_check_failed(int idx,tree t,const char * file,int line,const char * function)6386 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6387 			         int line, const char *function)
6388 {
6389   internal_error
6390     ("tree check: accessed operand %d of omp_clause %s with %d operands "
6391      "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6392      omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6393      trim_filename (file), line);
6394 }
6395 #endif /* ENABLE_TREE_CHECKING */
6396 
6397 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6398    and mapped to the machine mode MODE.  Initialize its fields and build
6399    the information necessary for debugging output.  */
6400 
6401 static tree
make_vector_type(tree innertype,int nunits,enum machine_mode mode)6402 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6403 {
6404   tree t;
6405   hashval_t hashcode = 0;
6406 
6407   /* Build a main variant, based on the main variant of the inner type, then
6408      use it to build the variant we return.  */
6409   if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6410       && TYPE_MAIN_VARIANT (innertype) != innertype)
6411     return build_type_attribute_qual_variant (
6412 	    make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6413 	    TYPE_ATTRIBUTES (innertype),
6414 	    TYPE_QUALS (innertype));
6415 
6416   t = make_node (VECTOR_TYPE);
6417   TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6418   SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6419   TYPE_MODE (t) = mode;
6420   TYPE_READONLY (t) = TYPE_READONLY (innertype);
6421   TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6422 
6423   layout_type (t);
6424 
6425   {
6426     tree index = build_int_cst (NULL_TREE, nunits - 1);
6427     tree array = build_array_type (innertype, build_index_type (index));
6428     tree rt = make_node (RECORD_TYPE);
6429 
6430     TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6431     DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6432     layout_type (rt);
6433     TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6434     /* In dwarfout.c, type lookup uses TYPE_UID numbers.  We want to output
6435        the representation type, and we want to find that die when looking up
6436        the vector type.  This is most easily achieved by making the TYPE_UID
6437        numbers equal.  */
6438     TYPE_UID (rt) = TYPE_UID (t);
6439   }
6440 
6441   hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6442   hashcode = iterative_hash_host_wide_int (mode, hashcode);
6443   hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6444   return type_hash_canon (hashcode, t);
6445 }
6446 
6447 static tree
make_or_reuse_type(unsigned size,int unsignedp)6448 make_or_reuse_type (unsigned size, int unsignedp)
6449 {
6450   if (size == INT_TYPE_SIZE)
6451     return unsignedp ? unsigned_type_node : integer_type_node;
6452   if (size == CHAR_TYPE_SIZE)
6453     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6454   if (size == SHORT_TYPE_SIZE)
6455     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6456   if (size == LONG_TYPE_SIZE)
6457     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6458   if (size == LONG_LONG_TYPE_SIZE)
6459     return (unsignedp ? long_long_unsigned_type_node
6460             : long_long_integer_type_node);
6461 
6462   if (unsignedp)
6463     return make_unsigned_type (size);
6464   else
6465     return make_signed_type (size);
6466 }
6467 
6468 /* Create nodes for all integer types (and error_mark_node) using the sizes
6469    of C datatypes.  The caller should call set_sizetype soon after calling
6470    this function to select one of the types as sizetype.  */
6471 
6472 void
build_common_tree_nodes(bool signed_char,bool signed_sizetype)6473 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6474 {
6475   error_mark_node = make_node (ERROR_MARK);
6476   TREE_TYPE (error_mark_node) = error_mark_node;
6477 
6478   initialize_sizetypes (signed_sizetype);
6479 
6480   /* Define both `signed char' and `unsigned char'.  */
6481   signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6482   TYPE_STRING_FLAG (signed_char_type_node) = 1;
6483   unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6484   TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6485 
6486   /* Define `char', which is like either `signed char' or `unsigned char'
6487      but not the same as either.  */
6488   char_type_node
6489     = (signed_char
6490        ? make_signed_type (CHAR_TYPE_SIZE)
6491        : make_unsigned_type (CHAR_TYPE_SIZE));
6492   TYPE_STRING_FLAG (char_type_node) = 1;
6493 
6494   short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6495   short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6496   integer_type_node = make_signed_type (INT_TYPE_SIZE);
6497   unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6498   long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6499   long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6500   long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6501   long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6502 
6503   /* Define a boolean type.  This type only represents boolean values but
6504      may be larger than char depending on the value of BOOL_TYPE_SIZE.
6505      Front ends which want to override this size (i.e. Java) can redefine
6506      boolean_type_node before calling build_common_tree_nodes_2.  */
6507   boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6508   TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6509   TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6510   TYPE_PRECISION (boolean_type_node) = 1;
6511 
6512   /* Fill in the rest of the sized types.  Reuse existing type nodes
6513      when possible.  */
6514   intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6515   intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6516   intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6517   intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6518   intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6519 
6520   unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6521   unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6522   unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6523   unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6524   unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6525 
6526   access_public_node = get_identifier ("public");
6527   access_protected_node = get_identifier ("protected");
6528   access_private_node = get_identifier ("private");
6529 }
6530 
6531 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6532    It will create several other common tree nodes.  */
6533 
6534 void
build_common_tree_nodes_2(int short_double)6535 build_common_tree_nodes_2 (int short_double)
6536 {
6537   /* Define these next since types below may used them.  */
6538   integer_zero_node = build_int_cst (NULL_TREE, 0);
6539   integer_one_node = build_int_cst (NULL_TREE, 1);
6540   integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6541 
6542   size_zero_node = size_int (0);
6543   size_one_node = size_int (1);
6544   bitsize_zero_node = bitsize_int (0);
6545   bitsize_one_node = bitsize_int (1);
6546   bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6547 
6548   boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6549   boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6550 
6551   void_type_node = make_node (VOID_TYPE);
6552   layout_type (void_type_node);
6553 
6554   /* We are not going to have real types in C with less than byte alignment,
6555      so we might as well not have any types that claim to have it.  */
6556   TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6557   TYPE_USER_ALIGN (void_type_node) = 0;
6558 
6559   null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6560   layout_type (TREE_TYPE (null_pointer_node));
6561 
6562   ptr_type_node = build_pointer_type (void_type_node);
6563   const_ptr_type_node
6564     = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6565   fileptr_type_node = ptr_type_node;
6566 
6567   float_type_node = make_node (REAL_TYPE);
6568   TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6569   layout_type (float_type_node);
6570 
6571   double_type_node = make_node (REAL_TYPE);
6572   if (short_double)
6573     TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6574   else
6575     TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6576   layout_type (double_type_node);
6577 
6578   long_double_type_node = make_node (REAL_TYPE);
6579   TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6580   layout_type (long_double_type_node);
6581 
6582   float_ptr_type_node = build_pointer_type (float_type_node);
6583   double_ptr_type_node = build_pointer_type (double_type_node);
6584   long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6585   integer_ptr_type_node = build_pointer_type (integer_type_node);
6586 
6587   /* Decimal float types. */
6588   dfloat32_type_node = make_node (REAL_TYPE);
6589   TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6590   layout_type (dfloat32_type_node);
6591   TYPE_MODE (dfloat32_type_node) = SDmode;
6592   dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6593 
6594   dfloat64_type_node = make_node (REAL_TYPE);
6595   TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6596   layout_type (dfloat64_type_node);
6597   TYPE_MODE (dfloat64_type_node) = DDmode;
6598   dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6599 
6600   dfloat128_type_node = make_node (REAL_TYPE);
6601   TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
6602   layout_type (dfloat128_type_node);
6603   TYPE_MODE (dfloat128_type_node) = TDmode;
6604   dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6605 
6606   complex_integer_type_node = make_node (COMPLEX_TYPE);
6607   TREE_TYPE (complex_integer_type_node) = integer_type_node;
6608   layout_type (complex_integer_type_node);
6609 
6610   complex_float_type_node = make_node (COMPLEX_TYPE);
6611   TREE_TYPE (complex_float_type_node) = float_type_node;
6612   layout_type (complex_float_type_node);
6613 
6614   complex_double_type_node = make_node (COMPLEX_TYPE);
6615   TREE_TYPE (complex_double_type_node) = double_type_node;
6616   layout_type (complex_double_type_node);
6617 
6618   complex_long_double_type_node = make_node (COMPLEX_TYPE);
6619   TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6620   layout_type (complex_long_double_type_node);
6621 
6622   {
6623     tree t = targetm.build_builtin_va_list ();
6624 
6625     /* Many back-ends define record types without setting TYPE_NAME.
6626        If we copied the record type here, we'd keep the original
6627        record type without a name.  This breaks name mangling.  So,
6628        don't copy record types and let c_common_nodes_and_builtins()
6629        declare the type to be __builtin_va_list.  */
6630     if (TREE_CODE (t) != RECORD_TYPE)
6631       t = build_variant_type_copy (t);
6632 
6633     va_list_type_node = t;
6634   }
6635 }
6636 
6637 /* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
6638 
6639 static void
local_define_builtin(const char * name,tree type,enum built_in_function code,const char * library_name,int ecf_flags)6640 local_define_builtin (const char *name, tree type, enum built_in_function code,
6641                       const char *library_name, int ecf_flags)
6642 {
6643   tree decl;
6644 
6645   decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6646 				      library_name, NULL_TREE);
6647   if (ecf_flags & ECF_CONST)
6648     TREE_READONLY (decl) = 1;
6649   if (ecf_flags & ECF_PURE)
6650     DECL_IS_PURE (decl) = 1;
6651   if (ecf_flags & ECF_NORETURN)
6652     TREE_THIS_VOLATILE (decl) = 1;
6653   if (ecf_flags & ECF_NOTHROW)
6654     TREE_NOTHROW (decl) = 1;
6655   if (ecf_flags & ECF_MALLOC)
6656     DECL_IS_MALLOC (decl) = 1;
6657 
6658   built_in_decls[code] = decl;
6659   implicit_built_in_decls[code] = decl;
6660 }
6661 
6662 /* Call this function after instantiating all builtins that the language
6663    front end cares about.  This will build the rest of the builtins that
6664    are relied upon by the tree optimizers and the middle-end.  */
6665 
6666 void
build_common_builtin_nodes(void)6667 build_common_builtin_nodes (void)
6668 {
6669   tree tmp, ftype;
6670 
6671   if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6672       || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6673     {
6674       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6675       tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6676       tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6677       ftype = build_function_type (ptr_type_node, tmp);
6678 
6679       if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6680 	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6681 			      "memcpy", ECF_NOTHROW);
6682       if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6683 	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6684 			      "memmove", ECF_NOTHROW);
6685     }
6686 
6687   if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6688     {
6689       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6690       tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6691       tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6692       ftype = build_function_type (integer_type_node, tmp);
6693       local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6694 			    "memcmp", ECF_PURE | ECF_NOTHROW);
6695     }
6696 
6697   if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6698     {
6699       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6700       tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6701       tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6702       ftype = build_function_type (ptr_type_node, tmp);
6703       local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6704 			    "memset", ECF_NOTHROW);
6705     }
6706 
6707   if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6708     {
6709       tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6710       ftype = build_function_type (ptr_type_node, tmp);
6711       local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6712 			    "alloca", ECF_NOTHROW | ECF_MALLOC);
6713     }
6714 
6715   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6716   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6717   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6718   ftype = build_function_type (void_type_node, tmp);
6719   local_define_builtin ("__builtin_init_trampoline", ftype,
6720 			BUILT_IN_INIT_TRAMPOLINE,
6721 			"__builtin_init_trampoline", ECF_NOTHROW);
6722 
6723   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6724   ftype = build_function_type (ptr_type_node, tmp);
6725   local_define_builtin ("__builtin_adjust_trampoline", ftype,
6726 			BUILT_IN_ADJUST_TRAMPOLINE,
6727 			"__builtin_adjust_trampoline",
6728 			ECF_CONST | ECF_NOTHROW);
6729 
6730   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6731   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6732   ftype = build_function_type (void_type_node, tmp);
6733   local_define_builtin ("__builtin_nonlocal_goto", ftype,
6734 			BUILT_IN_NONLOCAL_GOTO,
6735 			"__builtin_nonlocal_goto",
6736 			ECF_NORETURN | ECF_NOTHROW);
6737 
6738   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6739   tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6740   ftype = build_function_type (void_type_node, tmp);
6741   local_define_builtin ("__builtin_setjmp_setup", ftype,
6742 			BUILT_IN_SETJMP_SETUP,
6743 			"__builtin_setjmp_setup", ECF_NOTHROW);
6744 
6745   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6746   ftype = build_function_type (ptr_type_node, tmp);
6747   local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
6748 			BUILT_IN_SETJMP_DISPATCHER,
6749 			"__builtin_setjmp_dispatcher",
6750 			ECF_PURE | ECF_NOTHROW);
6751 
6752   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6753   ftype = build_function_type (void_type_node, tmp);
6754   local_define_builtin ("__builtin_setjmp_receiver", ftype,
6755 			BUILT_IN_SETJMP_RECEIVER,
6756 			"__builtin_setjmp_receiver", ECF_NOTHROW);
6757 
6758   ftype = build_function_type (ptr_type_node, void_list_node);
6759   local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6760 			"__builtin_stack_save", ECF_NOTHROW);
6761 
6762   tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6763   ftype = build_function_type (void_type_node, tmp);
6764   local_define_builtin ("__builtin_stack_restore", ftype,
6765 			BUILT_IN_STACK_RESTORE,
6766 			"__builtin_stack_restore", ECF_NOTHROW);
6767 
6768   ftype = build_function_type (void_type_node, void_list_node);
6769   local_define_builtin ("__builtin_profile_func_enter", ftype,
6770 			BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6771   local_define_builtin ("__builtin_profile_func_exit", ftype,
6772 			BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6773 
6774   /* Complex multiplication and division.  These are handled as builtins
6775      rather than optabs because emit_library_call_value doesn't support
6776      complex.  Further, we can do slightly better with folding these
6777      beasties if the real and complex parts of the arguments are separate.  */
6778   {
6779     enum machine_mode mode;
6780 
6781     for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6782       {
6783 	char mode_name_buf[4], *q;
6784 	const char *p;
6785 	enum built_in_function mcode, dcode;
6786 	tree type, inner_type;
6787 
6788 	type = lang_hooks.types.type_for_mode (mode, 0);
6789 	if (type == NULL)
6790 	  continue;
6791 	inner_type = TREE_TYPE (type);
6792 
6793 	tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6794 	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6795 	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6796 	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6797 	ftype = build_function_type (type, tmp);
6798 
6799         mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6800         dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6801 
6802         for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6803 	  *q = TOLOWER (*p);
6804 	*q = '\0';
6805 
6806 	built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6807         local_define_builtin (built_in_names[mcode], ftype, mcode,
6808 			      built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6809 
6810 	built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6811         local_define_builtin (built_in_names[dcode], ftype, dcode,
6812 			      built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6813       }
6814   }
6815 }
6816 
6817 /* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
6818    better way.
6819 
6820    If we requested a pointer to a vector, build up the pointers that
6821    we stripped off while looking for the inner type.  Similarly for
6822    return values from functions.
6823 
6824    The argument TYPE is the top of the chain, and BOTTOM is the
6825    new type which we will point to.  */
6826 
6827 tree
reconstruct_complex_type(tree type,tree bottom)6828 reconstruct_complex_type (tree type, tree bottom)
6829 {
6830   tree inner, outer;
6831 
6832   if (POINTER_TYPE_P (type))
6833     {
6834       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6835       outer = build_pointer_type (inner);
6836     }
6837   else if (TREE_CODE (type) == ARRAY_TYPE)
6838     {
6839       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6840       outer = build_array_type (inner, TYPE_DOMAIN (type));
6841     }
6842   else if (TREE_CODE (type) == FUNCTION_TYPE)
6843     {
6844       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6845       outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6846     }
6847   else if (TREE_CODE (type) == METHOD_TYPE)
6848     {
6849       tree argtypes;
6850       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6851       /* The build_method_type_directly() routine prepends 'this' to argument list,
6852          so we must compensate by getting rid of it.  */
6853       argtypes = TYPE_ARG_TYPES (type);
6854       outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6855 					  inner,
6856 					  TYPE_ARG_TYPES (type));
6857       TYPE_ARG_TYPES (outer) = argtypes;
6858     }
6859   else
6860     return bottom;
6861 
6862   TYPE_READONLY (outer) = TYPE_READONLY (type);
6863   TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6864 
6865   return outer;
6866 }
6867 
6868 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6869    the inner type.  */
6870 tree
build_vector_type_for_mode(tree innertype,enum machine_mode mode)6871 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6872 {
6873   int nunits;
6874 
6875   switch (GET_MODE_CLASS (mode))
6876     {
6877     case MODE_VECTOR_INT:
6878     case MODE_VECTOR_FLOAT:
6879       nunits = GET_MODE_NUNITS (mode);
6880       break;
6881 
6882     case MODE_INT:
6883       /* Check that there are no leftover bits.  */
6884       gcc_assert (GET_MODE_BITSIZE (mode)
6885 		  % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6886 
6887       nunits = GET_MODE_BITSIZE (mode)
6888 	       / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6889       break;
6890 
6891     default:
6892       gcc_unreachable ();
6893     }
6894 
6895   return make_vector_type (innertype, nunits, mode);
6896 }
6897 
6898 /* Similarly, but takes the inner type and number of units, which must be
6899    a power of two.  */
6900 
6901 tree
build_vector_type(tree innertype,int nunits)6902 build_vector_type (tree innertype, int nunits)
6903 {
6904   return make_vector_type (innertype, nunits, VOIDmode);
6905 }
6906 
6907 
6908 /* Build RESX_EXPR with given REGION_NUMBER.  */
6909 tree
build_resx(int region_number)6910 build_resx (int region_number)
6911 {
6912   tree t;
6913   t = build1 (RESX_EXPR, void_type_node,
6914 	      build_int_cst (NULL_TREE, region_number));
6915   return t;
6916 }
6917 
6918 /* Given an initializer INIT, return TRUE if INIT is zero or some
6919    aggregate of zeros.  Otherwise return FALSE.  */
6920 bool
initializer_zerop(tree init)6921 initializer_zerop (tree init)
6922 {
6923   tree elt;
6924 
6925   STRIP_NOPS (init);
6926 
6927   switch (TREE_CODE (init))
6928     {
6929     case INTEGER_CST:
6930       return integer_zerop (init);
6931 
6932     case REAL_CST:
6933       /* ??? Note that this is not correct for C4X float formats.  There,
6934 	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6935 	 negative exponent.  */
6936       return real_zerop (init)
6937 	&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6938 
6939     case COMPLEX_CST:
6940       return integer_zerop (init)
6941 	|| (real_zerop (init)
6942 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6943 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6944 
6945     case VECTOR_CST:
6946       for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6947 	if (!initializer_zerop (TREE_VALUE (elt)))
6948 	  return false;
6949       return true;
6950 
6951     case CONSTRUCTOR:
6952       {
6953 	unsigned HOST_WIDE_INT idx;
6954 
6955 	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6956 	  if (!initializer_zerop (elt))
6957 	    return false;
6958 	return true;
6959       }
6960 
6961     default:
6962       return false;
6963     }
6964 }
6965 
6966 /* Build an empty statement.  */
6967 
6968 tree
build_empty_stmt(void)6969 build_empty_stmt (void)
6970 {
6971   return build1 (NOP_EXPR, void_type_node, size_zero_node);
6972 }
6973 
6974 
6975 /* Build an OpenMP clause with code CODE.  */
6976 
6977 tree
build_omp_clause(enum omp_clause_code code)6978 build_omp_clause (enum omp_clause_code code)
6979 {
6980   tree t;
6981   int size, length;
6982 
6983   length = omp_clause_num_ops[code];
6984   size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
6985 
6986   t = ggc_alloc (size);
6987   memset (t, 0, size);
6988   TREE_SET_CODE (t, OMP_CLAUSE);
6989   OMP_CLAUSE_SET_CODE (t, code);
6990 
6991 #ifdef GATHER_STATISTICS
6992   tree_node_counts[(int) omp_clause_kind]++;
6993   tree_node_sizes[(int) omp_clause_kind] += size;
6994 #endif
6995 
6996   return t;
6997 }
6998 
6999 
7000 /* Returns true if it is possible to prove that the index of
7001    an array access REF (an ARRAY_REF expression) falls into the
7002    array bounds.  */
7003 
7004 bool
in_array_bounds_p(tree ref)7005 in_array_bounds_p (tree ref)
7006 {
7007   tree idx = TREE_OPERAND (ref, 1);
7008   tree min, max;
7009 
7010   if (TREE_CODE (idx) != INTEGER_CST)
7011     return false;
7012 
7013   min = array_ref_low_bound (ref);
7014   max = array_ref_up_bound (ref);
7015   if (!min
7016       || !max
7017       || TREE_CODE (min) != INTEGER_CST
7018       || TREE_CODE (max) != INTEGER_CST)
7019     return false;
7020 
7021   if (tree_int_cst_lt (idx, min)
7022       || tree_int_cst_lt (max, idx))
7023     return false;
7024 
7025   return true;
7026 }
7027 
7028 /* Returns true if it is possible to prove that the range of
7029    an array access REF (an ARRAY_RANGE_REF expression) falls
7030    into the array bounds.  */
7031 
7032 bool
range_in_array_bounds_p(tree ref)7033 range_in_array_bounds_p (tree ref)
7034 {
7035   tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7036   tree range_min, range_max, min, max;
7037 
7038   range_min = TYPE_MIN_VALUE (domain_type);
7039   range_max = TYPE_MAX_VALUE (domain_type);
7040   if (!range_min
7041       || !range_max
7042       || TREE_CODE (range_min) != INTEGER_CST
7043       || TREE_CODE (range_max) != INTEGER_CST)
7044     return false;
7045 
7046   min = array_ref_low_bound (ref);
7047   max = array_ref_up_bound (ref);
7048   if (!min
7049       || !max
7050       || TREE_CODE (min) != INTEGER_CST
7051       || TREE_CODE (max) != INTEGER_CST)
7052     return false;
7053 
7054   if (tree_int_cst_lt (range_min, min)
7055       || tree_int_cst_lt (max, range_max))
7056     return false;
7057 
7058   return true;
7059 }
7060 
7061 /* Return true if T (assumed to be a DECL) is a global variable.  */
7062 
7063 bool
is_global_var(tree t)7064 is_global_var (tree t)
7065 {
7066   if (MTAG_P (t))
7067     return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7068   else
7069     return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7070 }
7071 
7072 /* Return true if T (assumed to be a DECL) must be assigned a memory
7073    location.  */
7074 
7075 bool
needs_to_live_in_memory(tree t)7076 needs_to_live_in_memory (tree t)
7077 {
7078   return (TREE_ADDRESSABLE (t)
7079 	  || is_global_var (t)
7080 	  || (TREE_CODE (t) == RESULT_DECL
7081 	      && aggregate_value_p (t, current_function_decl)));
7082 }
7083 
7084 /* There are situations in which a language considers record types
7085    compatible which have different field lists.  Decide if two fields
7086    are compatible.  It is assumed that the parent records are compatible.  */
7087 
7088 bool
fields_compatible_p(tree f1,tree f2)7089 fields_compatible_p (tree f1, tree f2)
7090 {
7091   if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7092 			DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7093     return false;
7094 
7095   if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7096                         DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7097     return false;
7098 
7099   if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7100     return false;
7101 
7102   return true;
7103 }
7104 
7105 /* Locate within RECORD a field that is compatible with ORIG_FIELD.  */
7106 
7107 tree
find_compatible_field(tree record,tree orig_field)7108 find_compatible_field (tree record, tree orig_field)
7109 {
7110   tree f;
7111 
7112   for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7113     if (TREE_CODE (f) == FIELD_DECL
7114 	&& fields_compatible_p (f, orig_field))
7115       return f;
7116 
7117   /* ??? Why isn't this on the main fields list?  */
7118   f = TYPE_VFIELD (record);
7119   if (f && TREE_CODE (f) == FIELD_DECL
7120       && fields_compatible_p (f, orig_field))
7121     return f;
7122 
7123   /* ??? We should abort here, but Java appears to do Bad Things
7124      with inherited fields.  */
7125   return orig_field;
7126 }
7127 
7128 /* Return value of a constant X.  */
7129 
7130 HOST_WIDE_INT
int_cst_value(tree x)7131 int_cst_value (tree x)
7132 {
7133   unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7134   unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7135   bool negative = ((val >> (bits - 1)) & 1) != 0;
7136 
7137   gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7138 
7139   if (negative)
7140     val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7141   else
7142     val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7143 
7144   return val;
7145 }
7146 
7147 /* Returns the greatest common divisor of A and B, which must be
7148    INTEGER_CSTs.  */
7149 
7150 tree
tree_fold_gcd(tree a,tree b)7151 tree_fold_gcd (tree a, tree b)
7152 {
7153   tree a_mod_b;
7154   tree type = TREE_TYPE (a);
7155 
7156   gcc_assert (TREE_CODE (a) == INTEGER_CST);
7157   gcc_assert (TREE_CODE (b) == INTEGER_CST);
7158 
7159   if (integer_zerop (a))
7160     return b;
7161 
7162   if (integer_zerop (b))
7163     return a;
7164 
7165   if (tree_int_cst_sgn (a) == -1)
7166     a = fold_build2 (MULT_EXPR, type, a,
7167 		     build_int_cst (type, -1));
7168 
7169   if (tree_int_cst_sgn (b) == -1)
7170     b = fold_build2 (MULT_EXPR, type, b,
7171 		     build_int_cst (type, -1));
7172 
7173   while (1)
7174     {
7175       a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7176 
7177       if (!TREE_INT_CST_LOW (a_mod_b)
7178 	  && !TREE_INT_CST_HIGH (a_mod_b))
7179 	return b;
7180 
7181       a = b;
7182       b = a_mod_b;
7183     }
7184 }
7185 
7186 /* Returns unsigned variant of TYPE.  */
7187 
7188 tree
unsigned_type_for(tree type)7189 unsigned_type_for (tree type)
7190 {
7191   if (POINTER_TYPE_P (type))
7192     return lang_hooks.types.unsigned_type (size_type_node);
7193   return lang_hooks.types.unsigned_type (type);
7194 }
7195 
7196 /* Returns signed variant of TYPE.  */
7197 
7198 tree
signed_type_for(tree type)7199 signed_type_for (tree type)
7200 {
7201   if (POINTER_TYPE_P (type))
7202     return lang_hooks.types.signed_type (size_type_node);
7203   return lang_hooks.types.signed_type (type);
7204 }
7205 
7206 /* Returns the largest value obtainable by casting something in INNER type to
7207    OUTER type.  */
7208 
7209 tree
upper_bound_in_type(tree outer,tree inner)7210 upper_bound_in_type (tree outer, tree inner)
7211 {
7212   unsigned HOST_WIDE_INT lo, hi;
7213   unsigned int det = 0;
7214   unsigned oprec = TYPE_PRECISION (outer);
7215   unsigned iprec = TYPE_PRECISION (inner);
7216   unsigned prec;
7217 
7218   /* Compute a unique number for every combination.  */
7219   det |= (oprec > iprec) ? 4 : 0;
7220   det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7221   det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7222 
7223   /* Determine the exponent to use.  */
7224   switch (det)
7225     {
7226     case 0:
7227     case 1:
7228       /* oprec <= iprec, outer: signed, inner: don't care.  */
7229       prec = oprec - 1;
7230       break;
7231     case 2:
7232     case 3:
7233       /* oprec <= iprec, outer: unsigned, inner: don't care.  */
7234       prec = oprec;
7235       break;
7236     case 4:
7237       /* oprec > iprec, outer: signed, inner: signed.  */
7238       prec = iprec - 1;
7239       break;
7240     case 5:
7241       /* oprec > iprec, outer: signed, inner: unsigned.  */
7242       prec = iprec;
7243       break;
7244     case 6:
7245       /* oprec > iprec, outer: unsigned, inner: signed.  */
7246       prec = oprec;
7247       break;
7248     case 7:
7249       /* oprec > iprec, outer: unsigned, inner: unsigned.  */
7250       prec = iprec;
7251       break;
7252     default:
7253       gcc_unreachable ();
7254     }
7255 
7256   /* Compute 2^^prec - 1.  */
7257   if (prec <= HOST_BITS_PER_WIDE_INT)
7258     {
7259       hi = 0;
7260       lo = ((~(unsigned HOST_WIDE_INT) 0)
7261 	    >> (HOST_BITS_PER_WIDE_INT - prec));
7262     }
7263   else
7264     {
7265       hi = ((~(unsigned HOST_WIDE_INT) 0)
7266 	    >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7267       lo = ~(unsigned HOST_WIDE_INT) 0;
7268     }
7269 
7270   return build_int_cst_wide (outer, lo, hi);
7271 }
7272 
7273 /* Returns the smallest value obtainable by casting something in INNER type to
7274    OUTER type.  */
7275 
7276 tree
lower_bound_in_type(tree outer,tree inner)7277 lower_bound_in_type (tree outer, tree inner)
7278 {
7279   unsigned HOST_WIDE_INT lo, hi;
7280   unsigned oprec = TYPE_PRECISION (outer);
7281   unsigned iprec = TYPE_PRECISION (inner);
7282 
7283   /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7284      and obtain 0.  */
7285   if (TYPE_UNSIGNED (outer)
7286       /* If we are widening something of an unsigned type, OUTER type
7287 	 contains all values of INNER type.  In particular, both INNER
7288 	 and OUTER types have zero in common.  */
7289       || (oprec > iprec && TYPE_UNSIGNED (inner)))
7290     lo = hi = 0;
7291   else
7292     {
7293       /* If we are widening a signed type to another signed type, we
7294 	 want to obtain -2^^(iprec-1).  If we are keeping the
7295 	 precision or narrowing to a signed type, we want to obtain
7296 	 -2^(oprec-1).  */
7297       unsigned prec = oprec > iprec ? iprec : oprec;
7298 
7299       if (prec <= HOST_BITS_PER_WIDE_INT)
7300 	{
7301 	  hi = ~(unsigned HOST_WIDE_INT) 0;
7302 	  lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7303 	}
7304       else
7305 	{
7306 	  hi = ((~(unsigned HOST_WIDE_INT) 0)
7307 		<< (prec - HOST_BITS_PER_WIDE_INT - 1));
7308 	  lo = 0;
7309 	}
7310     }
7311 
7312   return build_int_cst_wide (outer, lo, hi);
7313 }
7314 
7315 /* Return nonzero if two operands that are suitable for PHI nodes are
7316    necessarily equal.  Specifically, both ARG0 and ARG1 must be either
7317    SSA_NAME or invariant.  Note that this is strictly an optimization.
7318    That is, callers of this function can directly call operand_equal_p
7319    and get the same result, only slower.  */
7320 
7321 int
operand_equal_for_phi_arg_p(tree arg0,tree arg1)7322 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7323 {
7324   if (arg0 == arg1)
7325     return 1;
7326   if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7327     return 0;
7328   return operand_equal_p (arg0, arg1, 0);
7329 }
7330 
7331 /* Returns number of zeros at the end of binary representation of X.
7332 
7333    ??? Use ffs if available?  */
7334 
7335 tree
num_ending_zeros(tree x)7336 num_ending_zeros (tree x)
7337 {
7338   unsigned HOST_WIDE_INT fr, nfr;
7339   unsigned num, abits;
7340   tree type = TREE_TYPE (x);
7341 
7342   if (TREE_INT_CST_LOW (x) == 0)
7343     {
7344       num = HOST_BITS_PER_WIDE_INT;
7345       fr = TREE_INT_CST_HIGH (x);
7346     }
7347   else
7348     {
7349       num = 0;
7350       fr = TREE_INT_CST_LOW (x);
7351     }
7352 
7353   for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7354     {
7355       nfr = fr >> abits;
7356       if (nfr << abits == fr)
7357 	{
7358 	  num += abits;
7359 	  fr = nfr;
7360 	}
7361     }
7362 
7363   if (num > TYPE_PRECISION (type))
7364     num = TYPE_PRECISION (type);
7365 
7366   return build_int_cst_type (type, num);
7367 }
7368 
7369 
7370 #define WALK_SUBTREE(NODE)				\
7371   do							\
7372     {							\
7373       result = walk_tree (&(NODE), func, data, pset);	\
7374       if (result)					\
7375 	return result;					\
7376     }							\
7377   while (0)
7378 
7379 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7380    be walked whenever a type is seen in the tree.  Rest of operands and return
7381    value are as for walk_tree.  */
7382 
7383 static tree
walk_type_fields(tree type,walk_tree_fn func,void * data,struct pointer_set_t * pset)7384 walk_type_fields (tree type, walk_tree_fn func, void *data,
7385 		  struct pointer_set_t *pset)
7386 {
7387   tree result = NULL_TREE;
7388 
7389   switch (TREE_CODE (type))
7390     {
7391     case POINTER_TYPE:
7392     case REFERENCE_TYPE:
7393       /* We have to worry about mutually recursive pointers.  These can't
7394 	 be written in C.  They can in Ada.  It's pathological, but
7395 	 there's an ACATS test (c38102a) that checks it.  Deal with this
7396 	 by checking if we're pointing to another pointer, that one
7397 	 points to another pointer, that one does too, and we have no htab.
7398 	 If so, get a hash table.  We check three levels deep to avoid
7399 	 the cost of the hash table if we don't need one.  */
7400       if (POINTER_TYPE_P (TREE_TYPE (type))
7401 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7402 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7403 	  && !pset)
7404 	{
7405 	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
7406 						 func, data);
7407 	  if (result)
7408 	    return result;
7409 
7410 	  break;
7411 	}
7412 
7413       /* ... fall through ... */
7414 
7415     case COMPLEX_TYPE:
7416       WALK_SUBTREE (TREE_TYPE (type));
7417       break;
7418 
7419     case METHOD_TYPE:
7420       WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7421 
7422       /* Fall through.  */
7423 
7424     case FUNCTION_TYPE:
7425       WALK_SUBTREE (TREE_TYPE (type));
7426       {
7427 	tree arg;
7428 
7429 	/* We never want to walk into default arguments.  */
7430 	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7431 	  WALK_SUBTREE (TREE_VALUE (arg));
7432       }
7433       break;
7434 
7435     case ARRAY_TYPE:
7436       /* Don't follow this nodes's type if a pointer for fear that
7437 	 we'll have infinite recursion.  If we have a PSET, then we
7438 	 need not fear.  */
7439       if (pset
7440 	  || (!POINTER_TYPE_P (TREE_TYPE (type))
7441 	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7442 	WALK_SUBTREE (TREE_TYPE (type));
7443       WALK_SUBTREE (TYPE_DOMAIN (type));
7444       break;
7445 
7446     case BOOLEAN_TYPE:
7447     case ENUMERAL_TYPE:
7448     case INTEGER_TYPE:
7449     case REAL_TYPE:
7450       WALK_SUBTREE (TYPE_MIN_VALUE (type));
7451       WALK_SUBTREE (TYPE_MAX_VALUE (type));
7452       break;
7453 
7454     case OFFSET_TYPE:
7455       WALK_SUBTREE (TREE_TYPE (type));
7456       WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7457       break;
7458 
7459     default:
7460       break;
7461     }
7462 
7463   return NULL_TREE;
7464 }
7465 
7466 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
7467    called with the DATA and the address of each sub-tree.  If FUNC returns a
7468    non-NULL value, the traversal is stopped, and the value returned by FUNC
7469    is returned.  If PSET is non-NULL it is used to record the nodes visited,
7470    and to avoid visiting a node more than once.  */
7471 
7472 tree
walk_tree(tree * tp,walk_tree_fn func,void * data,struct pointer_set_t * pset)7473 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7474 {
7475   enum tree_code code;
7476   int walk_subtrees;
7477   tree result;
7478 
7479 #define WALK_SUBTREE_TAIL(NODE)				\
7480   do							\
7481     {							\
7482        tp = & (NODE);					\
7483        goto tail_recurse;				\
7484     }							\
7485   while (0)
7486 
7487  tail_recurse:
7488   /* Skip empty subtrees.  */
7489   if (!*tp)
7490     return NULL_TREE;
7491 
7492   /* Don't walk the same tree twice, if the user has requested
7493      that we avoid doing so.  */
7494   if (pset && pointer_set_insert (pset, *tp))
7495     return NULL_TREE;
7496 
7497   /* Call the function.  */
7498   walk_subtrees = 1;
7499   result = (*func) (tp, &walk_subtrees, data);
7500 
7501   /* If we found something, return it.  */
7502   if (result)
7503     return result;
7504 
7505   code = TREE_CODE (*tp);
7506 
7507   /* Even if we didn't, FUNC may have decided that there was nothing
7508      interesting below this point in the tree.  */
7509   if (!walk_subtrees)
7510     {
7511       /* But we still need to check our siblings.  */
7512       if (code == TREE_LIST)
7513 	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7514       else if (code == OMP_CLAUSE)
7515 	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7516       else
7517 	return NULL_TREE;
7518     }
7519 
7520   result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7521 						   data, pset);
7522   if (result || ! walk_subtrees)
7523     return result;
7524 
7525   switch (code)
7526     {
7527     case ERROR_MARK:
7528     case IDENTIFIER_NODE:
7529     case INTEGER_CST:
7530     case REAL_CST:
7531     case VECTOR_CST:
7532     case STRING_CST:
7533     case BLOCK:
7534     case PLACEHOLDER_EXPR:
7535     case SSA_NAME:
7536     case FIELD_DECL:
7537     case RESULT_DECL:
7538       /* None of these have subtrees other than those already walked
7539 	 above.  */
7540       break;
7541 
7542     case TREE_LIST:
7543       WALK_SUBTREE (TREE_VALUE (*tp));
7544       WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7545       break;
7546 
7547     case TREE_VEC:
7548       {
7549 	int len = TREE_VEC_LENGTH (*tp);
7550 
7551 	if (len == 0)
7552 	  break;
7553 
7554 	/* Walk all elements but the first.  */
7555 	while (--len)
7556 	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7557 
7558 	/* Now walk the first one as a tail call.  */
7559 	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7560       }
7561 
7562     case COMPLEX_CST:
7563       WALK_SUBTREE (TREE_REALPART (*tp));
7564       WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7565 
7566     case CONSTRUCTOR:
7567       {
7568 	unsigned HOST_WIDE_INT idx;
7569 	constructor_elt *ce;
7570 
7571 	for (idx = 0;
7572 	     VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7573 	     idx++)
7574 	  WALK_SUBTREE (ce->value);
7575       }
7576       break;
7577 
7578     case SAVE_EXPR:
7579       WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7580 
7581     case BIND_EXPR:
7582       {
7583 	tree decl;
7584 	for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7585 	  {
7586 	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
7587 	       into declarations that are just mentioned, rather than
7588 	       declared; they don't really belong to this part of the tree.
7589 	       And, we can see cycles: the initializer for a declaration
7590 	       can refer to the declaration itself.  */
7591 	    WALK_SUBTREE (DECL_INITIAL (decl));
7592 	    WALK_SUBTREE (DECL_SIZE (decl));
7593 	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7594 	  }
7595 	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7596       }
7597 
7598     case STATEMENT_LIST:
7599       {
7600 	tree_stmt_iterator i;
7601 	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7602 	  WALK_SUBTREE (*tsi_stmt_ptr (i));
7603       }
7604       break;
7605 
7606     case OMP_CLAUSE:
7607       switch (OMP_CLAUSE_CODE (*tp))
7608 	{
7609 	case OMP_CLAUSE_PRIVATE:
7610 	case OMP_CLAUSE_SHARED:
7611 	case OMP_CLAUSE_FIRSTPRIVATE:
7612 	case OMP_CLAUSE_LASTPRIVATE:
7613 	case OMP_CLAUSE_COPYIN:
7614 	case OMP_CLAUSE_COPYPRIVATE:
7615 	case OMP_CLAUSE_IF:
7616 	case OMP_CLAUSE_NUM_THREADS:
7617 	case OMP_CLAUSE_SCHEDULE:
7618 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7619 	  /* FALLTHRU */
7620 
7621 	case OMP_CLAUSE_NOWAIT:
7622 	case OMP_CLAUSE_ORDERED:
7623 	case OMP_CLAUSE_DEFAULT:
7624 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7625 
7626 	case OMP_CLAUSE_REDUCTION:
7627 	  {
7628 	    int i;
7629 	    for (i = 0; i < 4; i++)
7630 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7631 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7632 	  }
7633 
7634 	default:
7635 	  gcc_unreachable ();
7636 	}
7637       break;
7638 
7639     case TARGET_EXPR:
7640       {
7641 	int i, len;
7642 
7643 	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7644 	   But, we only want to walk once.  */
7645 	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7646 	for (i = 0; i < len; ++i)
7647 	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
7648 	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7649       }
7650 
7651     case DECL_EXPR:
7652       /* Walk into various fields of the type that it's defining.  We only
7653 	 want to walk into these fields of a type in this case.  Note that
7654 	 decls get walked as part of the processing of a BIND_EXPR.
7655 
7656 	 ??? Precisely which fields of types that we are supposed to walk in
7657 	 this case vs. the normal case aren't well defined.  */
7658       if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7659 	  && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7660 	{
7661 	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7662 
7663 	  /* Call the function for the type.  See if it returns anything or
7664 	     doesn't want us to continue.  If we are to continue, walk both
7665 	     the normal fields and those for the declaration case.  */
7666 	  result = (*func) (type_p, &walk_subtrees, data);
7667 	  if (result || !walk_subtrees)
7668 	    return NULL_TREE;
7669 
7670 	  result = walk_type_fields (*type_p, func, data, pset);
7671 	  if (result)
7672 	    return result;
7673 
7674 	  /* If this is a record type, also walk the fields.  */
7675 	  if (TREE_CODE (*type_p) == RECORD_TYPE
7676 	      || TREE_CODE (*type_p) == UNION_TYPE
7677 	      || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7678 	    {
7679 	      tree field;
7680 
7681 	      for (field = TYPE_FIELDS (*type_p); field;
7682 		   field = TREE_CHAIN (field))
7683 		{
7684 		  /* We'd like to look at the type of the field, but we can
7685 		     easily get infinite recursion.  So assume it's pointed
7686 		     to elsewhere in the tree.  Also, ignore things that
7687 		     aren't fields.  */
7688 		  if (TREE_CODE (field) != FIELD_DECL)
7689 		    continue;
7690 
7691 		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7692 		  WALK_SUBTREE (DECL_SIZE (field));
7693 		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
7694 		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7695 		    WALK_SUBTREE (DECL_QUALIFIER (field));
7696 		}
7697 	    }
7698 
7699 	  WALK_SUBTREE (TYPE_SIZE (*type_p));
7700 	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
7701 	}
7702       /* FALLTHRU */
7703 
7704     default:
7705       if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7706 	{
7707 	  int i, len;
7708 
7709 	  /* Walk over all the sub-trees of this operand.  */
7710 	  len = TREE_CODE_LENGTH (code);
7711 
7712 	  /* Go through the subtrees.  We need to do this in forward order so
7713 	     that the scope of a FOR_EXPR is handled properly.  */
7714 	  if (len)
7715 	    {
7716 	      for (i = 0; i < len - 1; ++i)
7717 		WALK_SUBTREE (TREE_OPERAND (*tp, i));
7718 	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7719 	    }
7720 	}
7721 
7722       /* If this is a type, walk the needed fields in the type.  */
7723       else if (TYPE_P (*tp))
7724 	return walk_type_fields (*tp, func, data, pset);
7725       break;
7726     }
7727 
7728   /* We didn't find what we were looking for.  */
7729   return NULL_TREE;
7730 
7731 #undef WALK_SUBTREE_TAIL
7732 }
7733 #undef WALK_SUBTREE
7734 
7735 /* Like walk_tree, but does not walk duplicate nodes more than once.  */
7736 
7737 tree
walk_tree_without_duplicates(tree * tp,walk_tree_fn func,void * data)7738 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7739 {
7740   tree result;
7741   struct pointer_set_t *pset;
7742 
7743   pset = pointer_set_create ();
7744   result = walk_tree (tp, func, data, pset);
7745   pointer_set_destroy (pset);
7746   return result;
7747 }
7748 
7749 
7750 /* Return true if STMT is an empty statement or contains nothing but
7751    empty statements.  */
7752 
7753 bool
empty_body_p(tree stmt)7754 empty_body_p (tree stmt)
7755 {
7756   tree_stmt_iterator i;
7757   tree body;
7758 
7759   if (IS_EMPTY_STMT (stmt))
7760     return true;
7761   else if (TREE_CODE (stmt) == BIND_EXPR)
7762     body = BIND_EXPR_BODY (stmt);
7763   else if (TREE_CODE (stmt) == STATEMENT_LIST)
7764     body = stmt;
7765   else
7766     return false;
7767 
7768   for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
7769     if (!empty_body_p (tsi_stmt (i)))
7770       return false;
7771 
7772   return true;
7773 }
7774 
7775 #include "gt-tree.h"
7776