xref: /linux/drivers/infiniband/hw/hns/hns_roce_mr.c (revision f4caa864)
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/vmalloc.h>
35 #include <linux/count_zeros.h>
36 #include <rdma/ib_umem.h>
37 #include <linux/math.h>
38 #include "hns_roce_device.h"
39 #include "hns_roce_cmd.h"
40 #include "hns_roce_hem.h"
41 
hw_index_to_key(int ind)42 static u32 hw_index_to_key(int ind)
43 {
44 	return ((u32)ind >> 24) | ((u32)ind << 8);
45 }
46 
key_to_hw_index(u32 key)47 unsigned long key_to_hw_index(u32 key)
48 {
49 	return (key << 24) | (key >> 8);
50 }
51 
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)52 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
53 {
54 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
55 	struct ib_device *ibdev = &hr_dev->ib_dev;
56 	int err;
57 	int id;
58 
59 	/* Allocate a key for mr from mr_table */
60 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
61 			     GFP_KERNEL);
62 	if (id < 0) {
63 		ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
64 		return -ENOMEM;
65 	}
66 
67 	mr->key = hw_index_to_key(id); /* MR key */
68 
69 	err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
70 				 (unsigned long)id);
71 	if (err) {
72 		ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
73 		goto err_free_bitmap;
74 	}
75 
76 	return 0;
77 err_free_bitmap:
78 	ida_free(&mtpt_ida->ida, id);
79 	return err;
80 }
81 
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)82 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
83 {
84 	unsigned long obj = key_to_hw_index(mr->key);
85 
86 	hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
87 	ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
88 }
89 
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)90 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
91 			struct ib_udata *udata, u64 start)
92 {
93 	struct ib_device *ibdev = &hr_dev->ib_dev;
94 	bool is_fast = mr->type == MR_TYPE_FRMR;
95 	struct hns_roce_buf_attr buf_attr = {};
96 	int err;
97 
98 	mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
99 	buf_attr.page_shift = is_fast ? PAGE_SHIFT :
100 			      hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
101 	buf_attr.region[0].size = mr->size;
102 	buf_attr.region[0].hopnum = mr->pbl_hop_num;
103 	buf_attr.region_count = 1;
104 	buf_attr.user_access = mr->access;
105 	/* fast MR's buffer is alloced before mapping, not at creation */
106 	buf_attr.mtt_only = is_fast;
107 	buf_attr.iova = mr->iova;
108 	/* pagesize and hopnum is fixed for fast MR */
109 	buf_attr.adaptive = !is_fast;
110 	buf_attr.type = MTR_PBL;
111 
112 	err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
113 				  hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
114 				  udata, start);
115 	if (err) {
116 		ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
117 		return err;
118 	}
119 
120 	mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
121 	mr->pbl_hop_num = buf_attr.region[0].hopnum;
122 
123 	return err;
124 }
125 
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)126 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
127 {
128 	hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
129 }
130 
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)131 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
132 {
133 	struct ib_device *ibdev = &hr_dev->ib_dev;
134 	int ret;
135 
136 	if (mr->enabled) {
137 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
138 					      key_to_hw_index(mr->key) &
139 					      (hr_dev->caps.num_mtpts - 1));
140 		if (ret)
141 			ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
142 				   ret);
143 	}
144 
145 	free_mr_pbl(hr_dev, mr);
146 	free_mr_key(hr_dev, mr);
147 }
148 
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)149 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
150 			      struct hns_roce_mr *mr)
151 {
152 	unsigned long mtpt_idx = key_to_hw_index(mr->key);
153 	struct hns_roce_cmd_mailbox *mailbox;
154 	struct device *dev = hr_dev->dev;
155 	int ret;
156 
157 	/* Allocate mailbox memory */
158 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
159 	if (IS_ERR(mailbox))
160 		return PTR_ERR(mailbox);
161 
162 	if (mr->type != MR_TYPE_FRMR)
163 		ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
164 	else
165 		ret = hr_dev->hw->frmr_write_mtpt(mailbox->buf, mr);
166 	if (ret) {
167 		dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
168 		goto err_page;
169 	}
170 
171 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
172 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
173 	if (ret) {
174 		dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
175 		goto err_page;
176 	}
177 
178 	mr->enabled = 1;
179 
180 err_page:
181 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
182 
183 	return ret;
184 }
185 
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)186 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
187 {
188 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
189 
190 	ida_init(&mtpt_ida->ida);
191 	mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
192 	mtpt_ida->min = hr_dev->caps.reserved_mrws;
193 }
194 
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)195 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
196 {
197 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
198 	struct hns_roce_mr *mr;
199 	int ret;
200 
201 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
202 	if (!mr)
203 		return  ERR_PTR(-ENOMEM);
204 
205 	mr->type = MR_TYPE_DMA;
206 	mr->pd = to_hr_pd(pd)->pdn;
207 	mr->access = acc;
208 
209 	/* Allocate memory region key */
210 	hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
211 	ret = alloc_mr_key(hr_dev, mr);
212 	if (ret)
213 		goto err_free;
214 
215 	ret = hns_roce_mr_enable(hr_dev, mr);
216 	if (ret)
217 		goto err_mr;
218 
219 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
220 
221 	return &mr->ibmr;
222 err_mr:
223 	free_mr_key(hr_dev, mr);
224 
225 err_free:
226 	kfree(mr);
227 	return ERR_PTR(ret);
228 }
229 
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)230 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
231 				   u64 virt_addr, int access_flags,
232 				   struct ib_udata *udata)
233 {
234 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
235 	struct hns_roce_mr *mr;
236 	int ret;
237 
238 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
239 	if (!mr) {
240 		ret = -ENOMEM;
241 		goto err_out;
242 	}
243 
244 	mr->iova = virt_addr;
245 	mr->size = length;
246 	mr->pd = to_hr_pd(pd)->pdn;
247 	mr->access = access_flags;
248 	mr->type = MR_TYPE_MR;
249 
250 	ret = alloc_mr_key(hr_dev, mr);
251 	if (ret)
252 		goto err_alloc_mr;
253 
254 	ret = alloc_mr_pbl(hr_dev, mr, udata, start);
255 	if (ret)
256 		goto err_alloc_key;
257 
258 	ret = hns_roce_mr_enable(hr_dev, mr);
259 	if (ret)
260 		goto err_alloc_pbl;
261 
262 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
263 
264 	return &mr->ibmr;
265 
266 err_alloc_pbl:
267 	free_mr_pbl(hr_dev, mr);
268 err_alloc_key:
269 	free_mr_key(hr_dev, mr);
270 err_alloc_mr:
271 	kfree(mr);
272 err_out:
273 	atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]);
274 
275 	return ERR_PTR(ret);
276 }
277 
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)278 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
279 				     u64 length, u64 virt_addr,
280 				     int mr_access_flags, struct ib_pd *pd,
281 				     struct ib_udata *udata)
282 {
283 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
284 	struct ib_device *ib_dev = &hr_dev->ib_dev;
285 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
286 	struct hns_roce_cmd_mailbox *mailbox;
287 	unsigned long mtpt_idx;
288 	int ret;
289 
290 	if (!mr->enabled) {
291 		ret = -EINVAL;
292 		goto err_out;
293 	}
294 
295 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
296 	ret = PTR_ERR_OR_ZERO(mailbox);
297 	if (ret)
298 		goto err_out;
299 
300 	mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
301 
302 	ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
303 				mtpt_idx);
304 	if (ret)
305 		goto free_cmd_mbox;
306 
307 	ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
308 				      mtpt_idx);
309 	if (ret)
310 		ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
311 
312 	mr->enabled = 0;
313 	mr->iova = virt_addr;
314 	mr->size = length;
315 
316 	if (flags & IB_MR_REREG_PD)
317 		mr->pd = to_hr_pd(pd)->pdn;
318 
319 	if (flags & IB_MR_REREG_ACCESS)
320 		mr->access = mr_access_flags;
321 
322 	if (flags & IB_MR_REREG_TRANS) {
323 		free_mr_pbl(hr_dev, mr);
324 		ret = alloc_mr_pbl(hr_dev, mr, udata, start);
325 		if (ret) {
326 			ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
327 				  ret);
328 			goto free_cmd_mbox;
329 		}
330 	}
331 
332 	ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
333 	if (ret) {
334 		ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
335 		goto free_cmd_mbox;
336 	}
337 
338 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
339 				     mtpt_idx);
340 	if (ret) {
341 		ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
342 		goto free_cmd_mbox;
343 	}
344 
345 	mr->enabled = 1;
346 
347 free_cmd_mbox:
348 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
349 
350 err_out:
351 	if (ret) {
352 		atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]);
353 		return ERR_PTR(ret);
354 	}
355 
356 	return NULL;
357 }
358 
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)359 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
360 {
361 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
362 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
363 
364 	if (hr_dev->hw->dereg_mr)
365 		hr_dev->hw->dereg_mr(hr_dev);
366 
367 	hns_roce_mr_free(hr_dev, mr);
368 	kfree(mr);
369 
370 	return 0;
371 }
372 
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)373 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
374 				u32 max_num_sg)
375 {
376 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
377 	struct device *dev = hr_dev->dev;
378 	struct hns_roce_mr *mr;
379 	int ret;
380 
381 	if (mr_type != IB_MR_TYPE_MEM_REG)
382 		return ERR_PTR(-EINVAL);
383 
384 	if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
385 		dev_err(dev, "max_num_sg larger than %d\n",
386 			HNS_ROCE_FRMR_MAX_PA);
387 		return ERR_PTR(-EINVAL);
388 	}
389 
390 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
391 	if (!mr)
392 		return ERR_PTR(-ENOMEM);
393 
394 	mr->type = MR_TYPE_FRMR;
395 	mr->pd = to_hr_pd(pd)->pdn;
396 	mr->size = max_num_sg * (1 << PAGE_SHIFT);
397 
398 	/* Allocate memory region key */
399 	ret = alloc_mr_key(hr_dev, mr);
400 	if (ret)
401 		goto err_free;
402 
403 	ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
404 	if (ret)
405 		goto err_key;
406 
407 	ret = hns_roce_mr_enable(hr_dev, mr);
408 	if (ret)
409 		goto err_pbl;
410 
411 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
412 	mr->ibmr.length = mr->size;
413 
414 	return &mr->ibmr;
415 
416 err_pbl:
417 	free_mr_pbl(hr_dev, mr);
418 err_key:
419 	free_mr_key(hr_dev, mr);
420 err_free:
421 	kfree(mr);
422 	return ERR_PTR(ret);
423 }
424 
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)425 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
426 {
427 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
428 
429 	if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
430 		mr->page_list[mr->npages++] = addr;
431 		return 0;
432 	}
433 
434 	return -ENOBUFS;
435 }
436 
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)437 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
438 		       unsigned int *sg_offset)
439 {
440 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
441 	struct ib_device *ibdev = &hr_dev->ib_dev;
442 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
443 	struct hns_roce_mtr *mtr = &mr->pbl_mtr;
444 	int ret, sg_num = 0;
445 
446 	mr->npages = 0;
447 	mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
448 				 sizeof(dma_addr_t), GFP_KERNEL);
449 	if (!mr->page_list)
450 		return sg_num;
451 
452 	sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
453 	if (sg_num < 1) {
454 		ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
455 			  mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num);
456 		goto err_page_list;
457 	}
458 
459 	mtr->hem_cfg.region[0].offset = 0;
460 	mtr->hem_cfg.region[0].count = mr->npages;
461 	mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
462 	mtr->hem_cfg.region_count = 1;
463 	ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
464 	if (ret) {
465 		ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
466 		sg_num = 0;
467 	} else {
468 		mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
469 	}
470 
471 err_page_list:
472 	kvfree(mr->page_list);
473 	mr->page_list = NULL;
474 
475 	return sg_num;
476 }
477 
hns_roce_mw_free(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)478 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
479 			     struct hns_roce_mw *mw)
480 {
481 	struct device *dev = hr_dev->dev;
482 	int ret;
483 
484 	if (mw->enabled) {
485 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
486 					      key_to_hw_index(mw->rkey) &
487 					      (hr_dev->caps.num_mtpts - 1));
488 		if (ret)
489 			dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
490 
491 		hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
492 				   key_to_hw_index(mw->rkey));
493 	}
494 
495 	ida_free(&hr_dev->mr_table.mtpt_ida.ida,
496 		 (int)key_to_hw_index(mw->rkey));
497 }
498 
hns_roce_mw_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)499 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
500 			      struct hns_roce_mw *mw)
501 {
502 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
503 	struct hns_roce_cmd_mailbox *mailbox;
504 	struct device *dev = hr_dev->dev;
505 	unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
506 	int ret;
507 
508 	/* prepare HEM entry memory */
509 	ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
510 	if (ret)
511 		return ret;
512 
513 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
514 	if (IS_ERR(mailbox)) {
515 		ret = PTR_ERR(mailbox);
516 		goto err_table;
517 	}
518 
519 	ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
520 	if (ret) {
521 		dev_err(dev, "MW write mtpt fail!\n");
522 		goto err_page;
523 	}
524 
525 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
526 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
527 	if (ret) {
528 		dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
529 		goto err_page;
530 	}
531 
532 	mw->enabled = 1;
533 
534 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
535 
536 	return 0;
537 
538 err_page:
539 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
540 
541 err_table:
542 	hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
543 
544 	return ret;
545 }
546 
hns_roce_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)547 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
548 {
549 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
550 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
551 	struct ib_device *ibdev = &hr_dev->ib_dev;
552 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
553 	int ret;
554 	int id;
555 
556 	/* Allocate a key for mw from mr_table */
557 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
558 			     GFP_KERNEL);
559 	if (id < 0) {
560 		ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
561 		return -ENOMEM;
562 	}
563 
564 	mw->rkey = hw_index_to_key(id);
565 
566 	ibmw->rkey = mw->rkey;
567 	mw->pdn = to_hr_pd(ibmw->pd)->pdn;
568 	mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
569 	mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
570 	mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
571 
572 	ret = hns_roce_mw_enable(hr_dev, mw);
573 	if (ret)
574 		goto err_mw;
575 
576 	return 0;
577 
578 err_mw:
579 	hns_roce_mw_free(hr_dev, mw);
580 	return ret;
581 }
582 
hns_roce_dealloc_mw(struct ib_mw * ibmw)583 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
584 {
585 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
586 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
587 
588 	hns_roce_mw_free(hr_dev, mw);
589 	return 0;
590 }
591 
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)592 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
593 			  struct hns_roce_buf_region *region, dma_addr_t *pages,
594 			  int max_count)
595 {
596 	int count, npage;
597 	int offset, end;
598 	__le64 *mtts;
599 	u64 addr;
600 	int i;
601 
602 	offset = region->offset;
603 	end = offset + region->count;
604 	npage = 0;
605 	while (offset < end && npage < max_count) {
606 		count = 0;
607 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
608 						  offset, &count);
609 		if (!mtts)
610 			return -ENOBUFS;
611 
612 		for (i = 0; i < count && npage < max_count; i++) {
613 			addr = pages[npage];
614 
615 			mtts[i] = cpu_to_le64(addr);
616 			npage++;
617 		}
618 		offset += count;
619 	}
620 
621 	return npage;
622 }
623 
mtr_has_mtt(struct hns_roce_buf_attr * attr)624 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
625 {
626 	int i;
627 
628 	for (i = 0; i < attr->region_count; i++)
629 		if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
630 		    attr->region[i].hopnum > 0)
631 			return true;
632 
633 	/* because the mtr only one root base address, when hopnum is 0 means
634 	 * root base address equals the first buffer address, thus all alloced
635 	 * memory must in a continuous space accessed by direct mode.
636 	 */
637 	return false;
638 }
639 
mtr_bufs_size(struct hns_roce_buf_attr * attr)640 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
641 {
642 	size_t size = 0;
643 	int i;
644 
645 	for (i = 0; i < attr->region_count; i++)
646 		size += attr->region[i].size;
647 
648 	return size;
649 }
650 
651 /*
652  * check the given pages in continuous address space
653  * Returns 0 on success, or the error page num.
654  */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)655 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
656 					 unsigned int page_shift)
657 {
658 	size_t page_size = 1 << page_shift;
659 	int i;
660 
661 	for (i = 1; i < page_count; i++)
662 		if (pages[i] - pages[i - 1] != page_size)
663 			return i;
664 
665 	return 0;
666 }
667 
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)668 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
669 {
670 	/* release user buffers */
671 	if (mtr->umem) {
672 		ib_umem_release(mtr->umem);
673 		mtr->umem = NULL;
674 	}
675 
676 	/* release kernel buffers */
677 	if (mtr->kmem) {
678 		hns_roce_buf_free(hr_dev, mtr->kmem);
679 		mtr->kmem = NULL;
680 	}
681 }
682 
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)683 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
684 			  struct hns_roce_buf_attr *buf_attr,
685 			  struct ib_udata *udata, unsigned long user_addr)
686 {
687 	struct ib_device *ibdev = &hr_dev->ib_dev;
688 	size_t total_size;
689 
690 	total_size = mtr_bufs_size(buf_attr);
691 
692 	if (udata) {
693 		mtr->kmem = NULL;
694 		mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
695 					buf_attr->user_access);
696 		if (IS_ERR(mtr->umem)) {
697 			ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
698 				  PTR_ERR(mtr->umem));
699 			return -ENOMEM;
700 		}
701 	} else {
702 		mtr->umem = NULL;
703 		mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
704 					       buf_attr->page_shift,
705 					       !mtr_has_mtt(buf_attr) ?
706 					       HNS_ROCE_BUF_DIRECT : 0);
707 		if (IS_ERR(mtr->kmem)) {
708 			ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
709 				  PTR_ERR(mtr->kmem));
710 			return PTR_ERR(mtr->kmem);
711 		}
712 	}
713 
714 	return 0;
715 }
716 
cal_mtr_pg_cnt(struct hns_roce_mtr * mtr)717 static int cal_mtr_pg_cnt(struct hns_roce_mtr *mtr)
718 {
719 	struct hns_roce_buf_region *region;
720 	int page_cnt = 0;
721 	int i;
722 
723 	for (i = 0; i < mtr->hem_cfg.region_count; i++) {
724 		region = &mtr->hem_cfg.region[i];
725 		page_cnt += region->count;
726 	}
727 
728 	return page_cnt;
729 }
730 
need_split_huge_page(struct hns_roce_mtr * mtr)731 static bool need_split_huge_page(struct hns_roce_mtr *mtr)
732 {
733 	/* When HEM buffer uses 0-level addressing, the page size is
734 	 * equal to the whole buffer size. If the current MTR has multiple
735 	 * regions, we split the buffer into small pages(4k, required by hns
736 	 * ROCEE). These pages will be used in multiple regions.
737 	 */
738 	return mtr->hem_cfg.is_direct && mtr->hem_cfg.region_count > 1;
739 }
740 
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)741 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
742 {
743 	struct ib_device *ibdev = &hr_dev->ib_dev;
744 	int page_count = cal_mtr_pg_cnt(mtr);
745 	unsigned int page_shift;
746 	dma_addr_t *pages;
747 	int npage;
748 	int ret;
749 
750 	page_shift = need_split_huge_page(mtr) ? HNS_HW_PAGE_SHIFT :
751 						 mtr->hem_cfg.buf_pg_shift;
752 	/* alloc a tmp array to store buffer's dma address */
753 	pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
754 	if (!pages)
755 		return -ENOMEM;
756 
757 	if (mtr->umem)
758 		npage = hns_roce_get_umem_bufs(pages, page_count,
759 					       mtr->umem, page_shift);
760 	else
761 		npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
762 					       mtr->kmem, page_shift);
763 
764 	if (npage != page_count) {
765 		ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
766 			  page_count);
767 		ret = -ENOBUFS;
768 		goto err_alloc_list;
769 	}
770 
771 	if (need_split_huge_page(mtr) && npage > 1) {
772 		ret = mtr_check_direct_pages(pages, npage, page_shift);
773 		if (ret) {
774 			ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
775 				  mtr->umem ? "umtr" : "kmtr", ret, npage);
776 			ret = -ENOBUFS;
777 			goto err_alloc_list;
778 		}
779 	}
780 
781 	ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
782 	if (ret)
783 		ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
784 
785 err_alloc_list:
786 	kvfree(pages);
787 
788 	return ret;
789 }
790 
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)791 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
792 		     dma_addr_t *pages, unsigned int page_cnt)
793 {
794 	struct ib_device *ibdev = &hr_dev->ib_dev;
795 	struct hns_roce_buf_region *r;
796 	unsigned int i, mapped_cnt;
797 	int ret = 0;
798 
799 	/*
800 	 * Only use the first page address as root ba when hopnum is 0, this
801 	 * is because the addresses of all pages are consecutive in this case.
802 	 */
803 	if (mtr->hem_cfg.is_direct) {
804 		mtr->hem_cfg.root_ba = pages[0];
805 		return 0;
806 	}
807 
808 	for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
809 	     mapped_cnt < page_cnt; i++) {
810 		r = &mtr->hem_cfg.region[i];
811 		/* if hopnum is 0, no need to map pages in this region */
812 		if (!r->hopnum) {
813 			mapped_cnt += r->count;
814 			continue;
815 		}
816 
817 		if (r->offset + r->count > page_cnt) {
818 			ret = -EINVAL;
819 			ibdev_err(ibdev,
820 				  "failed to check mtr%u count %u + %u > %u.\n",
821 				  i, r->offset, r->count, page_cnt);
822 			return ret;
823 		}
824 
825 		ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
826 				     page_cnt - mapped_cnt);
827 		if (ret < 0) {
828 			ibdev_err(ibdev,
829 				  "failed to map mtr%u offset %u, ret = %d.\n",
830 				  i, r->offset, ret);
831 			return ret;
832 		}
833 		mapped_cnt += ret;
834 		ret = 0;
835 	}
836 
837 	if (mapped_cnt < page_cnt) {
838 		ret = -ENOBUFS;
839 		ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
840 			  mapped_cnt, page_cnt);
841 	}
842 
843 	return ret;
844 }
845 
hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg * cfg,u32 start_index,u64 * mtt_buf,int mtt_cnt)846 static int hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg *cfg,
847 					u32 start_index, u64 *mtt_buf,
848 					int mtt_cnt)
849 {
850 	int mtt_count;
851 	int total = 0;
852 	u32 npage;
853 	u64 addr;
854 
855 	if (mtt_cnt > cfg->region_count)
856 		return -EINVAL;
857 
858 	for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_cnt;
859 	     mtt_count++) {
860 		npage = cfg->region[mtt_count].offset;
861 		if (npage < start_index)
862 			continue;
863 
864 		addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
865 		mtt_buf[total] = addr;
866 
867 		total++;
868 	}
869 
870 	if (!total)
871 		return -ENOENT;
872 
873 	return 0;
874 }
875 
hns_roce_get_mhop_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 start_index,u64 * mtt_buf,int mtt_cnt)876 static int hns_roce_get_mhop_mtt(struct hns_roce_dev *hr_dev,
877 				 struct hns_roce_mtr *mtr, u32 start_index,
878 				 u64 *mtt_buf, int mtt_cnt)
879 {
880 	int left = mtt_cnt;
881 	int total = 0;
882 	int mtt_count;
883 	__le64 *mtts;
884 	u32 npage;
885 
886 	while (left > 0) {
887 		mtt_count = 0;
888 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
889 						  start_index + total,
890 						  &mtt_count);
891 		if (!mtts || !mtt_count)
892 			break;
893 
894 		npage = min(mtt_count, left);
895 		left -= npage;
896 		for (mtt_count = 0; mtt_count < npage; mtt_count++)
897 			mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
898 	}
899 
900 	if (!total)
901 		return -ENOENT;
902 
903 	return 0;
904 }
905 
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max)906 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
907 		      u32 offset, u64 *mtt_buf, int mtt_max)
908 {
909 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
910 	u32 start_index;
911 	int ret;
912 
913 	if (!mtt_buf || mtt_max < 1)
914 		return -EINVAL;
915 
916 	/* no mtt memory in direct mode, so just return the buffer address */
917 	if (cfg->is_direct) {
918 		start_index = offset >> HNS_HW_PAGE_SHIFT;
919 		ret = hns_roce_get_direct_addr_mtt(cfg, start_index,
920 						   mtt_buf, mtt_max);
921 	} else {
922 		start_index = offset >> cfg->buf_pg_shift;
923 		ret = hns_roce_get_mhop_mtt(hr_dev, mtr, start_index,
924 					    mtt_buf, mtt_max);
925 	}
926 	return ret;
927 }
928 
get_best_page_shift(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr)929 static int get_best_page_shift(struct hns_roce_dev *hr_dev,
930 			       struct hns_roce_mtr *mtr,
931 			       struct hns_roce_buf_attr *buf_attr)
932 {
933 	unsigned int page_sz;
934 
935 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL || !mtr->umem)
936 		return 0;
937 
938 	page_sz = ib_umem_find_best_pgsz(mtr->umem,
939 					 hr_dev->caps.page_size_cap,
940 					 buf_attr->iova);
941 	if (!page_sz)
942 		return -EINVAL;
943 
944 	buf_attr->page_shift = order_base_2(page_sz);
945 	return 0;
946 }
947 
get_best_hop_num(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_pg_shift)948 static int get_best_hop_num(struct hns_roce_dev *hr_dev,
949 			    struct hns_roce_mtr *mtr,
950 			    struct hns_roce_buf_attr *buf_attr,
951 			    unsigned int ba_pg_shift)
952 {
953 #define INVALID_HOPNUM -1
954 #define MIN_BA_CNT 1
955 	size_t buf_pg_sz = 1 << buf_attr->page_shift;
956 	struct ib_device *ibdev = &hr_dev->ib_dev;
957 	size_t ba_pg_sz = 1 << ba_pg_shift;
958 	int hop_num = INVALID_HOPNUM;
959 	size_t unit = MIN_BA_CNT;
960 	size_t ba_cnt;
961 	int j;
962 
963 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL)
964 		return 0;
965 
966 	/* Caculating the number of buf pages, each buf page need a BA */
967 	if (mtr->umem)
968 		ba_cnt = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
969 	else
970 		ba_cnt = DIV_ROUND_UP(buf_attr->region[0].size, buf_pg_sz);
971 
972 	for (j = 0; j <= HNS_ROCE_MAX_HOP_NUM; j++) {
973 		if (ba_cnt <= unit) {
974 			hop_num = j;
975 			break;
976 		}
977 		/* Number of BAs can be represented at per hop */
978 		unit *= ba_pg_sz / BA_BYTE_LEN;
979 	}
980 
981 	if (hop_num < 0) {
982 		ibdev_err(ibdev,
983 			  "failed to calculate a valid hopnum.\n");
984 		return -EINVAL;
985 	}
986 
987 	buf_attr->region[0].hopnum = hop_num;
988 
989 	return 0;
990 }
991 
is_buf_attr_valid(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr)992 static bool is_buf_attr_valid(struct hns_roce_dev *hr_dev,
993 			      struct hns_roce_buf_attr *attr)
994 {
995 	struct ib_device *ibdev = &hr_dev->ib_dev;
996 
997 	if (attr->region_count > ARRAY_SIZE(attr->region) ||
998 	    attr->region_count < 1 || attr->page_shift < HNS_HW_PAGE_SHIFT) {
999 		ibdev_err(ibdev,
1000 			  "invalid buf attr, region count %d, page shift %u.\n",
1001 			  attr->region_count, attr->page_shift);
1002 		return false;
1003 	}
1004 
1005 	return true;
1006 }
1007 
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * attr)1008 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
1009 			    struct hns_roce_mtr *mtr,
1010 			    struct hns_roce_buf_attr *attr)
1011 {
1012 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
1013 	struct hns_roce_buf_region *r;
1014 	size_t buf_pg_sz;
1015 	size_t buf_size;
1016 	int page_cnt, i;
1017 	u64 pgoff = 0;
1018 
1019 	if (!is_buf_attr_valid(hr_dev, attr))
1020 		return -EINVAL;
1021 
1022 	/* If mtt is disabled, all pages must be within a continuous range */
1023 	cfg->is_direct = !mtr_has_mtt(attr);
1024 	cfg->region_count = attr->region_count;
1025 	buf_size = mtr_bufs_size(attr);
1026 	if (need_split_huge_page(mtr)) {
1027 		buf_pg_sz = HNS_HW_PAGE_SIZE;
1028 		cfg->buf_pg_count = 1;
1029 		/* The ROCEE requires the page size to be 4K * 2 ^ N. */
1030 		cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
1031 			order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
1032 	} else {
1033 		buf_pg_sz = 1 << attr->page_shift;
1034 		cfg->buf_pg_count = mtr->umem ?
1035 			ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz) :
1036 			DIV_ROUND_UP(buf_size, buf_pg_sz);
1037 		cfg->buf_pg_shift = attr->page_shift;
1038 		pgoff = mtr->umem ? mtr->umem->address & ~PAGE_MASK : 0;
1039 	}
1040 
1041 	/* Convert buffer size to page index and page count for each region and
1042 	 * the buffer's offset needs to be appended to the first region.
1043 	 */
1044 	for (page_cnt = 0, i = 0; i < attr->region_count; i++) {
1045 		r = &cfg->region[i];
1046 		r->offset = page_cnt;
1047 		buf_size = hr_hw_page_align(attr->region[i].size + pgoff);
1048 		if (attr->type == MTR_PBL && mtr->umem)
1049 			r->count = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
1050 		else
1051 			r->count = DIV_ROUND_UP(buf_size, buf_pg_sz);
1052 
1053 		pgoff = 0;
1054 		page_cnt += r->count;
1055 		r->hopnum = to_hr_hem_hopnum(attr->region[i].hopnum, r->count);
1056 	}
1057 
1058 	return 0;
1059 }
1060 
cal_pages_per_l1ba(unsigned int ba_per_bt,unsigned int hopnum)1061 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum)
1062 {
1063 	return int_pow(ba_per_bt, hopnum - 1);
1064 }
1065 
cal_best_bt_pg_sz(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int pg_shift)1066 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev,
1067 				      struct hns_roce_mtr *mtr,
1068 				      unsigned int pg_shift)
1069 {
1070 	unsigned long cap = hr_dev->caps.page_size_cap;
1071 	struct hns_roce_buf_region *re;
1072 	unsigned int pgs_per_l1ba;
1073 	unsigned int ba_per_bt;
1074 	unsigned int ba_num;
1075 	int i;
1076 
1077 	for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) {
1078 		if (!(BIT(pg_shift) & cap))
1079 			continue;
1080 
1081 		ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN;
1082 		ba_num = 0;
1083 		for (i = 0; i < mtr->hem_cfg.region_count; i++) {
1084 			re = &mtr->hem_cfg.region[i];
1085 			if (re->hopnum == 0)
1086 				continue;
1087 
1088 			pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum);
1089 			ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba);
1090 		}
1091 
1092 		if (ba_num <= ba_per_bt)
1093 			return pg_shift;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)1099 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1100 			 unsigned int ba_page_shift)
1101 {
1102 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
1103 	int ret;
1104 
1105 	hns_roce_hem_list_init(&mtr->hem_list);
1106 	if (!cfg->is_direct) {
1107 		ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift);
1108 		if (!ba_page_shift)
1109 			return -ERANGE;
1110 
1111 		ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
1112 						cfg->region, cfg->region_count,
1113 						ba_page_shift);
1114 		if (ret)
1115 			return ret;
1116 		cfg->root_ba = mtr->hem_list.root_ba;
1117 		cfg->ba_pg_shift = ba_page_shift;
1118 	} else {
1119 		cfg->ba_pg_shift = cfg->buf_pg_shift;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1125 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1126 {
1127 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1128 }
1129 
1130 /**
1131  * hns_roce_mtr_create - Create hns memory translate region.
1132  *
1133  * @hr_dev: RoCE device struct pointer
1134  * @mtr: memory translate region
1135  * @buf_attr: buffer attribute for creating mtr
1136  * @ba_page_shift: page shift for multi-hop base address table
1137  * @udata: user space context, if it's NULL, means kernel space
1138  * @user_addr: userspace virtual address to start at
1139  */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)1140 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1141 			struct hns_roce_buf_attr *buf_attr,
1142 			unsigned int ba_page_shift, struct ib_udata *udata,
1143 			unsigned long user_addr)
1144 {
1145 	struct ib_device *ibdev = &hr_dev->ib_dev;
1146 	int ret;
1147 
1148 	/* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1149 	 * to finish the MTT configuration.
1150 	 */
1151 	if (buf_attr->mtt_only) {
1152 		mtr->umem = NULL;
1153 		mtr->kmem = NULL;
1154 	} else {
1155 		ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1156 		if (ret) {
1157 			ibdev_err(ibdev,
1158 				  "failed to alloc mtr bufs, ret = %d.\n", ret);
1159 			return ret;
1160 		}
1161 
1162 		ret = get_best_page_shift(hr_dev, mtr, buf_attr);
1163 		if (ret)
1164 			goto err_init_buf;
1165 
1166 		ret = get_best_hop_num(hr_dev, mtr, buf_attr, ba_page_shift);
1167 		if (ret)
1168 			goto err_init_buf;
1169 	}
1170 
1171 	ret = mtr_init_buf_cfg(hr_dev, mtr, buf_attr);
1172 	if (ret)
1173 		goto err_init_buf;
1174 
1175 	ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1176 	if (ret) {
1177 		ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1178 		goto err_init_buf;
1179 	}
1180 
1181 	if (buf_attr->mtt_only)
1182 		return 0;
1183 
1184 	/* Write buffer's dma address to MTT */
1185 	ret = mtr_map_bufs(hr_dev, mtr);
1186 	if (ret) {
1187 		ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1188 		goto err_alloc_mtt;
1189 	}
1190 
1191 	return 0;
1192 
1193 err_alloc_mtt:
1194 	mtr_free_mtt(hr_dev, mtr);
1195 err_init_buf:
1196 	mtr_free_bufs(hr_dev, mtr);
1197 
1198 	return ret;
1199 }
1200 
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1201 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1202 {
1203 	/* release multi-hop addressing resource */
1204 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1205 
1206 	/* free buffers */
1207 	mtr_free_bufs(hr_dev, mtr);
1208 }
1209