xref: /linux/fs/ocfs2/aops.c (revision d1154707)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 
18 #include <cluster/masklog.h>
19 
20 #include "ocfs2.h"
21 
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34 
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39 
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 				   struct buffer_head *bh_result, int create)
42 {
43 	int err = -EIO;
44 	int status;
45 	struct ocfs2_dinode *fe = NULL;
46 	struct buffer_head *bh = NULL;
47 	struct buffer_head *buffer_cache_bh = NULL;
48 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 	void *kaddr;
50 
51 	trace_ocfs2_symlink_get_block(
52 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
53 			(unsigned long long)iblock, bh_result, create);
54 
55 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56 
57 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 		     (unsigned long long)iblock);
60 		goto bail;
61 	}
62 
63 	status = ocfs2_read_inode_block(inode, &bh);
64 	if (status < 0) {
65 		mlog_errno(status);
66 		goto bail;
67 	}
68 	fe = (struct ocfs2_dinode *) bh->b_data;
69 
70 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 						    le32_to_cpu(fe->i_clusters))) {
72 		err = -ENOMEM;
73 		mlog(ML_ERROR, "block offset is outside the allocated size: "
74 		     "%llu\n", (unsigned long long)iblock);
75 		goto bail;
76 	}
77 
78 	/* We don't use the page cache to create symlink data, so if
79 	 * need be, copy it over from the buffer cache. */
80 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 			    iblock;
83 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 		if (!buffer_cache_bh) {
85 			err = -ENOMEM;
86 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 			goto bail;
88 		}
89 
90 		/* we haven't locked out transactions, so a commit
91 		 * could've happened. Since we've got a reference on
92 		 * the bh, even if it commits while we're doing the
93 		 * copy, the data is still good. */
94 		if (buffer_jbd(buffer_cache_bh)
95 		    && ocfs2_inode_is_new(inode)) {
96 			kaddr = kmap_atomic(bh_result->b_page);
97 			if (!kaddr) {
98 				mlog(ML_ERROR, "couldn't kmap!\n");
99 				goto bail;
100 			}
101 			memcpy(kaddr + (bh_result->b_size * iblock),
102 			       buffer_cache_bh->b_data,
103 			       bh_result->b_size);
104 			kunmap_atomic(kaddr);
105 			set_buffer_uptodate(bh_result);
106 		}
107 		brelse(buffer_cache_bh);
108 	}
109 
110 	map_bh(bh_result, inode->i_sb,
111 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112 
113 	err = 0;
114 
115 bail:
116 	brelse(bh);
117 
118 	return err;
119 }
120 
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 		    struct buffer_head *bh_result, int create)
123 {
124 	int ret = 0;
125 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
126 
127 	down_read(&oi->ip_alloc_sem);
128 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 	up_read(&oi->ip_alloc_sem);
130 
131 	return ret;
132 }
133 
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 		    struct buffer_head *bh_result, int create)
136 {
137 	int err = 0;
138 	unsigned int ext_flags;
139 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 	u64 p_blkno, count, past_eof;
141 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142 
143 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 			      (unsigned long long)iblock, bh_result, create);
145 
146 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 		     inode, inode->i_ino);
149 
150 	if (S_ISLNK(inode->i_mode)) {
151 		/* this always does I/O for some reason. */
152 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 		goto bail;
154 	}
155 
156 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 					  &ext_flags);
158 	if (err) {
159 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 		     (unsigned long long)p_blkno);
162 		goto bail;
163 	}
164 
165 	if (max_blocks < count)
166 		count = max_blocks;
167 
168 	/*
169 	 * ocfs2 never allocates in this function - the only time we
170 	 * need to use BH_New is when we're extending i_size on a file
171 	 * system which doesn't support holes, in which case BH_New
172 	 * allows __block_write_begin() to zero.
173 	 *
174 	 * If we see this on a sparse file system, then a truncate has
175 	 * raced us and removed the cluster. In this case, we clear
176 	 * the buffers dirty and uptodate bits and let the buffer code
177 	 * ignore it as a hole.
178 	 */
179 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 		clear_buffer_dirty(bh_result);
181 		clear_buffer_uptodate(bh_result);
182 		goto bail;
183 	}
184 
185 	/* Treat the unwritten extent as a hole for zeroing purposes. */
186 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 		map_bh(bh_result, inode->i_sb, p_blkno);
188 
189 	bh_result->b_size = count << inode->i_blkbits;
190 
191 	if (!ocfs2_sparse_alloc(osb)) {
192 		if (p_blkno == 0) {
193 			err = -EIO;
194 			mlog(ML_ERROR,
195 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 			     (unsigned long long)iblock,
197 			     (unsigned long long)p_blkno,
198 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 			dump_stack();
201 			goto bail;
202 		}
203 	}
204 
205 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206 
207 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 				  (unsigned long long)past_eof);
209 	if (create && (iblock >= past_eof))
210 		set_buffer_new(bh_result);
211 
212 bail:
213 	if (err < 0)
214 		err = -EIO;
215 
216 	return err;
217 }
218 
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 			   struct buffer_head *di_bh)
221 {
222 	void *kaddr;
223 	loff_t size;
224 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225 
226 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 		return -EROFS;
230 	}
231 
232 	size = i_size_read(inode);
233 
234 	if (size > PAGE_SIZE ||
235 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 		ocfs2_error(inode->i_sb,
237 			    "Inode %llu has with inline data has bad size: %Lu\n",
238 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 			    (unsigned long long)size);
240 		return -EROFS;
241 	}
242 
243 	kaddr = kmap_atomic(page);
244 	if (size)
245 		memcpy(kaddr, di->id2.i_data.id_data, size);
246 	/* Clear the remaining part of the page */
247 	memset(kaddr + size, 0, PAGE_SIZE - size);
248 	flush_dcache_page(page);
249 	kunmap_atomic(kaddr);
250 
251 	SetPageUptodate(page);
252 
253 	return 0;
254 }
255 
ocfs2_readpage_inline(struct inode * inode,struct page * page)256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258 	int ret;
259 	struct buffer_head *di_bh = NULL;
260 
261 	BUG_ON(!PageLocked(page));
262 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263 
264 	ret = ocfs2_read_inode_block(inode, &di_bh);
265 	if (ret) {
266 		mlog_errno(ret);
267 		goto out;
268 	}
269 
270 	ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272 	unlock_page(page);
273 
274 	brelse(di_bh);
275 	return ret;
276 }
277 
ocfs2_read_folio(struct file * file,struct folio * folio)278 static int ocfs2_read_folio(struct file *file, struct folio *folio)
279 {
280 	struct inode *inode = folio->mapping->host;
281 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 	loff_t start = folio_pos(folio);
283 	int ret, unlock = 1;
284 
285 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
286 
287 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
288 	if (ret != 0) {
289 		if (ret == AOP_TRUNCATED_PAGE)
290 			unlock = 0;
291 		mlog_errno(ret);
292 		goto out;
293 	}
294 
295 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296 		/*
297 		 * Unlock the folio and cycle ip_alloc_sem so that we don't
298 		 * busyloop waiting for ip_alloc_sem to unlock
299 		 */
300 		ret = AOP_TRUNCATED_PAGE;
301 		folio_unlock(folio);
302 		unlock = 0;
303 		down_read(&oi->ip_alloc_sem);
304 		up_read(&oi->ip_alloc_sem);
305 		goto out_inode_unlock;
306 	}
307 
308 	/*
309 	 * i_size might have just been updated as we grabed the meta lock.  We
310 	 * might now be discovering a truncate that hit on another node.
311 	 * block_read_full_folio->get_block freaks out if it is asked to read
312 	 * beyond the end of a file, so we check here.  Callers
313 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
314 	 * and notice that the folio they just read isn't needed.
315 	 *
316 	 * XXX sys_readahead() seems to get that wrong?
317 	 */
318 	if (start >= i_size_read(inode)) {
319 		folio_zero_segment(folio, 0, folio_size(folio));
320 		folio_mark_uptodate(folio);
321 		ret = 0;
322 		goto out_alloc;
323 	}
324 
325 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
326 		ret = ocfs2_readpage_inline(inode, &folio->page);
327 	else
328 		ret = block_read_full_folio(folio, ocfs2_get_block);
329 	unlock = 0;
330 
331 out_alloc:
332 	up_read(&oi->ip_alloc_sem);
333 out_inode_unlock:
334 	ocfs2_inode_unlock(inode, 0);
335 out:
336 	if (unlock)
337 		folio_unlock(folio);
338 	return ret;
339 }
340 
341 /*
342  * This is used only for read-ahead. Failures or difficult to handle
343  * situations are safe to ignore.
344  *
345  * Right now, we don't bother with BH_Boundary - in-inode extent lists
346  * are quite large (243 extents on 4k blocks), so most inodes don't
347  * grow out to a tree. If need be, detecting boundary extents could
348  * trivially be added in a future version of ocfs2_get_block().
349  */
ocfs2_readahead(struct readahead_control * rac)350 static void ocfs2_readahead(struct readahead_control *rac)
351 {
352 	int ret;
353 	struct inode *inode = rac->mapping->host;
354 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 
356 	/*
357 	 * Use the nonblocking flag for the dlm code to avoid page
358 	 * lock inversion, but don't bother with retrying.
359 	 */
360 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 	if (ret)
362 		return;
363 
364 	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
365 		goto out_unlock;
366 
367 	/*
368 	 * Don't bother with inline-data. There isn't anything
369 	 * to read-ahead in that case anyway...
370 	 */
371 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
372 		goto out_up;
373 
374 	/*
375 	 * Check whether a remote node truncated this file - we just
376 	 * drop out in that case as it's not worth handling here.
377 	 */
378 	if (readahead_pos(rac) >= i_size_read(inode))
379 		goto out_up;
380 
381 	mpage_readahead(rac, ocfs2_get_block);
382 
383 out_up:
384 	up_read(&oi->ip_alloc_sem);
385 out_unlock:
386 	ocfs2_inode_unlock(inode, 0);
387 }
388 
389 /* Note: Because we don't support holes, our allocation has
390  * already happened (allocation writes zeros to the file data)
391  * so we don't have to worry about ordered writes in
392  * ocfs2_writepages.
393  *
394  * ->writepages is called during the process of invalidating the page cache
395  * during blocked lock processing.  It can't block on any cluster locks
396  * to during block mapping.  It's relying on the fact that the block
397  * mapping can't have disappeared under the dirty pages that it is
398  * being asked to write back.
399  */
ocfs2_writepages(struct address_space * mapping,struct writeback_control * wbc)400 static int ocfs2_writepages(struct address_space *mapping,
401 		struct writeback_control *wbc)
402 {
403 	return mpage_writepages(mapping, wbc, ocfs2_get_block);
404 }
405 
406 /* Taken from ext3. We don't necessarily need the full blown
407  * functionality yet, but IMHO it's better to cut and paste the whole
408  * thing so we can avoid introducing our own bugs (and easily pick up
409  * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))410 int walk_page_buffers(	handle_t *handle,
411 			struct buffer_head *head,
412 			unsigned from,
413 			unsigned to,
414 			int *partial,
415 			int (*fn)(	handle_t *handle,
416 					struct buffer_head *bh))
417 {
418 	struct buffer_head *bh;
419 	unsigned block_start, block_end;
420 	unsigned blocksize = head->b_size;
421 	int err, ret = 0;
422 	struct buffer_head *next;
423 
424 	for (	bh = head, block_start = 0;
425 		ret == 0 && (bh != head || !block_start);
426 	    	block_start = block_end, bh = next)
427 	{
428 		next = bh->b_this_page;
429 		block_end = block_start + blocksize;
430 		if (block_end <= from || block_start >= to) {
431 			if (partial && !buffer_uptodate(bh))
432 				*partial = 1;
433 			continue;
434 		}
435 		err = (*fn)(handle, bh);
436 		if (!ret)
437 			ret = err;
438 	}
439 	return ret;
440 }
441 
ocfs2_bmap(struct address_space * mapping,sector_t block)442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443 {
444 	sector_t status;
445 	u64 p_blkno = 0;
446 	int err = 0;
447 	struct inode *inode = mapping->host;
448 
449 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 			 (unsigned long long)block);
451 
452 	/*
453 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
454 	 * bypasseѕ the file system for actual I/O.  We really can't allow
455 	 * that on refcounted inodes, so we have to skip out here.  And yes,
456 	 * 0 is the magic code for a bmap error..
457 	 */
458 	if (ocfs2_is_refcount_inode(inode))
459 		return 0;
460 
461 	/* We don't need to lock journal system files, since they aren't
462 	 * accessed concurrently from multiple nodes.
463 	 */
464 	if (!INODE_JOURNAL(inode)) {
465 		err = ocfs2_inode_lock(inode, NULL, 0);
466 		if (err) {
467 			if (err != -ENOENT)
468 				mlog_errno(err);
469 			goto bail;
470 		}
471 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
472 	}
473 
474 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
475 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
476 						  NULL);
477 
478 	if (!INODE_JOURNAL(inode)) {
479 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
480 		ocfs2_inode_unlock(inode, 0);
481 	}
482 
483 	if (err) {
484 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
485 		     (unsigned long long)block);
486 		mlog_errno(err);
487 		goto bail;
488 	}
489 
490 bail:
491 	status = err ? 0 : p_blkno;
492 
493 	return status;
494 }
495 
ocfs2_release_folio(struct folio * folio,gfp_t wait)496 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
497 {
498 	if (!folio_buffers(folio))
499 		return false;
500 	return try_to_free_buffers(folio);
501 }
502 
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)503 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
504 					    u32 cpos,
505 					    unsigned int *start,
506 					    unsigned int *end)
507 {
508 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
509 
510 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
511 		unsigned int cpp;
512 
513 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
514 
515 		cluster_start = cpos % cpp;
516 		cluster_start = cluster_start << osb->s_clustersize_bits;
517 
518 		cluster_end = cluster_start + osb->s_clustersize;
519 	}
520 
521 	BUG_ON(cluster_start > PAGE_SIZE);
522 	BUG_ON(cluster_end > PAGE_SIZE);
523 
524 	if (start)
525 		*start = cluster_start;
526 	if (end)
527 		*end = cluster_end;
528 }
529 
530 /*
531  * 'from' and 'to' are the region in the page to avoid zeroing.
532  *
533  * If pagesize > clustersize, this function will avoid zeroing outside
534  * of the cluster boundary.
535  *
536  * from == to == 0 is code for "zero the entire cluster region"
537  */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)538 static void ocfs2_clear_page_regions(struct page *page,
539 				     struct ocfs2_super *osb, u32 cpos,
540 				     unsigned from, unsigned to)
541 {
542 	void *kaddr;
543 	unsigned int cluster_start, cluster_end;
544 
545 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
546 
547 	kaddr = kmap_atomic(page);
548 
549 	if (from || to) {
550 		if (from > cluster_start)
551 			memset(kaddr + cluster_start, 0, from - cluster_start);
552 		if (to < cluster_end)
553 			memset(kaddr + to, 0, cluster_end - to);
554 	} else {
555 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
556 	}
557 
558 	kunmap_atomic(kaddr);
559 }
560 
561 /*
562  * Nonsparse file systems fully allocate before we get to the write
563  * code. This prevents ocfs2_write() from tagging the write as an
564  * allocating one, which means ocfs2_map_page_blocks() might try to
565  * read-in the blocks at the tail of our file. Avoid reading them by
566  * testing i_size against each block offset.
567  */
ocfs2_should_read_blk(struct inode * inode,struct folio * folio,unsigned int block_start)568 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
569 				 unsigned int block_start)
570 {
571 	u64 offset = folio_pos(folio) + block_start;
572 
573 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
574 		return 1;
575 
576 	if (i_size_read(inode) > offset)
577 		return 1;
578 
579 	return 0;
580 }
581 
582 /*
583  * Some of this taken from __block_write_begin(). We already have our
584  * mapping by now though, and the entire write will be allocating or
585  * it won't, so not much need to use BH_New.
586  *
587  * This will also skip zeroing, which is handled externally.
588  */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)589 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
590 			  struct inode *inode, unsigned int from,
591 			  unsigned int to, int new)
592 {
593 	struct folio *folio = page_folio(page);
594 	int ret = 0;
595 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
596 	unsigned int block_end, block_start;
597 	unsigned int bsize = i_blocksize(inode);
598 
599 	head = folio_buffers(folio);
600 	if (!head)
601 		head = create_empty_buffers(folio, bsize, 0);
602 
603 	for (bh = head, block_start = 0; bh != head || !block_start;
604 	     bh = bh->b_this_page, block_start += bsize) {
605 		block_end = block_start + bsize;
606 
607 		clear_buffer_new(bh);
608 
609 		/*
610 		 * Ignore blocks outside of our i/o range -
611 		 * they may belong to unallocated clusters.
612 		 */
613 		if (block_start >= to || block_end <= from) {
614 			if (folio_test_uptodate(folio))
615 				set_buffer_uptodate(bh);
616 			continue;
617 		}
618 
619 		/*
620 		 * For an allocating write with cluster size >= page
621 		 * size, we always write the entire page.
622 		 */
623 		if (new)
624 			set_buffer_new(bh);
625 
626 		if (!buffer_mapped(bh)) {
627 			map_bh(bh, inode->i_sb, *p_blkno);
628 			clean_bdev_bh_alias(bh);
629 		}
630 
631 		if (folio_test_uptodate(folio)) {
632 			set_buffer_uptodate(bh);
633 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
634 			   !buffer_new(bh) &&
635 			   ocfs2_should_read_blk(inode, folio, block_start) &&
636 			   (block_start < from || block_end > to)) {
637 			bh_read_nowait(bh, 0);
638 			*wait_bh++=bh;
639 		}
640 
641 		*p_blkno = *p_blkno + 1;
642 	}
643 
644 	/*
645 	 * If we issued read requests - let them complete.
646 	 */
647 	while(wait_bh > wait) {
648 		wait_on_buffer(*--wait_bh);
649 		if (!buffer_uptodate(*wait_bh))
650 			ret = -EIO;
651 	}
652 
653 	if (ret == 0 || !new)
654 		return ret;
655 
656 	/*
657 	 * If we get -EIO above, zero out any newly allocated blocks
658 	 * to avoid exposing stale data.
659 	 */
660 	bh = head;
661 	block_start = 0;
662 	do {
663 		block_end = block_start + bsize;
664 		if (block_end <= from)
665 			goto next_bh;
666 		if (block_start >= to)
667 			break;
668 
669 		folio_zero_range(folio, block_start, bh->b_size);
670 		set_buffer_uptodate(bh);
671 		mark_buffer_dirty(bh);
672 
673 next_bh:
674 		block_start = block_end;
675 		bh = bh->b_this_page;
676 	} while (bh != head);
677 
678 	return ret;
679 }
680 
681 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
682 #define OCFS2_MAX_CTXT_PAGES	1
683 #else
684 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
685 #endif
686 
687 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
688 
689 struct ocfs2_unwritten_extent {
690 	struct list_head	ue_node;
691 	struct list_head	ue_ip_node;
692 	u32			ue_cpos;
693 	u32			ue_phys;
694 };
695 
696 /*
697  * Describe the state of a single cluster to be written to.
698  */
699 struct ocfs2_write_cluster_desc {
700 	u32		c_cpos;
701 	u32		c_phys;
702 	/*
703 	 * Give this a unique field because c_phys eventually gets
704 	 * filled.
705 	 */
706 	unsigned	c_new;
707 	unsigned	c_clear_unwritten;
708 	unsigned	c_needs_zero;
709 };
710 
711 struct ocfs2_write_ctxt {
712 	/* Logical cluster position / len of write */
713 	u32				w_cpos;
714 	u32				w_clen;
715 
716 	/* First cluster allocated in a nonsparse extend */
717 	u32				w_first_new_cpos;
718 
719 	/* Type of caller. Must be one of buffer, mmap, direct.  */
720 	ocfs2_write_type_t		w_type;
721 
722 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
723 
724 	/*
725 	 * This is true if page_size > cluster_size.
726 	 *
727 	 * It triggers a set of special cases during write which might
728 	 * have to deal with allocating writes to partial pages.
729 	 */
730 	unsigned int			w_large_pages;
731 
732 	/*
733 	 * Pages involved in this write.
734 	 *
735 	 * w_target_page is the page being written to by the user.
736 	 *
737 	 * w_pages is an array of pages which always contains
738 	 * w_target_page, and in the case of an allocating write with
739 	 * page_size < cluster size, it will contain zero'd and mapped
740 	 * pages adjacent to w_target_page which need to be written
741 	 * out in so that future reads from that region will get
742 	 * zero's.
743 	 */
744 	unsigned int			w_num_pages;
745 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
746 	struct page			*w_target_page;
747 
748 	/*
749 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
750 	 * against w_target_page in ocfs2_write_end_nolock.
751 	 */
752 	unsigned int			w_target_locked:1;
753 
754 	/*
755 	 * ocfs2_write_end() uses this to know what the real range to
756 	 * write in the target should be.
757 	 */
758 	unsigned int			w_target_from;
759 	unsigned int			w_target_to;
760 
761 	/*
762 	 * We could use journal_current_handle() but this is cleaner,
763 	 * IMHO -Mark
764 	 */
765 	handle_t			*w_handle;
766 
767 	struct buffer_head		*w_di_bh;
768 
769 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
770 
771 	struct list_head		w_unwritten_list;
772 	unsigned int			w_unwritten_count;
773 };
774 
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)775 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
776 {
777 	int i;
778 
779 	for(i = 0; i < num_pages; i++) {
780 		if (pages[i]) {
781 			unlock_page(pages[i]);
782 			mark_page_accessed(pages[i]);
783 			put_page(pages[i]);
784 		}
785 	}
786 }
787 
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)788 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
789 {
790 	int i;
791 
792 	/*
793 	 * w_target_locked is only set to true in the page_mkwrite() case.
794 	 * The intent is to allow us to lock the target page from write_begin()
795 	 * to write_end(). The caller must hold a ref on w_target_page.
796 	 */
797 	if (wc->w_target_locked) {
798 		BUG_ON(!wc->w_target_page);
799 		for (i = 0; i < wc->w_num_pages; i++) {
800 			if (wc->w_target_page == wc->w_pages[i]) {
801 				wc->w_pages[i] = NULL;
802 				break;
803 			}
804 		}
805 		mark_page_accessed(wc->w_target_page);
806 		put_page(wc->w_target_page);
807 	}
808 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
809 }
810 
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)811 static void ocfs2_free_unwritten_list(struct inode *inode,
812 				 struct list_head *head)
813 {
814 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
815 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
816 
817 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
818 		list_del(&ue->ue_node);
819 		spin_lock(&oi->ip_lock);
820 		list_del(&ue->ue_ip_node);
821 		spin_unlock(&oi->ip_lock);
822 		kfree(ue);
823 	}
824 }
825 
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)826 static void ocfs2_free_write_ctxt(struct inode *inode,
827 				  struct ocfs2_write_ctxt *wc)
828 {
829 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
830 	ocfs2_unlock_pages(wc);
831 	brelse(wc->w_di_bh);
832 	kfree(wc);
833 }
834 
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)835 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
836 				  struct ocfs2_super *osb, loff_t pos,
837 				  unsigned len, ocfs2_write_type_t type,
838 				  struct buffer_head *di_bh)
839 {
840 	u32 cend;
841 	struct ocfs2_write_ctxt *wc;
842 
843 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
844 	if (!wc)
845 		return -ENOMEM;
846 
847 	wc->w_cpos = pos >> osb->s_clustersize_bits;
848 	wc->w_first_new_cpos = UINT_MAX;
849 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
850 	wc->w_clen = cend - wc->w_cpos + 1;
851 	get_bh(di_bh);
852 	wc->w_di_bh = di_bh;
853 	wc->w_type = type;
854 
855 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
856 		wc->w_large_pages = 1;
857 	else
858 		wc->w_large_pages = 0;
859 
860 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
861 	INIT_LIST_HEAD(&wc->w_unwritten_list);
862 
863 	*wcp = wc;
864 
865 	return 0;
866 }
867 
868 /*
869  * If a page has any new buffers, zero them out here, and mark them uptodate
870  * and dirty so they'll be written out (in order to prevent uninitialised
871  * block data from leaking). And clear the new bit.
872  */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)873 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
874 {
875 	unsigned int block_start, block_end;
876 	struct buffer_head *head, *bh;
877 
878 	BUG_ON(!PageLocked(page));
879 	if (!page_has_buffers(page))
880 		return;
881 
882 	bh = head = page_buffers(page);
883 	block_start = 0;
884 	do {
885 		block_end = block_start + bh->b_size;
886 
887 		if (buffer_new(bh)) {
888 			if (block_end > from && block_start < to) {
889 				if (!PageUptodate(page)) {
890 					unsigned start, end;
891 
892 					start = max(from, block_start);
893 					end = min(to, block_end);
894 
895 					zero_user_segment(page, start, end);
896 					set_buffer_uptodate(bh);
897 				}
898 
899 				clear_buffer_new(bh);
900 				mark_buffer_dirty(bh);
901 			}
902 		}
903 
904 		block_start = block_end;
905 		bh = bh->b_this_page;
906 	} while (bh != head);
907 }
908 
909 /*
910  * Only called when we have a failure during allocating write to write
911  * zero's to the newly allocated region.
912  */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)913 static void ocfs2_write_failure(struct inode *inode,
914 				struct ocfs2_write_ctxt *wc,
915 				loff_t user_pos, unsigned user_len)
916 {
917 	int i;
918 	unsigned from = user_pos & (PAGE_SIZE - 1),
919 		to = user_pos + user_len;
920 	struct page *tmppage;
921 
922 	if (wc->w_target_page)
923 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
924 
925 	for(i = 0; i < wc->w_num_pages; i++) {
926 		tmppage = wc->w_pages[i];
927 
928 		if (tmppage && page_has_buffers(tmppage)) {
929 			if (ocfs2_should_order_data(inode))
930 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
931 							   user_pos, user_len);
932 
933 			block_commit_write(tmppage, from, to);
934 		}
935 	}
936 }
937 
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)938 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
939 					struct ocfs2_write_ctxt *wc,
940 					struct page *page, u32 cpos,
941 					loff_t user_pos, unsigned user_len,
942 					int new)
943 {
944 	int ret;
945 	unsigned int map_from = 0, map_to = 0;
946 	unsigned int cluster_start, cluster_end;
947 	unsigned int user_data_from = 0, user_data_to = 0;
948 
949 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
950 					&cluster_start, &cluster_end);
951 
952 	/* treat the write as new if the a hole/lseek spanned across
953 	 * the page boundary.
954 	 */
955 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
956 			(page_offset(page) <= user_pos));
957 
958 	if (page == wc->w_target_page) {
959 		map_from = user_pos & (PAGE_SIZE - 1);
960 		map_to = map_from + user_len;
961 
962 		if (new)
963 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
964 						    cluster_start, cluster_end,
965 						    new);
966 		else
967 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968 						    map_from, map_to, new);
969 		if (ret) {
970 			mlog_errno(ret);
971 			goto out;
972 		}
973 
974 		user_data_from = map_from;
975 		user_data_to = map_to;
976 		if (new) {
977 			map_from = cluster_start;
978 			map_to = cluster_end;
979 		}
980 	} else {
981 		/*
982 		 * If we haven't allocated the new page yet, we
983 		 * shouldn't be writing it out without copying user
984 		 * data. This is likely a math error from the caller.
985 		 */
986 		BUG_ON(!new);
987 
988 		map_from = cluster_start;
989 		map_to = cluster_end;
990 
991 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
992 					    cluster_start, cluster_end, new);
993 		if (ret) {
994 			mlog_errno(ret);
995 			goto out;
996 		}
997 	}
998 
999 	/*
1000 	 * Parts of newly allocated pages need to be zero'd.
1001 	 *
1002 	 * Above, we have also rewritten 'to' and 'from' - as far as
1003 	 * the rest of the function is concerned, the entire cluster
1004 	 * range inside of a page needs to be written.
1005 	 *
1006 	 * We can skip this if the page is up to date - it's already
1007 	 * been zero'd from being read in as a hole.
1008 	 */
1009 	if (new && !PageUptodate(page))
1010 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1011 					 cpos, user_data_from, user_data_to);
1012 
1013 	flush_dcache_page(page);
1014 
1015 out:
1016 	return ret;
1017 }
1018 
1019 /*
1020  * This function will only grab one clusters worth of pages.
1021  */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1022 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1023 				      struct ocfs2_write_ctxt *wc,
1024 				      u32 cpos, loff_t user_pos,
1025 				      unsigned user_len, int new,
1026 				      struct page *mmap_page)
1027 {
1028 	int ret = 0, i;
1029 	unsigned long start, target_index, end_index, index;
1030 	struct inode *inode = mapping->host;
1031 	loff_t last_byte;
1032 
1033 	target_index = user_pos >> PAGE_SHIFT;
1034 
1035 	/*
1036 	 * Figure out how many pages we'll be manipulating here. For
1037 	 * non allocating write, we just change the one
1038 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1039 	 * writing past i_size, we only need enough pages to cover the
1040 	 * last page of the write.
1041 	 */
1042 	if (new) {
1043 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1044 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1045 		/*
1046 		 * We need the index *past* the last page we could possibly
1047 		 * touch.  This is the page past the end of the write or
1048 		 * i_size, whichever is greater.
1049 		 */
1050 		last_byte = max(user_pos + user_len, i_size_read(inode));
1051 		BUG_ON(last_byte < 1);
1052 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1053 		if ((start + wc->w_num_pages) > end_index)
1054 			wc->w_num_pages = end_index - start;
1055 	} else {
1056 		wc->w_num_pages = 1;
1057 		start = target_index;
1058 	}
1059 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1060 
1061 	for(i = 0; i < wc->w_num_pages; i++) {
1062 		index = start + i;
1063 
1064 		if (index >= target_index && index <= end_index &&
1065 		    wc->w_type == OCFS2_WRITE_MMAP) {
1066 			/*
1067 			 * ocfs2_pagemkwrite() is a little different
1068 			 * and wants us to directly use the page
1069 			 * passed in.
1070 			 */
1071 			lock_page(mmap_page);
1072 
1073 			/* Exit and let the caller retry */
1074 			if (mmap_page->mapping != mapping) {
1075 				WARN_ON(mmap_page->mapping);
1076 				unlock_page(mmap_page);
1077 				ret = -EAGAIN;
1078 				goto out;
1079 			}
1080 
1081 			get_page(mmap_page);
1082 			wc->w_pages[i] = mmap_page;
1083 			wc->w_target_locked = true;
1084 		} else if (index >= target_index && index <= end_index &&
1085 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1086 			/* Direct write has no mapping page. */
1087 			wc->w_pages[i] = NULL;
1088 			continue;
1089 		} else {
1090 			wc->w_pages[i] = find_or_create_page(mapping, index,
1091 							     GFP_NOFS);
1092 			if (!wc->w_pages[i]) {
1093 				ret = -ENOMEM;
1094 				mlog_errno(ret);
1095 				goto out;
1096 			}
1097 		}
1098 		wait_for_stable_page(wc->w_pages[i]);
1099 
1100 		if (index == target_index)
1101 			wc->w_target_page = wc->w_pages[i];
1102 	}
1103 out:
1104 	if (ret)
1105 		wc->w_target_locked = false;
1106 	return ret;
1107 }
1108 
1109 /*
1110  * Prepare a single cluster for write one cluster into the file.
1111  */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1112 static int ocfs2_write_cluster(struct address_space *mapping,
1113 			       u32 *phys, unsigned int new,
1114 			       unsigned int clear_unwritten,
1115 			       unsigned int should_zero,
1116 			       struct ocfs2_alloc_context *data_ac,
1117 			       struct ocfs2_alloc_context *meta_ac,
1118 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1119 			       loff_t user_pos, unsigned user_len)
1120 {
1121 	int ret, i;
1122 	u64 p_blkno;
1123 	struct inode *inode = mapping->host;
1124 	struct ocfs2_extent_tree et;
1125 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1126 
1127 	if (new) {
1128 		u32 tmp_pos;
1129 
1130 		/*
1131 		 * This is safe to call with the page locks - it won't take
1132 		 * any additional semaphores or cluster locks.
1133 		 */
1134 		tmp_pos = cpos;
1135 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1136 					   &tmp_pos, 1, !clear_unwritten,
1137 					   wc->w_di_bh, wc->w_handle,
1138 					   data_ac, meta_ac, NULL);
1139 		/*
1140 		 * This shouldn't happen because we must have already
1141 		 * calculated the correct meta data allocation required. The
1142 		 * internal tree allocation code should know how to increase
1143 		 * transaction credits itself.
1144 		 *
1145 		 * If need be, we could handle -EAGAIN for a
1146 		 * RESTART_TRANS here.
1147 		 */
1148 		mlog_bug_on_msg(ret == -EAGAIN,
1149 				"Inode %llu: EAGAIN return during allocation.\n",
1150 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1151 		if (ret < 0) {
1152 			mlog_errno(ret);
1153 			goto out;
1154 		}
1155 	} else if (clear_unwritten) {
1156 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1157 					      wc->w_di_bh);
1158 		ret = ocfs2_mark_extent_written(inode, &et,
1159 						wc->w_handle, cpos, 1, *phys,
1160 						meta_ac, &wc->w_dealloc);
1161 		if (ret < 0) {
1162 			mlog_errno(ret);
1163 			goto out;
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * The only reason this should fail is due to an inability to
1169 	 * find the extent added.
1170 	 */
1171 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1172 	if (ret < 0) {
1173 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1174 			    "at logical cluster %u",
1175 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1176 		goto out;
1177 	}
1178 
1179 	BUG_ON(*phys == 0);
1180 
1181 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1182 	if (!should_zero)
1183 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1184 
1185 	for(i = 0; i < wc->w_num_pages; i++) {
1186 		int tmpret;
1187 
1188 		/* This is the direct io target page. */
1189 		if (wc->w_pages[i] == NULL) {
1190 			p_blkno++;
1191 			continue;
1192 		}
1193 
1194 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1195 						      wc->w_pages[i], cpos,
1196 						      user_pos, user_len,
1197 						      should_zero);
1198 		if (tmpret) {
1199 			mlog_errno(tmpret);
1200 			if (ret == 0)
1201 				ret = tmpret;
1202 		}
1203 	}
1204 
1205 	/*
1206 	 * We only have cleanup to do in case of allocating write.
1207 	 */
1208 	if (ret && new)
1209 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1210 
1211 out:
1212 
1213 	return ret;
1214 }
1215 
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1216 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1217 				       struct ocfs2_alloc_context *data_ac,
1218 				       struct ocfs2_alloc_context *meta_ac,
1219 				       struct ocfs2_write_ctxt *wc,
1220 				       loff_t pos, unsigned len)
1221 {
1222 	int ret, i;
1223 	loff_t cluster_off;
1224 	unsigned int local_len = len;
1225 	struct ocfs2_write_cluster_desc *desc;
1226 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1227 
1228 	for (i = 0; i < wc->w_clen; i++) {
1229 		desc = &wc->w_desc[i];
1230 
1231 		/*
1232 		 * We have to make sure that the total write passed in
1233 		 * doesn't extend past a single cluster.
1234 		 */
1235 		local_len = len;
1236 		cluster_off = pos & (osb->s_clustersize - 1);
1237 		if ((cluster_off + local_len) > osb->s_clustersize)
1238 			local_len = osb->s_clustersize - cluster_off;
1239 
1240 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1241 					  desc->c_new,
1242 					  desc->c_clear_unwritten,
1243 					  desc->c_needs_zero,
1244 					  data_ac, meta_ac,
1245 					  wc, desc->c_cpos, pos, local_len);
1246 		if (ret) {
1247 			mlog_errno(ret);
1248 			goto out;
1249 		}
1250 
1251 		len -= local_len;
1252 		pos += local_len;
1253 	}
1254 
1255 	ret = 0;
1256 out:
1257 	return ret;
1258 }
1259 
1260 /*
1261  * ocfs2_write_end() wants to know which parts of the target page it
1262  * should complete the write on. It's easiest to compute them ahead of
1263  * time when a more complete view of the write is available.
1264  */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1265 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1266 					struct ocfs2_write_ctxt *wc,
1267 					loff_t pos, unsigned len, int alloc)
1268 {
1269 	struct ocfs2_write_cluster_desc *desc;
1270 
1271 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1272 	wc->w_target_to = wc->w_target_from + len;
1273 
1274 	if (alloc == 0)
1275 		return;
1276 
1277 	/*
1278 	 * Allocating write - we may have different boundaries based
1279 	 * on page size and cluster size.
1280 	 *
1281 	 * NOTE: We can no longer compute one value from the other as
1282 	 * the actual write length and user provided length may be
1283 	 * different.
1284 	 */
1285 
1286 	if (wc->w_large_pages) {
1287 		/*
1288 		 * We only care about the 1st and last cluster within
1289 		 * our range and whether they should be zero'd or not. Either
1290 		 * value may be extended out to the start/end of a
1291 		 * newly allocated cluster.
1292 		 */
1293 		desc = &wc->w_desc[0];
1294 		if (desc->c_needs_zero)
1295 			ocfs2_figure_cluster_boundaries(osb,
1296 							desc->c_cpos,
1297 							&wc->w_target_from,
1298 							NULL);
1299 
1300 		desc = &wc->w_desc[wc->w_clen - 1];
1301 		if (desc->c_needs_zero)
1302 			ocfs2_figure_cluster_boundaries(osb,
1303 							desc->c_cpos,
1304 							NULL,
1305 							&wc->w_target_to);
1306 	} else {
1307 		wc->w_target_from = 0;
1308 		wc->w_target_to = PAGE_SIZE;
1309 	}
1310 }
1311 
1312 /*
1313  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1314  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1315  * by the direct io procedure.
1316  * If this is a new extent that allocated by direct io, we should mark it in
1317  * the ip_unwritten_list.
1318  */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1319 static int ocfs2_unwritten_check(struct inode *inode,
1320 				 struct ocfs2_write_ctxt *wc,
1321 				 struct ocfs2_write_cluster_desc *desc)
1322 {
1323 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1324 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1325 	int ret = 0;
1326 
1327 	if (!desc->c_needs_zero)
1328 		return 0;
1329 
1330 retry:
1331 	spin_lock(&oi->ip_lock);
1332 	/* Needs not to zero no metter buffer or direct. The one who is zero
1333 	 * the cluster is doing zero. And he will clear unwritten after all
1334 	 * cluster io finished. */
1335 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1336 		if (desc->c_cpos == ue->ue_cpos) {
1337 			BUG_ON(desc->c_new);
1338 			desc->c_needs_zero = 0;
1339 			desc->c_clear_unwritten = 0;
1340 			goto unlock;
1341 		}
1342 	}
1343 
1344 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1345 		goto unlock;
1346 
1347 	if (new == NULL) {
1348 		spin_unlock(&oi->ip_lock);
1349 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1350 			     GFP_NOFS);
1351 		if (new == NULL) {
1352 			ret = -ENOMEM;
1353 			goto out;
1354 		}
1355 		goto retry;
1356 	}
1357 	/* This direct write will doing zero. */
1358 	new->ue_cpos = desc->c_cpos;
1359 	new->ue_phys = desc->c_phys;
1360 	desc->c_clear_unwritten = 0;
1361 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1362 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1363 	wc->w_unwritten_count++;
1364 	new = NULL;
1365 unlock:
1366 	spin_unlock(&oi->ip_lock);
1367 out:
1368 	kfree(new);
1369 	return ret;
1370 }
1371 
1372 /*
1373  * Populate each single-cluster write descriptor in the write context
1374  * with information about the i/o to be done.
1375  *
1376  * Returns the number of clusters that will have to be allocated, as
1377  * well as a worst case estimate of the number of extent records that
1378  * would have to be created during a write to an unwritten region.
1379  */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1380 static int ocfs2_populate_write_desc(struct inode *inode,
1381 				     struct ocfs2_write_ctxt *wc,
1382 				     unsigned int *clusters_to_alloc,
1383 				     unsigned int *extents_to_split)
1384 {
1385 	int ret;
1386 	struct ocfs2_write_cluster_desc *desc;
1387 	unsigned int num_clusters = 0;
1388 	unsigned int ext_flags = 0;
1389 	u32 phys = 0;
1390 	int i;
1391 
1392 	*clusters_to_alloc = 0;
1393 	*extents_to_split = 0;
1394 
1395 	for (i = 0; i < wc->w_clen; i++) {
1396 		desc = &wc->w_desc[i];
1397 		desc->c_cpos = wc->w_cpos + i;
1398 
1399 		if (num_clusters == 0) {
1400 			/*
1401 			 * Need to look up the next extent record.
1402 			 */
1403 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1404 						 &num_clusters, &ext_flags);
1405 			if (ret) {
1406 				mlog_errno(ret);
1407 				goto out;
1408 			}
1409 
1410 			/* We should already CoW the refcountd extent. */
1411 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1412 
1413 			/*
1414 			 * Assume worst case - that we're writing in
1415 			 * the middle of the extent.
1416 			 *
1417 			 * We can assume that the write proceeds from
1418 			 * left to right, in which case the extent
1419 			 * insert code is smart enough to coalesce the
1420 			 * next splits into the previous records created.
1421 			 */
1422 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1423 				*extents_to_split = *extents_to_split + 2;
1424 		} else if (phys) {
1425 			/*
1426 			 * Only increment phys if it doesn't describe
1427 			 * a hole.
1428 			 */
1429 			phys++;
1430 		}
1431 
1432 		/*
1433 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1434 		 * file that got extended.  w_first_new_cpos tells us
1435 		 * where the newly allocated clusters are so we can
1436 		 * zero them.
1437 		 */
1438 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1439 			BUG_ON(phys == 0);
1440 			desc->c_needs_zero = 1;
1441 		}
1442 
1443 		desc->c_phys = phys;
1444 		if (phys == 0) {
1445 			desc->c_new = 1;
1446 			desc->c_needs_zero = 1;
1447 			desc->c_clear_unwritten = 1;
1448 			*clusters_to_alloc = *clusters_to_alloc + 1;
1449 		}
1450 
1451 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1452 			desc->c_clear_unwritten = 1;
1453 			desc->c_needs_zero = 1;
1454 		}
1455 
1456 		ret = ocfs2_unwritten_check(inode, wc, desc);
1457 		if (ret) {
1458 			mlog_errno(ret);
1459 			goto out;
1460 		}
1461 
1462 		num_clusters--;
1463 	}
1464 
1465 	ret = 0;
1466 out:
1467 	return ret;
1468 }
1469 
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1470 static int ocfs2_write_begin_inline(struct address_space *mapping,
1471 				    struct inode *inode,
1472 				    struct ocfs2_write_ctxt *wc)
1473 {
1474 	int ret;
1475 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1476 	struct page *page;
1477 	handle_t *handle;
1478 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1479 
1480 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1481 	if (IS_ERR(handle)) {
1482 		ret = PTR_ERR(handle);
1483 		mlog_errno(ret);
1484 		goto out;
1485 	}
1486 
1487 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1488 	if (!page) {
1489 		ocfs2_commit_trans(osb, handle);
1490 		ret = -ENOMEM;
1491 		mlog_errno(ret);
1492 		goto out;
1493 	}
1494 	/*
1495 	 * If we don't set w_num_pages then this page won't get unlocked
1496 	 * and freed on cleanup of the write context.
1497 	 */
1498 	wc->w_pages[0] = wc->w_target_page = page;
1499 	wc->w_num_pages = 1;
1500 
1501 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1502 				      OCFS2_JOURNAL_ACCESS_WRITE);
1503 	if (ret) {
1504 		ocfs2_commit_trans(osb, handle);
1505 
1506 		mlog_errno(ret);
1507 		goto out;
1508 	}
1509 
1510 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1511 		ocfs2_set_inode_data_inline(inode, di);
1512 
1513 	if (!PageUptodate(page)) {
1514 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1515 		if (ret) {
1516 			ocfs2_commit_trans(osb, handle);
1517 
1518 			goto out;
1519 		}
1520 	}
1521 
1522 	wc->w_handle = handle;
1523 out:
1524 	return ret;
1525 }
1526 
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1527 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1528 {
1529 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1530 
1531 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1532 		return 1;
1533 	return 0;
1534 }
1535 
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1536 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1537 					  struct inode *inode, loff_t pos,
1538 					  unsigned len, struct page *mmap_page,
1539 					  struct ocfs2_write_ctxt *wc)
1540 {
1541 	int ret, written = 0;
1542 	loff_t end = pos + len;
1543 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1544 	struct ocfs2_dinode *di = NULL;
1545 
1546 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1547 					     len, (unsigned long long)pos,
1548 					     oi->ip_dyn_features);
1549 
1550 	/*
1551 	 * Handle inodes which already have inline data 1st.
1552 	 */
1553 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1554 		if (mmap_page == NULL &&
1555 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1556 			goto do_inline_write;
1557 
1558 		/*
1559 		 * The write won't fit - we have to give this inode an
1560 		 * inline extent list now.
1561 		 */
1562 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1563 		if (ret)
1564 			mlog_errno(ret);
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * Check whether the inode can accept inline data.
1570 	 */
1571 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1572 		return 0;
1573 
1574 	/*
1575 	 * Check whether the write can fit.
1576 	 */
1577 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1578 	if (mmap_page ||
1579 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1580 		return 0;
1581 
1582 do_inline_write:
1583 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1584 	if (ret) {
1585 		mlog_errno(ret);
1586 		goto out;
1587 	}
1588 
1589 	/*
1590 	 * This signals to the caller that the data can be written
1591 	 * inline.
1592 	 */
1593 	written = 1;
1594 out:
1595 	return written ? written : ret;
1596 }
1597 
1598 /*
1599  * This function only does anything for file systems which can't
1600  * handle sparse files.
1601  *
1602  * What we want to do here is fill in any hole between the current end
1603  * of allocation and the end of our write. That way the rest of the
1604  * write path can treat it as an non-allocating write, which has no
1605  * special case code for sparse/nonsparse files.
1606  */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1607 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1608 					struct buffer_head *di_bh,
1609 					loff_t pos, unsigned len,
1610 					struct ocfs2_write_ctxt *wc)
1611 {
1612 	int ret;
1613 	loff_t newsize = pos + len;
1614 
1615 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1616 
1617 	if (newsize <= i_size_read(inode))
1618 		return 0;
1619 
1620 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1621 	if (ret)
1622 		mlog_errno(ret);
1623 
1624 	/* There is no wc if this is call from direct. */
1625 	if (wc)
1626 		wc->w_first_new_cpos =
1627 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1628 
1629 	return ret;
1630 }
1631 
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1632 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1633 			   loff_t pos)
1634 {
1635 	int ret = 0;
1636 
1637 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1638 	if (pos > i_size_read(inode))
1639 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1640 
1641 	return ret;
1642 }
1643 
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1644 int ocfs2_write_begin_nolock(struct address_space *mapping,
1645 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1646 			     struct page **pagep, void **fsdata,
1647 			     struct buffer_head *di_bh, struct page *mmap_page)
1648 {
1649 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1650 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1651 	struct ocfs2_write_ctxt *wc;
1652 	struct inode *inode = mapping->host;
1653 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654 	struct ocfs2_dinode *di;
1655 	struct ocfs2_alloc_context *data_ac = NULL;
1656 	struct ocfs2_alloc_context *meta_ac = NULL;
1657 	handle_t *handle;
1658 	struct ocfs2_extent_tree et;
1659 	int try_free = 1, ret1;
1660 
1661 try_again:
1662 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1663 	if (ret) {
1664 		mlog_errno(ret);
1665 		return ret;
1666 	}
1667 
1668 	if (ocfs2_supports_inline_data(osb)) {
1669 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1670 						     mmap_page, wc);
1671 		if (ret == 1) {
1672 			ret = 0;
1673 			goto success;
1674 		}
1675 		if (ret < 0) {
1676 			mlog_errno(ret);
1677 			goto out;
1678 		}
1679 	}
1680 
1681 	/* Direct io change i_size late, should not zero tail here. */
1682 	if (type != OCFS2_WRITE_DIRECT) {
1683 		if (ocfs2_sparse_alloc(osb))
1684 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1685 		else
1686 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1687 							   len, wc);
1688 		if (ret) {
1689 			mlog_errno(ret);
1690 			goto out;
1691 		}
1692 	}
1693 
1694 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1695 	if (ret < 0) {
1696 		mlog_errno(ret);
1697 		goto out;
1698 	} else if (ret == 1) {
1699 		clusters_need = wc->w_clen;
1700 		ret = ocfs2_refcount_cow(inode, di_bh,
1701 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1702 		if (ret) {
1703 			mlog_errno(ret);
1704 			goto out;
1705 		}
1706 	}
1707 
1708 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1709 					&extents_to_split);
1710 	if (ret) {
1711 		mlog_errno(ret);
1712 		goto out;
1713 	}
1714 	clusters_need += clusters_to_alloc;
1715 
1716 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1717 
1718 	trace_ocfs2_write_begin_nolock(
1719 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1720 			(long long)i_size_read(inode),
1721 			le32_to_cpu(di->i_clusters),
1722 			pos, len, type, mmap_page,
1723 			clusters_to_alloc, extents_to_split);
1724 
1725 	/*
1726 	 * We set w_target_from, w_target_to here so that
1727 	 * ocfs2_write_end() knows which range in the target page to
1728 	 * write out. An allocation requires that we write the entire
1729 	 * cluster range.
1730 	 */
1731 	if (clusters_to_alloc || extents_to_split) {
1732 		/*
1733 		 * XXX: We are stretching the limits of
1734 		 * ocfs2_lock_allocators(). It greatly over-estimates
1735 		 * the work to be done.
1736 		 */
1737 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1738 					      wc->w_di_bh);
1739 		ret = ocfs2_lock_allocators(inode, &et,
1740 					    clusters_to_alloc, extents_to_split,
1741 					    &data_ac, &meta_ac);
1742 		if (ret) {
1743 			mlog_errno(ret);
1744 			goto out;
1745 		}
1746 
1747 		if (data_ac)
1748 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1749 
1750 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1751 						    &di->id2.i_list);
1752 	} else if (type == OCFS2_WRITE_DIRECT)
1753 		/* direct write needs not to start trans if no extents alloc. */
1754 		goto success;
1755 
1756 	/*
1757 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1758 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1759 	 * we know zeros will only be needed in the first and/or last cluster.
1760 	 */
1761 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1762 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1763 		cluster_of_pages = 1;
1764 	else
1765 		cluster_of_pages = 0;
1766 
1767 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1768 
1769 	handle = ocfs2_start_trans(osb, credits);
1770 	if (IS_ERR(handle)) {
1771 		ret = PTR_ERR(handle);
1772 		mlog_errno(ret);
1773 		goto out;
1774 	}
1775 
1776 	wc->w_handle = handle;
1777 
1778 	if (clusters_to_alloc) {
1779 		ret = dquot_alloc_space_nodirty(inode,
1780 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1781 		if (ret)
1782 			goto out_commit;
1783 	}
1784 
1785 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1786 				      OCFS2_JOURNAL_ACCESS_WRITE);
1787 	if (ret) {
1788 		mlog_errno(ret);
1789 		goto out_quota;
1790 	}
1791 
1792 	/*
1793 	 * Fill our page array first. That way we've grabbed enough so
1794 	 * that we can zero and flush if we error after adding the
1795 	 * extent.
1796 	 */
1797 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1798 					 cluster_of_pages, mmap_page);
1799 	if (ret) {
1800 		/*
1801 		 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1802 		 * the target page. In this case, we exit with no error and no target
1803 		 * page. This will trigger the caller, page_mkwrite(), to re-try
1804 		 * the operation.
1805 		 */
1806 		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1807 			BUG_ON(wc->w_target_page);
1808 			ret = 0;
1809 			goto out_quota;
1810 		}
1811 
1812 		mlog_errno(ret);
1813 		goto out_quota;
1814 	}
1815 
1816 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1817 					  len);
1818 	if (ret) {
1819 		mlog_errno(ret);
1820 		goto out_quota;
1821 	}
1822 
1823 	if (data_ac)
1824 		ocfs2_free_alloc_context(data_ac);
1825 	if (meta_ac)
1826 		ocfs2_free_alloc_context(meta_ac);
1827 
1828 success:
1829 	if (pagep)
1830 		*pagep = wc->w_target_page;
1831 	*fsdata = wc;
1832 	return 0;
1833 out_quota:
1834 	if (clusters_to_alloc)
1835 		dquot_free_space(inode,
1836 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1837 out_commit:
1838 	ocfs2_commit_trans(osb, handle);
1839 
1840 out:
1841 	/*
1842 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1843 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1844 	 * to unlock the target page manually to prevent deadlocks when
1845 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1846 	 * to VM code.
1847 	 */
1848 	if (wc->w_target_locked)
1849 		unlock_page(mmap_page);
1850 
1851 	ocfs2_free_write_ctxt(inode, wc);
1852 
1853 	if (data_ac) {
1854 		ocfs2_free_alloc_context(data_ac);
1855 		data_ac = NULL;
1856 	}
1857 	if (meta_ac) {
1858 		ocfs2_free_alloc_context(meta_ac);
1859 		meta_ac = NULL;
1860 	}
1861 
1862 	if (ret == -ENOSPC && try_free) {
1863 		/*
1864 		 * Try to free some truncate log so that we can have enough
1865 		 * clusters to allocate.
1866 		 */
1867 		try_free = 0;
1868 
1869 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1870 		if (ret1 == 1)
1871 			goto try_again;
1872 
1873 		if (ret1 < 0)
1874 			mlog_errno(ret1);
1875 	}
1876 
1877 	return ret;
1878 }
1879 
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1880 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1881 			     loff_t pos, unsigned len,
1882 			     struct page **pagep, void **fsdata)
1883 {
1884 	int ret;
1885 	struct buffer_head *di_bh = NULL;
1886 	struct inode *inode = mapping->host;
1887 
1888 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1889 	if (ret) {
1890 		mlog_errno(ret);
1891 		return ret;
1892 	}
1893 
1894 	/*
1895 	 * Take alloc sem here to prevent concurrent lookups. That way
1896 	 * the mapping, zeroing and tree manipulation within
1897 	 * ocfs2_write() will be safe against ->read_folio(). This
1898 	 * should also serve to lock out allocation from a shared
1899 	 * writeable region.
1900 	 */
1901 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1902 
1903 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1904 				       pagep, fsdata, di_bh, NULL);
1905 	if (ret) {
1906 		mlog_errno(ret);
1907 		goto out_fail;
1908 	}
1909 
1910 	brelse(di_bh);
1911 
1912 	return 0;
1913 
1914 out_fail:
1915 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1916 
1917 	brelse(di_bh);
1918 	ocfs2_inode_unlock(inode, 1);
1919 
1920 	return ret;
1921 }
1922 
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1923 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1924 				   unsigned len, unsigned *copied,
1925 				   struct ocfs2_dinode *di,
1926 				   struct ocfs2_write_ctxt *wc)
1927 {
1928 	void *kaddr;
1929 
1930 	if (unlikely(*copied < len)) {
1931 		if (!PageUptodate(wc->w_target_page)) {
1932 			*copied = 0;
1933 			return;
1934 		}
1935 	}
1936 
1937 	kaddr = kmap_atomic(wc->w_target_page);
1938 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1939 	kunmap_atomic(kaddr);
1940 
1941 	trace_ocfs2_write_end_inline(
1942 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1943 	     (unsigned long long)pos, *copied,
1944 	     le16_to_cpu(di->id2.i_data.id_count),
1945 	     le16_to_cpu(di->i_dyn_features));
1946 }
1947 
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1948 int ocfs2_write_end_nolock(struct address_space *mapping,
1949 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1950 {
1951 	int i, ret;
1952 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1953 	struct inode *inode = mapping->host;
1954 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1955 	struct ocfs2_write_ctxt *wc = fsdata;
1956 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1957 	handle_t *handle = wc->w_handle;
1958 	struct page *tmppage;
1959 
1960 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1961 
1962 	if (handle) {
1963 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1964 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1965 		if (ret) {
1966 			copied = ret;
1967 			mlog_errno(ret);
1968 			goto out;
1969 		}
1970 	}
1971 
1972 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1973 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1974 		goto out_write_size;
1975 	}
1976 
1977 	if (unlikely(copied < len) && wc->w_target_page) {
1978 		loff_t new_isize;
1979 
1980 		if (!PageUptodate(wc->w_target_page))
1981 			copied = 0;
1982 
1983 		new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1984 		if (new_isize > page_offset(wc->w_target_page))
1985 			ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1986 					       start+len);
1987 		else {
1988 			/*
1989 			 * When page is fully beyond new isize (data copy
1990 			 * failed), do not bother zeroing the page. Invalidate
1991 			 * it instead so that writeback does not get confused
1992 			 * put page & buffer dirty bits into inconsistent
1993 			 * state.
1994 			 */
1995 			block_invalidate_folio(page_folio(wc->w_target_page),
1996 						0, PAGE_SIZE);
1997 		}
1998 	}
1999 	if (wc->w_target_page)
2000 		flush_dcache_page(wc->w_target_page);
2001 
2002 	for(i = 0; i < wc->w_num_pages; i++) {
2003 		tmppage = wc->w_pages[i];
2004 
2005 		/* This is the direct io target page. */
2006 		if (tmppage == NULL)
2007 			continue;
2008 
2009 		if (tmppage == wc->w_target_page) {
2010 			from = wc->w_target_from;
2011 			to = wc->w_target_to;
2012 
2013 			BUG_ON(from > PAGE_SIZE ||
2014 			       to > PAGE_SIZE ||
2015 			       to < from);
2016 		} else {
2017 			/*
2018 			 * Pages adjacent to the target (if any) imply
2019 			 * a hole-filling write in which case we want
2020 			 * to flush their entire range.
2021 			 */
2022 			from = 0;
2023 			to = PAGE_SIZE;
2024 		}
2025 
2026 		if (page_has_buffers(tmppage)) {
2027 			if (handle && ocfs2_should_order_data(inode)) {
2028 				loff_t start_byte =
2029 					((loff_t)tmppage->index << PAGE_SHIFT) +
2030 					from;
2031 				loff_t length = to - from;
2032 				ocfs2_jbd2_inode_add_write(handle, inode,
2033 							   start_byte, length);
2034 			}
2035 			block_commit_write(tmppage, from, to);
2036 		}
2037 	}
2038 
2039 out_write_size:
2040 	/* Direct io do not update i_size here. */
2041 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042 		pos += copied;
2043 		if (pos > i_size_read(inode)) {
2044 			i_size_write(inode, pos);
2045 			mark_inode_dirty(inode);
2046 		}
2047 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2048 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2050 		di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2051 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2052 		if (handle)
2053 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054 	}
2055 	if (handle)
2056 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2057 
2058 out:
2059 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060 	 * lock, or it will cause a deadlock since journal commit threads holds
2061 	 * this lock and will ask for the page lock when flushing the data.
2062 	 * put it here to preserve the unlock order.
2063 	 */
2064 	ocfs2_unlock_pages(wc);
2065 
2066 	if (handle)
2067 		ocfs2_commit_trans(osb, handle);
2068 
2069 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070 
2071 	brelse(wc->w_di_bh);
2072 	kfree(wc);
2073 
2074 	return copied;
2075 }
2076 
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2077 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078 			   loff_t pos, unsigned len, unsigned copied,
2079 			   struct page *page, void *fsdata)
2080 {
2081 	int ret;
2082 	struct inode *inode = mapping->host;
2083 
2084 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085 
2086 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087 	ocfs2_inode_unlock(inode, 1);
2088 
2089 	return ret;
2090 }
2091 
2092 struct ocfs2_dio_write_ctxt {
2093 	struct list_head	dw_zero_list;
2094 	unsigned		dw_zero_count;
2095 	int			dw_orphaned;
2096 	pid_t			dw_writer_pid;
2097 };
2098 
2099 static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2100 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101 {
2102 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2103 
2104 	if (bh->b_private)
2105 		return bh->b_private;
2106 
2107 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108 	if (dwc == NULL)
2109 		return NULL;
2110 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2111 	dwc->dw_zero_count = 0;
2112 	dwc->dw_orphaned = 0;
2113 	dwc->dw_writer_pid = task_pid_nr(current);
2114 	bh->b_private = dwc;
2115 	*alloc = 1;
2116 
2117 	return dwc;
2118 }
2119 
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2120 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121 				     struct ocfs2_dio_write_ctxt *dwc)
2122 {
2123 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124 	kfree(dwc);
2125 }
2126 
2127 /*
2128  * TODO: Make this into a generic get_blocks function.
2129  *
2130  * From do_direct_io in direct-io.c:
2131  *  "So what we do is to permit the ->get_blocks function to populate
2132  *   bh.b_size with the size of IO which is permitted at this offset and
2133  *   this i_blkbits."
2134  *
2135  * This function is called directly from get_more_blocks in direct-io.c.
2136  *
2137  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138  * 					fs_count, map_bh, dio->rw == WRITE);
2139  */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2140 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141 			       struct buffer_head *bh_result, int create)
2142 {
2143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145 	struct ocfs2_write_ctxt *wc;
2146 	struct ocfs2_write_cluster_desc *desc = NULL;
2147 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2148 	struct buffer_head *di_bh = NULL;
2149 	u64 p_blkno;
2150 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151 	loff_t pos = iblock << i_blkbits;
2152 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153 	unsigned len, total_len = bh_result->b_size;
2154 	int ret = 0, first_get_block = 0;
2155 
2156 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157 	len = min(total_len, len);
2158 
2159 	/*
2160 	 * bh_result->b_size is count in get_more_blocks according to write
2161 	 * "pos" and "end", we need map twice to return different buffer state:
2162 	 * 1. area in file size, not set NEW;
2163 	 * 2. area out file size, set  NEW.
2164 	 *
2165 	 *		   iblock    endblk
2166 	 * |--------|---------|---------|---------
2167 	 * |<-------area in file------->|
2168 	 */
2169 
2170 	if ((iblock <= endblk) &&
2171 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172 		len = (endblk - iblock + 1) << i_blkbits;
2173 
2174 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2175 			inode->i_ino, pos, len, total_len);
2176 
2177 	/*
2178 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179 	 * we may need to add it to orphan dir. So can not fall to fast path
2180 	 * while file size will be changed.
2181 	 */
2182 	if (pos + total_len <= i_size_read(inode)) {
2183 
2184 		/* This is the fast path for re-write. */
2185 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186 		if (buffer_mapped(bh_result) &&
2187 		    !buffer_new(bh_result) &&
2188 		    ret == 0)
2189 			goto out;
2190 
2191 		/* Clear state set by ocfs2_get_block. */
2192 		bh_result->b_state = 0;
2193 	}
2194 
2195 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196 	if (unlikely(dwc == NULL)) {
2197 		ret = -ENOMEM;
2198 		mlog_errno(ret);
2199 		goto out;
2200 	}
2201 
2202 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204 	    !dwc->dw_orphaned) {
2205 		/*
2206 		 * when we are going to alloc extents beyond file size, add the
2207 		 * inode to orphan dir, so we can recall those spaces when
2208 		 * system crashed during write.
2209 		 */
2210 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2211 		if (ret < 0) {
2212 			mlog_errno(ret);
2213 			goto out;
2214 		}
2215 		dwc->dw_orphaned = 1;
2216 	}
2217 
2218 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219 	if (ret) {
2220 		mlog_errno(ret);
2221 		goto out;
2222 	}
2223 
2224 	down_write(&oi->ip_alloc_sem);
2225 
2226 	if (first_get_block) {
2227 		if (ocfs2_sparse_alloc(osb))
2228 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2229 		else
2230 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231 							   total_len, NULL);
2232 		if (ret < 0) {
2233 			mlog_errno(ret);
2234 			goto unlock;
2235 		}
2236 	}
2237 
2238 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239 				       OCFS2_WRITE_DIRECT, NULL,
2240 				       (void **)&wc, di_bh, NULL);
2241 	if (ret) {
2242 		mlog_errno(ret);
2243 		goto unlock;
2244 	}
2245 
2246 	desc = &wc->w_desc[0];
2247 
2248 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249 	BUG_ON(p_blkno == 0);
2250 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251 
2252 	map_bh(bh_result, inode->i_sb, p_blkno);
2253 	bh_result->b_size = len;
2254 	if (desc->c_needs_zero)
2255 		set_buffer_new(bh_result);
2256 
2257 	if (iblock > endblk)
2258 		set_buffer_new(bh_result);
2259 
2260 	/* May sleep in end_io. It should not happen in a irq context. So defer
2261 	 * it to dio work queue. */
2262 	set_buffer_defer_completion(bh_result);
2263 
2264 	if (!list_empty(&wc->w_unwritten_list)) {
2265 		struct ocfs2_unwritten_extent *ue = NULL;
2266 
2267 		ue = list_first_entry(&wc->w_unwritten_list,
2268 				      struct ocfs2_unwritten_extent,
2269 				      ue_node);
2270 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2271 		/* The physical address may be 0, fill it. */
2272 		ue->ue_phys = desc->c_phys;
2273 
2274 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275 		dwc->dw_zero_count += wc->w_unwritten_count;
2276 	}
2277 
2278 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279 	BUG_ON(ret != len);
2280 	ret = 0;
2281 unlock:
2282 	up_write(&oi->ip_alloc_sem);
2283 	ocfs2_inode_unlock(inode, 1);
2284 	brelse(di_bh);
2285 out:
2286 	return ret;
2287 }
2288 
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2289 static int ocfs2_dio_end_io_write(struct inode *inode,
2290 				  struct ocfs2_dio_write_ctxt *dwc,
2291 				  loff_t offset,
2292 				  ssize_t bytes)
2293 {
2294 	struct ocfs2_cached_dealloc_ctxt dealloc;
2295 	struct ocfs2_extent_tree et;
2296 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2297 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2298 	struct ocfs2_unwritten_extent *ue = NULL;
2299 	struct buffer_head *di_bh = NULL;
2300 	struct ocfs2_dinode *di;
2301 	struct ocfs2_alloc_context *data_ac = NULL;
2302 	struct ocfs2_alloc_context *meta_ac = NULL;
2303 	handle_t *handle = NULL;
2304 	loff_t end = offset + bytes;
2305 	int ret = 0, credits = 0;
2306 
2307 	ocfs2_init_dealloc_ctxt(&dealloc);
2308 
2309 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2310 	 * of these happen, we can skip all this. */
2311 	if (list_empty(&dwc->dw_zero_list) &&
2312 	    end <= i_size_read(inode) &&
2313 	    !dwc->dw_orphaned)
2314 		goto out;
2315 
2316 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2317 	if (ret < 0) {
2318 		mlog_errno(ret);
2319 		goto out;
2320 	}
2321 
2322 	down_write(&oi->ip_alloc_sem);
2323 
2324 	/* Delete orphan before acquire i_rwsem. */
2325 	if (dwc->dw_orphaned) {
2326 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2327 
2328 		end = end > i_size_read(inode) ? end : 0;
2329 
2330 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2331 				!!end, end);
2332 		if (ret < 0)
2333 			mlog_errno(ret);
2334 	}
2335 
2336 	di = (struct ocfs2_dinode *)di_bh->b_data;
2337 
2338 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2339 
2340 	/* Attach dealloc with extent tree in case that we may reuse extents
2341 	 * which are already unlinked from current extent tree due to extent
2342 	 * rotation and merging.
2343 	 */
2344 	et.et_dealloc = &dealloc;
2345 
2346 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2347 				    &data_ac, &meta_ac);
2348 	if (ret) {
2349 		mlog_errno(ret);
2350 		goto unlock;
2351 	}
2352 
2353 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2354 
2355 	handle = ocfs2_start_trans(osb, credits);
2356 	if (IS_ERR(handle)) {
2357 		ret = PTR_ERR(handle);
2358 		mlog_errno(ret);
2359 		goto unlock;
2360 	}
2361 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2362 				      OCFS2_JOURNAL_ACCESS_WRITE);
2363 	if (ret) {
2364 		mlog_errno(ret);
2365 		goto commit;
2366 	}
2367 
2368 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2369 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2370 						ue->ue_cpos, 1,
2371 						ue->ue_phys,
2372 						meta_ac, &dealloc);
2373 		if (ret < 0) {
2374 			mlog_errno(ret);
2375 			break;
2376 		}
2377 	}
2378 
2379 	if (end > i_size_read(inode)) {
2380 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2381 		if (ret < 0)
2382 			mlog_errno(ret);
2383 	}
2384 commit:
2385 	ocfs2_commit_trans(osb, handle);
2386 unlock:
2387 	up_write(&oi->ip_alloc_sem);
2388 	ocfs2_inode_unlock(inode, 1);
2389 	brelse(di_bh);
2390 out:
2391 	if (data_ac)
2392 		ocfs2_free_alloc_context(data_ac);
2393 	if (meta_ac)
2394 		ocfs2_free_alloc_context(meta_ac);
2395 	ocfs2_run_deallocs(osb, &dealloc);
2396 	ocfs2_dio_free_write_ctx(inode, dwc);
2397 
2398 	return ret;
2399 }
2400 
2401 /*
2402  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2403  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2404  * to protect io on one node from truncation on another.
2405  */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2406 static int ocfs2_dio_end_io(struct kiocb *iocb,
2407 			    loff_t offset,
2408 			    ssize_t bytes,
2409 			    void *private)
2410 {
2411 	struct inode *inode = file_inode(iocb->ki_filp);
2412 	int level;
2413 	int ret = 0;
2414 
2415 	/* this io's submitter should not have unlocked this before we could */
2416 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2417 
2418 	if (bytes <= 0)
2419 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2420 				 (long long)bytes);
2421 	if (private) {
2422 		if (bytes > 0)
2423 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2424 						     bytes);
2425 		else
2426 			ocfs2_dio_free_write_ctx(inode, private);
2427 	}
2428 
2429 	ocfs2_iocb_clear_rw_locked(iocb);
2430 
2431 	level = ocfs2_iocb_rw_locked_level(iocb);
2432 	ocfs2_rw_unlock(inode, level);
2433 	return ret;
2434 }
2435 
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2436 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2437 {
2438 	struct file *file = iocb->ki_filp;
2439 	struct inode *inode = file->f_mapping->host;
2440 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2441 	get_block_t *get_block;
2442 
2443 	/*
2444 	 * Fallback to buffered I/O if we see an inode without
2445 	 * extents.
2446 	 */
2447 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2448 		return 0;
2449 
2450 	/* Fallback to buffered I/O if we do not support append dio. */
2451 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2452 	    !ocfs2_supports_append_dio(osb))
2453 		return 0;
2454 
2455 	if (iov_iter_rw(iter) == READ)
2456 		get_block = ocfs2_lock_get_block;
2457 	else
2458 		get_block = ocfs2_dio_wr_get_block;
2459 
2460 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2461 				    iter, get_block,
2462 				    ocfs2_dio_end_io, 0);
2463 }
2464 
2465 const struct address_space_operations ocfs2_aops = {
2466 	.dirty_folio		= block_dirty_folio,
2467 	.read_folio		= ocfs2_read_folio,
2468 	.readahead		= ocfs2_readahead,
2469 	.writepages		= ocfs2_writepages,
2470 	.write_begin		= ocfs2_write_begin,
2471 	.write_end		= ocfs2_write_end,
2472 	.bmap			= ocfs2_bmap,
2473 	.direct_IO		= ocfs2_direct_IO,
2474 	.invalidate_folio	= block_invalidate_folio,
2475 	.release_folio		= ocfs2_release_folio,
2476 	.migrate_folio		= buffer_migrate_folio,
2477 	.is_partially_uptodate	= block_is_partially_uptodate,
2478 	.error_remove_folio	= generic_error_remove_folio,
2479 };
2480