xref: /dragonfly/sys/kern/subr_bus.c (revision a162a738)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/caps.h>
45 #include <sys/conf.h>
46 #include <sys/uio.h>
47 #include <sys/filio.h>
48 #include <sys/event.h>
49 #include <sys/signalvar.h>
50 #include <sys/machintr.h>
51 #include <sys/vnode.h>
52 #include <sys/sbuf.h>
53 
54 #include <machine/stdarg.h>	/* for device_printf() */
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
58 
59 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
60 
61 #ifdef BUS_DEBUG
62 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
63 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
64 #define DRIVERNAME(d)	((d)? d->name : "no driver")
65 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
66 
67 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
68  * prevent syslog from deleting initial spaces
69  */
70 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
71 
72 static void	print_device_short(device_t dev, int indent);
73 static void	print_device(device_t dev, int indent);
74 void		print_device_tree_short(device_t dev, int indent);
75 void		print_device_tree(device_t dev, int indent);
76 static void	print_driver_short(driver_t *driver, int indent);
77 static void	print_driver(driver_t *driver, int indent);
78 static void	print_driver_list(driver_list_t drivers, int indent);
79 static void	print_devclass_short(devclass_t dc, int indent);
80 static void	print_devclass(devclass_t dc, int indent);
81 void		print_devclass_list_short(void);
82 void		print_devclass_list(void);
83 
84 #else
85 /* Make the compiler ignore the function calls */
86 #define PDEBUG(a)			/* nop */
87 #define DEVICENAME(d)			/* nop */
88 #define DRIVERNAME(d)			/* nop */
89 #define DEVCLANAME(d)			/* nop */
90 
91 #define print_device_short(d,i)		/* nop */
92 #define print_device(d,i)		/* nop */
93 #define print_device_tree_short(d,i)	/* nop */
94 #define print_device_tree(d,i)		/* nop */
95 #define print_driver_short(d,i)		/* nop */
96 #define print_driver(d,i)		/* nop */
97 #define print_driver_list(d,i)		/* nop */
98 #define print_devclass_short(d,i)	/* nop */
99 #define print_devclass(d,i)		/* nop */
100 #define print_devclass_list_short()	/* nop */
101 #define print_devclass_list()		/* nop */
102 #endif
103 
104 /*
105  * dev sysctl tree
106  */
107 
108 enum {
109 	DEVCLASS_SYSCTL_PARENT,
110 };
111 
112 static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)113 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
114 {
115 	devclass_t dc = (devclass_t)arg1;
116 	const char *value;
117 
118 	switch (arg2) {
119 	case DEVCLASS_SYSCTL_PARENT:
120 		value = dc->parent ? dc->parent->name : "";
121 		break;
122 	default:
123 		return (EINVAL);
124 	}
125 	return (SYSCTL_OUT(req, value, strlen(value)));
126 }
127 
128 static void
devclass_sysctl_init(devclass_t dc)129 devclass_sysctl_init(devclass_t dc)
130 {
131 
132 	if (dc->sysctl_tree != NULL)
133 		return;
134 	sysctl_ctx_init(&dc->sysctl_ctx);
135 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
136 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
137 	    CTLFLAG_RD, NULL, "");
138 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
139 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
140 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
141 	    "parent class");
142 }
143 
144 enum {
145 	DEVICE_SYSCTL_DESC,
146 	DEVICE_SYSCTL_DRIVER,
147 	DEVICE_SYSCTL_LOCATION,
148 	DEVICE_SYSCTL_PNPINFO,
149 	DEVICE_SYSCTL_PARENT,
150 };
151 
152 static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)153 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
154 {
155 	device_t dev = (device_t)arg1;
156 	const char *value;
157 	char *buf;
158 	int error;
159 
160 	buf = NULL;
161 	switch (arg2) {
162 	case DEVICE_SYSCTL_DESC:
163 		value = dev->desc ? dev->desc : "";
164 		break;
165 	case DEVICE_SYSCTL_DRIVER:
166 		value = dev->driver ? dev->driver->name : "";
167 		break;
168 	case DEVICE_SYSCTL_LOCATION:
169 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
170 		bus_child_location_str(dev, buf, 1024);
171 		break;
172 	case DEVICE_SYSCTL_PNPINFO:
173 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
174 		bus_child_pnpinfo_str(dev, buf, 1024);
175 		break;
176 	case DEVICE_SYSCTL_PARENT:
177 		value = dev->parent ? dev->parent->nameunit : "";
178 		break;
179 	default:
180 		return (EINVAL);
181 	}
182 	error = SYSCTL_OUT(req, value, strlen(value));
183 	if (buf != NULL)
184 		kfree(buf, M_BUS);
185 	return (error);
186 }
187 
188 static void
device_sysctl_init(device_t dev)189 device_sysctl_init(device_t dev)
190 {
191 	devclass_t dc = dev->devclass;
192 
193 	if (dev->sysctl_tree != NULL)
194 		return;
195 	devclass_sysctl_init(dc);
196 	sysctl_ctx_init(&dev->sysctl_ctx);
197 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
198 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
199 	    dev->nameunit + strlen(dc->name),
200 	    CTLFLAG_RD, NULL, "");
201 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
202 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
203 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
204 	    "device description");
205 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
206 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
207 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
208 	    "device driver name");
209 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
210 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
211 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
212 	    "device location relative to parent");
213 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
214 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
215 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
216 	    "device identification");
217 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
218 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
219 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
220 	    "parent device");
221 }
222 
223 static void
device_sysctl_update(device_t dev)224 device_sysctl_update(device_t dev)
225 {
226 	devclass_t dc = dev->devclass;
227 
228 	if (dev->sysctl_tree == NULL)
229 		return;
230 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
231 }
232 
233 static void
device_sysctl_fini(device_t dev)234 device_sysctl_fini(device_t dev)
235 {
236 	if (dev->sysctl_tree == NULL)
237 		return;
238 	sysctl_ctx_free(&dev->sysctl_ctx);
239 	dev->sysctl_tree = NULL;
240 }
241 
242 static void	device_attach_async(device_t dev);
243 static void	device_attach_thread(void *arg);
244 static int	device_doattach(device_t dev);
245 
246 static int do_async_attach = 0;
247 static int numasyncthreads;
248 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
249 
250 /*
251  * /dev/devctl implementation
252  */
253 
254 /*
255  * This design allows only one reader for /dev/devctl.  This is not desirable
256  * in the long run, but will get a lot of hair out of this implementation.
257  * Maybe we should make this device a clonable device.
258  *
259  * Also note: we specifically do not attach a device to the device_t tree
260  * to avoid potential chicken and egg problems.  One could argue that all
261  * of this belongs to the root node.  One could also further argue that the
262  * sysctl interface that we have not might more properly be an ioctl
263  * interface, but at this stage of the game, I'm not inclined to rock that
264  * boat.
265  *
266  * I'm also not sure that the SIGIO support is done correctly or not, as
267  * I copied it from a driver that had SIGIO support that likely hasn't been
268  * tested since 3.4 or 2.2.8!
269  */
270 
271 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
272 static int devctl_disable = 0;
273 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
274 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
275     sysctl_devctl_disable, "I", "devctl disable");
276 
277 static d_open_t		devopen;
278 static d_close_t	devclose;
279 static d_read_t		devread;
280 static d_ioctl_t	devioctl;
281 static d_kqfilter_t	devkqfilter;
282 
283 static struct dev_ops devctl_ops = {
284 	{ "devctl", 0, D_MPSAFE },
285 	.d_open =	devopen,
286 	.d_close =	devclose,
287 	.d_read =	devread,
288 	.d_ioctl =	devioctl,
289 	.d_kqfilter =	devkqfilter
290 };
291 
292 struct dev_event_info
293 {
294 	char *dei_data;
295 	TAILQ_ENTRY(dev_event_info) dei_link;
296 };
297 
298 TAILQ_HEAD(devq, dev_event_info);
299 
300 static struct dev_softc
301 {
302 	int	inuse;
303 	struct lock lock;
304 	struct kqinfo kq;
305 	struct devq devq;
306 	struct proc *async_proc;
307 } devsoftc;
308 
309 /*
310  * Chicken-and-egg problem with devfs, get the queue operational early.
311  */
312 static void
predevinit(void)313 predevinit(void)
314 {
315 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
316 	TAILQ_INIT(&devsoftc.devq);
317 }
318 SYSINIT(predevinit, SI_SUB_CREATE_INIT, SI_ORDER_ANY, predevinit, 0);
319 
320 static void
devinit(void)321 devinit(void)
322 {
323 	/*
324 	 * WARNING! make_dev() can call back into devctl_queue_data()
325 	 *	    immediately.
326 	 */
327 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
328 }
329 
330 static int
devopen(struct dev_open_args * ap)331 devopen(struct dev_open_args *ap)
332 {
333 	/*
334 	 * Disallow access to disk volumes if RESTRICTEDROOT
335 	 */
336 	if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
337 		return (EPERM);
338 
339 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
340 	if (devsoftc.inuse) {
341 		lockmgr(&devsoftc.lock, LK_RELEASE);
342 		return (EBUSY);
343 	}
344 	/* move to init */
345 	devsoftc.inuse = 1;
346 	devsoftc.async_proc = NULL;
347 	lockmgr(&devsoftc.lock, LK_RELEASE);
348 
349 	return (0);
350 }
351 
352 static int
devclose(struct dev_close_args * ap)353 devclose(struct dev_close_args *ap)
354 {
355 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
356 	devsoftc.inuse = 0;
357 	wakeup(&devsoftc);
358 	lockmgr(&devsoftc.lock, LK_RELEASE);
359 
360 	return (0);
361 }
362 
363 /*
364  * The read channel for this device is used to report changes to
365  * userland in realtime.  We are required to free the data as well as
366  * the n1 object because we allocate them separately.  Also note that
367  * we return one record at a time.  If you try to read this device a
368  * character at a time, you will lose the rest of the data.  Listening
369  * programs are expected to cope.
370  */
371 static int
devread(struct dev_read_args * ap)372 devread(struct dev_read_args *ap)
373 {
374 	struct uio *uio = ap->a_uio;
375 	struct dev_event_info *n1;
376 	int rv;
377 
378 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
379 	while (TAILQ_EMPTY(&devsoftc.devq)) {
380 		if (ap->a_ioflag & IO_NDELAY) {
381 			lockmgr(&devsoftc.lock, LK_RELEASE);
382 			return (EAGAIN);
383 		}
384 		tsleep_interlock(&devsoftc, PCATCH);
385 		lockmgr(&devsoftc.lock, LK_RELEASE);
386 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
387 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
388 		if (rv) {
389 			/*
390 			 * Need to translate ERESTART to EINTR here? -- jake
391 			 */
392 			lockmgr(&devsoftc.lock, LK_RELEASE);
393 			return (rv);
394 		}
395 	}
396 	n1 = TAILQ_FIRST(&devsoftc.devq);
397 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
398 	lockmgr(&devsoftc.lock, LK_RELEASE);
399 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
400 	kfree(n1->dei_data, M_BUS);
401 	kfree(n1, M_BUS);
402 	return (rv);
403 }
404 
405 static	int
devioctl(struct dev_ioctl_args * ap)406 devioctl(struct dev_ioctl_args *ap)
407 {
408 	switch (ap->a_cmd) {
409 
410 	case FIONBIO:
411 		return (0);
412 	case FIOASYNC:
413 		if (*(int*)ap->a_data)
414 			devsoftc.async_proc = curproc;
415 		else
416 			devsoftc.async_proc = NULL;
417 		return (0);
418 
419 		/* (un)Support for other fcntl() calls. */
420 	case FIOCLEX:
421 	case FIONCLEX:
422 	case FIONREAD:
423 	case FIOSETOWN:
424 	case FIOGETOWN:
425 	default:
426 		break;
427 	}
428 	return (ENOTTY);
429 }
430 
431 static void dev_filter_detach(struct knote *);
432 static int dev_filter_read(struct knote *, long);
433 
434 static struct filterops dev_filtops =
435 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL,
436 	  dev_filter_detach, dev_filter_read };
437 
438 static int
devkqfilter(struct dev_kqfilter_args * ap)439 devkqfilter(struct dev_kqfilter_args *ap)
440 {
441 	struct knote *kn = ap->a_kn;
442 	struct klist *klist;
443 
444 	ap->a_result = 0;
445 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
446 
447 	switch (kn->kn_filter) {
448 	case EVFILT_READ:
449 		kn->kn_fop = &dev_filtops;
450 		break;
451 	default:
452 		ap->a_result = EOPNOTSUPP;
453 		lockmgr(&devsoftc.lock, LK_RELEASE);
454 		return (0);
455 	}
456 
457 	klist = &devsoftc.kq.ki_note;
458 	knote_insert(klist, kn);
459 
460 	lockmgr(&devsoftc.lock, LK_RELEASE);
461 
462 	return (0);
463 }
464 
465 static void
dev_filter_detach(struct knote * kn)466 dev_filter_detach(struct knote *kn)
467 {
468 	struct klist *klist;
469 
470 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
471 	klist = &devsoftc.kq.ki_note;
472 	knote_remove(klist, kn);
473 	lockmgr(&devsoftc.lock, LK_RELEASE);
474 }
475 
476 static int
dev_filter_read(struct knote * kn,long hint)477 dev_filter_read(struct knote *kn, long hint)
478 {
479 	int ready = 0;
480 
481 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
482 	if (!TAILQ_EMPTY(&devsoftc.devq))
483 		ready = 1;
484 	lockmgr(&devsoftc.lock, LK_RELEASE);
485 
486 	return (ready);
487 }
488 
489 
490 /**
491  * @brief Return whether the userland process is running
492  */
493 boolean_t
devctl_process_running(void)494 devctl_process_running(void)
495 {
496 	return (devsoftc.inuse == 1);
497 }
498 
499 /**
500  * @brief Queue data to be read from the devctl device
501  *
502  * Generic interface to queue data to the devctl device.  It is
503  * assumed that @p data is properly formatted.  It is further assumed
504  * that @p data is allocated using the M_BUS malloc type.
505  */
506 void
devctl_queue_data(char * data)507 devctl_queue_data(char *data)
508 {
509 	struct dev_event_info *n1 = NULL;
510 	struct proc *p;
511 
512 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
513 	if (n1 == NULL)
514 		return;
515 	n1->dei_data = data;
516 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
517 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
518 	wakeup(&devsoftc);
519 	lockmgr(&devsoftc.lock, LK_RELEASE);
520 	KNOTE(&devsoftc.kq.ki_note, 0);
521 	p = devsoftc.async_proc;
522 	if (p != NULL)
523 		ksignal(p, SIGIO);
524 }
525 
526 /**
527  * @brief Send a 'notification' to userland, using standard ways
528  */
529 void
devctl_notify(const char * system,const char * subsystem,const char * type,const char * data)530 devctl_notify(const char *system, const char *subsystem, const char *type,
531     const char *data)
532 {
533 	int len = 0;
534 	char *msg;
535 
536 	if (system == NULL)
537 		return;		/* BOGUS!  Must specify system. */
538 	if (subsystem == NULL)
539 		return;		/* BOGUS!  Must specify subsystem. */
540 	if (type == NULL)
541 		return;		/* BOGUS!  Must specify type. */
542 	len += strlen(" system=") + strlen(system);
543 	len += strlen(" subsystem=") + strlen(subsystem);
544 	len += strlen(" type=") + strlen(type);
545 	/* add in the data message plus newline. */
546 	if (data != NULL)
547 		len += strlen(data);
548 	len += 3;	/* '!', '\n', and NUL */
549 	msg = kmalloc(len, M_BUS, M_NOWAIT);
550 	if (msg == NULL)
551 		return;		/* Drop it on the floor */
552 	if (data != NULL)
553 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
554 		    system, subsystem, type, data);
555 	else
556 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
557 		    system, subsystem, type);
558 	devctl_queue_data(msg);
559 }
560 
561 /*
562  * Common routine that tries to make sending messages as easy as possible.
563  * We allocate memory for the data, copy strings into that, but do not
564  * free it unless there's an error.  The dequeue part of the driver should
565  * free the data.  We don't send data when the device is disabled.  We do
566  * send data, even when we have no listeners, because we wish to avoid
567  * races relating to startup and restart of listening applications.
568  *
569  * devaddq is designed to string together the type of event, with the
570  * object of that event, plus the plug and play info and location info
571  * for that event.  This is likely most useful for devices, but less
572  * useful for other consumers of this interface.  Those should use
573  * the devctl_queue_data() interface instead.
574  */
575 static void
devaddq(const char * type,const char * what,device_t dev)576 devaddq(const char *type, const char *what, device_t dev)
577 {
578 	char *data = NULL;
579 	char *loc = NULL;
580 	char *pnp = NULL;
581 	const char *parstr;
582 
583 	if (devctl_disable)
584 		return;
585 	data = kmalloc(1024, M_BUS, M_NOWAIT);
586 	if (data == NULL)
587 		goto bad;
588 
589 	/* get the bus specific location of this device */
590 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
591 	if (loc == NULL)
592 		goto bad;
593 	*loc = '\0';
594 	bus_child_location_str(dev, loc, 1024);
595 
596 	/* Get the bus specific pnp info of this device */
597 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
598 	if (pnp == NULL)
599 		goto bad;
600 	*pnp = '\0';
601 	bus_child_pnpinfo_str(dev, pnp, 1024);
602 
603 	/* Get the parent of this device, or / if high enough in the tree. */
604 	if (device_get_parent(dev) == NULL)
605 		parstr = ".";	/* Or '/' ? */
606 	else
607 		parstr = device_get_nameunit(device_get_parent(dev));
608 	/* String it all together. */
609 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
610 	  parstr);
611 	kfree(loc, M_BUS);
612 	kfree(pnp, M_BUS);
613 	devctl_queue_data(data);
614 	return;
615 bad:
616 	if (pnp != NULL)
617 		kfree(pnp, M_BUS);
618 	if (loc != NULL)
619 		kfree(loc, M_BUS);
620 	if (loc != NULL)
621 		kfree(data, M_BUS);
622 	return;
623 }
624 
625 /*
626  * A device was added to the tree.  We are called just after it successfully
627  * attaches (that is, probe and attach success for this device).  No call
628  * is made if a device is merely parented into the tree.  See devnomatch
629  * if probe fails.  If attach fails, no notification is sent (but maybe
630  * we should have a different message for this).
631  */
632 static void
devadded(device_t dev)633 devadded(device_t dev)
634 {
635 	char *pnp = NULL;
636 	char *tmp = NULL;
637 
638 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
639 	if (pnp == NULL)
640 		goto fail;
641 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
642 	if (tmp == NULL)
643 		goto fail;
644 	*pnp = '\0';
645 	bus_child_pnpinfo_str(dev, pnp, 1024);
646 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
647 	devaddq("+", tmp, dev);
648 fail:
649 	if (pnp != NULL)
650 		kfree(pnp, M_BUS);
651 	if (tmp != NULL)
652 		kfree(tmp, M_BUS);
653 	return;
654 }
655 
656 /*
657  * A device was removed from the tree.  We are called just before this
658  * happens.
659  */
660 static void
devremoved(device_t dev)661 devremoved(device_t dev)
662 {
663 	char *pnp = NULL;
664 	char *tmp = NULL;
665 
666 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
667 	if (pnp == NULL)
668 		goto fail;
669 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
670 	if (tmp == NULL)
671 		goto fail;
672 	*pnp = '\0';
673 	bus_child_pnpinfo_str(dev, pnp, 1024);
674 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
675 	devaddq("-", tmp, dev);
676 fail:
677 	if (pnp != NULL)
678 		kfree(pnp, M_BUS);
679 	if (tmp != NULL)
680 		kfree(tmp, M_BUS);
681 	return;
682 }
683 
684 /*
685  * Called when there's no match for this device.  This is only called
686  * the first time that no match happens, so we don't keep getitng this
687  * message.  Should that prove to be undesirable, we can change it.
688  * This is called when all drivers that can attach to a given bus
689  * decline to accept this device.  Other errrors may not be detected.
690  */
691 static void
devnomatch(device_t dev)692 devnomatch(device_t dev)
693 {
694 	devaddq("?", "", dev);
695 }
696 
697 static int
sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)698 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
699 {
700 	struct dev_event_info *n1;
701 	int dis, error;
702 
703 	dis = devctl_disable;
704 	error = sysctl_handle_int(oidp, &dis, 0, req);
705 	if (error || !req->newptr)
706 		return (error);
707 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
708 	devctl_disable = dis;
709 	if (dis) {
710 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
711 			n1 = TAILQ_FIRST(&devsoftc.devq);
712 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
713 			kfree(n1->dei_data, M_BUS);
714 			kfree(n1, M_BUS);
715 		}
716 	}
717 	lockmgr(&devsoftc.lock, LK_RELEASE);
718 	return (0);
719 }
720 
721 /* End of /dev/devctl code */
722 
723 TAILQ_HEAD(,bsd_device)	bus_data_devices;
724 static int bus_data_generation = 1;
725 
726 kobj_method_t null_methods[] = {
727 	{ 0, 0 }
728 };
729 
730 DEFINE_CLASS(null, null_methods, 0);
731 
732 /*
733  * Devclass implementation
734  */
735 
736 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
737 
738 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)739 devclass_find_internal(const char *classname, const char *parentname,
740 		       int create)
741 {
742 	devclass_t dc;
743 
744 	PDEBUG(("looking for %s", classname));
745 	if (classname == NULL)
746 		return(NULL);
747 
748 	TAILQ_FOREACH(dc, &devclasses, link)
749 		if (!strcmp(dc->name, classname))
750 			break;
751 
752 	if (create && !dc) {
753 		PDEBUG(("creating %s", classname));
754 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
755 			    M_BUS, M_INTWAIT | M_ZERO);
756 		dc->parent = NULL;
757 		dc->name = (char*) (dc + 1);
758 		strcpy(dc->name, classname);
759 		dc->devices = NULL;
760 		dc->maxunit = 0;
761 		TAILQ_INIT(&dc->drivers);
762 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
763 
764 		bus_data_generation_update();
765 
766 	}
767 
768 	/*
769 	 * If a parent class is specified, then set that as our parent so
770 	 * that this devclass will support drivers for the parent class as
771 	 * well.  If the parent class has the same name don't do this though
772 	 * as it creates a cycle that can trigger an infinite loop in
773 	 * device_probe_child() if a device exists for which there is no
774 	 * suitable driver.
775 	 */
776 	if (parentname && dc && !dc->parent &&
777 	    strcmp(classname, parentname) != 0)
778 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
779 
780 	return(dc);
781 }
782 
783 devclass_t
devclass_create(const char * classname)784 devclass_create(const char *classname)
785 {
786 	return(devclass_find_internal(classname, NULL, TRUE));
787 }
788 
789 devclass_t
devclass_find(const char * classname)790 devclass_find(const char *classname)
791 {
792 	return(devclass_find_internal(classname, NULL, FALSE));
793 }
794 
795 device_t
devclass_find_unit(const char * classname,int unit)796 devclass_find_unit(const char *classname, int unit)
797 {
798 	devclass_t dc;
799 
800 	if ((dc = devclass_find(classname)) != NULL)
801 	    return(devclass_get_device(dc, unit));
802 	return (NULL);
803 }
804 
805 int
devclass_add_driver(devclass_t dc,driver_t * driver)806 devclass_add_driver(devclass_t dc, driver_t *driver)
807 {
808 	driverlink_t dl;
809 	device_t dev;
810 	int i;
811 
812 	PDEBUG(("%s", DRIVERNAME(driver)));
813 
814 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
815 
816 	/*
817 	 * Compile the driver's methods. Also increase the reference count
818 	 * so that the class doesn't get freed when the last instance
819 	 * goes. This means we can safely use static methods and avoids a
820 	 * double-free in devclass_delete_driver.
821 	 */
822 	kobj_class_instantiate(driver);
823 
824 	/*
825 	 * Make sure the devclass which the driver is implementing exists.
826 	 */
827 	devclass_find_internal(driver->name, NULL, TRUE);
828 
829 	dl->driver = driver;
830 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
831 
832 	/*
833 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
834 	 * but only if the bus has already been attached (otherwise we
835 	 * might probe too early).
836 	 *
837 	 * This is what will cause a newly loaded module to be associated
838 	 * with hardware.  bus_generic_driver_added() is typically what ends
839 	 * up being called.
840 	 */
841 	for (i = 0; i < dc->maxunit; i++) {
842 		if ((dev = dc->devices[i]) != NULL) {
843 			if (dev->state >= DS_ATTACHED)
844 				BUS_DRIVER_ADDED(dev, driver);
845 		}
846 	}
847 
848 	bus_data_generation_update();
849 	return(0);
850 }
851 
852 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)853 devclass_delete_driver(devclass_t busclass, driver_t *driver)
854 {
855 	devclass_t dc = devclass_find(driver->name);
856 	driverlink_t dl;
857 	device_t dev;
858 	int i;
859 	int error;
860 
861 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
862 
863 	if (!dc)
864 		return(0);
865 
866 	/*
867 	 * Find the link structure in the bus' list of drivers.
868 	 */
869 	TAILQ_FOREACH(dl, &busclass->drivers, link)
870 		if (dl->driver == driver)
871 			break;
872 
873 	if (!dl) {
874 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
875 		return(ENOENT);
876 	}
877 
878 	/*
879 	 * Disassociate from any devices.  We iterate through all the
880 	 * devices in the devclass of the driver and detach any which are
881 	 * using the driver and which have a parent in the devclass which
882 	 * we are deleting from.
883 	 *
884 	 * Note that since a driver can be in multiple devclasses, we
885 	 * should not detach devices which are not children of devices in
886 	 * the affected devclass.
887 	 */
888 	for (i = 0; i < dc->maxunit; i++)
889 		if (dc->devices[i]) {
890 			dev = dc->devices[i];
891 			if (dev->driver == driver && dev->parent &&
892 			    dev->parent->devclass == busclass) {
893 				if ((error = device_detach(dev)) != 0)
894 					return(error);
895 				device_set_driver(dev, NULL);
896 		    	}
897 		}
898 
899 	TAILQ_REMOVE(&busclass->drivers, dl, link);
900 	kfree(dl, M_BUS);
901 
902 	kobj_class_uninstantiate(driver);
903 
904 	bus_data_generation_update();
905 	return(0);
906 }
907 
908 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)909 devclass_find_driver_internal(devclass_t dc, const char *classname)
910 {
911 	driverlink_t dl;
912 
913 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
914 
915 	TAILQ_FOREACH(dl, &dc->drivers, link)
916 		if (!strcmp(dl->driver->name, classname))
917 			return(dl);
918 
919 	PDEBUG(("not found"));
920 	return(NULL);
921 }
922 
923 kobj_class_t
devclass_find_driver(devclass_t dc,const char * classname)924 devclass_find_driver(devclass_t dc, const char *classname)
925 {
926 	driverlink_t dl;
927 
928 	dl = devclass_find_driver_internal(dc, classname);
929 	if (dl)
930 		return(dl->driver);
931 	else
932 		return(NULL);
933 }
934 
935 const char *
devclass_get_name(devclass_t dc)936 devclass_get_name(devclass_t dc)
937 {
938 	return(dc->name);
939 }
940 
941 device_t
devclass_get_device(devclass_t dc,int unit)942 devclass_get_device(devclass_t dc, int unit)
943 {
944 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
945 		return(NULL);
946 	return(dc->devices[unit]);
947 }
948 
949 void *
devclass_get_softc(devclass_t dc,int unit)950 devclass_get_softc(devclass_t dc, int unit)
951 {
952 	device_t dev;
953 
954 	dev = devclass_get_device(dc, unit);
955 	if (!dev)
956 		return(NULL);
957 
958 	return(device_get_softc(dev));
959 }
960 
961 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)962 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
963 {
964 	int i;
965 	int count;
966 	device_t *list;
967 
968 	count = 0;
969 	for (i = 0; i < dc->maxunit; i++)
970 		if (dc->devices[i])
971 			count++;
972 
973 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
974 
975 	count = 0;
976 	for (i = 0; i < dc->maxunit; i++)
977 		if (dc->devices[i]) {
978 			list[count] = dc->devices[i];
979 			count++;
980 		}
981 
982 	*devlistp = list;
983 	*devcountp = count;
984 
985 	return(0);
986 }
987 
988 /**
989  * @brief Get a list of drivers in the devclass
990  *
991  * An array containing a list of pointers to all the drivers in the
992  * given devclass is allocated and returned in @p *listp.  The number
993  * of drivers in the array is returned in @p *countp. The caller should
994  * free the array using @c free(p, M_TEMP).
995  *
996  * @param dc            the devclass to examine
997  * @param listp         gives location for array pointer return value
998  * @param countp        gives location for number of array elements
999  *                      return value
1000  *
1001  * @retval 0            success
1002  * @retval ENOMEM       the array allocation failed
1003  */
1004 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)1005 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1006 {
1007         driverlink_t dl;
1008         driver_t **list;
1009         int count;
1010 
1011         count = 0;
1012         TAILQ_FOREACH(dl, &dc->drivers, link)
1013                 count++;
1014         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1015         if (list == NULL)
1016                 return (ENOMEM);
1017 
1018         count = 0;
1019         TAILQ_FOREACH(dl, &dc->drivers, link) {
1020                 list[count] = dl->driver;
1021                 count++;
1022         }
1023         *listp = list;
1024         *countp = count;
1025 
1026         return (0);
1027 }
1028 
1029 /**
1030  * @brief Get the number of devices in a devclass
1031  *
1032  * @param dc		the devclass to examine
1033  */
1034 int
devclass_get_count(devclass_t dc)1035 devclass_get_count(devclass_t dc)
1036 {
1037 	int count, i;
1038 
1039 	count = 0;
1040 	for (i = 0; i < dc->maxunit; i++)
1041 		if (dc->devices[i])
1042 			count++;
1043 	return (count);
1044 }
1045 
1046 int
devclass_get_maxunit(devclass_t dc)1047 devclass_get_maxunit(devclass_t dc)
1048 {
1049 	return(dc->maxunit);
1050 }
1051 
1052 void
devclass_set_parent(devclass_t dc,devclass_t pdc)1053 devclass_set_parent(devclass_t dc, devclass_t pdc)
1054 {
1055         dc->parent = pdc;
1056 }
1057 
1058 devclass_t
devclass_get_parent(devclass_t dc)1059 devclass_get_parent(devclass_t dc)
1060 {
1061 	return(dc->parent);
1062 }
1063 
1064 static int
devclass_alloc_unit(devclass_t dc,int * unitp)1065 devclass_alloc_unit(devclass_t dc, int *unitp)
1066 {
1067 	int unit = *unitp;
1068 
1069 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1070 
1071 	/* If we have been given a wired unit number, check for existing device */
1072 	if (unit != -1) {
1073 		if (unit >= 0 && unit < dc->maxunit &&
1074 		    dc->devices[unit] != NULL) {
1075 			if (bootverbose)
1076 				kprintf("%s-: %s%d exists, using next available unit number\n",
1077 				       dc->name, dc->name, unit);
1078 			/* find the next available slot */
1079 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
1080 				;
1081 		}
1082 	} else {
1083 		/* Unwired device, find the next available slot for it */
1084 		unit = 0;
1085 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1086 			unit++;
1087 	}
1088 
1089 	/*
1090 	 * We've selected a unit beyond the length of the table, so let's
1091 	 * extend the table to make room for all units up to and including
1092 	 * this one.
1093 	 */
1094 	if (unit >= dc->maxunit) {
1095 		device_t *newlist;
1096 		int newsize;
1097 
1098 		newsize = (unit + 1);
1099 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
1100 				 M_INTWAIT | M_ZERO);
1101 		if (newlist == NULL)
1102 			return(ENOMEM);
1103 		/*
1104 		 * WARNING: Due to gcc builtin optimization,
1105 		 *	    calling bcopy causes gcc to assume
1106 		 *	    that the source and destination args
1107 		 *	    cannot be NULL and optimize-away later
1108 		 *	    conditional tests to determine if dc->devices
1109 		 *	    is NULL.  In this situation, in fact,
1110 		 *	    dc->devices CAN be NULL w/ maxunit == 0.
1111 		 */
1112 		if (dc->devices) {
1113 			bcopy(dc->devices,
1114 			      newlist,
1115 			      sizeof(device_t) * dc->maxunit);
1116 			kfree(dc->devices, M_BUS);
1117 		}
1118 		dc->devices = newlist;
1119 		dc->maxunit = newsize;
1120 	}
1121 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1122 
1123 	*unitp = unit;
1124 	return(0);
1125 }
1126 
1127 static int
devclass_add_device(devclass_t dc,device_t dev)1128 devclass_add_device(devclass_t dc, device_t dev)
1129 {
1130 	int buflen, error;
1131 
1132 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1133 
1134 	buflen = strlen(dc->name) + 5;
1135 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
1136 	if (dev->nameunit == NULL)
1137 		return(ENOMEM);
1138 
1139 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1140 		kfree(dev->nameunit, M_BUS);
1141 		dev->nameunit = NULL;
1142 		return(error);
1143 	}
1144 	dc->devices[dev->unit] = dev;
1145 	dev->devclass = dc;
1146 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1147 
1148 	return(0);
1149 }
1150 
1151 static int
devclass_delete_device(devclass_t dc,device_t dev)1152 devclass_delete_device(devclass_t dc, device_t dev)
1153 {
1154 	if (!dc || !dev)
1155 		return(0);
1156 
1157 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1158 
1159 	if (dev->devclass != dc || dc->devices[dev->unit] != dev) {
1160 		panic("devclass_delete_device: inconsistent device class: "
1161 		      "%p/%p %d %p/%p\n", dev->devclass, dc, dev->unit,
1162 		      dc->devices[dev->unit], dev);
1163 	}
1164 	dc->devices[dev->unit] = NULL;
1165 	if (dev->flags & DF_WILDCARD)
1166 		dev->unit = -1;
1167 	dev->devclass = NULL;
1168 	kfree(dev->nameunit, M_BUS);
1169 	dev->nameunit = NULL;
1170 
1171 	return(0);
1172 }
1173 
1174 static device_t
make_device(device_t parent,const char * name,int unit)1175 make_device(device_t parent, const char *name, int unit)
1176 {
1177 	device_t dev;
1178 	devclass_t dc;
1179 
1180 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1181 
1182 	if (name != NULL) {
1183 		dc = devclass_find_internal(name, NULL, TRUE);
1184 		if (!dc) {
1185 			kprintf("make_device: can't find device class %s\n", name);
1186 			return(NULL);
1187 		}
1188 	} else
1189 		dc = NULL;
1190 
1191 	dev = kmalloc(sizeof(struct bsd_device), M_BUS, M_INTWAIT | M_ZERO);
1192 	if (!dev)
1193 		return(0);
1194 
1195 	dev->parent = parent;
1196 	TAILQ_INIT(&dev->children);
1197 	kobj_init((kobj_t) dev, &null_class);
1198 	dev->driver = NULL;
1199 	dev->devclass = NULL;
1200 	dev->unit = unit;
1201 	dev->nameunit = NULL;
1202 	dev->desc = NULL;
1203 	dev->busy = 0;
1204 	dev->devflags = 0;
1205 	dev->flags = DF_ENABLED;
1206 	dev->order = 0;
1207 	if (unit == -1)
1208 		dev->flags |= DF_WILDCARD;
1209 	if (name) {
1210 		dev->flags |= DF_FIXEDCLASS;
1211 		if (devclass_add_device(dc, dev) != 0) {
1212 			kobj_delete((kobj_t)dev, M_BUS);
1213 			return(NULL);
1214 		}
1215     	}
1216 	dev->ivars = NULL;
1217 	dev->softc = NULL;
1218 
1219 	dev->state = DS_NOTPRESENT;
1220 
1221 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1222 	bus_data_generation_update();
1223 
1224 	return(dev);
1225 }
1226 
1227 static int
device_print_child(device_t dev,device_t child)1228 device_print_child(device_t dev, device_t child)
1229 {
1230 	int retval = 0;
1231 
1232 	if (device_is_alive(child))
1233 		retval += BUS_PRINT_CHILD(dev, child);
1234 	else
1235 		retval += device_printf(child, " not found\n");
1236 
1237 	return(retval);
1238 }
1239 
1240 device_t
device_add_child(device_t dev,const char * name,int unit)1241 device_add_child(device_t dev, const char *name, int unit)
1242 {
1243 	return device_add_child_ordered(dev, 0, name, unit);
1244 }
1245 
1246 device_t
device_add_child_ordered(device_t dev,int order,const char * name,int unit)1247 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1248 {
1249 	device_t child;
1250 	device_t place;
1251 
1252 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1253 		order, unit));
1254 
1255 	child = make_device(dev, name, unit);
1256 	if (child == NULL)
1257 		return child;
1258 	child->order = order;
1259 
1260 	TAILQ_FOREACH(place, &dev->children, link) {
1261 		if (place->order > order)
1262 			break;
1263 	}
1264 
1265 	if (place) {
1266 		/*
1267 		 * The device 'place' is the first device whose order is
1268 		 * greater than the new child.
1269 		 */
1270 		TAILQ_INSERT_BEFORE(place, child, link);
1271 	} else {
1272 		/*
1273 		 * The new child's order is greater or equal to the order of
1274 		 * any existing device. Add the child to the tail of the list.
1275 		 */
1276 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1277     	}
1278 
1279 	bus_data_generation_update();
1280 	return(child);
1281 }
1282 
1283 int
device_delete_child(device_t dev,device_t child)1284 device_delete_child(device_t dev, device_t child)
1285 {
1286 	int error;
1287 	device_t grandchild;
1288 
1289 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1290 
1291 	/* remove children first */
1292 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1293         	error = device_delete_child(child, grandchild);
1294 		if (error)
1295 			return(error);
1296 	}
1297 
1298 	if ((error = device_detach(child)) != 0)
1299 		return(error);
1300 	if (child->devclass)
1301 		devclass_delete_device(child->devclass, child);
1302 	TAILQ_REMOVE(&dev->children, child, link);
1303 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1304 	kobj_delete((kobj_t)child, M_BUS);
1305 
1306 	bus_data_generation_update();
1307 	return(0);
1308 }
1309 
1310 /**
1311  * @brief Delete all children devices of the given device, if any.
1312  *
1313  * This function deletes all children devices of the given device, if
1314  * any, using the device_delete_child() function for each device it
1315  * finds. If a child device cannot be deleted, this function will
1316  * return an error code.
1317  *
1318  * @param dev		the parent device
1319  *
1320  * @retval 0		success
1321  * @retval non-zero	a device would not detach
1322  */
1323 int
device_delete_children(device_t dev)1324 device_delete_children(device_t dev)
1325 {
1326 	device_t child;
1327 	int error;
1328 
1329 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1330 
1331 	error = 0;
1332 
1333 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1334 		error = device_delete_child(dev, child);
1335 		if (error) {
1336 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1337 			break;
1338 		}
1339 	}
1340 	return (error);
1341 }
1342 
1343 /**
1344  * @brief Find a device given a unit number
1345  *
1346  * This is similar to devclass_get_devices() but only searches for
1347  * devices which have @p dev as a parent.
1348  *
1349  * @param dev		the parent device to search
1350  * @param unit		the unit number to search for.  If the unit is -1,
1351  *			return the first child of @p dev which has name
1352  *			@p classname (that is, the one with the lowest unit.)
1353  *
1354  * @returns		the device with the given unit number or @c
1355  *			NULL if there is no such device
1356  */
1357 device_t
device_find_child(device_t dev,const char * classname,int unit)1358 device_find_child(device_t dev, const char *classname, int unit)
1359 {
1360 	devclass_t dc;
1361 	device_t child;
1362 
1363 	dc = devclass_find(classname);
1364 	if (!dc)
1365 		return(NULL);
1366 
1367 	if (unit != -1) {
1368 		child = devclass_get_device(dc, unit);
1369 		if (child && child->parent == dev)
1370 			return (child);
1371 	} else {
1372 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1373 			child = devclass_get_device(dc, unit);
1374 			if (child && child->parent == dev)
1375 				return (child);
1376 		}
1377 	}
1378 	return(NULL);
1379 }
1380 
1381 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)1382 first_matching_driver(devclass_t dc, device_t dev)
1383 {
1384 	if (dev->devclass)
1385 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1386 	else
1387 		return(TAILQ_FIRST(&dc->drivers));
1388 }
1389 
1390 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)1391 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1392 {
1393 	if (dev->devclass) {
1394 		driverlink_t dl;
1395 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1396 			if (!strcmp(dev->devclass->name, dl->driver->name))
1397 				return(dl);
1398 		return(NULL);
1399 	} else
1400 		return(TAILQ_NEXT(last, link));
1401 }
1402 
1403 int
device_probe_child(device_t dev,device_t child)1404 device_probe_child(device_t dev, device_t child)
1405 {
1406 	devclass_t dc;
1407 	driverlink_t best = NULL;
1408 	driverlink_t dl;
1409 	int result, pri = 0;
1410 	int hasclass = (child->devclass != NULL);
1411 
1412 	dc = dev->devclass;
1413 	if (!dc)
1414 		panic("device_probe_child: parent device has no devclass");
1415 
1416 	if (child->state == DS_ALIVE)
1417 		return(0);
1418 
1419 	for (; dc; dc = dc->parent) {
1420 		for (dl = first_matching_driver(dc, child); dl;
1421 		     dl = next_matching_driver(dc, child, dl)) {
1422 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1423 			device_set_driver(child, dl->driver);
1424 			if (!hasclass)
1425 				device_set_devclass(child, dl->driver->name);
1426 			result = DEVICE_PROBE(child);
1427 			if (!hasclass)
1428 				device_set_devclass(child, 0);
1429 
1430 			/*
1431 			 * If the driver returns SUCCESS, there can be
1432 			 * no higher match for this device.
1433 			 */
1434 			if (result == 0) {
1435 				best = dl;
1436 				pri = 0;
1437 				break;
1438 			}
1439 
1440 			/*
1441 			 * The driver returned an error so it
1442 			 * certainly doesn't match.
1443 			 */
1444 			if (result > 0) {
1445 				device_set_driver(child, NULL);
1446 				continue;
1447 			}
1448 
1449 			/*
1450 			 * A priority lower than SUCCESS, remember the
1451 			 * best matching driver. Initialise the value
1452 			 * of pri for the first match.
1453 			 */
1454 			if (best == NULL || result > pri) {
1455 				best = dl;
1456 				pri = result;
1457 				continue;
1458 			}
1459 		}
1460 		/*
1461 	         * If we have unambiguous match in this devclass,
1462 	         * don't look in the parent.
1463 	         */
1464 	        if (best && pri == 0)
1465 			break;
1466 	}
1467 
1468 	/*
1469 	 * If we found a driver, change state and initialise the devclass.
1470 	 */
1471 	if (best) {
1472 		if (!child->devclass)
1473 			device_set_devclass(child, best->driver->name);
1474 		device_set_driver(child, best->driver);
1475 		if (pri < 0) {
1476 			/*
1477 			 * A bit bogus. Call the probe method again to make
1478 			 * sure that we have the right description.
1479 			 */
1480 			DEVICE_PROBE(child);
1481 		}
1482 
1483 		bus_data_generation_update();
1484 		child->state = DS_ALIVE;
1485 		return(0);
1486 	}
1487 
1488 	return(ENXIO);
1489 }
1490 
1491 int
device_probe_child_gpri(device_t dev,device_t child,u_int gpri)1492 device_probe_child_gpri(device_t dev, device_t child, u_int gpri)
1493 {
1494 	devclass_t dc;
1495 	driverlink_t best = NULL;
1496 	driverlink_t dl;
1497 	int result, pri = 0;
1498 	int hasclass = (child->devclass != NULL);
1499 
1500 	dc = dev->devclass;
1501 	if (!dc)
1502 		panic("device_probe_child: parent device has no devclass");
1503 
1504 	if (child->state == DS_ALIVE)
1505 		return(0);
1506 
1507 	for (; dc; dc = dc->parent) {
1508 		for (dl = first_matching_driver(dc, child); dl;
1509 			dl = next_matching_driver(dc, child, dl)) {
1510 			/*
1511 			 * GPRI handling, only probe drivers with the
1512 			 * specific GPRI.
1513 			 */
1514 			if (dl->driver->gpri != gpri)
1515 				continue;
1516 
1517 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1518 			device_set_driver(child, dl->driver);
1519 			if (!hasclass)
1520 				device_set_devclass(child, dl->driver->name);
1521 			result = DEVICE_PROBE(child);
1522 			if (!hasclass)
1523 				device_set_devclass(child, 0);
1524 
1525 			/*
1526 			 * If the driver returns SUCCESS, there can be
1527 			 * no higher match for this device.
1528 			 */
1529 			if (result == 0) {
1530 				best = dl;
1531 				pri = 0;
1532 				break;
1533 			}
1534 
1535 			/*
1536 			 * The driver returned an error so it
1537 			 * certainly doesn't match.
1538 			 */
1539 			if (result > 0) {
1540 				device_set_driver(child, NULL);
1541 				continue;
1542 			}
1543 
1544 			/*
1545 			 * A priority lower than SUCCESS, remember the
1546 			 * best matching driver. Initialise the value
1547 			 * of pri for the first match.
1548 			 */
1549 			if (best == NULL || result > pri) {
1550 				best = dl;
1551 				pri = result;
1552 				continue;
1553 			}
1554 	        }
1555 		/*
1556 	         * If we have unambiguous match in this devclass,
1557 	         * don't look in the parent.
1558 	         */
1559 	        if (best && pri == 0)
1560 			break;
1561 	}
1562 
1563 	/*
1564 	 * If we found a driver, change state and initialise the devclass.
1565 	 */
1566 	if (best) {
1567 		if (!child->devclass)
1568 			device_set_devclass(child, best->driver->name);
1569 		device_set_driver(child, best->driver);
1570 		if (pri < 0) {
1571 			/*
1572 			 * A bit bogus. Call the probe method again to make
1573 			 * sure that we have the right description.
1574 			 */
1575 			DEVICE_PROBE(child);
1576 		}
1577 
1578 		bus_data_generation_update();
1579 		child->state = DS_ALIVE;
1580 		return(0);
1581 	}
1582 
1583 	return(ENXIO);
1584 }
1585 
1586 device_t
device_get_parent(device_t dev)1587 device_get_parent(device_t dev)
1588 {
1589 	return dev->parent;
1590 }
1591 
1592 int
device_get_children(device_t dev,device_t ** devlistp,int * devcountp)1593 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1594 {
1595 	int count;
1596 	device_t child;
1597 	device_t *list;
1598 
1599 	count = 0;
1600 	TAILQ_FOREACH(child, &dev->children, link)
1601 		count++;
1602 
1603 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1604 
1605 	count = 0;
1606 	TAILQ_FOREACH(child, &dev->children, link) {
1607 		list[count] = child;
1608 		count++;
1609 	}
1610 
1611 	*devlistp = list;
1612 	*devcountp = count;
1613 
1614 	return(0);
1615 }
1616 
1617 driver_t *
device_get_driver(device_t dev)1618 device_get_driver(device_t dev)
1619 {
1620 	return(dev->driver);
1621 }
1622 
1623 devclass_t
device_get_devclass(device_t dev)1624 device_get_devclass(device_t dev)
1625 {
1626 	return(dev->devclass);
1627 }
1628 
1629 const char *
device_get_name(device_t dev)1630 device_get_name(device_t dev)
1631 {
1632 	if (dev->devclass)
1633 		return devclass_get_name(dev->devclass);
1634 	return(NULL);
1635 }
1636 
1637 const char *
device_get_nameunit(device_t dev)1638 device_get_nameunit(device_t dev)
1639 {
1640 	return(dev->nameunit);
1641 }
1642 
1643 int
device_get_unit(device_t dev)1644 device_get_unit(device_t dev)
1645 {
1646 	return(dev->unit);
1647 }
1648 
1649 const char *
device_get_desc(device_t dev)1650 device_get_desc(device_t dev)
1651 {
1652 	return(dev->desc);
1653 }
1654 
1655 uint32_t
device_get_flags(device_t dev)1656 device_get_flags(device_t dev)
1657 {
1658 	return(dev->devflags);
1659 }
1660 
1661 struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)1662 device_get_sysctl_ctx(device_t dev)
1663 {
1664 	return (&dev->sysctl_ctx);
1665 }
1666 
1667 struct sysctl_oid *
device_get_sysctl_tree(device_t dev)1668 device_get_sysctl_tree(device_t dev)
1669 {
1670 	return (dev->sysctl_tree);
1671 }
1672 
1673 int
device_print_prettyname(device_t dev)1674 device_print_prettyname(device_t dev)
1675 {
1676 	const char *name = device_get_name(dev);
1677 
1678 	if (name == NULL)
1679 		return kprintf("unknown: ");
1680 	else
1681 		return kprintf("%s%d: ", name, device_get_unit(dev));
1682 }
1683 
1684 int
device_printf(device_t dev,const char * fmt,...)1685 device_printf(device_t dev, const char * fmt, ...)
1686 {
1687 	__va_list ap;
1688 	int retval;
1689 
1690 	retval = device_print_prettyname(dev);
1691 	__va_start(ap, fmt);
1692 	retval += kvprintf(fmt, ap);
1693 	__va_end(ap);
1694 	return retval;
1695 }
1696 
1697 /**
1698  * @brief Print the name of the device followed by a colon, a space
1699  * and the result of calling log() with the value of @p fmt and
1700  * the following arguments.
1701  *
1702  * @returns the number of characters printed
1703  */
1704 int
device_log(device_t dev,int pri,const char * fmt,...)1705 device_log(device_t dev, int pri, const char * fmt, ...)
1706 {
1707 	char buf[128];
1708 	struct sbuf sb;
1709 	const char *name;
1710 	__va_list ap;
1711 	size_t retval;
1712 
1713 	retval = 0;
1714 
1715 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1716 
1717 	name = device_get_name(dev);
1718 
1719 	if (name == NULL)
1720 		sbuf_cat(&sb, "unknown: ");
1721 	else
1722 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1723 
1724 	__va_start(ap, fmt);
1725 	sbuf_vprintf(&sb, fmt, ap);
1726 	__va_end(ap);
1727 
1728 	sbuf_finish(&sb);
1729 
1730 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
1731 	retval = sbuf_len(&sb);
1732 
1733 	sbuf_delete(&sb);
1734 
1735 	return (retval);
1736 }
1737 
1738 static void
device_set_desc_internal(device_t dev,const char * desc,int copy)1739 device_set_desc_internal(device_t dev, const char* desc, int copy)
1740 {
1741 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1742 		kfree(dev->desc, M_BUS);
1743 		dev->flags &= ~DF_DESCMALLOCED;
1744 		dev->desc = NULL;
1745 	}
1746 
1747 	if (copy && desc) {
1748 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1749 		if (dev->desc) {
1750 			strcpy(dev->desc, desc);
1751 			dev->flags |= DF_DESCMALLOCED;
1752 		}
1753 	} else {
1754 		/* Avoid a -Wcast-qual warning */
1755 		dev->desc = (char *)(uintptr_t) desc;
1756 	}
1757 
1758 	bus_data_generation_update();
1759 }
1760 
1761 void
device_set_desc(device_t dev,const char * desc)1762 device_set_desc(device_t dev, const char* desc)
1763 {
1764 	device_set_desc_internal(dev, desc, FALSE);
1765 }
1766 
1767 void
device_set_desc_copy(device_t dev,const char * desc)1768 device_set_desc_copy(device_t dev, const char* desc)
1769 {
1770 	device_set_desc_internal(dev, desc, TRUE);
1771 }
1772 
1773 void
device_set_flags(device_t dev,uint32_t flags)1774 device_set_flags(device_t dev, uint32_t flags)
1775 {
1776 	dev->devflags = flags;
1777 }
1778 
1779 void *
device_get_softc(device_t dev)1780 device_get_softc(device_t dev)
1781 {
1782 	return dev->softc;
1783 }
1784 
1785 void
device_set_softc(device_t dev,void * softc)1786 device_set_softc(device_t dev, void *softc)
1787 {
1788 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1789 		kfree(dev->softc, M_BUS);
1790 	dev->softc = softc;
1791 	if (dev->softc)
1792 		dev->flags |= DF_EXTERNALSOFTC;
1793 	else
1794 		dev->flags &= ~DF_EXTERNALSOFTC;
1795 }
1796 
1797 void
device_set_async_attach(device_t dev,int enable)1798 device_set_async_attach(device_t dev, int enable)
1799 {
1800 	if (enable)
1801 		dev->flags |= DF_ASYNCPROBE;
1802 	else
1803 		dev->flags &= ~DF_ASYNCPROBE;
1804 }
1805 
1806 void *
device_get_ivars(device_t dev)1807 device_get_ivars(device_t dev)
1808 {
1809 	return dev->ivars;
1810 }
1811 
1812 void
device_set_ivars(device_t dev,void * ivars)1813 device_set_ivars(device_t dev, void * ivars)
1814 {
1815 	if (!dev)
1816 		return;
1817 
1818 	dev->ivars = ivars;
1819 }
1820 
1821 device_state_t
device_get_state(device_t dev)1822 device_get_state(device_t dev)
1823 {
1824 	return(dev->state);
1825 }
1826 
1827 void
device_enable(device_t dev)1828 device_enable(device_t dev)
1829 {
1830 	dev->flags |= DF_ENABLED;
1831 }
1832 
1833 void
device_disable(device_t dev)1834 device_disable(device_t dev)
1835 {
1836 	dev->flags &= ~DF_ENABLED;
1837 }
1838 
1839 /*
1840  * YYY cannot block
1841  */
1842 void
device_busy(device_t dev)1843 device_busy(device_t dev)
1844 {
1845 	if (dev->state < DS_ATTACHED)
1846 		panic("device_busy: called for unattached device");
1847 	if (dev->busy == 0 && dev->parent)
1848 		device_busy(dev->parent);
1849 	dev->busy++;
1850 	dev->state = DS_BUSY;
1851 }
1852 
1853 /*
1854  * YYY cannot block
1855  */
1856 void
device_unbusy(device_t dev)1857 device_unbusy(device_t dev)
1858 {
1859 	if (dev->state != DS_BUSY)
1860 		panic("device_unbusy: called for non-busy device");
1861 	dev->busy--;
1862 	if (dev->busy == 0) {
1863 		if (dev->parent)
1864 			device_unbusy(dev->parent);
1865 		dev->state = DS_ATTACHED;
1866 	}
1867 }
1868 
1869 void
device_quiet(device_t dev)1870 device_quiet(device_t dev)
1871 {
1872 	dev->flags |= DF_QUIET;
1873 }
1874 
1875 void
device_verbose(device_t dev)1876 device_verbose(device_t dev)
1877 {
1878 	dev->flags &= ~DF_QUIET;
1879 }
1880 
1881 int
device_is_quiet(device_t dev)1882 device_is_quiet(device_t dev)
1883 {
1884 	return((dev->flags & DF_QUIET) != 0);
1885 }
1886 
1887 int
device_is_enabled(device_t dev)1888 device_is_enabled(device_t dev)
1889 {
1890 	return((dev->flags & DF_ENABLED) != 0);
1891 }
1892 
1893 int
device_is_alive(device_t dev)1894 device_is_alive(device_t dev)
1895 {
1896 	return(dev->state >= DS_ALIVE);
1897 }
1898 
1899 int
device_is_attached(device_t dev)1900 device_is_attached(device_t dev)
1901 {
1902 	return(dev->state >= DS_ATTACHED);
1903 }
1904 
1905 int
device_set_devclass(device_t dev,const char * classname)1906 device_set_devclass(device_t dev, const char *classname)
1907 {
1908 	devclass_t dc;
1909 	int error;
1910 
1911 	if (!classname) {
1912 		if (dev->devclass)
1913 			devclass_delete_device(dev->devclass, dev);
1914 		return(0);
1915 	}
1916 
1917 	if (dev->devclass) {
1918 		kprintf("device_set_devclass: device class already set\n");
1919 		return(EINVAL);
1920 	}
1921 
1922 	dc = devclass_find_internal(classname, NULL, TRUE);
1923 	if (!dc)
1924 		return(ENOMEM);
1925 
1926 	error = devclass_add_device(dc, dev);
1927 
1928 	bus_data_generation_update();
1929 	return(error);
1930 }
1931 
1932 int
device_set_driver(device_t dev,driver_t * driver)1933 device_set_driver(device_t dev, driver_t *driver)
1934 {
1935 	if (dev->state >= DS_ATTACHED)
1936 		return(EBUSY);
1937 
1938 	if (dev->driver == driver)
1939 		return(0);
1940 
1941 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1942 		kfree(dev->softc, M_BUS);
1943 		dev->softc = NULL;
1944 	}
1945 	device_set_desc(dev, NULL);
1946 	kobj_delete((kobj_t) dev, 0);
1947 	dev->driver = driver;
1948 	if (driver) {
1949 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1950 		if (!(dev->flags & DF_EXTERNALSOFTC))
1951 			dev->softc = kmalloc(driver->size, M_BUS,
1952 					    M_INTWAIT | M_ZERO);
1953 	} else {
1954 		kobj_init((kobj_t) dev, &null_class);
1955 	}
1956 
1957 	bus_data_generation_update();
1958 	return(0);
1959 }
1960 
1961 int
device_probe_and_attach(device_t dev)1962 device_probe_and_attach(device_t dev)
1963 {
1964 	device_t bus = dev->parent;
1965 	int error = 0;
1966 
1967 	if (dev->state >= DS_ALIVE)
1968 		return(0);
1969 
1970 	if ((dev->flags & DF_ENABLED) == 0) {
1971 		if (bootverbose) {
1972 			device_print_prettyname(dev);
1973 			kprintf("not probed (disabled)\n");
1974 		}
1975 		return(0);
1976 	}
1977 
1978 	error = device_probe_child(bus, dev);
1979 	if (error) {
1980 		if (!(dev->flags & DF_DONENOMATCH)) {
1981 			BUS_PROBE_NOMATCH(bus, dev);
1982 			devnomatch(dev);
1983 			dev->flags |= DF_DONENOMATCH;
1984 		}
1985 		return(error);
1986 	}
1987 
1988 	/*
1989 	 * Output the exact device chain prior to the attach in case the
1990 	 * system locks up during attach, and generate the full info after
1991 	 * the attach so correct irq and other information is displayed.
1992 	 */
1993 	if (bootverbose && !device_is_quiet(dev)) {
1994 		device_t tmp;
1995 
1996 		kprintf("%s", device_get_nameunit(dev));
1997 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1998 			kprintf(".%s", device_get_nameunit(tmp));
1999 		kprintf("\n");
2000 	}
2001 	if (!device_is_quiet(dev))
2002 		device_print_child(bus, dev);
2003 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
2004 		kprintf("%s: probing asynchronously\n",
2005 			device_get_nameunit(dev));
2006 		dev->state = DS_INPROGRESS;
2007 		device_attach_async(dev);
2008 		error = 0;
2009 	} else {
2010 		error = device_doattach(dev);
2011 	}
2012 	return(error);
2013 }
2014 
2015 int
device_probe_and_attach_gpri(device_t dev,u_int gpri)2016 device_probe_and_attach_gpri(device_t dev, u_int gpri)
2017 {
2018 	device_t bus = dev->parent;
2019 	int error = 0;
2020 
2021 	if (dev->state >= DS_ALIVE)
2022 		return(0);
2023 
2024 	if ((dev->flags & DF_ENABLED) == 0) {
2025 		if (bootverbose) {
2026 			device_print_prettyname(dev);
2027 			kprintf("not probed (disabled)\n");
2028 		}
2029 		return(0);
2030 	}
2031 
2032 	error = device_probe_child_gpri(bus, dev, gpri);
2033 	if (error) {
2034 #if 0
2035 		if (!(dev->flags & DF_DONENOMATCH)) {
2036 			BUS_PROBE_NOMATCH(bus, dev);
2037 			devnomatch(dev);
2038 			dev->flags |= DF_DONENOMATCH;
2039 		}
2040 #endif
2041 		return(error);
2042 	}
2043 
2044 	/*
2045 	 * Output the exact device chain prior to the attach in case the
2046 	 * system locks up during attach, and generate the full info after
2047 	 * the attach so correct irq and other information is displayed.
2048 	 */
2049 	if (bootverbose && !device_is_quiet(dev)) {
2050 		device_t tmp;
2051 
2052 		kprintf("%s", device_get_nameunit(dev));
2053 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
2054 			kprintf(".%s", device_get_nameunit(tmp));
2055 		kprintf("\n");
2056 	}
2057 	if (!device_is_quiet(dev))
2058 		device_print_child(bus, dev);
2059 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
2060 		kprintf("%s: probing asynchronously\n",
2061 			device_get_nameunit(dev));
2062 		dev->state = DS_INPROGRESS;
2063 		device_attach_async(dev);
2064 		error = 0;
2065 	} else {
2066 		error = device_doattach(dev);
2067 	}
2068 	return(error);
2069 }
2070 
2071 /*
2072  * Device is known to be alive, do the attach asynchronously.
2073  * However, serialize the attaches with the mp lock.
2074  */
2075 static void
device_attach_async(device_t dev)2076 device_attach_async(device_t dev)
2077 {
2078 	thread_t td;
2079 
2080 	atomic_add_int(&numasyncthreads, 1);
2081 	lwkt_create(device_attach_thread, dev, &td, NULL,
2082 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
2083 }
2084 
2085 static void
device_attach_thread(void * arg)2086 device_attach_thread(void *arg)
2087 {
2088 	device_t dev = arg;
2089 
2090 	(void)device_doattach(dev);
2091 	atomic_subtract_int(&numasyncthreads, 1);
2092 	wakeup(&numasyncthreads);
2093 }
2094 
2095 /*
2096  * Device is known to be alive, do the attach (synchronous or asynchronous)
2097  */
2098 static int
device_doattach(device_t dev)2099 device_doattach(device_t dev)
2100 {
2101 	device_t bus = dev->parent;
2102 	int hasclass = (dev->devclass != NULL);
2103 	int error;
2104 
2105 	device_sysctl_init(dev);
2106 	error = DEVICE_ATTACH(dev);
2107 	if (error == 0) {
2108 		dev->state = DS_ATTACHED;
2109 		if (bootverbose && !device_is_quiet(dev))
2110 			device_print_child(bus, dev);
2111 		device_sysctl_update(dev);
2112 		devadded(dev);
2113 	} else {
2114 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
2115 		       dev->driver->name, dev->unit, error);
2116 		/* Unset the class that was set in device_probe_child */
2117 		if (!hasclass)
2118 			device_set_devclass(dev, 0);
2119 		device_set_driver(dev, NULL);
2120 		dev->state = DS_NOTPRESENT;
2121 		device_sysctl_fini(dev);
2122 	}
2123 	return(error);
2124 }
2125 
2126 int
device_detach(device_t dev)2127 device_detach(device_t dev)
2128 {
2129 	int error;
2130 
2131 	PDEBUG(("%s", DEVICENAME(dev)));
2132 	if (dev->state == DS_BUSY)
2133 		return(EBUSY);
2134 	if (dev->state != DS_ATTACHED)
2135 		return(0);
2136 
2137 	if ((error = DEVICE_DETACH(dev)) != 0)
2138 		return(error);
2139 	devremoved(dev);
2140 	device_printf(dev, "detached\n");
2141 	if (dev->parent)
2142 		BUS_CHILD_DETACHED(dev->parent, dev);
2143 
2144 	if (!(dev->flags & DF_FIXEDCLASS))
2145 		devclass_delete_device(dev->devclass, dev);
2146 
2147 	dev->state = DS_NOTPRESENT;
2148 	device_set_driver(dev, NULL);
2149 	device_sysctl_fini(dev);
2150 
2151 	return(0);
2152 }
2153 
2154 int
device_shutdown(device_t dev)2155 device_shutdown(device_t dev)
2156 {
2157 	if (dev->state < DS_ATTACHED)
2158 		return 0;
2159 	PDEBUG(("%s", DEVICENAME(dev)));
2160 	return DEVICE_SHUTDOWN(dev);
2161 }
2162 
2163 int
device_set_unit(device_t dev,int unit)2164 device_set_unit(device_t dev, int unit)
2165 {
2166 	devclass_t dc;
2167 	int err;
2168 
2169 	dc = device_get_devclass(dev);
2170 	if (unit < dc->maxunit && dc->devices[unit])
2171 		return(EBUSY);
2172 	err = devclass_delete_device(dc, dev);
2173 	if (err)
2174 		return(err);
2175 	dev->unit = unit;
2176 	err = devclass_add_device(dc, dev);
2177 	if (err)
2178 		return(err);
2179 
2180 	bus_data_generation_update();
2181 	return(0);
2182 }
2183 
2184 /*======================================*/
2185 /*
2186  * Access functions for device resources.
2187  */
2188 
2189 /* Supplied by config(8) in ioconf.c */
2190 extern struct config_device config_devtab[];
2191 extern int devtab_count;
2192 
2193 /* Runtime version */
2194 struct config_device *devtab = config_devtab;
2195 
2196 static int
resource_new_name(const char * name,int unit)2197 resource_new_name(const char *name, int unit)
2198 {
2199 	struct config_device *new;
2200 
2201 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
2202 		     M_INTWAIT | M_ZERO);
2203 	if (devtab && devtab_count > 0)
2204 		bcopy(devtab, new, devtab_count * sizeof(*new));
2205 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
2206 	if (new[devtab_count].name == NULL) {
2207 		kfree(new, M_TEMP);
2208 		return(-1);
2209 	}
2210 	strcpy(new[devtab_count].name, name);
2211 	new[devtab_count].unit = unit;
2212 	new[devtab_count].resource_count = 0;
2213 	new[devtab_count].resources = NULL;
2214 	if (devtab && devtab != config_devtab)
2215 		kfree(devtab, M_TEMP);
2216 	devtab = new;
2217 	return devtab_count++;
2218 }
2219 
2220 static int
resource_new_resname(int j,const char * resname,resource_type type)2221 resource_new_resname(int j, const char *resname, resource_type type)
2222 {
2223 	struct config_resource *new;
2224 	int i;
2225 
2226 	i = devtab[j].resource_count;
2227 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
2228 	if (devtab[j].resources && i > 0)
2229 		bcopy(devtab[j].resources, new, i * sizeof(*new));
2230 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
2231 	if (new[i].name == NULL) {
2232 		kfree(new, M_TEMP);
2233 		return(-1);
2234 	}
2235 	strcpy(new[i].name, resname);
2236 	new[i].type = type;
2237 	if (devtab[j].resources)
2238 		kfree(devtab[j].resources, M_TEMP);
2239 	devtab[j].resources = new;
2240 	devtab[j].resource_count = i + 1;
2241 	return(i);
2242 }
2243 
2244 static int
resource_match_string(int i,const char * resname,const char * value)2245 resource_match_string(int i, const char *resname, const char *value)
2246 {
2247 	int j;
2248 	struct config_resource *res;
2249 
2250 	for (j = 0, res = devtab[i].resources;
2251 	     j < devtab[i].resource_count; j++, res++)
2252 		if (!strcmp(res->name, resname)
2253 		    && res->type == RES_STRING
2254 		    && !strcmp(res->u.stringval, value))
2255 			return(j);
2256 	return(-1);
2257 }
2258 
2259 static int
resource_find(const char * name,int unit,const char * resname,struct config_resource ** result)2260 resource_find(const char *name, int unit, const char *resname,
2261 	      struct config_resource **result)
2262 {
2263 	int i, j;
2264 	struct config_resource *res;
2265 
2266 	/*
2267 	 * First check specific instances, then generic.
2268 	 */
2269 	for (i = 0; i < devtab_count; i++) {
2270 		if (devtab[i].unit < 0)
2271 			continue;
2272 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2273 			res = devtab[i].resources;
2274 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2275 				if (!strcmp(res->name, resname)) {
2276 					*result = res;
2277 					return(0);
2278 				}
2279 		}
2280 	}
2281 	for (i = 0; i < devtab_count; i++) {
2282 		if (devtab[i].unit >= 0)
2283 			continue;
2284 		/* XXX should this `&& devtab[i].unit == unit' be here? */
2285 		/* XXX if so, then the generic match does nothing */
2286 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2287 			res = devtab[i].resources;
2288 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2289 				if (!strcmp(res->name, resname)) {
2290 					*result = res;
2291 					return(0);
2292 				}
2293 		}
2294 	}
2295 	return(ENOENT);
2296 }
2297 
2298 static int
resource_kenv(const char * name,int unit,const char * resname,long * result)2299 resource_kenv(const char *name, int unit, const char *resname, long *result)
2300 {
2301 	const char *env;
2302 	char buf[64];
2303 
2304 	/*
2305 	 * DragonFly style loader.conf hinting
2306 	 */
2307 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2308 	if ((env = kgetenv(buf)) != NULL) {
2309 		*result = strtol(env, NULL, 0);
2310 		return(0);
2311 	}
2312 
2313 	/*
2314 	 * Also support FreeBSD style loader.conf hinting
2315 	 */
2316 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2317 	if ((env = kgetenv(buf)) != NULL) {
2318 		*result = strtol(env, NULL, 0);
2319 		return(0);
2320 	}
2321 
2322 	return (ENOENT);
2323 }
2324 
2325 int
resource_int_value(const char * name,int unit,const char * resname,int * result)2326 resource_int_value(const char *name, int unit, const char *resname, int *result)
2327 {
2328 	struct config_resource *res;
2329 	long kvalue = 0;
2330 	int error;
2331 
2332 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2333 		*result = (int)kvalue;
2334 		return 0;
2335 	}
2336 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2337 		return(error);
2338 	if (res->type != RES_INT)
2339 		return(EFTYPE);
2340 	*result = res->u.intval;
2341 	return(0);
2342 }
2343 
2344 int
resource_long_value(const char * name,int unit,const char * resname,long * result)2345 resource_long_value(const char *name, int unit, const char *resname,
2346 		    long *result)
2347 {
2348 	struct config_resource *res;
2349 	long kvalue;
2350 	int error;
2351 
2352 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2353 		*result = kvalue;
2354 		return 0;
2355 	}
2356 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2357 		return(error);
2358 	if (res->type != RES_LONG)
2359 		return(EFTYPE);
2360 	*result = res->u.longval;
2361 	return(0);
2362 }
2363 
2364 int
resource_string_value(const char * name,int unit,const char * resname,const char ** result)2365 resource_string_value(const char *name, int unit, const char *resname,
2366     const char **result)
2367 {
2368 	int error;
2369 	struct config_resource *res;
2370 	char buf[64];
2371 	const char *env;
2372 
2373 	/*
2374 	 * DragonFly style loader.conf hinting
2375 	 */
2376 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2377 	if ((env = kgetenv(buf)) != NULL) {
2378 		*result = env;
2379 		return 0;
2380 	}
2381 
2382 	/*
2383 	 * Also support FreeBSD style loader.conf hinting
2384 	 */
2385 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2386 	if ((env = kgetenv(buf)) != NULL) {
2387 		*result = env;
2388 		return 0;
2389 	}
2390 
2391 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2392 		return(error);
2393 	if (res->type != RES_STRING)
2394 		return(EFTYPE);
2395 	*result = res->u.stringval;
2396 	return(0);
2397 }
2398 
2399 int
resource_query_string(int i,const char * resname,const char * value)2400 resource_query_string(int i, const char *resname, const char *value)
2401 {
2402 	if (i < 0)
2403 		i = 0;
2404 	else
2405 		i = i + 1;
2406 	for (; i < devtab_count; i++)
2407 		if (resource_match_string(i, resname, value) >= 0)
2408 			return(i);
2409 	return(-1);
2410 }
2411 
2412 int
resource_locate(int i,const char * resname)2413 resource_locate(int i, const char *resname)
2414 {
2415 	if (i < 0)
2416 		i = 0;
2417 	else
2418 		i = i + 1;
2419 	for (; i < devtab_count; i++)
2420 		if (!strcmp(devtab[i].name, resname))
2421 			return(i);
2422 	return(-1);
2423 }
2424 
2425 int
resource_count(void)2426 resource_count(void)
2427 {
2428 	return(devtab_count);
2429 }
2430 
2431 char *
resource_query_name(int i)2432 resource_query_name(int i)
2433 {
2434 	return(devtab[i].name);
2435 }
2436 
2437 int
resource_query_unit(int i)2438 resource_query_unit(int i)
2439 {
2440 	return(devtab[i].unit);
2441 }
2442 
2443 static int
resource_create(const char * name,int unit,const char * resname,resource_type type,struct config_resource ** result)2444 resource_create(const char *name, int unit, const char *resname,
2445 		resource_type type, struct config_resource **result)
2446 {
2447 	int i, j;
2448 	struct config_resource *res = NULL;
2449 
2450 	for (i = 0; i < devtab_count; i++)
2451 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2452 			res = devtab[i].resources;
2453 			break;
2454 		}
2455 	if (res == NULL) {
2456 		i = resource_new_name(name, unit);
2457 		if (i < 0)
2458 			return(ENOMEM);
2459 		res = devtab[i].resources;
2460 	}
2461 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2462 		if (!strcmp(res->name, resname)) {
2463 			*result = res;
2464 			return(0);
2465 		}
2466 	j = resource_new_resname(i, resname, type);
2467 	if (j < 0)
2468 		return(ENOMEM);
2469 	res = &devtab[i].resources[j];
2470 	*result = res;
2471 	return(0);
2472 }
2473 
2474 int
resource_set_int(const char * name,int unit,const char * resname,int value)2475 resource_set_int(const char *name, int unit, const char *resname, int value)
2476 {
2477 	int error;
2478 	struct config_resource *res;
2479 
2480 	error = resource_create(name, unit, resname, RES_INT, &res);
2481 	if (error)
2482 		return(error);
2483 	if (res->type != RES_INT)
2484 		return(EFTYPE);
2485 	res->u.intval = value;
2486 	return(0);
2487 }
2488 
2489 int
resource_set_long(const char * name,int unit,const char * resname,long value)2490 resource_set_long(const char *name, int unit, const char *resname, long value)
2491 {
2492 	int error;
2493 	struct config_resource *res;
2494 
2495 	error = resource_create(name, unit, resname, RES_LONG, &res);
2496 	if (error)
2497 		return(error);
2498 	if (res->type != RES_LONG)
2499 		return(EFTYPE);
2500 	res->u.longval = value;
2501 	return(0);
2502 }
2503 
2504 int
resource_set_string(const char * name,int unit,const char * resname,const char * value)2505 resource_set_string(const char *name, int unit, const char *resname,
2506 		    const char *value)
2507 {
2508 	int error;
2509 	struct config_resource *res;
2510 
2511 	error = resource_create(name, unit, resname, RES_STRING, &res);
2512 	if (error)
2513 		return(error);
2514 	if (res->type != RES_STRING)
2515 		return(EFTYPE);
2516 	if (res->u.stringval)
2517 		kfree(res->u.stringval, M_TEMP);
2518 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2519 	if (res->u.stringval == NULL)
2520 		return(ENOMEM);
2521 	strcpy(res->u.stringval, value);
2522 	return(0);
2523 }
2524 
2525 static void
resource_cfgload(void * dummy __unused)2526 resource_cfgload(void *dummy __unused)
2527 {
2528 	struct config_resource *res, *cfgres;
2529 	int i, j;
2530 	int error;
2531 	char *name, *resname;
2532 	int unit;
2533 	resource_type type;
2534 	char *stringval;
2535 	int config_devtab_count;
2536 
2537 	config_devtab_count = devtab_count;
2538 	devtab = NULL;
2539 	devtab_count = 0;
2540 
2541 	for (i = 0; i < config_devtab_count; i++) {
2542 		name = config_devtab[i].name;
2543 		unit = config_devtab[i].unit;
2544 
2545 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2546 			cfgres = config_devtab[i].resources;
2547 			resname = cfgres[j].name;
2548 			type = cfgres[j].type;
2549 			error = resource_create(name, unit, resname, type,
2550 						&res);
2551 			if (error) {
2552 				kprintf("create resource %s%d: error %d\n",
2553 					name, unit, error);
2554 				continue;
2555 			}
2556 			if (res->type != type) {
2557 				kprintf("type mismatch %s%d: %d != %d\n",
2558 					name, unit, res->type, type);
2559 				continue;
2560 			}
2561 			switch (type) {
2562 			case RES_INT:
2563 				res->u.intval = cfgres[j].u.intval;
2564 				break;
2565 			case RES_LONG:
2566 				res->u.longval = cfgres[j].u.longval;
2567 				break;
2568 			case RES_STRING:
2569 				if (res->u.stringval)
2570 					kfree(res->u.stringval, M_TEMP);
2571 				stringval = cfgres[j].u.stringval;
2572 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2573 							  M_TEMP, M_INTWAIT);
2574 				if (res->u.stringval == NULL)
2575 					break;
2576 				strcpy(res->u.stringval, stringval);
2577 				break;
2578 			default:
2579 				panic("unknown resource type %d", type);
2580 			}
2581 		}
2582 	}
2583 }
2584 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0);
2585 
2586 
2587 /*======================================*/
2588 /*
2589  * Some useful method implementations to make life easier for bus drivers.
2590  */
2591 
2592 void
resource_list_init(struct resource_list * rl)2593 resource_list_init(struct resource_list *rl)
2594 {
2595 	SLIST_INIT(rl);
2596 }
2597 
2598 void
resource_list_free(struct resource_list * rl)2599 resource_list_free(struct resource_list *rl)
2600 {
2601 	struct resource_list_entry *rle;
2602 
2603 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2604 		if (rle->res)
2605 			panic("resource_list_free: resource entry is busy");
2606 		SLIST_REMOVE_HEAD(rl, link);
2607 		kfree(rle, M_BUS);
2608 	}
2609 }
2610 
2611 void
resource_list_add(struct resource_list * rl,int type,int rid,u_long start,u_long end,u_long count,int cpuid)2612 resource_list_add(struct resource_list *rl, int type, int rid,
2613     u_long start, u_long end, u_long count, int cpuid)
2614 {
2615 	struct resource_list_entry *rle;
2616 
2617 	rle = resource_list_find(rl, type, rid);
2618 	if (rle == NULL) {
2619 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2620 			     M_INTWAIT);
2621 		SLIST_INSERT_HEAD(rl, rle, link);
2622 		rle->type = type;
2623 		rle->rid = rid;
2624 		rle->res = NULL;
2625 		rle->cpuid = -1;
2626 	}
2627 
2628 	if (rle->res)
2629 		panic("resource_list_add: resource entry is busy");
2630 
2631 	rle->start = start;
2632 	rle->end = end;
2633 	rle->count = count;
2634 
2635 	if (cpuid != -1) {
2636 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2637 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2638 			    rle->cpuid, cpuid);
2639 		}
2640 		rle->cpuid = cpuid;
2641 	}
2642 }
2643 
2644 struct resource_list_entry*
resource_list_find(struct resource_list * rl,int type,int rid)2645 resource_list_find(struct resource_list *rl,
2646 		   int type, int rid)
2647 {
2648 	struct resource_list_entry *rle;
2649 
2650 	SLIST_FOREACH(rle, rl, link)
2651 		if (rle->type == type && rle->rid == rid)
2652 			return(rle);
2653 	return(NULL);
2654 }
2655 
2656 void
resource_list_delete(struct resource_list * rl,int type,int rid)2657 resource_list_delete(struct resource_list *rl,
2658 		     int type, int rid)
2659 {
2660 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2661 
2662 	if (rle) {
2663 		if (rle->res != NULL)
2664 			panic("resource_list_delete: resource has not been released");
2665 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2666 		kfree(rle, M_BUS);
2667 	}
2668 }
2669 
2670 struct resource *
resource_list_alloc(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,u_long start,u_long end,u_long count,u_int flags,int cpuid)2671 resource_list_alloc(struct resource_list *rl,
2672 		    device_t bus, device_t child,
2673 		    int type, int *rid,
2674 		    u_long start, u_long end,
2675 		    u_long count, u_int flags, int cpuid)
2676 {
2677 	struct resource_list_entry *rle = NULL;
2678 	int passthrough = (device_get_parent(child) != bus);
2679 	int isdefault = (start == 0UL && end == ~0UL);
2680 
2681 	if (passthrough) {
2682 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2683 					  type, rid,
2684 					  start, end, count, flags, cpuid));
2685 	}
2686 
2687 	rle = resource_list_find(rl, type, *rid);
2688 
2689 	if (!rle)
2690 		return(0);		/* no resource of that type/rid */
2691 
2692 	if (rle->res)
2693 		panic("resource_list_alloc: resource entry is busy");
2694 
2695 	if (isdefault) {
2696 		start = rle->start;
2697 		count = ulmax(count, rle->count);
2698 		end = ulmax(rle->end, start + count - 1);
2699 	}
2700 	cpuid = rle->cpuid;
2701 
2702 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2703 				      type, rid, start, end, count,
2704 				      flags, cpuid);
2705 
2706 	/*
2707 	 * Record the new range.
2708 	 */
2709 	if (rle->res) {
2710 		rle->start = rman_get_start(rle->res);
2711 		rle->end = rman_get_end(rle->res);
2712 		rle->count = count;
2713 	}
2714 
2715 	return(rle->res);
2716 }
2717 
2718 int
resource_list_release(struct resource_list * rl,device_t bus,device_t child,int type,int rid,struct resource * res)2719 resource_list_release(struct resource_list *rl,
2720 		      device_t bus, device_t child,
2721 		      int type, int rid, struct resource *res)
2722 {
2723 	struct resource_list_entry *rle = NULL;
2724 	int passthrough = (device_get_parent(child) != bus);
2725 	int error;
2726 
2727 	if (passthrough) {
2728 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2729 					    type, rid, res));
2730 	}
2731 
2732 	rle = resource_list_find(rl, type, rid);
2733 
2734 	if (!rle)
2735 		panic("resource_list_release: can't find resource");
2736 	if (!rle->res)
2737 		panic("resource_list_release: resource entry is not busy");
2738 
2739 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2740 				     type, rid, res);
2741 	if (error)
2742 		return(error);
2743 
2744 	rle->res = NULL;
2745 	return(0);
2746 }
2747 
2748 int
resource_list_print_type(struct resource_list * rl,const char * name,int type,const char * format)2749 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2750 			 const char *format)
2751 {
2752 	struct resource_list_entry *rle;
2753 	int printed, retval;
2754 
2755 	printed = 0;
2756 	retval = 0;
2757 	/* Yes, this is kinda cheating */
2758 	SLIST_FOREACH(rle, rl, link) {
2759 		if (rle->type == type) {
2760 			if (printed == 0)
2761 				retval += kprintf(" %s ", name);
2762 			else
2763 				retval += kprintf(",");
2764 			printed++;
2765 			retval += kprintf(format, rle->start);
2766 			if (rle->count > 1) {
2767 				retval += kprintf("-");
2768 				retval += kprintf(format, rle->start +
2769 						 rle->count - 1);
2770 			}
2771 		}
2772 	}
2773 	return(retval);
2774 }
2775 
2776 /*
2777  * Generic driver/device identify functions.  These will install a device
2778  * rendezvous point under the parent using the same name as the driver
2779  * name, which will at a later time be probed and attached.
2780  *
2781  * These functions are used when the parent does not 'scan' its bus for
2782  * matching devices, or for the particular devices using these functions,
2783  * or when the device is a pseudo or synthesized device (such as can be
2784  * found under firewire and ppbus).
2785  */
2786 int
bus_generic_identify(driver_t * driver,device_t parent)2787 bus_generic_identify(driver_t *driver, device_t parent)
2788 {
2789 	if (parent->state == DS_ATTACHED)
2790 		return (0);
2791 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2792 	return (0);
2793 }
2794 
2795 int
bus_generic_identify_sameunit(driver_t * driver,device_t parent)2796 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2797 {
2798 	if (parent->state == DS_ATTACHED)
2799 		return (0);
2800 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2801 	return (0);
2802 }
2803 
2804 /*
2805  * Call DEVICE_IDENTIFY for each driver.
2806  */
2807 int
bus_generic_probe(device_t dev)2808 bus_generic_probe(device_t dev)
2809 {
2810 	devclass_t dc = dev->devclass;
2811 	driverlink_t dl;
2812 
2813 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2814 		DEVICE_IDENTIFY(dl->driver, dev);
2815 	}
2816 
2817 	return(0);
2818 }
2819 
2820 /*
2821  * This is an aweful hack due to the isa bus and autoconf code not
2822  * probing the ISA devices until after everything else has configured.
2823  * The ISA bus did a dummy attach long ago so we have to set it back
2824  * to an earlier state so the probe thinks its the initial probe and
2825  * not a bus rescan.
2826  *
2827  * XXX remove by properly defering the ISA bus scan.
2828  */
2829 int
bus_generic_probe_hack(device_t dev)2830 bus_generic_probe_hack(device_t dev)
2831 {
2832 	if (dev->state == DS_ATTACHED) {
2833 		dev->state = DS_ALIVE;
2834 		bus_generic_probe(dev);
2835 		dev->state = DS_ATTACHED;
2836 	}
2837 	return (0);
2838 }
2839 
2840 int
bus_generic_attach(device_t dev)2841 bus_generic_attach(device_t dev)
2842 {
2843 	device_t child;
2844 
2845 	TAILQ_FOREACH(child, &dev->children, link) {
2846 		device_probe_and_attach(child);
2847 	}
2848 
2849 	return(0);
2850 }
2851 
2852 int
bus_generic_attach_gpri(device_t dev,u_int gpri)2853 bus_generic_attach_gpri(device_t dev, u_int gpri)
2854 {
2855 	device_t child;
2856 
2857 	TAILQ_FOREACH(child, &dev->children, link) {
2858 		device_probe_and_attach_gpri(child, gpri);
2859 	}
2860 
2861 	return(0);
2862 }
2863 
2864 int
bus_generic_detach(device_t dev)2865 bus_generic_detach(device_t dev)
2866 {
2867 	device_t child;
2868 	int error;
2869 
2870 	if (dev->state != DS_ATTACHED)
2871 		return(EBUSY);
2872 
2873 	TAILQ_FOREACH(child, &dev->children, link)
2874 		if ((error = device_detach(child)) != 0)
2875 			return(error);
2876 
2877 	return 0;
2878 }
2879 
2880 int
bus_generic_shutdown(device_t dev)2881 bus_generic_shutdown(device_t dev)
2882 {
2883 	device_t child;
2884 
2885 	TAILQ_FOREACH(child, &dev->children, link)
2886 		device_shutdown(child);
2887 
2888 	return(0);
2889 }
2890 
2891 int
bus_generic_suspend(device_t dev)2892 bus_generic_suspend(device_t dev)
2893 {
2894 	int error;
2895 	device_t child, child2;
2896 
2897 	TAILQ_FOREACH(child, &dev->children, link) {
2898 		error = DEVICE_SUSPEND(child);
2899 		if (error) {
2900 			for (child2 = TAILQ_FIRST(&dev->children);
2901 			     child2 && child2 != child;
2902 			     child2 = TAILQ_NEXT(child2, link))
2903 				DEVICE_RESUME(child2);
2904 			return(error);
2905 		}
2906 	}
2907 	return(0);
2908 }
2909 
2910 int
bus_generic_resume(device_t dev)2911 bus_generic_resume(device_t dev)
2912 {
2913 	device_t child;
2914 
2915 	TAILQ_FOREACH(child, &dev->children, link)
2916 		DEVICE_RESUME(child);
2917 		/* if resume fails, there's nothing we can usefully do... */
2918 
2919 	return(0);
2920 }
2921 
2922 int
bus_print_child_header(device_t dev,device_t child)2923 bus_print_child_header(device_t dev, device_t child)
2924 {
2925 	int retval = 0;
2926 
2927 	if (device_get_desc(child))
2928 		retval += device_printf(child, "<%s>", device_get_desc(child));
2929 	else
2930 		retval += kprintf("%s", device_get_nameunit(child));
2931 	if (bootverbose) {
2932 		if (child->state != DS_ATTACHED)
2933 			kprintf(" [tentative]");
2934 		else
2935 			kprintf(" [attached!]");
2936 	}
2937 	return(retval);
2938 }
2939 
2940 int
bus_print_child_footer(device_t dev,device_t child)2941 bus_print_child_footer(device_t dev, device_t child)
2942 {
2943 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2944 }
2945 
2946 device_t
bus_generic_add_child(device_t dev,device_t child,int order,const char * name,int unit)2947 bus_generic_add_child(device_t dev, device_t child, int order,
2948 		      const char *name, int unit)
2949 {
2950 	if (dev->parent)
2951 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2952 	else
2953 		dev = device_add_child_ordered(child, order, name, unit);
2954 	return(dev);
2955 
2956 }
2957 
2958 int
bus_generic_print_child(device_t dev,device_t child)2959 bus_generic_print_child(device_t dev, device_t child)
2960 {
2961 	int retval = 0;
2962 
2963 	retval += bus_print_child_header(dev, child);
2964 	retval += bus_print_child_footer(dev, child);
2965 
2966 	return(retval);
2967 }
2968 
2969 int
bus_generic_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)2970 bus_generic_read_ivar(device_t dev, device_t child, int index,
2971 		      uintptr_t * result)
2972 {
2973 	int error;
2974 
2975 	if (dev->parent)
2976 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2977 	else
2978 		error = ENOENT;
2979 	return (error);
2980 }
2981 
2982 int
bus_generic_write_ivar(device_t dev,device_t child,int index,uintptr_t value)2983 bus_generic_write_ivar(device_t dev, device_t child, int index,
2984 		       uintptr_t value)
2985 {
2986 	int error;
2987 
2988 	if (dev->parent)
2989 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2990 	else
2991 		error = ENOENT;
2992 	return (error);
2993 }
2994 
2995 /*
2996  * Resource list are used for iterations, do not recurse.
2997  */
2998 struct resource_list *
bus_generic_get_resource_list(device_t dev,device_t child)2999 bus_generic_get_resource_list(device_t dev, device_t child)
3000 {
3001 	return (NULL);
3002 }
3003 
3004 void
bus_generic_driver_added(device_t dev,driver_t * driver)3005 bus_generic_driver_added(device_t dev, driver_t *driver)
3006 {
3007 	device_t child;
3008 
3009 	DEVICE_IDENTIFY(driver, dev);
3010 	TAILQ_FOREACH(child, &dev->children, link) {
3011 		if (child->state == DS_NOTPRESENT)
3012 			device_probe_and_attach(child);
3013 	}
3014 }
3015 
3016 int
bus_generic_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_intr_t * intr,void * arg,void ** cookiep,lwkt_serialize_t serializer,const char * desc)3017 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3018     int flags, driver_intr_t *intr, void *arg, void **cookiep,
3019     lwkt_serialize_t serializer, const char *desc)
3020 {
3021 	/* Propagate up the bus hierarchy until someone handles it. */
3022 	if (dev->parent) {
3023 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
3024 		    intr, arg, cookiep, serializer, desc);
3025 	} else {
3026 		return EINVAL;
3027 	}
3028 }
3029 
3030 int
bus_generic_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)3031 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3032 			  void *cookie)
3033 {
3034 	/* Propagate up the bus hierarchy until someone handles it. */
3035 	if (dev->parent)
3036 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3037 	else
3038 		return(EINVAL);
3039 }
3040 
3041 int
bus_generic_disable_intr(device_t dev,device_t child,void * cookie)3042 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
3043 {
3044 	if (dev->parent)
3045 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
3046 	else
3047 		return(0);
3048 }
3049 
3050 void
bus_generic_enable_intr(device_t dev,device_t child,void * cookie)3051 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
3052 {
3053 	if (dev->parent)
3054 		BUS_ENABLE_INTR(dev->parent, child, cookie);
3055 }
3056 
3057 int
bus_generic_config_intr(device_t dev,device_t child,int irq,enum intr_trigger trig,enum intr_polarity pol)3058 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
3059     enum intr_polarity pol)
3060 {
3061 	/* Propagate up the bus hierarchy until someone handles it. */
3062 	if (dev->parent)
3063 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
3064 	else
3065 		return(EINVAL);
3066 }
3067 
3068 struct resource *
bus_generic_alloc_resource(device_t dev,device_t child,int type,int * rid,u_long start,u_long end,u_long count,u_int flags,int cpuid)3069 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3070     u_long start, u_long end, u_long count, u_int flags, int cpuid)
3071 {
3072 	/* Propagate up the bus hierarchy until someone handles it. */
3073 	if (dev->parent)
3074 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3075 					   start, end, count, flags, cpuid));
3076 	else
3077 		return(NULL);
3078 }
3079 
3080 int
bus_generic_release_resource(device_t dev,device_t child,int type,int rid,struct resource * r)3081 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3082 			     struct resource *r)
3083 {
3084 	/* Propagate up the bus hierarchy until someone handles it. */
3085 	if (dev->parent)
3086 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
3087 	else
3088 		return(EINVAL);
3089 }
3090 
3091 int
bus_generic_activate_resource(device_t dev,device_t child,int type,int rid,struct resource * r)3092 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3093 			      struct resource *r)
3094 {
3095 	/* Propagate up the bus hierarchy until someone handles it. */
3096 	if (dev->parent)
3097 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
3098 	else
3099 		return(EINVAL);
3100 }
3101 
3102 int
bus_generic_deactivate_resource(device_t dev,device_t child,int type,int rid,struct resource * r)3103 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3104 				int rid, struct resource *r)
3105 {
3106 	/* Propagate up the bus hierarchy until someone handles it. */
3107 	if (dev->parent)
3108 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3109 					       r));
3110 	else
3111 		return(EINVAL);
3112 }
3113 
3114 int
bus_generic_get_resource(device_t dev,device_t child,int type,int rid,u_long * startp,u_long * countp)3115 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
3116 			 u_long *startp, u_long *countp)
3117 {
3118 	int error;
3119 
3120 	error = ENOENT;
3121 	if (dev->parent) {
3122 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
3123 					 startp, countp);
3124 	}
3125 	return (error);
3126 }
3127 
3128 int
bus_generic_set_resource(device_t dev,device_t child,int type,int rid,u_long start,u_long count,int cpuid)3129 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
3130 			u_long start, u_long count, int cpuid)
3131 {
3132 	int error;
3133 
3134 	error = EINVAL;
3135 	if (dev->parent) {
3136 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
3137 					 start, count, cpuid);
3138 	}
3139 	return (error);
3140 }
3141 
3142 void
bus_generic_delete_resource(device_t dev,device_t child,int type,int rid)3143 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
3144 {
3145 	if (dev->parent)
3146 		BUS_DELETE_RESOURCE(dev, child, type, rid);
3147 }
3148 
3149 /**
3150  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3151  *
3152  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3153  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3154  */
3155 bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev,device_t child)3156 bus_generic_get_dma_tag(device_t dev, device_t child)
3157 {
3158 
3159 	/* Propagate up the bus hierarchy until someone handles it. */
3160 	if (dev->parent != NULL)
3161 		return (BUS_GET_DMA_TAG(dev->parent, child));
3162 	return (NULL);
3163 }
3164 
3165 int
bus_generic_rl_get_resource(device_t dev,device_t child,int type,int rid,u_long * startp,u_long * countp)3166 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3167     u_long *startp, u_long *countp)
3168 {
3169 	struct resource_list *rl = NULL;
3170 	struct resource_list_entry *rle = NULL;
3171 
3172 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3173 	if (!rl)
3174 		return(EINVAL);
3175 
3176 	rle = resource_list_find(rl, type, rid);
3177 	if (!rle)
3178 		return(ENOENT);
3179 
3180 	if (startp)
3181 		*startp = rle->start;
3182 	if (countp)
3183 		*countp = rle->count;
3184 
3185 	return(0);
3186 }
3187 
3188 int
bus_generic_rl_set_resource(device_t dev,device_t child,int type,int rid,u_long start,u_long count,int cpuid)3189 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3190     u_long start, u_long count, int cpuid)
3191 {
3192 	struct resource_list *rl = NULL;
3193 
3194 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3195 	if (!rl)
3196 		return(EINVAL);
3197 
3198 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
3199 	    cpuid);
3200 
3201 	return(0);
3202 }
3203 
3204 void
bus_generic_rl_delete_resource(device_t dev,device_t child,int type,int rid)3205 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3206 {
3207 	struct resource_list *rl = NULL;
3208 
3209 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3210 	if (!rl)
3211 		return;
3212 
3213 	resource_list_delete(rl, type, rid);
3214 }
3215 
3216 int
bus_generic_rl_release_resource(device_t dev,device_t child,int type,int rid,struct resource * r)3217 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3218     int rid, struct resource *r)
3219 {
3220 	struct resource_list *rl = NULL;
3221 
3222 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3223 	if (!rl)
3224 		return(EINVAL);
3225 
3226 	return(resource_list_release(rl, dev, child, type, rid, r));
3227 }
3228 
3229 struct resource *
bus_generic_rl_alloc_resource(device_t dev,device_t child,int type,int * rid,u_long start,u_long end,u_long count,u_int flags,int cpuid)3230 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3231     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
3232 {
3233 	struct resource_list *rl = NULL;
3234 
3235 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3236 	if (!rl)
3237 		return(NULL);
3238 
3239 	return(resource_list_alloc(rl, dev, child, type, rid,
3240 	    start, end, count, flags, cpuid));
3241 }
3242 
3243 int
bus_generic_child_present(device_t bus,device_t child)3244 bus_generic_child_present(device_t bus, device_t child)
3245 {
3246 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
3247 }
3248 
3249 
3250 /*
3251  * Some convenience functions to make it easier for drivers to use the
3252  * resource-management functions.  All these really do is hide the
3253  * indirection through the parent's method table, making for slightly
3254  * less-wordy code.  In the future, it might make sense for this code
3255  * to maintain some sort of a list of resources allocated by each device.
3256  */
3257 int
bus_alloc_resources(device_t dev,struct resource_spec * rs,struct resource ** res)3258 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3259     struct resource **res)
3260 {
3261 	int i;
3262 
3263 	for (i = 0; rs[i].type != -1; i++)
3264 	        res[i] = NULL;
3265 	for (i = 0; rs[i].type != -1; i++) {
3266 		res[i] = bus_alloc_resource_any(dev,
3267 		    rs[i].type, &rs[i].rid, rs[i].flags);
3268 		if (res[i] == NULL) {
3269 			bus_release_resources(dev, rs, res);
3270 			return (ENXIO);
3271 		}
3272 	}
3273 	return (0);
3274 }
3275 
3276 void
bus_release_resources(device_t dev,const struct resource_spec * rs,struct resource ** res)3277 bus_release_resources(device_t dev, const struct resource_spec *rs,
3278     struct resource **res)
3279 {
3280 	int i;
3281 
3282 	for (i = 0; rs[i].type != -1; i++)
3283 		if (res[i] != NULL) {
3284 			bus_release_resource(
3285 			    dev, rs[i].type, rs[i].rid, res[i]);
3286 			res[i] = NULL;
3287 		}
3288 }
3289 
3290 struct resource *
bus_alloc_resource(device_t dev,int type,int * rid,u_long start,u_long end,u_long count,u_int flags)3291 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3292 		   u_long count, u_int flags)
3293 {
3294 	if (dev->parent == NULL)
3295 		return(0);
3296 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3297 				  count, flags, -1));
3298 }
3299 
3300 struct resource *
bus_alloc_legacy_irq_resource(device_t dev,int * rid,u_long irq,u_int flags)3301 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
3302 {
3303 	if (dev->parent == NULL)
3304 		return(0);
3305 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
3306 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
3307 }
3308 
3309 int
bus_activate_resource(device_t dev,int type,int rid,struct resource * r)3310 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3311 {
3312 	if (dev->parent == NULL)
3313 		return(EINVAL);
3314 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3315 }
3316 
3317 int
bus_deactivate_resource(device_t dev,int type,int rid,struct resource * r)3318 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3319 {
3320 	if (dev->parent == NULL)
3321 		return(EINVAL);
3322 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3323 }
3324 
3325 int
bus_release_resource(device_t dev,int type,int rid,struct resource * r)3326 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3327 {
3328 	if (dev->parent == NULL)
3329 		return(EINVAL);
3330 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3331 }
3332 
3333 int
bus_setup_intr_descr(device_t dev,struct resource * r,int flags,driver_intr_t handler,void * arg,void ** cookiep,lwkt_serialize_t serializer,const char * desc)3334 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
3335     driver_intr_t handler, void *arg, void **cookiep,
3336     lwkt_serialize_t serializer, const char *desc)
3337 {
3338 	if (dev->parent == NULL)
3339 		return EINVAL;
3340 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
3341 	    cookiep, serializer, desc);
3342 }
3343 
3344 int
bus_setup_intr(device_t dev,struct resource * r,int flags,driver_intr_t handler,void * arg,void ** cookiep,lwkt_serialize_t serializer)3345 bus_setup_intr(device_t dev, struct resource *r, int flags,
3346     driver_intr_t handler, void *arg, void **cookiep,
3347     lwkt_serialize_t serializer)
3348 {
3349 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
3350 	    serializer, NULL);
3351 }
3352 
3353 int
bus_teardown_intr(device_t dev,struct resource * r,void * cookie)3354 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3355 {
3356 	if (dev->parent == NULL)
3357 		return(EINVAL);
3358 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3359 }
3360 
3361 void
bus_enable_intr(device_t dev,void * cookie)3362 bus_enable_intr(device_t dev, void *cookie)
3363 {
3364 	if (dev->parent)
3365 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
3366 }
3367 
3368 int
bus_disable_intr(device_t dev,void * cookie)3369 bus_disable_intr(device_t dev, void *cookie)
3370 {
3371 	if (dev->parent)
3372 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
3373 	else
3374 		return(0);
3375 }
3376 
3377 int
bus_set_resource(device_t dev,int type,int rid,u_long start,u_long count,int cpuid)3378 bus_set_resource(device_t dev, int type, int rid,
3379 		 u_long start, u_long count, int cpuid)
3380 {
3381 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3382 				start, count, cpuid));
3383 }
3384 
3385 int
bus_get_resource(device_t dev,int type,int rid,u_long * startp,u_long * countp)3386 bus_get_resource(device_t dev, int type, int rid,
3387 		 u_long *startp, u_long *countp)
3388 {
3389 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3390 				startp, countp));
3391 }
3392 
3393 u_long
bus_get_resource_start(device_t dev,int type,int rid)3394 bus_get_resource_start(device_t dev, int type, int rid)
3395 {
3396 	u_long start, count;
3397 	int error;
3398 
3399 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3400 				 &start, &count);
3401 	if (error)
3402 		return(0);
3403 	return(start);
3404 }
3405 
3406 u_long
bus_get_resource_count(device_t dev,int type,int rid)3407 bus_get_resource_count(device_t dev, int type, int rid)
3408 {
3409 	u_long start, count;
3410 	int error;
3411 
3412 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3413 				 &start, &count);
3414 	if (error)
3415 		return(0);
3416 	return(count);
3417 }
3418 
3419 void
bus_delete_resource(device_t dev,int type,int rid)3420 bus_delete_resource(device_t dev, int type, int rid)
3421 {
3422 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3423 }
3424 
3425 int
bus_child_present(device_t child)3426 bus_child_present(device_t child)
3427 {
3428 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3429 }
3430 
3431 int
bus_child_pnpinfo_str(device_t child,char * buf,size_t buflen)3432 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3433 {
3434 	device_t parent;
3435 
3436 	parent = device_get_parent(child);
3437 	if (parent == NULL) {
3438 		*buf = '\0';
3439 		return (0);
3440 	}
3441 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3442 }
3443 
3444 int
bus_child_location_str(device_t child,char * buf,size_t buflen)3445 bus_child_location_str(device_t child, char *buf, size_t buflen)
3446 {
3447 	device_t parent;
3448 
3449 	parent = device_get_parent(child);
3450 	if (parent == NULL) {
3451 		*buf = '\0';
3452 		return (0);
3453 	}
3454 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3455 }
3456 
3457 /**
3458  * @brief Wrapper function for BUS_GET_DMA_TAG().
3459  *
3460  * This function simply calls the BUS_GET_DMA_TAG() method of the
3461  * parent of @p dev.
3462  */
3463 bus_dma_tag_t
bus_get_dma_tag(device_t dev)3464 bus_get_dma_tag(device_t dev)
3465 {
3466 	device_t parent;
3467 
3468 	parent = device_get_parent(dev);
3469 	if (parent == NULL)
3470 		return (NULL);
3471 	return (BUS_GET_DMA_TAG(parent, dev));
3472 }
3473 
3474 static int
root_print_child(device_t dev,device_t child)3475 root_print_child(device_t dev, device_t child)
3476 {
3477 	return(0);
3478 }
3479 
3480 static int
root_setup_intr(device_t dev,device_t child,driver_intr_t * intr,void * arg,void ** cookiep,lwkt_serialize_t serializer,const char * desc)3481 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3482 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3483 {
3484 	/*
3485 	 * If an interrupt mapping gets to here something bad has happened.
3486 	 */
3487 	panic("root_setup_intr");
3488 }
3489 
3490 /*
3491  * If we get here, assume that the device is permanant and really is
3492  * present in the system.  Removable bus drivers are expected to intercept
3493  * this call long before it gets here.  We return -1 so that drivers that
3494  * really care can check vs -1 or some ERRNO returned higher in the food
3495  * chain.
3496  */
3497 static int
root_child_present(device_t dev,device_t child)3498 root_child_present(device_t dev, device_t child)
3499 {
3500 	return(-1);
3501 }
3502 
3503 /*
3504  * XXX NOTE! other defaults may be set in bus_if.m
3505  */
3506 static kobj_method_t root_methods[] = {
3507 	/* Device interface */
3508 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3509 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3510 	KOBJMETHOD(device_resume,	bus_generic_resume),
3511 
3512 	/* Bus interface */
3513 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3514 	KOBJMETHOD(bus_print_child,	root_print_child),
3515 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3516 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3517 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3518 	KOBJMETHOD(bus_child_present,   root_child_present),
3519 
3520 	KOBJMETHOD_END
3521 };
3522 
3523 static driver_t root_driver = {
3524 	"root",
3525 	root_methods,
3526 	1,			/* no softc */
3527 };
3528 
3529 device_t	root_bus;
3530 devclass_t	root_devclass;
3531 
3532 static int
root_bus_module_handler(module_t mod,int what,void * arg)3533 root_bus_module_handler(module_t mod, int what, void* arg)
3534 {
3535 	switch (what) {
3536 	case MOD_LOAD:
3537 		TAILQ_INIT(&bus_data_devices);
3538 		root_bus = make_device(NULL, "root", 0);
3539 		root_bus->desc = "System root bus";
3540 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3541 		root_bus->driver = &root_driver;
3542 		root_bus->state = DS_ALIVE;
3543 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3544 		devinit();
3545 		return(0);
3546 
3547 	case MOD_SHUTDOWN:
3548 		device_shutdown(root_bus);
3549 		return(0);
3550 	default:
3551 		return(0);
3552 	}
3553 }
3554 
3555 static moduledata_t root_bus_mod = {
3556 	"rootbus",
3557 	root_bus_module_handler,
3558 	0
3559 };
3560 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3561 
3562 void
root_bus_configure(void)3563 root_bus_configure(void)
3564 {
3565 	int warncount;
3566 	device_t dev;
3567 
3568 	PDEBUG(("."));
3569 
3570 	/*
3571 	 * handle device_identify based device attachments to the root_bus
3572 	 * (typically nexus).
3573 	 */
3574 	bus_generic_probe(root_bus);
3575 
3576 	/*
3577 	 * Probe and attach the devices under root_bus.
3578 	 */
3579 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3580 		device_probe_and_attach(dev);
3581 	}
3582 
3583 	/*
3584 	 * Wait for all asynchronous attaches to complete.  If we don't
3585 	 * our legacy ISA bus scan could steal device unit numbers or
3586 	 * even I/O ports.
3587 	 */
3588 	warncount = 10;
3589 	if (numasyncthreads)
3590 		kprintf("Waiting for async drivers to attach\n");
3591 	while (numasyncthreads > 0) {
3592 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3593 			--warncount;
3594 		if (warncount == 0) {
3595 			kprintf("Warning: Still waiting for %d "
3596 				"drivers to attach\n", numasyncthreads);
3597 		} else if (warncount == -30) {
3598 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3599 			break;
3600 		}
3601 	}
3602 	root_bus->state = DS_ATTACHED;
3603 }
3604 
3605 int
driver_module_handler(module_t mod,int what,void * arg)3606 driver_module_handler(module_t mod, int what, void *arg)
3607 {
3608 	int error;
3609 	struct driver_module_data *dmd;
3610 	devclass_t bus_devclass;
3611 	kobj_class_t driver;
3612         const char *parentname;
3613 
3614 	dmd = (struct driver_module_data *)arg;
3615 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3616 	error = 0;
3617 
3618 	switch (what) {
3619 	case MOD_LOAD:
3620 		if (dmd->dmd_chainevh)
3621 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3622 
3623 		driver = dmd->dmd_driver;
3624 		PDEBUG(("Loading module: driver %s on bus %s",
3625 		        DRIVERNAME(driver), dmd->dmd_busname));
3626 
3627 		/*
3628 		 * If the driver has any base classes, make the
3629 		 * devclass inherit from the devclass of the driver's
3630 		 * first base class. This will allow the system to
3631 		 * search for drivers in both devclasses for children
3632 		 * of a device using this driver.
3633 		 */
3634 		if (driver->baseclasses)
3635 			parentname = driver->baseclasses[0]->name;
3636 		else
3637 			parentname = NULL;
3638 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3639 							    parentname, TRUE);
3640 
3641 		error = devclass_add_driver(bus_devclass, driver);
3642 		if (error)
3643 			break;
3644 		break;
3645 
3646 	case MOD_UNLOAD:
3647 		PDEBUG(("Unloading module: driver %s from bus %s",
3648 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3649 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3650 
3651 		if (!error && dmd->dmd_chainevh)
3652 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3653 		break;
3654 	}
3655 
3656 	return (error);
3657 }
3658 
3659 #ifdef BUS_DEBUG
3660 
3661 /*
3662  * The _short versions avoid iteration by not calling anything that prints
3663  * more than oneliners. I love oneliners.
3664  */
3665 
3666 static void
print_device_short(device_t dev,int indent)3667 print_device_short(device_t dev, int indent)
3668 {
3669 	if (!dev)
3670 		return;
3671 
3672 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3673 		      dev->unit, dev->desc,
3674 		      (dev->parent? "":"no "),
3675 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3676 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3677 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3678 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3679 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3680 		      (dev->ivars? "":"no "),
3681 		      (dev->softc? "":"no "),
3682 		      dev->busy));
3683 }
3684 
3685 static void
print_device(device_t dev,int indent)3686 print_device(device_t dev, int indent)
3687 {
3688 	if (!dev)
3689 		return;
3690 
3691 	print_device_short(dev, indent);
3692 
3693 	indentprintf(("Parent:\n"));
3694 	print_device_short(dev->parent, indent+1);
3695 	indentprintf(("Driver:\n"));
3696 	print_driver_short(dev->driver, indent+1);
3697 	indentprintf(("Devclass:\n"));
3698 	print_devclass_short(dev->devclass, indent+1);
3699 }
3700 
3701 /*
3702  * Print the device and all its children (indented).
3703  */
3704 void
print_device_tree_short(device_t dev,int indent)3705 print_device_tree_short(device_t dev, int indent)
3706 {
3707 	device_t child;
3708 
3709 	if (!dev)
3710 		return;
3711 
3712 	print_device_short(dev, indent);
3713 
3714 	TAILQ_FOREACH(child, &dev->children, link)
3715 		print_device_tree_short(child, indent+1);
3716 }
3717 
3718 /*
3719  * Print the device and all its children (indented).
3720  */
3721 void
print_device_tree(device_t dev,int indent)3722 print_device_tree(device_t dev, int indent)
3723 {
3724 	device_t child;
3725 
3726 	if (!dev)
3727 		return;
3728 
3729 	print_device(dev, indent);
3730 
3731 	TAILQ_FOREACH(child, &dev->children, link)
3732 		print_device_tree(child, indent+1);
3733 }
3734 
3735 static void
print_driver_short(driver_t * driver,int indent)3736 print_driver_short(driver_t *driver, int indent)
3737 {
3738 	if (!driver)
3739 		return;
3740 
3741 	indentprintf(("driver %s: softc size = %zu\n",
3742 		      driver->name, driver->size));
3743 }
3744 
3745 static void
print_driver(driver_t * driver,int indent)3746 print_driver(driver_t *driver, int indent)
3747 {
3748 	if (!driver)
3749 		return;
3750 
3751 	print_driver_short(driver, indent);
3752 }
3753 
3754 
3755 static void
print_driver_list(driver_list_t drivers,int indent)3756 print_driver_list(driver_list_t drivers, int indent)
3757 {
3758 	driverlink_t driver;
3759 
3760 	TAILQ_FOREACH(driver, &drivers, link)
3761 		print_driver(driver->driver, indent);
3762 }
3763 
3764 static void
print_devclass_short(devclass_t dc,int indent)3765 print_devclass_short(devclass_t dc, int indent)
3766 {
3767 	if (!dc)
3768 		return;
3769 
3770 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3771 }
3772 
3773 static void
print_devclass(devclass_t dc,int indent)3774 print_devclass(devclass_t dc, int indent)
3775 {
3776 	int i;
3777 
3778 	if (!dc)
3779 		return;
3780 
3781 	print_devclass_short(dc, indent);
3782 	indentprintf(("Drivers:\n"));
3783 	print_driver_list(dc->drivers, indent+1);
3784 
3785 	indentprintf(("Devices:\n"));
3786 	for (i = 0; i < dc->maxunit; i++)
3787 		if (dc->devices[i])
3788 			print_device(dc->devices[i], indent+1);
3789 }
3790 
3791 void
print_devclass_list_short(void)3792 print_devclass_list_short(void)
3793 {
3794 	devclass_t dc;
3795 
3796 	kprintf("Short listing of devclasses, drivers & devices:\n");
3797 	TAILQ_FOREACH(dc, &devclasses, link) {
3798 		print_devclass_short(dc, 0);
3799 	}
3800 }
3801 
3802 void
print_devclass_list(void)3803 print_devclass_list(void)
3804 {
3805 	devclass_t dc;
3806 
3807 	kprintf("Full listing of devclasses, drivers & devices:\n");
3808 	TAILQ_FOREACH(dc, &devclasses, link) {
3809 		print_devclass(dc, 0);
3810 	}
3811 }
3812 
3813 #endif
3814 
3815 /*
3816  * Check to see if a device is disabled via a disabled hint.
3817  */
3818 int
resource_disabled(const char * name,int unit)3819 resource_disabled(const char *name, int unit)
3820 {
3821 	int error, value;
3822 
3823 	error = resource_int_value(name, unit, "disabled", &value);
3824 	if (error)
3825 	       return(0);
3826 	return(value);
3827 }
3828 
3829 /*
3830  * User-space access to the device tree.
3831  *
3832  * We implement a small set of nodes:
3833  *
3834  * hw.bus			Single integer read method to obtain the
3835  *				current generation count.
3836  * hw.bus.devices		Reads the entire device tree in flat space.
3837  * hw.bus.rman			Resource manager interface
3838  *
3839  * We might like to add the ability to scan devclasses and/or drivers to
3840  * determine what else is currently loaded/available.
3841  */
3842 
3843 static int
sysctl_bus(SYSCTL_HANDLER_ARGS)3844 sysctl_bus(SYSCTL_HANDLER_ARGS)
3845 {
3846 	struct u_businfo	ubus;
3847 
3848 	ubus.ub_version = BUS_USER_VERSION;
3849 	ubus.ub_generation = bus_data_generation;
3850 
3851 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3852 }
3853 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3854     "bus-related data");
3855 
3856 static int
sysctl_devices(SYSCTL_HANDLER_ARGS)3857 sysctl_devices(SYSCTL_HANDLER_ARGS)
3858 {
3859 	int			*name = (int *)arg1;
3860 	u_int			namelen = arg2;
3861 	int			index;
3862 	device_t		dev;
3863 	struct u_device		udev;	/* XXX this is a bit big */
3864 	int			error;
3865 
3866 	if (namelen != 2)
3867 		return (EINVAL);
3868 
3869 	if (bus_data_generation_check(name[0]))
3870 		return (EINVAL);
3871 
3872 	index = name[1];
3873 
3874 	/*
3875 	 * Scan the list of devices, looking for the requested index.
3876 	 */
3877 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3878 		if (index-- == 0)
3879 			break;
3880 	}
3881 	if (dev == NULL)
3882 		return (ENOENT);
3883 
3884 	/*
3885 	 * Populate the return array.
3886 	 */
3887 	bzero(&udev, sizeof(udev));
3888 	udev.dv_handle = (uintptr_t)dev;
3889 	udev.dv_parent = (uintptr_t)dev->parent;
3890 	if (dev->nameunit != NULL)
3891 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3892 	if (dev->desc != NULL)
3893 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3894 	if (dev->driver != NULL && dev->driver->name != NULL)
3895 		strlcpy(udev.dv_drivername, dev->driver->name,
3896 		    sizeof(udev.dv_drivername));
3897 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3898 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3899 	udev.dv_devflags = dev->devflags;
3900 	udev.dv_flags = dev->flags;
3901 	udev.dv_state = dev->state;
3902 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3903 	return (error);
3904 }
3905 
3906 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3907     "system device tree");
3908 
3909 int
bus_data_generation_check(int generation)3910 bus_data_generation_check(int generation)
3911 {
3912 	if (generation != bus_data_generation)
3913 		return (1);
3914 
3915 	/* XXX generate optimised lists here? */
3916 	return (0);
3917 }
3918 
3919 void
bus_data_generation_update(void)3920 bus_data_generation_update(void)
3921 {
3922 	bus_data_generation++;
3923 }
3924 
3925 const char *
intr_str_polarity(enum intr_polarity pola)3926 intr_str_polarity(enum intr_polarity pola)
3927 {
3928 	switch (pola) {
3929 	case INTR_POLARITY_LOW:
3930 		return "low";
3931 
3932 	case INTR_POLARITY_HIGH:
3933 		return "high";
3934 
3935 	case INTR_POLARITY_CONFORM:
3936 		return "conform";
3937 	}
3938 	return "unknown";
3939 }
3940 
3941 const char *
intr_str_trigger(enum intr_trigger trig)3942 intr_str_trigger(enum intr_trigger trig)
3943 {
3944 	switch (trig) {
3945 	case INTR_TRIGGER_EDGE:
3946 		return "edge";
3947 
3948 	case INTR_TRIGGER_LEVEL:
3949 		return "level";
3950 
3951 	case INTR_TRIGGER_CONFORM:
3952 		return "conform";
3953 	}
3954 	return "unknown";
3955 }
3956 
3957 int
device_getenv_int(device_t dev,const char * knob,int def)3958 device_getenv_int(device_t dev, const char *knob, int def)
3959 {
3960 	char env[128];
3961 
3962 	/* Deprecated; for compat */
3963 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3964 	kgetenv_int(env, &def);
3965 
3966 	/* Prefer dev.driver.unit.knob */
3967 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3968 	    device_get_name(dev), device_get_unit(dev), knob);
3969 	kgetenv_int(env, &def);
3970 
3971 	return def;
3972 }
3973 
3974 void
device_getenv_string(device_t dev,const char * knob,char * __restrict data,int dlen,const char * __restrict def)3975 device_getenv_string(device_t dev, const char *knob, char * __restrict data,
3976     int dlen, const char * __restrict def)
3977 {
3978 	char env[128];
3979 
3980 	strlcpy(data, def, dlen);
3981 
3982 	/* Deprecated; for compat */
3983 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3984 	kgetenv_string(env, data, dlen);
3985 
3986 	/* Prefer dev.driver.unit.knob */
3987 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3988 	    device_get_name(dev), device_get_unit(dev), knob);
3989 	kgetenv_string(env, data, dlen);
3990 }
3991