1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
59
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/LEB128.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/TarWriter.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/TextAPI/Architecture.h"
74 #include "llvm/TextAPI/InterfaceFile.h"
75
76 #include <optional>
77 #include <type_traits>
78
79 using namespace llvm;
80 using namespace llvm::MachO;
81 using namespace llvm::support::endian;
82 using namespace llvm::sys;
83 using namespace lld;
84 using namespace lld::macho;
85
86 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
toString(const InputFile * f)87 std::string lld::toString(const InputFile *f) {
88 if (!f)
89 return "<internal>";
90
91 // Multiple dylibs can be defined in one .tbd file.
92 if (auto dylibFile = dyn_cast<DylibFile>(f))
93 if (f->getName().endswith(".tbd"))
94 return (f->getName() + "(" + dylibFile->installName + ")").str();
95
96 if (f->archiveName.empty())
97 return std::string(f->getName());
98 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
99 }
100
toString(const Section & sec)101 std::string lld::toString(const Section &sec) {
102 return (toString(sec.file) + ":(" + sec.name + ")").str();
103 }
104
105 SetVector<InputFile *> macho::inputFiles;
106 std::unique_ptr<TarWriter> macho::tar;
107 int InputFile::idCount = 0;
108
decodeVersion(uint32_t version)109 static VersionTuple decodeVersion(uint32_t version) {
110 unsigned major = version >> 16;
111 unsigned minor = (version >> 8) & 0xffu;
112 unsigned subMinor = version & 0xffu;
113 return VersionTuple(major, minor, subMinor);
114 }
115
getPlatformInfos(const InputFile * input)116 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
117 if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
118 return {};
119
120 const char *hdr = input->mb.getBufferStart();
121
122 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
123 std::vector<PlatformInfo> platformInfos;
124 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
125 PlatformInfo info;
126 info.target.Platform = static_cast<PlatformType>(cmd->platform);
127 info.minimum = decodeVersion(cmd->minos);
128 platformInfos.emplace_back(std::move(info));
129 }
130 for (auto *cmd : findCommands<version_min_command>(
131 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
132 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
133 PlatformInfo info;
134 switch (cmd->cmd) {
135 case LC_VERSION_MIN_MACOSX:
136 info.target.Platform = PLATFORM_MACOS;
137 break;
138 case LC_VERSION_MIN_IPHONEOS:
139 info.target.Platform = PLATFORM_IOS;
140 break;
141 case LC_VERSION_MIN_TVOS:
142 info.target.Platform = PLATFORM_TVOS;
143 break;
144 case LC_VERSION_MIN_WATCHOS:
145 info.target.Platform = PLATFORM_WATCHOS;
146 break;
147 }
148 info.minimum = decodeVersion(cmd->version);
149 platformInfos.emplace_back(std::move(info));
150 }
151
152 return platformInfos;
153 }
154
checkCompatibility(const InputFile * input)155 static bool checkCompatibility(const InputFile *input) {
156 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
157 if (platformInfos.empty())
158 return true;
159
160 auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
161 return removeSimulator(info.target.Platform) ==
162 removeSimulator(config->platform());
163 });
164 if (it == platformInfos.end()) {
165 std::string platformNames;
166 raw_string_ostream os(platformNames);
167 interleave(
168 platformInfos, os,
169 [&](const PlatformInfo &info) {
170 os << getPlatformName(info.target.Platform);
171 },
172 "/");
173 error(toString(input) + " has platform " + platformNames +
174 Twine(", which is different from target platform ") +
175 getPlatformName(config->platform()));
176 return false;
177 }
178
179 if (it->minimum > config->platformInfo.minimum)
180 warn(toString(input) + " has version " + it->minimum.getAsString() +
181 ", which is newer than target minimum of " +
182 config->platformInfo.minimum.getAsString());
183
184 return true;
185 }
186
187 // This cache mostly exists to store system libraries (and .tbds) as they're
188 // loaded, rather than the input archives, which are already cached at a higher
189 // level, and other files like the filelist that are only read once.
190 // Theoretically this caching could be more efficient by hoisting it, but that
191 // would require altering many callers to track the state.
192 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
193 // Open a given file path and return it as a memory-mapped file.
readFile(StringRef path)194 std::optional<MemoryBufferRef> macho::readFile(StringRef path) {
195 CachedHashStringRef key(path);
196 auto entry = cachedReads.find(key);
197 if (entry != cachedReads.end())
198 return entry->second;
199
200 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
201 if (std::error_code ec = mbOrErr.getError()) {
202 error("cannot open " + path + ": " + ec.message());
203 return std::nullopt;
204 }
205
206 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
207 MemoryBufferRef mbref = mb->getMemBufferRef();
208 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
209
210 // If this is a regular non-fat file, return it.
211 const char *buf = mbref.getBufferStart();
212 const auto *hdr = reinterpret_cast<const fat_header *>(buf);
213 if (mbref.getBufferSize() < sizeof(uint32_t) ||
214 read32be(&hdr->magic) != FAT_MAGIC) {
215 if (tar)
216 tar->append(relativeToRoot(path), mbref.getBuffer());
217 return cachedReads[key] = mbref;
218 }
219
220 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
221
222 // Object files and archive files may be fat files, which contain multiple
223 // real files for different CPU ISAs. Here, we search for a file that matches
224 // with the current link target and returns it as a MemoryBufferRef.
225 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
226 auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) {
227 return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype));
228 };
229
230 std::vector<StringRef> archs;
231 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
232 if (reinterpret_cast<const char *>(arch + i + 1) >
233 buf + mbref.getBufferSize()) {
234 error(path + ": fat_arch struct extends beyond end of file");
235 return std::nullopt;
236 }
237
238 uint32_t cpuType = read32be(&arch[i].cputype);
239 uint32_t cpuSubtype =
240 read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK;
241
242 // FIXME: LD64 has a more complex fallback logic here.
243 // Consider implementing that as well?
244 if (cpuType != static_cast<uint32_t>(target->cpuType) ||
245 cpuSubtype != target->cpuSubtype) {
246 archs.emplace_back(getArchName(cpuType, cpuSubtype));
247 continue;
248 }
249
250 uint32_t offset = read32be(&arch[i].offset);
251 uint32_t size = read32be(&arch[i].size);
252 if (offset + size > mbref.getBufferSize())
253 error(path + ": slice extends beyond end of file");
254 if (tar)
255 tar->append(relativeToRoot(path), mbref.getBuffer());
256 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
257 path.copy(bAlloc));
258 }
259
260 auto targetArchName = getArchName(target->cpuType, target->cpuSubtype);
261 warn(path + ": ignoring file because it is universal (" + join(archs, ",") +
262 ") but does not contain the " + targetArchName + " architecture");
263 return std::nullopt;
264 }
265
InputFile(Kind kind,const InterfaceFile & interface)266 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
267 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
268
269 // Some sections comprise of fixed-size records, so instead of splitting them at
270 // symbol boundaries, we split them based on size. Records are distinct from
271 // literals in that they may contain references to other sections, instead of
272 // being leaf nodes in the InputSection graph.
273 //
274 // Note that "record" is a term I came up with. In contrast, "literal" is a term
275 // used by the Mach-O format.
getRecordSize(StringRef segname,StringRef name)276 static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) {
277 if (name == section_names::compactUnwind) {
278 if (segname == segment_names::ld)
279 return target->wordSize == 8 ? 32 : 20;
280 }
281 if (!config->dedupStrings)
282 return {};
283
284 if (name == section_names::cfString && segname == segment_names::data)
285 return target->wordSize == 8 ? 32 : 16;
286
287 if (config->icfLevel == ICFLevel::none)
288 return {};
289
290 if (name == section_names::objcClassRefs && segname == segment_names::data)
291 return target->wordSize;
292
293 if (name == section_names::objcSelrefs && segname == segment_names::data)
294 return target->wordSize;
295 return {};
296 }
297
parseCallGraph(ArrayRef<uint8_t> data,std::vector<CallGraphEntry> & callGraph)298 static Error parseCallGraph(ArrayRef<uint8_t> data,
299 std::vector<CallGraphEntry> &callGraph) {
300 TimeTraceScope timeScope("Parsing call graph section");
301 BinaryStreamReader reader(data, support::little);
302 while (!reader.empty()) {
303 uint32_t fromIndex, toIndex;
304 uint64_t count;
305 if (Error err = reader.readInteger(fromIndex))
306 return err;
307 if (Error err = reader.readInteger(toIndex))
308 return err;
309 if (Error err = reader.readInteger(count))
310 return err;
311 callGraph.emplace_back(fromIndex, toIndex, count);
312 }
313 return Error::success();
314 }
315
316 // Parse the sequence of sections within a single LC_SEGMENT(_64).
317 // Split each section into subsections.
318 template <class SectionHeader>
parseSections(ArrayRef<SectionHeader> sectionHeaders)319 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
320 sections.reserve(sectionHeaders.size());
321 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
322
323 for (const SectionHeader &sec : sectionHeaders) {
324 StringRef name =
325 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
326 StringRef segname =
327 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
328 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
329 if (sec.align >= 32) {
330 error("alignment " + std::to_string(sec.align) + " of section " + name +
331 " is too large");
332 continue;
333 }
334 Section §ion = *sections.back();
335 uint32_t align = 1 << sec.align;
336 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
337 : buf + sec.offset,
338 static_cast<size_t>(sec.size)};
339
340 auto splitRecords = [&](size_t recordSize) -> void {
341 if (data.empty())
342 return;
343 Subsections &subsections = section.subsections;
344 subsections.reserve(data.size() / recordSize);
345 for (uint64_t off = 0; off < data.size(); off += recordSize) {
346 auto *isec = make<ConcatInputSection>(
347 section, data.slice(off, std::min(data.size(), recordSize)), align);
348 subsections.push_back({off, isec});
349 }
350 section.doneSplitting = true;
351 };
352
353 if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
354 if (sec.nreloc)
355 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
356 " contains relocations, which is unsupported");
357 bool dedupLiterals =
358 name == section_names::objcMethname || config->dedupStrings;
359 InputSection *isec =
360 make<CStringInputSection>(section, data, align, dedupLiterals);
361 // FIXME: parallelize this?
362 cast<CStringInputSection>(isec)->splitIntoPieces();
363 section.subsections.push_back({0, isec});
364 } else if (isWordLiteralSection(sec.flags)) {
365 if (sec.nreloc)
366 fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
367 " contains relocations, which is unsupported");
368 InputSection *isec = make<WordLiteralInputSection>(section, data, align);
369 section.subsections.push_back({0, isec});
370 } else if (auto recordSize = getRecordSize(segname, name)) {
371 splitRecords(*recordSize);
372 } else if (name == section_names::ehFrame &&
373 segname == segment_names::text) {
374 splitEhFrames(data, *sections.back());
375 } else if (segname == segment_names::llvm) {
376 if (config->callGraphProfileSort && name == section_names::cgProfile)
377 checkError(parseCallGraph(data, callGraph));
378 // ld64 does not appear to emit contents from sections within the __LLVM
379 // segment. Symbols within those sections point to bitcode metadata
380 // instead of actual symbols. Global symbols within those sections could
381 // have the same name without causing duplicate symbol errors. To avoid
382 // spurious duplicate symbol errors, we do not parse these sections.
383 // TODO: Evaluate whether the bitcode metadata is needed.
384 } else if (name == section_names::objCImageInfo &&
385 segname == segment_names::data) {
386 objCImageInfo = data;
387 } else {
388 if (name == section_names::addrSig)
389 addrSigSection = sections.back();
390
391 auto *isec = make<ConcatInputSection>(section, data, align);
392 if (isDebugSection(isec->getFlags()) &&
393 isec->getSegName() == segment_names::dwarf) {
394 // Instead of emitting DWARF sections, we emit STABS symbols to the
395 // object files that contain them. We filter them out early to avoid
396 // parsing their relocations unnecessarily.
397 debugSections.push_back(isec);
398 } else {
399 section.subsections.push_back({0, isec});
400 }
401 }
402 }
403 }
404
splitEhFrames(ArrayRef<uint8_t> data,Section & ehFrameSection)405 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
406 EhReader reader(this, data, /*dataOff=*/0);
407 size_t off = 0;
408 while (off < reader.size()) {
409 uint64_t frameOff = off;
410 uint64_t length = reader.readLength(&off);
411 if (length == 0)
412 break;
413 uint64_t fullLength = length + (off - frameOff);
414 off += length;
415 // We hard-code an alignment of 1 here because we don't actually want our
416 // EH frames to be aligned to the section alignment. EH frame decoders don't
417 // expect this alignment. Moreover, each EH frame must start where the
418 // previous one ends, and where it ends is indicated by the length field.
419 // Unless we update the length field (troublesome), we should keep the
420 // alignment to 1.
421 // Note that we still want to preserve the alignment of the overall section,
422 // just not of the individual EH frames.
423 ehFrameSection.subsections.push_back(
424 {frameOff, make<ConcatInputSection>(ehFrameSection,
425 data.slice(frameOff, fullLength),
426 /*align=*/1)});
427 }
428 ehFrameSection.doneSplitting = true;
429 }
430
431 template <class T>
findContainingSection(const std::vector<Section * > & sections,T * offset)432 static Section *findContainingSection(const std::vector<Section *> §ions,
433 T *offset) {
434 static_assert(std::is_same<uint64_t, T>::value ||
435 std::is_same<uint32_t, T>::value,
436 "unexpected type for offset");
437 auto it = std::prev(llvm::upper_bound(
438 sections, *offset,
439 [](uint64_t value, const Section *sec) { return value < sec->addr; }));
440 *offset -= (*it)->addr;
441 return *it;
442 }
443
444 // Find the subsection corresponding to the greatest section offset that is <=
445 // that of the given offset.
446 //
447 // offset: an offset relative to the start of the original InputSection (before
448 // any subsection splitting has occurred). It will be updated to represent the
449 // same location as an offset relative to the start of the containing
450 // subsection.
451 template <class T>
findContainingSubsection(const Section & section,T * offset)452 static InputSection *findContainingSubsection(const Section §ion,
453 T *offset) {
454 static_assert(std::is_same<uint64_t, T>::value ||
455 std::is_same<uint32_t, T>::value,
456 "unexpected type for offset");
457 auto it = std::prev(llvm::upper_bound(
458 section.subsections, *offset,
459 [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
460 *offset -= it->offset;
461 return it->isec;
462 }
463
464 // Find a symbol at offset `off` within `isec`.
findSymbolAtOffset(const ConcatInputSection * isec,uint64_t off)465 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
466 uint64_t off) {
467 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
468 return d->value < off;
469 });
470 // The offset should point at the exact address of a symbol (with no addend.)
471 if (it == isec->symbols.end() || (*it)->value != off) {
472 assert(isec->wasCoalesced);
473 return nullptr;
474 }
475 return *it;
476 }
477
478 template <class SectionHeader>
validateRelocationInfo(InputFile * file,const SectionHeader & sec,relocation_info rel)479 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
480 relocation_info rel) {
481 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
482 bool valid = true;
483 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
484 valid = false;
485 return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
486 std::to_string(rel.r_address) + " of " + sec.segname + "," +
487 sec.sectname + " in " + toString(file))
488 .str();
489 };
490
491 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
492 error(message("must be extern"));
493 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
494 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
495 "be PC-relative"));
496 if (isThreadLocalVariables(sec.flags) &&
497 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
498 error(message("not allowed in thread-local section, must be UNSIGNED"));
499 if (rel.r_length < 2 || rel.r_length > 3 ||
500 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
501 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
502 error(message("has width " + std::to_string(1 << rel.r_length) +
503 " bytes, but must be " +
504 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
505 " bytes"));
506 }
507 return valid;
508 }
509
510 template <class SectionHeader>
parseRelocations(ArrayRef<SectionHeader> sectionHeaders,const SectionHeader & sec,Section & section)511 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
512 const SectionHeader &sec, Section §ion) {
513 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
514 ArrayRef<relocation_info> relInfos(
515 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
516
517 Subsections &subsections = section.subsections;
518 auto subsecIt = subsections.rbegin();
519 for (size_t i = 0; i < relInfos.size(); i++) {
520 // Paired relocations serve as Mach-O's method for attaching a
521 // supplemental datum to a primary relocation record. ELF does not
522 // need them because the *_RELOC_RELA records contain the extra
523 // addend field, vs. *_RELOC_REL which omit the addend.
524 //
525 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
526 // and the paired *_RELOC_UNSIGNED record holds the minuend. The
527 // datum for each is a symbolic address. The result is the offset
528 // between two addresses.
529 //
530 // The ARM64_RELOC_ADDEND record holds the addend, and the paired
531 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
532 // base symbolic address.
533 //
534 // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into
535 // the instruction stream. On X86, a relocatable address field always
536 // occupies an entire contiguous sequence of byte(s), so there is no need to
537 // merge opcode bits with address bits. Therefore, it's easy and convenient
538 // to store addends in the instruction-stream bytes that would otherwise
539 // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with
540 // address bits so that bitwise arithmetic is necessary to extract and
541 // insert them. Storing addends in the instruction stream is possible, but
542 // inconvenient and more costly at link time.
543
544 relocation_info relInfo = relInfos[i];
545 bool isSubtrahend =
546 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
547 int64_t pairedAddend = 0;
548 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
549 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
550 relInfo = relInfos[++i];
551 }
552 assert(i < relInfos.size());
553 if (!validateRelocationInfo(this, sec, relInfo))
554 continue;
555 if (relInfo.r_address & R_SCATTERED)
556 fatal("TODO: Scattered relocations not supported");
557
558 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
559 assert(!(embeddedAddend && pairedAddend));
560 int64_t totalAddend = pairedAddend + embeddedAddend;
561 Reloc r;
562 r.type = relInfo.r_type;
563 r.pcrel = relInfo.r_pcrel;
564 r.length = relInfo.r_length;
565 r.offset = relInfo.r_address;
566 if (relInfo.r_extern) {
567 r.referent = symbols[relInfo.r_symbolnum];
568 r.addend = isSubtrahend ? 0 : totalAddend;
569 } else {
570 assert(!isSubtrahend);
571 const SectionHeader &referentSecHead =
572 sectionHeaders[relInfo.r_symbolnum - 1];
573 uint64_t referentOffset;
574 if (relInfo.r_pcrel) {
575 // The implicit addend for pcrel section relocations is the pcrel offset
576 // in terms of the addresses in the input file. Here we adjust it so
577 // that it describes the offset from the start of the referent section.
578 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
579 // have pcrel section relocations. We may want to factor this out into
580 // the arch-specific .cpp file.
581 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
582 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
583 referentSecHead.addr;
584 } else {
585 // The addend for a non-pcrel relocation is its absolute address.
586 referentOffset = totalAddend - referentSecHead.addr;
587 }
588 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
589 &referentOffset);
590 r.addend = referentOffset;
591 }
592
593 // Find the subsection that this relocation belongs to.
594 // Though not required by the Mach-O format, clang and gcc seem to emit
595 // relocations in order, so let's take advantage of it. However, ld64 emits
596 // unsorted relocations (in `-r` mode), so we have a fallback for that
597 // uncommon case.
598 InputSection *subsec;
599 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
600 ++subsecIt;
601 if (subsecIt == subsections.rend() ||
602 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
603 subsec = findContainingSubsection(section, &r.offset);
604 // Now that we know the relocs are unsorted, avoid trying the 'fast path'
605 // for the other relocations.
606 subsecIt = subsections.rend();
607 } else {
608 subsec = subsecIt->isec;
609 r.offset -= subsecIt->offset;
610 }
611 subsec->relocs.push_back(r);
612
613 if (isSubtrahend) {
614 relocation_info minuendInfo = relInfos[++i];
615 // SUBTRACTOR relocations should always be followed by an UNSIGNED one
616 // attached to the same address.
617 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
618 relInfo.r_address == minuendInfo.r_address);
619 Reloc p;
620 p.type = minuendInfo.r_type;
621 if (minuendInfo.r_extern) {
622 p.referent = symbols[minuendInfo.r_symbolnum];
623 p.addend = totalAddend;
624 } else {
625 uint64_t referentOffset =
626 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
627 p.referent = findContainingSubsection(
628 *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
629 p.addend = referentOffset;
630 }
631 subsec->relocs.push_back(p);
632 }
633 }
634 }
635
636 // Symbols with `l` or `L` as a prefix are linker-private and never appear in
637 // the output.
isPrivateLabel(StringRef name)638 static bool isPrivateLabel(StringRef name) {
639 return name.startswith("l") || name.startswith("L");
640 }
641
642 template <class NList>
createDefined(const NList & sym,StringRef name,InputSection * isec,uint64_t value,uint64_t size,bool forceHidden)643 static macho::Symbol *createDefined(const NList &sym, StringRef name,
644 InputSection *isec, uint64_t value,
645 uint64_t size, bool forceHidden) {
646 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
647 // N_EXT: Global symbols. These go in the symbol table during the link,
648 // and also in the export table of the output so that the dynamic
649 // linker sees them.
650 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
651 // symbol table during the link so that duplicates are
652 // either reported (for non-weak symbols) or merged
653 // (for weak symbols), but they do not go in the export
654 // table of the output.
655 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
656 // object files) may produce them. LLD does not yet support -r.
657 // These are translation-unit scoped, identical to the `0` case.
658 // 0: Translation-unit scoped. These are not in the symbol table during
659 // link, and not in the export table of the output either.
660 bool isWeakDefCanBeHidden =
661 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
662
663 if (sym.n_type & N_EXT) {
664 // -load_hidden makes us treat global symbols as linkage unit scoped.
665 // Duplicates are reported but the symbol does not go in the export trie.
666 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
667
668 // lld's behavior for merging symbols is slightly different from ld64:
669 // ld64 picks the winning symbol based on several criteria (see
670 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
671 // just merges metadata and keeps the contents of the first symbol
672 // with that name (see SymbolTable::addDefined). For:
673 // * inline function F in a TU built with -fvisibility-inlines-hidden
674 // * and inline function F in another TU built without that flag
675 // ld64 will pick the one from the file built without
676 // -fvisibility-inlines-hidden.
677 // lld will instead pick the one listed first on the link command line and
678 // give it visibility as if the function was built without
679 // -fvisibility-inlines-hidden.
680 // If both functions have the same contents, this will have the same
681 // behavior. If not, it won't, but the input had an ODR violation in
682 // that case.
683 //
684 // Similarly, merging a symbol
685 // that's isPrivateExtern and not isWeakDefCanBeHidden with one
686 // that's not isPrivateExtern but isWeakDefCanBeHidden technically
687 // should produce one
688 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
689 // with ld64's semantics, because it means the non-private-extern
690 // definition will continue to take priority if more private extern
691 // definitions are encountered. With lld's semantics there's no observable
692 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
693 // that's privateExtern -- neither makes it into the dynamic symbol table,
694 // unless the autohide symbol is explicitly exported.
695 // But if a symbol is both privateExtern and autohide then it can't
696 // be exported.
697 // So we nullify the autohide flag when privateExtern is present
698 // and promote the symbol to privateExtern when it is not already.
699 if (isWeakDefCanBeHidden && isPrivateExtern)
700 isWeakDefCanBeHidden = false;
701 else if (isWeakDefCanBeHidden)
702 isPrivateExtern = true;
703 return symtab->addDefined(
704 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
705 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
706 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
707 isWeakDefCanBeHidden);
708 }
709 bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec);
710 return make<Defined>(
711 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
712 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
713 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
714 sym.n_desc & N_NO_DEAD_STRIP);
715 }
716
717 // Absolute symbols are defined symbols that do not have an associated
718 // InputSection. They cannot be weak.
719 template <class NList>
createAbsolute(const NList & sym,InputFile * file,StringRef name,bool forceHidden)720 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
721 StringRef name, bool forceHidden) {
722 if (sym.n_type & N_EXT) {
723 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
724 return symtab->addDefined(
725 name, file, nullptr, sym.n_value, /*size=*/0,
726 /*isWeakDef=*/false, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
727 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
728 /*isWeakDefCanBeHidden=*/false);
729 }
730 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
731 /*isWeakDef=*/false,
732 /*isExternal=*/false, /*isPrivateExtern=*/false,
733 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
734 /*isReferencedDynamically=*/false,
735 sym.n_desc & N_NO_DEAD_STRIP);
736 }
737
738 template <class NList>
parseNonSectionSymbol(const NList & sym,const char * strtab)739 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
740 const char *strtab) {
741 StringRef name = StringRef(strtab + sym.n_strx);
742 uint8_t type = sym.n_type & N_TYPE;
743 bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
744 switch (type) {
745 case N_UNDF:
746 return sym.n_value == 0
747 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
748 : symtab->addCommon(name, this, sym.n_value,
749 1 << GET_COMM_ALIGN(sym.n_desc),
750 isPrivateExtern);
751 case N_ABS:
752 return createAbsolute(sym, this, name, forceHidden);
753 case N_INDR: {
754 // Not much point in making local aliases -- relocs in the current file can
755 // just refer to the actual symbol itself. ld64 ignores these symbols too.
756 if (!(sym.n_type & N_EXT))
757 return nullptr;
758 StringRef aliasedName = StringRef(strtab + sym.n_value);
759 // isPrivateExtern is the only symbol flag that has an impact on the final
760 // aliased symbol.
761 auto alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
762 aliases.push_back(alias);
763 return alias;
764 }
765 case N_PBUD:
766 error("TODO: support symbols of type N_PBUD");
767 return nullptr;
768 case N_SECT:
769 llvm_unreachable(
770 "N_SECT symbols should not be passed to parseNonSectionSymbol");
771 default:
772 llvm_unreachable("invalid symbol type");
773 }
774 }
775
isUndef(const NList & sym)776 template <class NList> static bool isUndef(const NList &sym) {
777 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
778 }
779
780 template <class LP>
parseSymbols(ArrayRef<typename LP::section> sectionHeaders,ArrayRef<typename LP::nlist> nList,const char * strtab,bool subsectionsViaSymbols)781 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
782 ArrayRef<typename LP::nlist> nList,
783 const char *strtab, bool subsectionsViaSymbols) {
784 using NList = typename LP::nlist;
785
786 // Groups indices of the symbols by the sections that contain them.
787 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
788 symbols.resize(nList.size());
789 SmallVector<unsigned, 32> undefineds;
790 for (uint32_t i = 0; i < nList.size(); ++i) {
791 const NList &sym = nList[i];
792
793 // Ignore debug symbols for now.
794 // FIXME: may need special handling.
795 if (sym.n_type & N_STAB)
796 continue;
797
798 if ((sym.n_type & N_TYPE) == N_SECT) {
799 Subsections &subsections = sections[sym.n_sect - 1]->subsections;
800 // parseSections() may have chosen not to parse this section.
801 if (subsections.empty())
802 continue;
803 symbolsBySection[sym.n_sect - 1].push_back(i);
804 } else if (isUndef(sym)) {
805 undefineds.push_back(i);
806 } else {
807 symbols[i] = parseNonSectionSymbol(sym, strtab);
808 }
809 }
810
811 for (size_t i = 0; i < sections.size(); ++i) {
812 Subsections &subsections = sections[i]->subsections;
813 if (subsections.empty())
814 continue;
815 std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
816 uint64_t sectionAddr = sectionHeaders[i].addr;
817 uint32_t sectionAlign = 1u << sectionHeaders[i].align;
818
819 // Some sections have already been split into subsections during
820 // parseSections(), so we simply need to match Symbols to the corresponding
821 // subsection here.
822 if (sections[i]->doneSplitting) {
823 for (size_t j = 0; j < symbolIndices.size(); ++j) {
824 const uint32_t symIndex = symbolIndices[j];
825 const NList &sym = nList[symIndex];
826 StringRef name = strtab + sym.n_strx;
827 uint64_t symbolOffset = sym.n_value - sectionAddr;
828 InputSection *isec =
829 findContainingSubsection(*sections[i], &symbolOffset);
830 if (symbolOffset != 0) {
831 error(toString(*sections[i]) + ": symbol " + name +
832 " at misaligned offset");
833 continue;
834 }
835 symbols[symIndex] =
836 createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
837 }
838 continue;
839 }
840 sections[i]->doneSplitting = true;
841
842 auto getSymName = [strtab](const NList& sym) -> StringRef {
843 return StringRef(strtab + sym.n_strx);
844 };
845
846 // Calculate symbol sizes and create subsections by splitting the sections
847 // along symbol boundaries.
848 // We populate subsections by repeatedly splitting the last (highest
849 // address) subsection.
850 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
851 // Put private-label symbols that have no flags after other symbols at the
852 // same address.
853 StringRef lhsName = getSymName(nList[lhs]);
854 StringRef rhsName = getSymName(nList[rhs]);
855 if (nList[lhs].n_value == nList[rhs].n_value) {
856 if (isPrivateLabel(lhsName) && isPrivateLabel(rhsName))
857 return nList[lhs].n_desc > nList[rhs].n_desc;
858 return !isPrivateLabel(lhsName) && isPrivateLabel(rhsName);
859 }
860 return nList[lhs].n_value < nList[rhs].n_value;
861 });
862 for (size_t j = 0; j < symbolIndices.size(); ++j) {
863 const uint32_t symIndex = symbolIndices[j];
864 const NList &sym = nList[symIndex];
865 StringRef name = getSymName(sym);
866 Subsection &subsec = subsections.back();
867 InputSection *isec = subsec.isec;
868
869 uint64_t subsecAddr = sectionAddr + subsec.offset;
870 size_t symbolOffset = sym.n_value - subsecAddr;
871 uint64_t symbolSize =
872 j + 1 < symbolIndices.size()
873 ? nList[symbolIndices[j + 1]].n_value - sym.n_value
874 : isec->data.size() - symbolOffset;
875 // There are 4 cases where we do not need to create a new subsection:
876 // 1. If the input file does not use subsections-via-symbols.
877 // 2. Multiple symbols at the same address only induce one subsection.
878 // (The symbolOffset == 0 check covers both this case as well as
879 // the first loop iteration.)
880 // 3. Alternative entry points do not induce new subsections.
881 // 4. If we have a literal section (e.g. __cstring and __literal4).
882 if (!subsectionsViaSymbols || symbolOffset == 0 ||
883 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
884 isec->hasAltEntry = symbolOffset != 0;
885 // If we have an private-label symbol that's an alias, and that alias
886 // doesn't have any flags of its own, then we can just reuse the aliased
887 // symbol. Our sorting step above ensures that any such symbols will
888 // appear after the non-private-label ones. See weak-def-alias-ignored.s
889 // for the motivation behind this.
890 if (symbolOffset == 0 && isPrivateLabel(name) && j != 0 &&
891 sym.n_desc == 0)
892 symbols[symIndex] = symbols[symbolIndices[j - 1]];
893 else
894 symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
895 symbolSize, forceHidden);
896 continue;
897 }
898 auto *concatIsec = cast<ConcatInputSection>(isec);
899
900 auto *nextIsec = make<ConcatInputSection>(*concatIsec);
901 nextIsec->wasCoalesced = false;
902 if (isZeroFill(isec->getFlags())) {
903 // Zero-fill sections have NULL data.data() non-zero data.size()
904 nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
905 isec->data = {nullptr, symbolOffset};
906 } else {
907 nextIsec->data = isec->data.slice(symbolOffset);
908 isec->data = isec->data.slice(0, symbolOffset);
909 }
910
911 // By construction, the symbol will be at offset zero in the new
912 // subsection.
913 symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
914 symbolSize, forceHidden);
915 // TODO: ld64 appears to preserve the original alignment as well as each
916 // subsection's offset from the last aligned address. We should consider
917 // emulating that behavior.
918 nextIsec->align = MinAlign(sectionAlign, sym.n_value);
919 subsections.push_back({sym.n_value - sectionAddr, nextIsec});
920 }
921 }
922
923 // Undefined symbols can trigger recursive fetch from Archives due to
924 // LazySymbols. Process defined symbols first so that the relative order
925 // between a defined symbol and an undefined symbol does not change the
926 // symbol resolution behavior. In addition, a set of interconnected symbols
927 // will all be resolved to the same file, instead of being resolved to
928 // different files.
929 for (unsigned i : undefineds)
930 symbols[i] = parseNonSectionSymbol(nList[i], strtab);
931 }
932
OpaqueFile(MemoryBufferRef mb,StringRef segName,StringRef sectName)933 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
934 StringRef sectName)
935 : InputFile(OpaqueKind, mb) {
936 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
937 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
938 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
939 sectName.take_front(16),
940 /*flags=*/0, /*addr=*/0));
941 Section §ion = *sections.back();
942 ConcatInputSection *isec = make<ConcatInputSection>(section, data);
943 isec->live = true;
944 section.subsections.push_back({0, isec});
945 }
946
ObjFile(MemoryBufferRef mb,uint32_t modTime,StringRef archiveName,bool lazy,bool forceHidden)947 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
948 bool lazy, bool forceHidden)
949 : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) {
950 this->archiveName = std::string(archiveName);
951 if (lazy) {
952 if (target->wordSize == 8)
953 parseLazy<LP64>();
954 else
955 parseLazy<ILP32>();
956 } else {
957 if (target->wordSize == 8)
958 parse<LP64>();
959 else
960 parse<ILP32>();
961 }
962 }
963
parse()964 template <class LP> void ObjFile::parse() {
965 using Header = typename LP::mach_header;
966 using SegmentCommand = typename LP::segment_command;
967 using SectionHeader = typename LP::section;
968 using NList = typename LP::nlist;
969
970 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
971 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
972
973 uint32_t cpuType;
974 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
975 if (hdr->cputype != cpuType) {
976 Architecture arch =
977 getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
978 auto msg = config->errorForArchMismatch
979 ? static_cast<void (*)(const Twine &)>(error)
980 : warn;
981 msg(toString(this) + " has architecture " + getArchitectureName(arch) +
982 " which is incompatible with target architecture " +
983 getArchitectureName(config->arch()));
984 return;
985 }
986
987 if (!checkCompatibility(this))
988 return;
989
990 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
991 StringRef data{reinterpret_cast<const char *>(cmd + 1),
992 cmd->cmdsize - sizeof(linker_option_command)};
993 parseLCLinkerOption(this, cmd->count, data);
994 }
995
996 ArrayRef<SectionHeader> sectionHeaders;
997 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
998 auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
999 sectionHeaders = ArrayRef<SectionHeader>{
1000 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1001 parseSections(sectionHeaders);
1002 }
1003
1004 // TODO: Error on missing LC_SYMTAB?
1005 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1006 auto *c = reinterpret_cast<const symtab_command *>(cmd);
1007 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1008 c->nsyms);
1009 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1010 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1011 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1012 }
1013
1014 // The relocations may refer to the symbols, so we parse them after we have
1015 // parsed all the symbols.
1016 for (size_t i = 0, n = sections.size(); i < n; ++i)
1017 if (!sections[i]->subsections.empty())
1018 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1019
1020 parseDebugInfo();
1021
1022 Section *ehFrameSection = nullptr;
1023 Section *compactUnwindSection = nullptr;
1024 for (Section *sec : sections) {
1025 Section **s = StringSwitch<Section **>(sec->name)
1026 .Case(section_names::compactUnwind, &compactUnwindSection)
1027 .Case(section_names::ehFrame, &ehFrameSection)
1028 .Default(nullptr);
1029 if (s)
1030 *s = sec;
1031 }
1032 if (compactUnwindSection)
1033 registerCompactUnwind(*compactUnwindSection);
1034 if (ehFrameSection)
1035 registerEhFrames(*ehFrameSection);
1036 }
1037
parseLazy()1038 template <class LP> void ObjFile::parseLazy() {
1039 using Header = typename LP::mach_header;
1040 using NList = typename LP::nlist;
1041
1042 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1043 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1044 const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1045 if (!cmd)
1046 return;
1047 auto *c = reinterpret_cast<const symtab_command *>(cmd);
1048 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1049 c->nsyms);
1050 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1051 symbols.resize(nList.size());
1052 for (const auto &[i, sym] : llvm::enumerate(nList)) {
1053 if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1054 // TODO: Bound checking
1055 StringRef name = strtab + sym.n_strx;
1056 symbols[i] = symtab->addLazyObject(name, *this);
1057 if (!lazy)
1058 break;
1059 }
1060 }
1061 }
1062
parseDebugInfo()1063 void ObjFile::parseDebugInfo() {
1064 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1065 if (!dObj)
1066 return;
1067
1068 // We do not re-use the context from getDwarf() here as that function
1069 // constructs an expensive DWARFCache object.
1070 auto *ctx = make<DWARFContext>(
1071 std::move(dObj), "",
1072 [&](Error err) {
1073 warn(toString(this) + ": " + toString(std::move(err)));
1074 },
1075 [&](Error warning) {
1076 warn(toString(this) + ": " + toString(std::move(warning)));
1077 });
1078
1079 // TODO: Since object files can contain a lot of DWARF info, we should verify
1080 // that we are parsing just the info we need
1081 const DWARFContext::compile_unit_range &units = ctx->compile_units();
1082 // FIXME: There can be more than one compile unit per object file. See
1083 // PR48637.
1084 auto it = units.begin();
1085 compileUnit = it != units.end() ? it->get() : nullptr;
1086 }
1087
getDataInCode() const1088 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1089 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1090 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1091 if (!cmd)
1092 return {};
1093 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1094 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1095 c->datasize / sizeof(data_in_code_entry)};
1096 }
1097
getOptimizationHints() const1098 ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
1099 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1100 if (auto *cmd =
1101 findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
1102 return {buf + cmd->dataoff, cmd->datasize};
1103 return {};
1104 }
1105
1106 // Create pointers from symbols to their associated compact unwind entries.
registerCompactUnwind(Section & compactUnwindSection)1107 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1108 for (const Subsection &subsection : compactUnwindSection.subsections) {
1109 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1110 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1111 // their addends in its data. Thus if ICF operated naively and compared the
1112 // entire contents of each CUE, entries with identical unwind info but e.g.
1113 // belonging to different functions would never be considered equivalent. To
1114 // work around this problem, we remove some parts of the data containing the
1115 // embedded addends. In particular, we remove the function address and LSDA
1116 // pointers. Since these locations are at the start and end of the entry,
1117 // we can do this using a simple, efficient slice rather than performing a
1118 // copy. We are not losing any information here because the embedded
1119 // addends have already been parsed in the corresponding Reloc structs.
1120 //
1121 // Removing these pointers would not be safe if they were pointers to
1122 // absolute symbols. In that case, there would be no corresponding
1123 // relocation. However, (AFAIK) MC cannot emit references to absolute
1124 // symbols for either the function address or the LSDA. However, it *can* do
1125 // so for the personality pointer, so we are not slicing that field away.
1126 //
1127 // Note that we do not adjust the offsets of the corresponding relocations;
1128 // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1129 // truncated input sections.
1130 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1131 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1132 // llvm-mc omits CU entries for functions that need DWARF encoding, but
1133 // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1134 // CU entries from the DWARF info during the output phase.
1135 if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) ==
1136 target->modeDwarfEncoding)
1137 continue;
1138
1139 ConcatInputSection *referentIsec;
1140 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1141 Reloc &r = *it;
1142 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1143 if (r.offset != 0) {
1144 ++it;
1145 continue;
1146 }
1147 uint64_t add = r.addend;
1148 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1149 // Check whether the symbol defined in this file is the prevailing one.
1150 // Skip if it is e.g. a weak def that didn't prevail.
1151 if (sym->getFile() != this) {
1152 ++it;
1153 continue;
1154 }
1155 add += sym->value;
1156 referentIsec = cast<ConcatInputSection>(sym->isec);
1157 } else {
1158 referentIsec =
1159 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1160 }
1161 // Unwind info lives in __DATA, and finalization of __TEXT will occur
1162 // before finalization of __DATA. Moreover, the finalization of unwind
1163 // info depends on the exact addresses that it references. So it is safe
1164 // for compact unwind to reference addresses in __TEXT, but not addresses
1165 // in any other segment.
1166 if (referentIsec->getSegName() != segment_names::text)
1167 error(isec->getLocation(r.offset) + " references section " +
1168 referentIsec->getName() + " which is not in segment __TEXT");
1169 // The functionAddress relocations are typically section relocations.
1170 // However, unwind info operates on a per-symbol basis, so we search for
1171 // the function symbol here.
1172 Defined *d = findSymbolAtOffset(referentIsec, add);
1173 if (!d) {
1174 ++it;
1175 continue;
1176 }
1177 d->unwindEntry = isec;
1178 // Now that the symbol points to the unwind entry, we can remove the reloc
1179 // that points from the unwind entry back to the symbol.
1180 //
1181 // First, the symbol keeps the unwind entry alive (and not vice versa), so
1182 // this keeps dead-stripping simple.
1183 //
1184 // Moreover, it reduces the work that ICF needs to do to figure out if
1185 // functions with unwind info are foldable.
1186 //
1187 // However, this does make it possible for ICF to fold CUEs that point to
1188 // distinct functions (if the CUEs are otherwise identical).
1189 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1190 // each one can hold a distinct functionAddress value.
1191 //
1192 // Given that clang emits relocations in reverse order of address, this
1193 // relocation should be at the end of the vector for most of our input
1194 // object files, so this erase() is typically an O(1) operation.
1195 it = isec->relocs.erase(it);
1196 }
1197 }
1198 }
1199
1200 struct CIE {
1201 macho::Symbol *personalitySymbol = nullptr;
1202 bool fdesHaveAug = false;
1203 uint8_t lsdaPtrSize = 0; // 0 => no LSDA
1204 uint8_t funcPtrSize = 0;
1205 };
1206
pointerEncodingToSize(uint8_t enc)1207 static uint8_t pointerEncodingToSize(uint8_t enc) {
1208 switch (enc & 0xf) {
1209 case dwarf::DW_EH_PE_absptr:
1210 return target->wordSize;
1211 case dwarf::DW_EH_PE_sdata4:
1212 return 4;
1213 case dwarf::DW_EH_PE_sdata8:
1214 // ld64 doesn't actually support sdata8, but this seems simple enough...
1215 return 8;
1216 default:
1217 return 0;
1218 };
1219 }
1220
parseCIE(const InputSection * isec,const EhReader & reader,size_t off)1221 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1222 size_t off) {
1223 // Handling the full generality of possible DWARF encodings would be a major
1224 // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1225 // DWARF and handle just that.
1226 constexpr uint8_t expectedPersonalityEnc =
1227 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1228
1229 CIE cie;
1230 uint8_t version = reader.readByte(&off);
1231 if (version != 1 && version != 3)
1232 fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1233 StringRef aug = reader.readString(&off);
1234 reader.skipLeb128(&off); // skip code alignment
1235 reader.skipLeb128(&off); // skip data alignment
1236 reader.skipLeb128(&off); // skip return address register
1237 reader.skipLeb128(&off); // skip aug data length
1238 uint64_t personalityAddrOff = 0;
1239 for (char c : aug) {
1240 switch (c) {
1241 case 'z':
1242 cie.fdesHaveAug = true;
1243 break;
1244 case 'P': {
1245 uint8_t personalityEnc = reader.readByte(&off);
1246 if (personalityEnc != expectedPersonalityEnc)
1247 reader.failOn(off, "unexpected personality encoding 0x" +
1248 Twine::utohexstr(personalityEnc));
1249 personalityAddrOff = off;
1250 off += 4;
1251 break;
1252 }
1253 case 'L': {
1254 uint8_t lsdaEnc = reader.readByte(&off);
1255 cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
1256 if (cie.lsdaPtrSize == 0)
1257 reader.failOn(off, "unexpected LSDA encoding 0x" +
1258 Twine::utohexstr(lsdaEnc));
1259 break;
1260 }
1261 case 'R': {
1262 uint8_t pointerEnc = reader.readByte(&off);
1263 cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
1264 if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
1265 reader.failOn(off, "unexpected pointer encoding 0x" +
1266 Twine::utohexstr(pointerEnc));
1267 break;
1268 }
1269 default:
1270 break;
1271 }
1272 }
1273 if (personalityAddrOff != 0) {
1274 auto personalityRelocIt =
1275 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
1276 return r.offset == personalityAddrOff;
1277 });
1278 if (personalityRelocIt == isec->relocs.end())
1279 reader.failOn(off, "Failed to locate relocation for personality symbol");
1280 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
1281 }
1282 return cie;
1283 }
1284
1285 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1286 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1287 // This function recovers the target address from the subtractors, essentially
1288 // performing the inverse operation of EhRelocator.
1289 //
1290 // Concretely, we expect our relocations to write the value of `PC -
1291 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1292 // points to a symbol plus an addend.
1293 //
1294 // It is important that the minuend relocation point to a symbol within the
1295 // same section as the fixup value, since sections may get moved around.
1296 //
1297 // For example, for arm64, llvm-mc emits relocations for the target function
1298 // address like so:
1299 //
1300 // ltmp:
1301 // <CIE start>
1302 // ...
1303 // <CIE end>
1304 // ... multiple FDEs ...
1305 // <FDE start>
1306 // <target function address - (ltmp + pcrel offset)>
1307 // ...
1308 //
1309 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1310 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1311 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1312 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1313 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1314 //
1315 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1316 // to `PC`.
1317 template <bool Invert = false>
1318 Defined *
targetSymFromCanonicalSubtractor(const InputSection * isec,std::vector<macho::Reloc>::iterator relocIt)1319 targetSymFromCanonicalSubtractor(const InputSection *isec,
1320 std::vector<macho::Reloc>::iterator relocIt) {
1321 macho::Reloc &subtrahend = *relocIt;
1322 macho::Reloc &minuend = *std::next(relocIt);
1323 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1324 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1325 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1326 // addend.
1327 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1328 Defined *target =
1329 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1330 if (!pcSym) {
1331 auto *targetIsec =
1332 cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1333 target = findSymbolAtOffset(targetIsec, minuend.addend);
1334 }
1335 if (Invert)
1336 std::swap(pcSym, target);
1337 if (pcSym->isec == isec) {
1338 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1339 fatal("invalid FDE relocation in __eh_frame");
1340 } else {
1341 // Ensure the pcReloc points to a symbol within the current EH frame.
1342 // HACK: we should really verify that the original relocation's semantics
1343 // are preserved. In particular, we should have
1344 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1345 // have an easy way to access the offsets from this point in the code; some
1346 // refactoring is needed for that.
1347 macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1348 pcReloc.referent = isec->symbols[0];
1349 assert(isec->symbols[0]->value == 0);
1350 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1351 }
1352 return target;
1353 }
1354
findSymbolAtAddress(const std::vector<Section * > & sections,uint64_t addr)1355 Defined *findSymbolAtAddress(const std::vector<Section *> §ions,
1356 uint64_t addr) {
1357 Section *sec = findContainingSection(sections, &addr);
1358 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1359 return findSymbolAtOffset(isec, addr);
1360 }
1361
1362 // For symbols that don't have compact unwind info, associate them with the more
1363 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1364 //
1365 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1366 // description of its format.
1367 //
1368 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1369 // are relocations which are implicitly encoded as offsets in the section data.
1370 // We convert them into explicit Reloc structs so that the EH frames can be
1371 // handled just like a regular ConcatInputSection later in our output phase.
1372 //
1373 // We also need to handle the case where our input object file has explicit
1374 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1375 // look for the "abs-ified" relocation if an explicit relocation is absent.
registerEhFrames(Section & ehFrameSection)1376 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1377 DenseMap<const InputSection *, CIE> cieMap;
1378 for (const Subsection &subsec : ehFrameSection.subsections) {
1379 auto *isec = cast<ConcatInputSection>(subsec.isec);
1380 uint64_t isecOff = subsec.offset;
1381
1382 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1383 // that all EH frames have an associated symbol so that we can generate
1384 // subtractor relocs that reference them.
1385 if (isec->symbols.size() == 0)
1386 make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0,
1387 isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false,
1388 /*isPrivateExtern=*/false, /*includeInSymtab=*/false,
1389 /*isThumb=*/false, /*isReferencedDynamically=*/false,
1390 /*noDeadStrip=*/false);
1391 else if (isec->symbols[0]->value != 0)
1392 fatal("found symbol at unexpected offset in __eh_frame");
1393
1394 EhReader reader(this, isec->data, subsec.offset);
1395 size_t dataOff = 0; // Offset from the start of the EH frame.
1396 reader.skipValidLength(&dataOff); // readLength() already validated this.
1397 // cieOffOff is the offset from the start of the EH frame to the cieOff
1398 // value, which is itself an offset from the current PC to a CIE.
1399 const size_t cieOffOff = dataOff;
1400
1401 EhRelocator ehRelocator(isec);
1402 auto cieOffRelocIt = llvm::find_if(
1403 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1404 InputSection *cieIsec = nullptr;
1405 if (cieOffRelocIt != isec->relocs.end()) {
1406 // We already have an explicit relocation for the CIE offset.
1407 cieIsec =
1408 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1409 ->isec;
1410 dataOff += sizeof(uint32_t);
1411 } else {
1412 // If we haven't found a relocation, then the CIE offset is most likely
1413 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1414 // and generate a Reloc struct.
1415 uint32_t cieMinuend = reader.readU32(&dataOff);
1416 if (cieMinuend == 0) {
1417 cieIsec = isec;
1418 } else {
1419 uint32_t cieOff = isecOff + dataOff - cieMinuend;
1420 cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1421 if (cieIsec == nullptr)
1422 fatal("failed to find CIE");
1423 }
1424 if (cieIsec != isec)
1425 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1426 /*length=*/2);
1427 }
1428 if (cieIsec == isec) {
1429 cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1430 continue;
1431 }
1432
1433 assert(cieMap.count(cieIsec));
1434 const CIE &cie = cieMap[cieIsec];
1435 // Offset of the function address within the EH frame.
1436 const size_t funcAddrOff = dataOff;
1437 uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
1438 ehFrameSection.addr + isecOff + funcAddrOff;
1439 uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
1440 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1441 std::optional<uint64_t> lsdaAddrOpt;
1442 if (cie.fdesHaveAug) {
1443 reader.skipLeb128(&dataOff);
1444 lsdaAddrOff = dataOff;
1445 if (cie.lsdaPtrSize != 0) {
1446 uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
1447 if (lsdaOff != 0) // FIXME possible to test this?
1448 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1449 }
1450 }
1451
1452 auto funcAddrRelocIt = isec->relocs.end();
1453 auto lsdaAddrRelocIt = isec->relocs.end();
1454 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1455 if (it->offset == funcAddrOff)
1456 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1457 else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1458 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1459 }
1460
1461 Defined *funcSym;
1462 if (funcAddrRelocIt != isec->relocs.end()) {
1463 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1464 // Canonicalize the symbol. If there are multiple symbols at the same
1465 // address, we want both `registerEhFrame` and `registerCompactUnwind`
1466 // to register the unwind entry under same symbol.
1467 // This is not particularly efficient, but we should run into this case
1468 // infrequently (only when handling the output of `ld -r`).
1469 if (funcSym->isec)
1470 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec),
1471 funcSym->value);
1472 } else {
1473 funcSym = findSymbolAtAddress(sections, funcAddr);
1474 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1475 }
1476 // The symbol has been coalesced, or already has a compact unwind entry.
1477 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
1478 // We must prune unused FDEs for correctness, so we cannot rely on
1479 // -dead_strip being enabled.
1480 isec->live = false;
1481 continue;
1482 }
1483
1484 InputSection *lsdaIsec = nullptr;
1485 if (lsdaAddrRelocIt != isec->relocs.end()) {
1486 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
1487 } else if (lsdaAddrOpt) {
1488 uint64_t lsdaAddr = *lsdaAddrOpt;
1489 Section *sec = findContainingSection(sections, &lsdaAddr);
1490 lsdaIsec =
1491 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1492 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1493 }
1494
1495 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1496 funcSym->unwindEntry = isec;
1497 ehRelocator.commit();
1498 }
1499
1500 // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
1501 // are normally required to be kept alive if they reference a live symbol.
1502 // However, we've explicitly created a dependency from a symbol to its FDE, so
1503 // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
1504 // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
1505 // live symbol (e.g. if there were multiple weak copies). Remove this flag to
1506 // let dead-stripping proceed correctly.
1507 ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
1508 }
1509
sourceFile() const1510 std::string ObjFile::sourceFile() const {
1511 SmallString<261> dir(compileUnit->getCompilationDir());
1512 StringRef sep = sys::path::get_separator();
1513 // We don't use `path::append` here because we want an empty `dir` to result
1514 // in an absolute path. `append` would give us a relative path for that case.
1515 if (!dir.endswith(sep))
1516 dir += sep;
1517 return (dir + compileUnit->getUnitDIE().getShortName()).str();
1518 }
1519
getDwarf()1520 lld::DWARFCache *ObjFile::getDwarf() {
1521 llvm::call_once(initDwarf, [this]() {
1522 auto dwObj = DwarfObject::create(this);
1523 if (!dwObj)
1524 return;
1525 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1526 std::move(dwObj), "",
1527 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1528 [&](Error warning) {
1529 warn(getName() + ": " + toString(std::move(warning)));
1530 }));
1531 });
1532
1533 return dwarfCache.get();
1534 }
1535 // The path can point to either a dylib or a .tbd file.
loadDylib(StringRef path,DylibFile * umbrella)1536 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1537 std::optional<MemoryBufferRef> mbref = readFile(path);
1538 if (!mbref) {
1539 error("could not read dylib file at " + path);
1540 return nullptr;
1541 }
1542 return loadDylib(*mbref, umbrella);
1543 }
1544
1545 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1546 // the first document storing child pointers to the rest of them. When we are
1547 // processing a given TBD file, we store that top-level document in
1548 // currentTopLevelTapi. When processing re-exports, we search its children for
1549 // potentially matching documents in the same TBD file. Note that the children
1550 // themselves don't point to further documents, i.e. this is a two-level tree.
1551 //
1552 // Re-exports can either refer to on-disk files, or to documents within .tbd
1553 // files.
findDylib(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)1554 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1555 const InterfaceFile *currentTopLevelTapi) {
1556 // Search order:
1557 // 1. Install name basename in -F / -L directories.
1558 {
1559 StringRef stem = path::stem(path);
1560 SmallString<128> frameworkName;
1561 path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1562 bool isFramework = path.endswith(frameworkName);
1563 if (isFramework) {
1564 for (StringRef dir : config->frameworkSearchPaths) {
1565 SmallString<128> candidate = dir;
1566 path::append(candidate, frameworkName);
1567 if (std::optional<StringRef> dylibPath =
1568 resolveDylibPath(candidate.str()))
1569 return loadDylib(*dylibPath, umbrella);
1570 }
1571 } else if (std::optional<StringRef> dylibPath = findPathCombination(
1572 stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1573 return loadDylib(*dylibPath, umbrella);
1574 }
1575
1576 // 2. As absolute path.
1577 if (path::is_absolute(path, path::Style::posix))
1578 for (StringRef root : config->systemLibraryRoots)
1579 if (std::optional<StringRef> dylibPath =
1580 resolveDylibPath((root + path).str()))
1581 return loadDylib(*dylibPath, umbrella);
1582
1583 // 3. As relative path.
1584
1585 // TODO: Handle -dylib_file
1586
1587 // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1588 SmallString<128> newPath;
1589 if (config->outputType == MH_EXECUTE &&
1590 path.consume_front("@executable_path/")) {
1591 // ld64 allows overriding this with the undocumented flag -executable_path.
1592 // lld doesn't currently implement that flag.
1593 // FIXME: Consider using finalOutput instead of outputFile.
1594 path::append(newPath, path::parent_path(config->outputFile), path);
1595 path = newPath;
1596 } else if (path.consume_front("@loader_path/")) {
1597 fs::real_path(umbrella->getName(), newPath);
1598 path::remove_filename(newPath);
1599 path::append(newPath, path);
1600 path = newPath;
1601 } else if (path.startswith("@rpath/")) {
1602 for (StringRef rpath : umbrella->rpaths) {
1603 newPath.clear();
1604 if (rpath.consume_front("@loader_path/")) {
1605 fs::real_path(umbrella->getName(), newPath);
1606 path::remove_filename(newPath);
1607 }
1608 path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1609 if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1610 return loadDylib(*dylibPath, umbrella);
1611 }
1612 }
1613
1614 // FIXME: Should this be further up?
1615 if (currentTopLevelTapi) {
1616 for (InterfaceFile &child :
1617 make_pointee_range(currentTopLevelTapi->documents())) {
1618 assert(child.documents().empty());
1619 if (path == child.getInstallName()) {
1620 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1621 /*explicitlyLinked=*/false);
1622 file->parseReexports(child);
1623 return file;
1624 }
1625 }
1626 }
1627
1628 if (std::optional<StringRef> dylibPath = resolveDylibPath(path))
1629 return loadDylib(*dylibPath, umbrella);
1630
1631 return nullptr;
1632 }
1633
1634 // If a re-exported dylib is public (lives in /usr/lib or
1635 // /System/Library/Frameworks), then it is considered implicitly linked: we
1636 // should bind to its symbols directly instead of via the re-exporting umbrella
1637 // library.
isImplicitlyLinked(StringRef path)1638 static bool isImplicitlyLinked(StringRef path) {
1639 if (!config->implicitDylibs)
1640 return false;
1641
1642 if (path::parent_path(path) == "/usr/lib")
1643 return true;
1644
1645 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1646 if (path.consume_front("/System/Library/Frameworks/")) {
1647 StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1648 return path::filename(path) == frameworkName;
1649 }
1650
1651 return false;
1652 }
1653
loadReexport(StringRef path,DylibFile * umbrella,const InterfaceFile * currentTopLevelTapi)1654 void DylibFile::loadReexport(StringRef path, DylibFile *umbrella,
1655 const InterfaceFile *currentTopLevelTapi) {
1656 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1657 if (!reexport)
1658 error(toString(this) + ": unable to locate re-export with install name " +
1659 path);
1660 }
1661
DylibFile(MemoryBufferRef mb,DylibFile * umbrella,bool isBundleLoader,bool explicitlyLinked)1662 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1663 bool isBundleLoader, bool explicitlyLinked)
1664 : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1665 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1666 assert(!isBundleLoader || !umbrella);
1667 if (umbrella == nullptr)
1668 umbrella = this;
1669 this->umbrella = umbrella;
1670
1671 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1672
1673 // Initialize installName.
1674 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1675 auto *c = reinterpret_cast<const dylib_command *>(cmd);
1676 currentVersion = read32le(&c->dylib.current_version);
1677 compatibilityVersion = read32le(&c->dylib.compatibility_version);
1678 installName =
1679 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1680 } else if (!isBundleLoader) {
1681 // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1682 // so it's OK.
1683 error(toString(this) + ": dylib missing LC_ID_DYLIB load command");
1684 return;
1685 }
1686
1687 if (config->printEachFile)
1688 message(toString(this));
1689 inputFiles.insert(this);
1690
1691 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1692
1693 if (!checkCompatibility(this))
1694 return;
1695
1696 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1697
1698 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1699 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1700 rpaths.push_back(rpath);
1701 }
1702
1703 // Initialize symbols.
1704 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1705
1706 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1707 const auto *exportsTrie =
1708 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1709 if (dyldInfo && exportsTrie) {
1710 // It's unclear what should happen in this case. Maybe we should only error
1711 // out if the two load commands refer to different data?
1712 error(toString(this) +
1713 ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1714 return;
1715 } else if (dyldInfo) {
1716 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1717 } else if (exportsTrie) {
1718 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1719 } else {
1720 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1721 toString(this));
1722 return;
1723 }
1724 }
1725
parseExportedSymbols(uint32_t offset,uint32_t size)1726 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1727 struct TrieEntry {
1728 StringRef name;
1729 uint64_t flags;
1730 };
1731
1732 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1733 std::vector<TrieEntry> entries;
1734 // Find all the $ld$* symbols to process first.
1735 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1736 StringRef savedName = saver().save(name);
1737 if (handleLDSymbol(savedName))
1738 return;
1739 entries.push_back({savedName, flags});
1740 });
1741
1742 // Process the "normal" symbols.
1743 for (TrieEntry &entry : entries) {
1744 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1745 continue;
1746
1747 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1748 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1749
1750 symbols.push_back(
1751 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1752 }
1753 }
1754
parseLoadCommands(MemoryBufferRef mb)1755 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1756 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1757 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1758 target->headerSize;
1759 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1760 auto *cmd = reinterpret_cast<const load_command *>(p);
1761 p += cmd->cmdsize;
1762
1763 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1764 cmd->cmd == LC_REEXPORT_DYLIB) {
1765 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1766 StringRef reexportPath =
1767 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1768 loadReexport(reexportPath, exportingFile, nullptr);
1769 }
1770
1771 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1772 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1773 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1774 if (config->namespaceKind == NamespaceKind::flat &&
1775 cmd->cmd == LC_LOAD_DYLIB) {
1776 const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1777 StringRef dylibPath =
1778 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1779 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1780 if (!dylib)
1781 error(Twine("unable to locate library '") + dylibPath +
1782 "' loaded from '" + toString(this) + "' for -flat_namespace");
1783 }
1784 }
1785 }
1786
1787 // Some versions of Xcode ship with .tbd files that don't have the right
1788 // platform settings.
1789 constexpr std::array<StringRef, 3> skipPlatformChecks{
1790 "/usr/lib/system/libsystem_kernel.dylib",
1791 "/usr/lib/system/libsystem_platform.dylib",
1792 "/usr/lib/system/libsystem_pthread.dylib"};
1793
skipPlatformCheckForCatalyst(const InterfaceFile & interface,bool explicitlyLinked)1794 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1795 bool explicitlyLinked) {
1796 // Catalyst outputs can link against implicitly linked macOS-only libraries.
1797 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1798 return false;
1799 return is_contained(interface.targets(),
1800 MachO::Target(config->arch(), PLATFORM_MACOS));
1801 }
1802
isArchABICompatible(ArchitectureSet archSet,Architecture targetArch)1803 static bool isArchABICompatible(ArchitectureSet archSet,
1804 Architecture targetArch) {
1805 uint32_t cpuType;
1806 uint32_t targetCpuType;
1807 std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
1808
1809 return llvm::any_of(archSet, [&](const auto &p) {
1810 std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
1811 return cpuType == targetCpuType;
1812 });
1813 }
1814
isTargetPlatformArchCompatible(InterfaceFile::const_target_range interfaceTargets,Target target)1815 static bool isTargetPlatformArchCompatible(
1816 InterfaceFile::const_target_range interfaceTargets, Target target) {
1817 if (is_contained(interfaceTargets, target))
1818 return true;
1819
1820 if (config->forceExactCpuSubtypeMatch)
1821 return false;
1822
1823 ArchitectureSet archSet;
1824 for (const auto &p : interfaceTargets)
1825 if (p.Platform == target.Platform)
1826 archSet.set(p.Arch);
1827 if (archSet.empty())
1828 return false;
1829
1830 return isArchABICompatible(archSet, target.Arch);
1831 }
1832
DylibFile(const InterfaceFile & interface,DylibFile * umbrella,bool isBundleLoader,bool explicitlyLinked)1833 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1834 bool isBundleLoader, bool explicitlyLinked)
1835 : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1836 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1837 // FIXME: Add test for the missing TBD code path.
1838
1839 if (umbrella == nullptr)
1840 umbrella = this;
1841 this->umbrella = umbrella;
1842
1843 installName = saver().save(interface.getInstallName());
1844 compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1845 currentVersion = interface.getCurrentVersion().rawValue();
1846
1847 if (config->printEachFile)
1848 message(toString(this));
1849 inputFiles.insert(this);
1850
1851 if (!is_contained(skipPlatformChecks, installName) &&
1852 !isTargetPlatformArchCompatible(interface.targets(),
1853 config->platformInfo.target) &&
1854 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1855 error(toString(this) + " is incompatible with " +
1856 std::string(config->platformInfo.target));
1857 return;
1858 }
1859
1860 checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1861
1862 exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1863 auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
1864 const Twine &name) -> void {
1865 StringRef savedName = saver().save(name);
1866 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1867 return;
1868
1869 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1870 symbol.isWeakDefined(),
1871 symbol.isThreadLocalValue()));
1872 };
1873
1874 std::vector<const llvm::MachO::Symbol *> normalSymbols;
1875 normalSymbols.reserve(interface.symbolsCount());
1876 for (const auto *symbol : interface.symbols()) {
1877 if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
1878 continue;
1879 if (handleLDSymbol(symbol->getName()))
1880 continue;
1881
1882 switch (symbol->getKind()) {
1883 case SymbolKind::GlobalSymbol:
1884 case SymbolKind::ObjectiveCClass:
1885 case SymbolKind::ObjectiveCClassEHType:
1886 case SymbolKind::ObjectiveCInstanceVariable:
1887 normalSymbols.push_back(symbol);
1888 }
1889 }
1890
1891 // TODO(compnerd) filter out symbols based on the target platform
1892 for (const auto *symbol : normalSymbols) {
1893 switch (symbol->getKind()) {
1894 case SymbolKind::GlobalSymbol:
1895 addSymbol(*symbol, symbol->getName());
1896 break;
1897 case SymbolKind::ObjectiveCClass:
1898 // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1899 // want to emulate that.
1900 addSymbol(*symbol, objc::klass + symbol->getName());
1901 addSymbol(*symbol, objc::metaclass + symbol->getName());
1902 break;
1903 case SymbolKind::ObjectiveCClassEHType:
1904 addSymbol(*symbol, objc::ehtype + symbol->getName());
1905 break;
1906 case SymbolKind::ObjectiveCInstanceVariable:
1907 addSymbol(*symbol, objc::ivar + symbol->getName());
1908 break;
1909 }
1910 }
1911 }
1912
DylibFile(DylibFile * umbrella)1913 DylibFile::DylibFile(DylibFile *umbrella)
1914 : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
1915 explicitlyLinked(false), isBundleLoader(false) {
1916 if (umbrella == nullptr)
1917 umbrella = this;
1918 this->umbrella = umbrella;
1919 }
1920
parseReexports(const InterfaceFile & interface)1921 void DylibFile::parseReexports(const InterfaceFile &interface) {
1922 const InterfaceFile *topLevel =
1923 interface.getParent() == nullptr ? &interface : interface.getParent();
1924 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1925 InterfaceFile::const_target_range targets = intfRef.targets();
1926 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1927 isTargetPlatformArchCompatible(targets, config->platformInfo.target))
1928 loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1929 }
1930 }
1931
isExplicitlyLinked() const1932 bool DylibFile::isExplicitlyLinked() const {
1933 if (!explicitlyLinked)
1934 return false;
1935
1936 // If this dylib was explicitly linked, but at least one of the symbols
1937 // of the synthetic dylibs it created via $ld$previous symbols is
1938 // referenced, then that synthetic dylib fulfils the explicit linkedness
1939 // and we can deadstrip this dylib if it's unreferenced.
1940 for (const auto *dylib : extraDylibs)
1941 if (dylib->isReferenced())
1942 return false;
1943
1944 return true;
1945 }
1946
getSyntheticDylib(StringRef installName,uint32_t currentVersion,uint32_t compatVersion)1947 DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
1948 uint32_t currentVersion,
1949 uint32_t compatVersion) {
1950 for (DylibFile *dylib : extraDylibs)
1951 if (dylib->installName == installName) {
1952 // FIXME: Check what to do if different $ld$previous symbols
1953 // request the same dylib, but with different versions.
1954 return dylib;
1955 }
1956
1957 auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
1958 dylib->installName = saver().save(installName);
1959 dylib->currentVersion = currentVersion;
1960 dylib->compatibilityVersion = compatVersion;
1961 extraDylibs.push_back(dylib);
1962 return dylib;
1963 }
1964
1965 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1966 // name, compatibility version or hide/add symbols) for specific target
1967 // versions.
handleLDSymbol(StringRef originalName)1968 bool DylibFile::handleLDSymbol(StringRef originalName) {
1969 if (!originalName.startswith("$ld$"))
1970 return false;
1971
1972 StringRef action;
1973 StringRef name;
1974 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1975 if (action == "previous")
1976 handleLDPreviousSymbol(name, originalName);
1977 else if (action == "install_name")
1978 handleLDInstallNameSymbol(name, originalName);
1979 else if (action == "hide")
1980 handleLDHideSymbol(name, originalName);
1981 return true;
1982 }
1983
handleLDPreviousSymbol(StringRef name,StringRef originalName)1984 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1985 // originalName: $ld$ previous $ <installname> $ <compatversion> $
1986 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1987 StringRef installName;
1988 StringRef compatVersion;
1989 StringRef platformStr;
1990 StringRef startVersion;
1991 StringRef endVersion;
1992 StringRef symbolName;
1993 StringRef rest;
1994
1995 std::tie(installName, name) = name.split('$');
1996 std::tie(compatVersion, name) = name.split('$');
1997 std::tie(platformStr, name) = name.split('$');
1998 std::tie(startVersion, name) = name.split('$');
1999 std::tie(endVersion, name) = name.split('$');
2000 std::tie(symbolName, rest) = name.rsplit('$');
2001
2002 // FIXME: Does this do the right thing for zippered files?
2003 unsigned platform;
2004 if (platformStr.getAsInteger(10, platform) ||
2005 platform != static_cast<unsigned>(config->platform()))
2006 return;
2007
2008 VersionTuple start;
2009 if (start.tryParse(startVersion)) {
2010 warn(toString(this) + ": failed to parse start version, symbol '" +
2011 originalName + "' ignored");
2012 return;
2013 }
2014 VersionTuple end;
2015 if (end.tryParse(endVersion)) {
2016 warn(toString(this) + ": failed to parse end version, symbol '" +
2017 originalName + "' ignored");
2018 return;
2019 }
2020 if (config->platformInfo.minimum < start ||
2021 config->platformInfo.minimum >= end)
2022 return;
2023
2024 // Initialized to compatibilityVersion for the symbolName branch below.
2025 uint32_t newCompatibilityVersion = compatibilityVersion;
2026 uint32_t newCurrentVersionForSymbol = currentVersion;
2027 if (!compatVersion.empty()) {
2028 VersionTuple cVersion;
2029 if (cVersion.tryParse(compatVersion)) {
2030 warn(toString(this) +
2031 ": failed to parse compatibility version, symbol '" + originalName +
2032 "' ignored");
2033 return;
2034 }
2035 newCompatibilityVersion = encodeVersion(cVersion);
2036 newCurrentVersionForSymbol = newCompatibilityVersion;
2037 }
2038
2039 if (!symbolName.empty()) {
2040 // A $ld$previous$ symbol with symbol name adds a symbol with that name to
2041 // a dylib with given name and version.
2042 auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
2043 newCompatibilityVersion);
2044
2045 // The tbd file usually contains the $ld$previous symbol for an old version,
2046 // and then the symbol itself later, for newer deployment targets, like so:
2047 // symbols: [
2048 // '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
2049 // _zzz,
2050 // ]
2051 // Since the symbols are sorted, adding them to the symtab in the given
2052 // order means the $ld$previous version of _zzz will prevail, as desired.
2053 dylib->symbols.push_back(symtab->addDylib(
2054 saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
2055 return;
2056 }
2057
2058 // A $ld$previous$ symbol without symbol name modifies the dylib it's in.
2059 this->installName = saver().save(installName);
2060 this->compatibilityVersion = newCompatibilityVersion;
2061 }
2062
handleLDInstallNameSymbol(StringRef name,StringRef originalName)2063 void DylibFile::handleLDInstallNameSymbol(StringRef name,
2064 StringRef originalName) {
2065 // originalName: $ld$ install_name $ os<version> $ install_name
2066 StringRef condition, installName;
2067 std::tie(condition, installName) = name.split('$');
2068 VersionTuple version;
2069 if (!condition.consume_front("os") || version.tryParse(condition))
2070 warn(toString(this) + ": failed to parse os version, symbol '" +
2071 originalName + "' ignored");
2072 else if (version == config->platformInfo.minimum)
2073 this->installName = saver().save(installName);
2074 }
2075
handleLDHideSymbol(StringRef name,StringRef originalName)2076 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2077 StringRef symbolName;
2078 bool shouldHide = true;
2079 if (name.startswith("os")) {
2080 // If it's hidden based on versions.
2081 name = name.drop_front(2);
2082 StringRef minVersion;
2083 std::tie(minVersion, symbolName) = name.split('$');
2084 VersionTuple versionTup;
2085 if (versionTup.tryParse(minVersion)) {
2086 warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName +
2087 "` ignored.");
2088 return;
2089 }
2090 shouldHide = versionTup == config->platformInfo.minimum;
2091 } else {
2092 symbolName = name;
2093 }
2094
2095 if (shouldHide)
2096 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2097 }
2098
checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const2099 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2100 if (config->applicationExtension && !dylibIsAppExtensionSafe)
2101 warn("using '-application_extension' with unsafe dylib: " + toString(this));
2102 }
2103
ArchiveFile(std::unique_ptr<object::Archive> && f,bool forceHidden)2104 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
2105 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
2106 forceHidden(forceHidden) {}
2107
addLazySymbols()2108 void ArchiveFile::addLazySymbols() {
2109 for (const object::Archive::Symbol &sym : file->symbols())
2110 symtab->addLazyArchive(sym.getName(), this, sym);
2111 }
2112
2113 static Expected<InputFile *>
loadArchiveMember(MemoryBufferRef mb,uint32_t modTime,StringRef archiveName,uint64_t offsetInArchive,bool forceHidden)2114 loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
2115 uint64_t offsetInArchive, bool forceHidden) {
2116 if (config->zeroModTime)
2117 modTime = 0;
2118
2119 switch (identify_magic(mb.getBuffer())) {
2120 case file_magic::macho_object:
2121 return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden);
2122 case file_magic::bitcode:
2123 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
2124 forceHidden);
2125 default:
2126 return createStringError(inconvertibleErrorCode(),
2127 mb.getBufferIdentifier() +
2128 " has unhandled file type");
2129 }
2130 }
2131
fetch(const object::Archive::Child & c,StringRef reason)2132 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2133 if (!seen.insert(c.getChildOffset()).second)
2134 return Error::success();
2135
2136 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2137 if (!mb)
2138 return mb.takeError();
2139
2140 // Thin archives refer to .o files, so --reproduce needs the .o files too.
2141 if (tar && c.getParent()->isThin())
2142 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
2143
2144 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2145 if (!modTime)
2146 return modTime.takeError();
2147
2148 Expected<InputFile *> file = loadArchiveMember(
2149 *mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden);
2150
2151 if (!file)
2152 return file.takeError();
2153
2154 inputFiles.insert(*file);
2155 printArchiveMemberLoad(reason, *file);
2156 return Error::success();
2157 }
2158
fetch(const object::Archive::Symbol & sym)2159 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2160 object::Archive::Child c =
2161 CHECK(sym.getMember(), toString(this) +
2162 ": could not get the member defining symbol " +
2163 toMachOString(sym));
2164
2165 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2166 // and become invalid after that call. Copy it to the stack so we can refer
2167 // to it later.
2168 const object::Archive::Symbol symCopy = sym;
2169
2170 // ld64 doesn't demangle sym here even with -demangle.
2171 // Match that: intentionally don't call toMachOString().
2172 if (Error e = fetch(c, symCopy.getName()))
2173 error(toString(this) + ": could not get the member defining symbol " +
2174 toMachOString(symCopy) + ": " + toString(std::move(e)));
2175 }
2176
createBitcodeSymbol(const lto::InputFile::Symbol & objSym,BitcodeFile & file)2177 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2178 BitcodeFile &file) {
2179 StringRef name = saver().save(objSym.getName());
2180
2181 if (objSym.isUndefined())
2182 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2183
2184 // TODO: Write a test demonstrating why computing isPrivateExtern before
2185 // LTO compilation is important.
2186 bool isPrivateExtern = false;
2187 switch (objSym.getVisibility()) {
2188 case GlobalValue::HiddenVisibility:
2189 isPrivateExtern = true;
2190 break;
2191 case GlobalValue::ProtectedVisibility:
2192 error(name + " has protected visibility, which is not supported by Mach-O");
2193 break;
2194 case GlobalValue::DefaultVisibility:
2195 break;
2196 }
2197 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
2198 file.forceHidden;
2199
2200 if (objSym.isCommon())
2201 return symtab->addCommon(name, &file, objSym.getCommonSize(),
2202 objSym.getCommonAlignment(), isPrivateExtern);
2203
2204 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2205 /*size=*/0, objSym.isWeak(), isPrivateExtern,
2206 /*isThumb=*/false,
2207 /*isReferencedDynamically=*/false,
2208 /*noDeadStrip=*/false,
2209 /*isWeakDefCanBeHidden=*/false);
2210 }
2211
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive,bool lazy,bool forceHidden)2212 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2213 uint64_t offsetInArchive, bool lazy, bool forceHidden)
2214 : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
2215 this->archiveName = std::string(archiveName);
2216 std::string path = mb.getBufferIdentifier().str();
2217 if (config->thinLTOIndexOnly)
2218 path = replaceThinLTOSuffix(mb.getBufferIdentifier());
2219
2220 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2221 // name. If two members with the same name are provided, this causes a
2222 // collision and ThinLTO can't proceed.
2223 // So, we append the archive name to disambiguate two members with the same
2224 // name from multiple different archives, and offset within the archive to
2225 // disambiguate two members of the same name from a single archive.
2226 MemoryBufferRef mbref(mb.getBuffer(),
2227 saver().save(archiveName.empty()
2228 ? path
2229 : archiveName +
2230 sys::path::filename(path) +
2231 utostr(offsetInArchive)));
2232
2233 obj = check(lto::InputFile::create(mbref));
2234 if (lazy)
2235 parseLazy();
2236 else
2237 parse();
2238 }
2239
parse()2240 void BitcodeFile::parse() {
2241 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2242 // "winning" symbol will then be marked as Prevailing at LTO compilation
2243 // time.
2244 symbols.clear();
2245 for (const lto::InputFile::Symbol &objSym : obj->symbols())
2246 symbols.push_back(createBitcodeSymbol(objSym, *this));
2247 }
2248
parseLazy()2249 void BitcodeFile::parseLazy() {
2250 symbols.resize(obj->symbols().size());
2251 for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) {
2252 if (!objSym.isUndefined()) {
2253 symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this);
2254 if (!lazy)
2255 break;
2256 }
2257 }
2258 }
2259
replaceThinLTOSuffix(StringRef path)2260 std::string macho::replaceThinLTOSuffix(StringRef path) {
2261 auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
2262 if (path.consume_back(suffix))
2263 return (path + repl).str();
2264 return std::string(path);
2265 }
2266
extract(InputFile & file,StringRef reason)2267 void macho::extract(InputFile &file, StringRef reason) {
2268 if (!file.lazy)
2269 return;
2270 file.lazy = false;
2271
2272 printArchiveMemberLoad(reason, &file);
2273 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2274 bitcode->parse();
2275 } else {
2276 auto &f = cast<ObjFile>(file);
2277 if (target->wordSize == 8)
2278 f.parse<LP64>();
2279 else
2280 f.parse<ILP32>();
2281 }
2282 }
2283
2284 template void ObjFile::parse<LP64>();
2285