1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
13 */
14 #include "sqliteInt.h"
15 
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 #  if defined(__APPLE__)
18 #    define SQLITE_ENABLE_LOCKING_STYLE 1
19 #  else
20 #    define SQLITE_ENABLE_LOCKING_STYLE 0
21 #  endif
22 #endif
23 
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object.  This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly.  Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
32 
33 /*
34 ** Interpret the given string as a safety level.  Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or
36 ** unrecognized string argument.  The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
38 **
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
41 ** to support legacy SQL code.  The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
43 */
getSafetyLevel(const char * z,int omitFull,u8 dflt)44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45                              /* 123456789 123456789 123 */
46   static const char zText[] = "onoffalseyestruextrafull";
47   static const u8 iOffset[] = {0, 1, 2,  4,    9,  12,  15,   20};
48   static const u8 iLength[] = {2, 2, 3,  5,    3,   4,   5,    4};
49   static const u8 iValue[] =  {1, 0, 0,  0,    1,   1,   3,    2};
50                             /* on no off false yes true extra full */
51   int i, n;
52   if( sqlite3Isdigit(*z) ){
53     return (u8)sqlite3Atoi(z);
54   }
55   n = sqlite3Strlen30(z);
56   for(i=0; i<ArraySize(iLength); i++){
57     if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58      && (!omitFull || iValue[i]<=1)
59     ){
60       return iValue[i];
61     }
62   }
63   return dflt;
64 }
65 
66 /*
67 ** Interpret the given string as a boolean value.
68 */
sqlite3GetBoolean(const char * z,u8 dflt)69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70   return getSafetyLevel(z,1,dflt)!=0;
71 }
72 
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing.  So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
76 */
77 #if !defined(SQLITE_OMIT_PRAGMA)
78 
79 /*
80 ** Interpret the given string as a locking mode value.
81 */
getLockingMode(const char * z)82 static int getLockingMode(const char *z){
83   if( z ){
84     if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85     if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
86   }
87   return PAGER_LOCKINGMODE_QUERY;
88 }
89 
90 #ifndef SQLITE_OMIT_AUTOVACUUM
91 /*
92 ** Interpret the given string as an auto-vacuum mode value.
93 **
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
96 */
getAutoVacuum(const char * z)97 static int getAutoVacuum(const char *z){
98   int i;
99   if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100   if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101   if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102   i = sqlite3Atoi(z);
103   return (u8)((i>=0&&i<=2)?i:0);
104 }
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
106 
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
108 /*
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
112 */
getTempStore(const char * z)113 static int getTempStore(const char *z){
114   if( z[0]>='0' && z[0]<='2' ){
115     return z[0] - '0';
116   }else if( sqlite3StrICmp(z, "file")==0 ){
117     return 1;
118   }else if( sqlite3StrICmp(z, "memory")==0 ){
119     return 2;
120   }else{
121     return 0;
122   }
123 }
124 #endif /* SQLITE_PAGER_PRAGMAS */
125 
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
127 /*
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
130 */
invalidateTempStorage(Parse * pParse)131 static int invalidateTempStorage(Parse *pParse){
132   sqlite3 *db = pParse->db;
133   if( db->aDb[1].pBt!=0 ){
134     if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135       sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136         "from within a transaction");
137       return SQLITE_ERROR;
138     }
139     sqlite3BtreeClose(db->aDb[1].pBt);
140     db->aDb[1].pBt = 0;
141     sqlite3ResetAllSchemasOfConnection(db);
142   }
143   return SQLITE_OK;
144 }
145 #endif /* SQLITE_PAGER_PRAGMAS */
146 
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
148 /*
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
152 */
changeTempStorage(Parse * pParse,const char * zStorageType)153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154   int ts = getTempStore(zStorageType);
155   sqlite3 *db = pParse->db;
156   if( db->temp_store==ts ) return SQLITE_OK;
157   if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158     return SQLITE_ERROR;
159   }
160   db->temp_store = (u8)ts;
161   return SQLITE_OK;
162 }
163 #endif /* SQLITE_PAGER_PRAGMAS */
164 
165 /*
166 ** Set result column names for a pragma.
167 */
setPragmaResultColumnNames(Vdbe * v,const PragmaName * pPragma)168 static void setPragmaResultColumnNames(
169   Vdbe *v,                     /* The query under construction */
170   const PragmaName *pPragma    /* The pragma */
171 ){
172   u8 n = pPragma->nPragCName;
173   sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174   if( n==0 ){
175     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176   }else{
177     int i, j;
178     for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179       sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
180     }
181   }
182 }
183 
184 /*
185 ** Generate code to return a single integer value.
186 */
returnSingleInt(Vdbe * v,i64 value)187 static void returnSingleInt(Vdbe *v, i64 value){
188   sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189   sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
190 }
191 
192 /*
193 ** Generate code to return a single text value.
194 */
returnSingleText(Vdbe * v,const char * zValue)195 static void returnSingleText(
196   Vdbe *v,                /* Prepared statement under construction */
197   const char *zValue      /* Value to be returned */
198 ){
199   if( zValue ){
200     sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
202   }
203 }
204 
205 
206 /*
207 ** Set the safety_level and pager flags for pager iDb.  Or if iDb<0
208 ** set these values for all pagers.
209 */
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
setAllPagerFlags(sqlite3 * db)211 static void setAllPagerFlags(sqlite3 *db){
212   if( db->autoCommit ){
213     Db *pDb = db->aDb;
214     int n = db->nDb;
215     assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216     assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217     assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218     assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219              ==  PAGER_FLAGS_MASK );
220     assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221     while( (n--) > 0 ){
222       if( pDb->pBt ){
223         sqlite3BtreeSetPagerFlags(pDb->pBt,
224                  pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
225       }
226       pDb++;
227     }
228   }
229 }
230 #else
231 # define setAllPagerFlags(X)  /* no-op */
232 #endif
233 
234 
235 /*
236 ** Return a human-readable name for a constraint resolution action.
237 */
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
actionName(u8 action)239 static const char *actionName(u8 action){
240   const char *zName;
241   switch( action ){
242     case OE_SetNull:  zName = "SET NULL";        break;
243     case OE_SetDflt:  zName = "SET DEFAULT";     break;
244     case OE_Cascade:  zName = "CASCADE";         break;
245     case OE_Restrict: zName = "RESTRICT";        break;
246     default:          zName = "NO ACTION";
247                       assert( action==OE_None ); break;
248   }
249   return zName;
250 }
251 #endif
252 
253 
254 /*
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
258 */
sqlite3JournalModename(int eMode)259 const char *sqlite3JournalModename(int eMode){
260   static char * const azModeName[] = {
261     "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263      , "wal"
264 #endif
265   };
266   assert( PAGER_JOURNALMODE_DELETE==0 );
267   assert( PAGER_JOURNALMODE_PERSIST==1 );
268   assert( PAGER_JOURNALMODE_OFF==2 );
269   assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270   assert( PAGER_JOURNALMODE_MEMORY==4 );
271   assert( PAGER_JOURNALMODE_WAL==5 );
272   assert( eMode>=0 && eMode<=ArraySize(azModeName) );
273 
274   if( eMode==ArraySize(azModeName) ) return 0;
275   return azModeName[eMode];
276 }
277 
278 /*
279 ** Locate a pragma in the aPragmaName[] array.
280 */
pragmaLocate(const char * zName)281 static const PragmaName *pragmaLocate(const char *zName){
282   int upr, lwr, mid = 0, rc;
283   lwr = 0;
284   upr = ArraySize(aPragmaName)-1;
285   while( lwr<=upr ){
286     mid = (lwr+upr)/2;
287     rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288     if( rc==0 ) break;
289     if( rc<0 ){
290       upr = mid - 1;
291     }else{
292       lwr = mid + 1;
293     }
294   }
295   return lwr>upr ? 0 : &aPragmaName[mid];
296 }
297 
298 /*
299 ** Create zero or more entries in the output for the SQL functions
300 ** defined by FuncDef p.
301 */
pragmaFunclistLine(Vdbe * v,FuncDef * p,int isBuiltin,int showInternFuncs)302 static void pragmaFunclistLine(
303   Vdbe *v,               /* The prepared statement being created */
304   FuncDef *p,            /* A particular function definition */
305   int isBuiltin,         /* True if this is a built-in function */
306   int showInternFuncs    /* True if showing internal functions */
307 ){
308   for(; p; p=p->pNext){
309     const char *zType;
310     static const u32 mask =
311         SQLITE_DETERMINISTIC |
312         SQLITE_DIRECTONLY |
313         SQLITE_SUBTYPE |
314         SQLITE_INNOCUOUS |
315         SQLITE_FUNC_INTERNAL
316     ;
317     static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
318 
319     assert( SQLITE_FUNC_ENCMASK==0x3 );
320     assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
321     assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
322     assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
323 
324     if( p->xSFunc==0 ) continue;
325     if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
326      && showInternFuncs==0
327     ){
328       continue;
329     }
330     if( p->xValue!=0 ){
331       zType = "w";
332     }else if( p->xFinalize!=0 ){
333       zType = "a";
334     }else{
335       zType = "s";
336     }
337     sqlite3VdbeMultiLoad(v, 1, "sissii",
338        p->zName, isBuiltin,
339        zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
340        p->nArg,
341        (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
342     );
343   }
344 }
345 
346 
347 /*
348 ** Helper subroutine for PRAGMA integrity_check:
349 **
350 ** Generate code to output a single-column result row with a value of the
351 ** string held in register 3.  Decrement the result count in register 1
352 ** and halt if the maximum number of result rows have been issued.
353 */
integrityCheckResultRow(Vdbe * v)354 static int integrityCheckResultRow(Vdbe *v){
355   int addr;
356   sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
357   addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
358   VdbeCoverage(v);
359   sqlite3VdbeAddOp0(v, OP_Halt);
360   return addr;
361 }
362 
363 /*
364 ** Process a pragma statement.
365 **
366 ** Pragmas are of this form:
367 **
368 **      PRAGMA [schema.]id [= value]
369 **
370 ** The identifier might also be a string.  The value is a string, and
371 ** identifier, or a number.  If minusFlag is true, then the value is
372 ** a number that was preceded by a minus sign.
373 **
374 ** If the left side is "database.id" then pId1 is the database name
375 ** and pId2 is the id.  If the left side is just "id" then pId1 is the
376 ** id and pId2 is any empty string.
377 */
sqlite3Pragma(Parse * pParse,Token * pId1,Token * pId2,Token * pValue,int minusFlag)378 void sqlite3Pragma(
379   Parse *pParse,
380   Token *pId1,        /* First part of [schema.]id field */
381   Token *pId2,        /* Second part of [schema.]id field, or NULL */
382   Token *pValue,      /* Token for <value>, or NULL */
383   int minusFlag       /* True if a '-' sign preceded <value> */
384 ){
385   char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
386   char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
387   const char *zDb = 0;   /* The database name */
388   Token *pId;            /* Pointer to <id> token */
389   char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
390   int iDb;               /* Database index for <database> */
391   int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
392   sqlite3 *db = pParse->db;    /* The database connection */
393   Db *pDb;                     /* The specific database being pragmaed */
394   Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
395   const PragmaName *pPragma;   /* The pragma */
396 
397   if( v==0 ) return;
398   sqlite3VdbeRunOnlyOnce(v);
399   pParse->nMem = 2;
400 
401   /* Interpret the [schema.] part of the pragma statement. iDb is the
402   ** index of the database this pragma is being applied to in db.aDb[]. */
403   iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
404   if( iDb<0 ) return;
405   pDb = &db->aDb[iDb];
406 
407   /* If the temp database has been explicitly named as part of the
408   ** pragma, make sure it is open.
409   */
410   if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
411     return;
412   }
413 
414   zLeft = sqlite3NameFromToken(db, pId);
415   if( !zLeft ) return;
416   if( minusFlag ){
417     zRight = sqlite3MPrintf(db, "-%T", pValue);
418   }else{
419     zRight = sqlite3NameFromToken(db, pValue);
420   }
421 
422   assert( pId2 );
423   zDb = pId2->n>0 ? pDb->zDbSName : 0;
424   if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
425     goto pragma_out;
426   }
427 
428   /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
429   ** connection.  If it returns SQLITE_OK, then assume that the VFS
430   ** handled the pragma and generate a no-op prepared statement.
431   **
432   ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
433   ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
434   ** object corresponding to the database file to which the pragma
435   ** statement refers.
436   **
437   ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
438   ** file control is an array of pointers to strings (char**) in which the
439   ** second element of the array is the name of the pragma and the third
440   ** element is the argument to the pragma or NULL if the pragma has no
441   ** argument.
442   */
443   aFcntl[0] = 0;
444   aFcntl[1] = zLeft;
445   aFcntl[2] = zRight;
446   aFcntl[3] = 0;
447   db->busyHandler.nBusy = 0;
448   rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
449   if( rc==SQLITE_OK ){
450     sqlite3VdbeSetNumCols(v, 1);
451     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
452     returnSingleText(v, aFcntl[0]);
453     sqlite3_free(aFcntl[0]);
454     goto pragma_out;
455   }
456   if( rc!=SQLITE_NOTFOUND ){
457     if( aFcntl[0] ){
458       sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
459       sqlite3_free(aFcntl[0]);
460     }
461     pParse->nErr++;
462     pParse->rc = rc;
463     goto pragma_out;
464   }
465 
466   /* Locate the pragma in the lookup table */
467   pPragma = pragmaLocate(zLeft);
468   if( pPragma==0 ) goto pragma_out;
469 
470   /* Make sure the database schema is loaded if the pragma requires that */
471   if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
472     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
473   }
474 
475   /* Register the result column names for pragmas that return results */
476   if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
477    && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
478   ){
479     setPragmaResultColumnNames(v, pPragma);
480   }
481 
482   /* Jump to the appropriate pragma handler */
483   switch( pPragma->ePragTyp ){
484 
485 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
486   /*
487   **  PRAGMA [schema.]default_cache_size
488   **  PRAGMA [schema.]default_cache_size=N
489   **
490   ** The first form reports the current persistent setting for the
491   ** page cache size.  The value returned is the maximum number of
492   ** pages in the page cache.  The second form sets both the current
493   ** page cache size value and the persistent page cache size value
494   ** stored in the database file.
495   **
496   ** Older versions of SQLite would set the default cache size to a
497   ** negative number to indicate synchronous=OFF.  These days, synchronous
498   ** is always on by default regardless of the sign of the default cache
499   ** size.  But continue to take the absolute value of the default cache
500   ** size of historical compatibility.
501   */
502   case PragTyp_DEFAULT_CACHE_SIZE: {
503     static const int iLn = VDBE_OFFSET_LINENO(2);
504     static const VdbeOpList getCacheSize[] = {
505       { OP_Transaction, 0, 0,        0},                         /* 0 */
506       { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */
507       { OP_IfPos,       1, 8,        0},
508       { OP_Integer,     0, 2,        0},
509       { OP_Subtract,    1, 2,        1},
510       { OP_IfPos,       1, 8,        0},
511       { OP_Integer,     0, 1,        0},                         /* 6 */
512       { OP_Noop,        0, 0,        0},
513       { OP_ResultRow,   1, 1,        0},
514     };
515     VdbeOp *aOp;
516     sqlite3VdbeUsesBtree(v, iDb);
517     if( !zRight ){
518       pParse->nMem += 2;
519       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
520       aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
521       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
522       aOp[0].p1 = iDb;
523       aOp[1].p1 = iDb;
524       aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
525     }else{
526       int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
527       sqlite3BeginWriteOperation(pParse, 0, iDb);
528       sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
529       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
530       pDb->pSchema->cache_size = size;
531       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
532     }
533     break;
534   }
535 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
536 
537 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
538   /*
539   **  PRAGMA [schema.]page_size
540   **  PRAGMA [schema.]page_size=N
541   **
542   ** The first form reports the current setting for the
543   ** database page size in bytes.  The second form sets the
544   ** database page size value.  The value can only be set if
545   ** the database has not yet been created.
546   */
547   case PragTyp_PAGE_SIZE: {
548     Btree *pBt = pDb->pBt;
549     assert( pBt!=0 );
550     if( !zRight ){
551       int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
552       returnSingleInt(v, size);
553     }else{
554       /* Malloc may fail when setting the page-size, as there is an internal
555       ** buffer that the pager module resizes using sqlite3_realloc().
556       */
557       db->nextPagesize = sqlite3Atoi(zRight);
558       if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
559         sqlite3OomFault(db);
560       }
561     }
562     break;
563   }
564 
565   /*
566   **  PRAGMA [schema.]secure_delete
567   **  PRAGMA [schema.]secure_delete=ON/OFF/FAST
568   **
569   ** The first form reports the current setting for the
570   ** secure_delete flag.  The second form changes the secure_delete
571   ** flag setting and reports the new value.
572   */
573   case PragTyp_SECURE_DELETE: {
574     Btree *pBt = pDb->pBt;
575     int b = -1;
576     assert( pBt!=0 );
577     if( zRight ){
578       if( sqlite3_stricmp(zRight, "fast")==0 ){
579         b = 2;
580       }else{
581         b = sqlite3GetBoolean(zRight, 0);
582       }
583     }
584     if( pId2->n==0 && b>=0 ){
585       int ii;
586       for(ii=0; ii<db->nDb; ii++){
587         sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
588       }
589     }
590     b = sqlite3BtreeSecureDelete(pBt, b);
591     returnSingleInt(v, b);
592     break;
593   }
594 
595   /*
596   **  PRAGMA [schema.]max_page_count
597   **  PRAGMA [schema.]max_page_count=N
598   **
599   ** The first form reports the current setting for the
600   ** maximum number of pages in the database file.  The
601   ** second form attempts to change this setting.  Both
602   ** forms return the current setting.
603   **
604   ** The absolute value of N is used.  This is undocumented and might
605   ** change.  The only purpose is to provide an easy way to test
606   ** the sqlite3AbsInt32() function.
607   **
608   **  PRAGMA [schema.]page_count
609   **
610   ** Return the number of pages in the specified database.
611   */
612   case PragTyp_PAGE_COUNT: {
613     int iReg;
614     sqlite3CodeVerifySchema(pParse, iDb);
615     iReg = ++pParse->nMem;
616     if( sqlite3Tolower(zLeft[0])=='p' ){
617       sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
618     }else{
619       sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
620                         sqlite3AbsInt32(sqlite3Atoi(zRight)));
621     }
622     sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
623     break;
624   }
625 
626   /*
627   **  PRAGMA [schema.]locking_mode
628   **  PRAGMA [schema.]locking_mode = (normal|exclusive)
629   */
630   case PragTyp_LOCKING_MODE: {
631     const char *zRet = "normal";
632     int eMode = getLockingMode(zRight);
633 
634     if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
635       /* Simple "PRAGMA locking_mode;" statement. This is a query for
636       ** the current default locking mode (which may be different to
637       ** the locking-mode of the main database).
638       */
639       eMode = db->dfltLockMode;
640     }else{
641       Pager *pPager;
642       if( pId2->n==0 ){
643         /* This indicates that no database name was specified as part
644         ** of the PRAGMA command. In this case the locking-mode must be
645         ** set on all attached databases, as well as the main db file.
646         **
647         ** Also, the sqlite3.dfltLockMode variable is set so that
648         ** any subsequently attached databases also use the specified
649         ** locking mode.
650         */
651         int ii;
652         assert(pDb==&db->aDb[0]);
653         for(ii=2; ii<db->nDb; ii++){
654           pPager = sqlite3BtreePager(db->aDb[ii].pBt);
655           sqlite3PagerLockingMode(pPager, eMode);
656         }
657         db->dfltLockMode = (u8)eMode;
658       }
659       pPager = sqlite3BtreePager(pDb->pBt);
660       eMode = sqlite3PagerLockingMode(pPager, eMode);
661     }
662 
663     assert( eMode==PAGER_LOCKINGMODE_NORMAL
664             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
665     if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
666       zRet = "exclusive";
667     }
668     returnSingleText(v, zRet);
669     break;
670   }
671 
672   /*
673   **  PRAGMA [schema.]journal_mode
674   **  PRAGMA [schema.]journal_mode =
675   **                      (delete|persist|off|truncate|memory|wal|off)
676   */
677   case PragTyp_JOURNAL_MODE: {
678     int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
679     int ii;           /* Loop counter */
680 
681     if( zRight==0 ){
682       /* If there is no "=MODE" part of the pragma, do a query for the
683       ** current mode */
684       eMode = PAGER_JOURNALMODE_QUERY;
685     }else{
686       const char *zMode;
687       int n = sqlite3Strlen30(zRight);
688       for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
689         if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
690       }
691       if( !zMode ){
692         /* If the "=MODE" part does not match any known journal mode,
693         ** then do a query */
694         eMode = PAGER_JOURNALMODE_QUERY;
695       }
696       if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
697         /* Do not allow journal-mode "OFF" in defensive since the database
698         ** can become corrupted using ordinary SQL when the journal is off */
699         eMode = PAGER_JOURNALMODE_QUERY;
700       }
701     }
702     if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
703       /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
704       iDb = 0;
705       pId2->n = 1;
706     }
707     for(ii=db->nDb-1; ii>=0; ii--){
708       if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
709         sqlite3VdbeUsesBtree(v, ii);
710         sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
711       }
712     }
713     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
714     break;
715   }
716 
717   /*
718   **  PRAGMA [schema.]journal_size_limit
719   **  PRAGMA [schema.]journal_size_limit=N
720   **
721   ** Get or set the size limit on rollback journal files.
722   */
723   case PragTyp_JOURNAL_SIZE_LIMIT: {
724     Pager *pPager = sqlite3BtreePager(pDb->pBt);
725     i64 iLimit = -2;
726     if( zRight ){
727       sqlite3DecOrHexToI64(zRight, &iLimit);
728       if( iLimit<-1 ) iLimit = -1;
729     }
730     iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
731     returnSingleInt(v, iLimit);
732     break;
733   }
734 
735 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
736 
737   /*
738   **  PRAGMA [schema.]auto_vacuum
739   **  PRAGMA [schema.]auto_vacuum=N
740   **
741   ** Get or set the value of the database 'auto-vacuum' parameter.
742   ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
743   */
744 #ifndef SQLITE_OMIT_AUTOVACUUM
745   case PragTyp_AUTO_VACUUM: {
746     Btree *pBt = pDb->pBt;
747     assert( pBt!=0 );
748     if( !zRight ){
749       returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
750     }else{
751       int eAuto = getAutoVacuum(zRight);
752       assert( eAuto>=0 && eAuto<=2 );
753       db->nextAutovac = (u8)eAuto;
754       /* Call SetAutoVacuum() to set initialize the internal auto and
755       ** incr-vacuum flags. This is required in case this connection
756       ** creates the database file. It is important that it is created
757       ** as an auto-vacuum capable db.
758       */
759       rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
760       if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
761         /* When setting the auto_vacuum mode to either "full" or
762         ** "incremental", write the value of meta[6] in the database
763         ** file. Before writing to meta[6], check that meta[3] indicates
764         ** that this really is an auto-vacuum capable database.
765         */
766         static const int iLn = VDBE_OFFSET_LINENO(2);
767         static const VdbeOpList setMeta6[] = {
768           { OP_Transaction,    0,         1,                 0},    /* 0 */
769           { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
770           { OP_If,             1,         0,                 0},    /* 2 */
771           { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */
772           { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 0},    /* 4 */
773         };
774         VdbeOp *aOp;
775         int iAddr = sqlite3VdbeCurrentAddr(v);
776         sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
777         aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
778         if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
779         aOp[0].p1 = iDb;
780         aOp[1].p1 = iDb;
781         aOp[2].p2 = iAddr+4;
782         aOp[4].p1 = iDb;
783         aOp[4].p3 = eAuto - 1;
784         sqlite3VdbeUsesBtree(v, iDb);
785       }
786     }
787     break;
788   }
789 #endif
790 
791   /*
792   **  PRAGMA [schema.]incremental_vacuum(N)
793   **
794   ** Do N steps of incremental vacuuming on a database.
795   */
796 #ifndef SQLITE_OMIT_AUTOVACUUM
797   case PragTyp_INCREMENTAL_VACUUM: {
798     int iLimit, addr;
799     if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
800       iLimit = 0x7fffffff;
801     }
802     sqlite3BeginWriteOperation(pParse, 0, iDb);
803     sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
804     addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
805     sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
806     sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
807     sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
808     sqlite3VdbeJumpHere(v, addr);
809     break;
810   }
811 #endif
812 
813 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
814   /*
815   **  PRAGMA [schema.]cache_size
816   **  PRAGMA [schema.]cache_size=N
817   **
818   ** The first form reports the current local setting for the
819   ** page cache size. The second form sets the local
820   ** page cache size value.  If N is positive then that is the
821   ** number of pages in the cache.  If N is negative, then the
822   ** number of pages is adjusted so that the cache uses -N kibibytes
823   ** of memory.
824   */
825   case PragTyp_CACHE_SIZE: {
826     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
827     if( !zRight ){
828       returnSingleInt(v, pDb->pSchema->cache_size);
829     }else{
830       int size = sqlite3Atoi(zRight);
831       pDb->pSchema->cache_size = size;
832       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
833     }
834     break;
835   }
836 
837   /*
838   **  PRAGMA [schema.]cache_spill
839   **  PRAGMA cache_spill=BOOLEAN
840   **  PRAGMA [schema.]cache_spill=N
841   **
842   ** The first form reports the current local setting for the
843   ** page cache spill size. The second form turns cache spill on
844   ** or off.  When turnning cache spill on, the size is set to the
845   ** current cache_size.  The third form sets a spill size that
846   ** may be different form the cache size.
847   ** If N is positive then that is the
848   ** number of pages in the cache.  If N is negative, then the
849   ** number of pages is adjusted so that the cache uses -N kibibytes
850   ** of memory.
851   **
852   ** If the number of cache_spill pages is less then the number of
853   ** cache_size pages, no spilling occurs until the page count exceeds
854   ** the number of cache_size pages.
855   **
856   ** The cache_spill=BOOLEAN setting applies to all attached schemas,
857   ** not just the schema specified.
858   */
859   case PragTyp_CACHE_SPILL: {
860     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
861     if( !zRight ){
862       returnSingleInt(v,
863          (db->flags & SQLITE_CacheSpill)==0 ? 0 :
864             sqlite3BtreeSetSpillSize(pDb->pBt,0));
865     }else{
866       int size = 1;
867       if( sqlite3GetInt32(zRight, &size) ){
868         sqlite3BtreeSetSpillSize(pDb->pBt, size);
869       }
870       if( sqlite3GetBoolean(zRight, size!=0) ){
871         db->flags |= SQLITE_CacheSpill;
872       }else{
873         db->flags &= ~(u64)SQLITE_CacheSpill;
874       }
875       setAllPagerFlags(db);
876     }
877     break;
878   }
879 
880   /*
881   **  PRAGMA [schema.]mmap_size(N)
882   **
883   ** Used to set mapping size limit. The mapping size limit is
884   ** used to limit the aggregate size of all memory mapped regions of the
885   ** database file. If this parameter is set to zero, then memory mapping
886   ** is not used at all.  If N is negative, then the default memory map
887   ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
888   ** The parameter N is measured in bytes.
889   **
890   ** This value is advisory.  The underlying VFS is free to memory map
891   ** as little or as much as it wants.  Except, if N is set to 0 then the
892   ** upper layers will never invoke the xFetch interfaces to the VFS.
893   */
894   case PragTyp_MMAP_SIZE: {
895     sqlite3_int64 sz;
896 #if SQLITE_MAX_MMAP_SIZE>0
897     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
898     if( zRight ){
899       int ii;
900       sqlite3DecOrHexToI64(zRight, &sz);
901       if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
902       if( pId2->n==0 ) db->szMmap = sz;
903       for(ii=db->nDb-1; ii>=0; ii--){
904         if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
905           sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
906         }
907       }
908     }
909     sz = -1;
910     rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
911 #else
912     sz = 0;
913     rc = SQLITE_OK;
914 #endif
915     if( rc==SQLITE_OK ){
916       returnSingleInt(v, sz);
917     }else if( rc!=SQLITE_NOTFOUND ){
918       pParse->nErr++;
919       pParse->rc = rc;
920     }
921     break;
922   }
923 
924   /*
925   **   PRAGMA temp_store
926   **   PRAGMA temp_store = "default"|"memory"|"file"
927   **
928   ** Return or set the local value of the temp_store flag.  Changing
929   ** the local value does not make changes to the disk file and the default
930   ** value will be restored the next time the database is opened.
931   **
932   ** Note that it is possible for the library compile-time options to
933   ** override this setting
934   */
935   case PragTyp_TEMP_STORE: {
936     if( !zRight ){
937       returnSingleInt(v, db->temp_store);
938     }else{
939       changeTempStorage(pParse, zRight);
940     }
941     break;
942   }
943 
944   /*
945   **   PRAGMA temp_store_directory
946   **   PRAGMA temp_store_directory = ""|"directory_name"
947   **
948   ** Return or set the local value of the temp_store_directory flag.  Changing
949   ** the value sets a specific directory to be used for temporary files.
950   ** Setting to a null string reverts to the default temporary directory search.
951   ** If temporary directory is changed, then invalidateTempStorage.
952   **
953   */
954   case PragTyp_TEMP_STORE_DIRECTORY: {
955     if( !zRight ){
956       returnSingleText(v, sqlite3_temp_directory);
957     }else{
958 #ifndef SQLITE_OMIT_WSD
959       if( zRight[0] ){
960         int res;
961         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
962         if( rc!=SQLITE_OK || res==0 ){
963           sqlite3ErrorMsg(pParse, "not a writable directory");
964           goto pragma_out;
965         }
966       }
967       if( SQLITE_TEMP_STORE==0
968        || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
969        || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
970       ){
971         invalidateTempStorage(pParse);
972       }
973       sqlite3_free(sqlite3_temp_directory);
974       if( zRight[0] ){
975         sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
976       }else{
977         sqlite3_temp_directory = 0;
978       }
979 #endif /* SQLITE_OMIT_WSD */
980     }
981     break;
982   }
983 
984 #if SQLITE_OS_WIN
985   /*
986   **   PRAGMA data_store_directory
987   **   PRAGMA data_store_directory = ""|"directory_name"
988   **
989   ** Return or set the local value of the data_store_directory flag.  Changing
990   ** the value sets a specific directory to be used for database files that
991   ** were specified with a relative pathname.  Setting to a null string reverts
992   ** to the default database directory, which for database files specified with
993   ** a relative path will probably be based on the current directory for the
994   ** process.  Database file specified with an absolute path are not impacted
995   ** by this setting, regardless of its value.
996   **
997   */
998   case PragTyp_DATA_STORE_DIRECTORY: {
999     if( !zRight ){
1000       returnSingleText(v, sqlite3_data_directory);
1001     }else{
1002 #ifndef SQLITE_OMIT_WSD
1003       if( zRight[0] ){
1004         int res;
1005         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
1006         if( rc!=SQLITE_OK || res==0 ){
1007           sqlite3ErrorMsg(pParse, "not a writable directory");
1008           goto pragma_out;
1009         }
1010       }
1011       sqlite3_free(sqlite3_data_directory);
1012       if( zRight[0] ){
1013         sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
1014       }else{
1015         sqlite3_data_directory = 0;
1016       }
1017 #endif /* SQLITE_OMIT_WSD */
1018     }
1019     break;
1020   }
1021 #endif
1022 
1023 #if SQLITE_ENABLE_LOCKING_STYLE
1024   /*
1025   **   PRAGMA [schema.]lock_proxy_file
1026   **   PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
1027   **
1028   ** Return or set the value of the lock_proxy_file flag.  Changing
1029   ** the value sets a specific file to be used for database access locks.
1030   **
1031   */
1032   case PragTyp_LOCK_PROXY_FILE: {
1033     if( !zRight ){
1034       Pager *pPager = sqlite3BtreePager(pDb->pBt);
1035       char *proxy_file_path = NULL;
1036       sqlite3_file *pFile = sqlite3PagerFile(pPager);
1037       sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
1038                            &proxy_file_path);
1039       returnSingleText(v, proxy_file_path);
1040     }else{
1041       Pager *pPager = sqlite3BtreePager(pDb->pBt);
1042       sqlite3_file *pFile = sqlite3PagerFile(pPager);
1043       int res;
1044       if( zRight[0] ){
1045         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1046                                      zRight);
1047       } else {
1048         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1049                                      NULL);
1050       }
1051       if( res!=SQLITE_OK ){
1052         sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
1053         goto pragma_out;
1054       }
1055     }
1056     break;
1057   }
1058 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1059 
1060   /*
1061   **   PRAGMA [schema.]synchronous
1062   **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1063   **
1064   ** Return or set the local value of the synchronous flag.  Changing
1065   ** the local value does not make changes to the disk file and the
1066   ** default value will be restored the next time the database is
1067   ** opened.
1068   */
1069   case PragTyp_SYNCHRONOUS: {
1070     if( !zRight ){
1071       returnSingleInt(v, pDb->safety_level-1);
1072     }else{
1073       if( !db->autoCommit ){
1074         sqlite3ErrorMsg(pParse,
1075             "Safety level may not be changed inside a transaction");
1076       }else if( iDb!=1 ){
1077         int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1078         if( iLevel==0 ) iLevel = 1;
1079         pDb->safety_level = iLevel;
1080         pDb->bSyncSet = 1;
1081         setAllPagerFlags(db);
1082       }
1083     }
1084     break;
1085   }
1086 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1087 
1088 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1089   case PragTyp_FLAG: {
1090     if( zRight==0 ){
1091       setPragmaResultColumnNames(v, pPragma);
1092       returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1093     }else{
1094       u64 mask = pPragma->iArg;    /* Mask of bits to set or clear. */
1095       if( db->autoCommit==0 ){
1096         /* Foreign key support may not be enabled or disabled while not
1097         ** in auto-commit mode.  */
1098         mask &= ~(SQLITE_ForeignKeys);
1099       }
1100 #if SQLITE_USER_AUTHENTICATION
1101       if( db->auth.authLevel==UAUTH_User ){
1102         /* Do not allow non-admin users to modify the schema arbitrarily */
1103         mask &= ~(SQLITE_WriteSchema);
1104       }
1105 #endif
1106 
1107       if( sqlite3GetBoolean(zRight, 0) ){
1108         db->flags |= mask;
1109       }else{
1110         db->flags &= ~mask;
1111         if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1112       }
1113 
1114       /* Many of the flag-pragmas modify the code generated by the SQL
1115       ** compiler (eg. count_changes). So add an opcode to expire all
1116       ** compiled SQL statements after modifying a pragma value.
1117       */
1118       sqlite3VdbeAddOp0(v, OP_Expire);
1119       setAllPagerFlags(db);
1120     }
1121     break;
1122   }
1123 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1124 
1125 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1126   /*
1127   **   PRAGMA table_info(<table>)
1128   **
1129   ** Return a single row for each column of the named table. The columns of
1130   ** the returned data set are:
1131   **
1132   ** cid:        Column id (numbered from left to right, starting at 0)
1133   ** name:       Column name
1134   ** type:       Column declaration type.
1135   ** notnull:    True if 'NOT NULL' is part of column declaration
1136   ** dflt_value: The default value for the column, if any.
1137   ** pk:         Non-zero for PK fields.
1138   */
1139   case PragTyp_TABLE_INFO: if( zRight ){
1140     Table *pTab;
1141     pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1142     if( pTab ){
1143       int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1144       int i, k;
1145       int nHidden = 0;
1146       Column *pCol;
1147       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1148       pParse->nMem = 7;
1149       sqlite3CodeVerifySchema(pParse, iTabDb);
1150       sqlite3ViewGetColumnNames(pParse, pTab);
1151       for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1152         int isHidden = 0;
1153         if( pCol->colFlags & COLFLAG_NOINSERT ){
1154           if( pPragma->iArg==0 ){
1155             nHidden++;
1156             continue;
1157           }
1158           if( pCol->colFlags & COLFLAG_VIRTUAL ){
1159             isHidden = 2;  /* GENERATED ALWAYS AS ... VIRTUAL */
1160           }else if( pCol->colFlags & COLFLAG_STORED ){
1161             isHidden = 3;  /* GENERATED ALWAYS AS ... STORED */
1162           }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
1163             isHidden = 1;  /* HIDDEN */
1164           }
1165         }
1166         if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1167           k = 0;
1168         }else if( pPk==0 ){
1169           k = 1;
1170         }else{
1171           for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1172         }
1173         assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN || isHidden>=2 );
1174         sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
1175                i-nHidden,
1176                pCol->zName,
1177                sqlite3ColumnType(pCol,""),
1178                pCol->notNull ? 1 : 0,
1179                pCol->pDflt && isHidden<2 ? pCol->pDflt->u.zToken : 0,
1180                k,
1181                isHidden);
1182       }
1183     }
1184   }
1185   break;
1186 
1187 #ifdef SQLITE_DEBUG
1188   case PragTyp_STATS: {
1189     Index *pIdx;
1190     HashElem *i;
1191     pParse->nMem = 5;
1192     sqlite3CodeVerifySchema(pParse, iDb);
1193     for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1194       Table *pTab = sqliteHashData(i);
1195       sqlite3VdbeMultiLoad(v, 1, "ssiii",
1196            pTab->zName,
1197            0,
1198            pTab->szTabRow,
1199            pTab->nRowLogEst,
1200            pTab->tabFlags);
1201       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1202         sqlite3VdbeMultiLoad(v, 2, "siiiX",
1203            pIdx->zName,
1204            pIdx->szIdxRow,
1205            pIdx->aiRowLogEst[0],
1206            pIdx->hasStat1);
1207         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1208       }
1209     }
1210   }
1211   break;
1212 #endif
1213 
1214   case PragTyp_INDEX_INFO: if( zRight ){
1215     Index *pIdx;
1216     Table *pTab;
1217     pIdx = sqlite3FindIndex(db, zRight, zDb);
1218     if( pIdx==0 ){
1219       /* If there is no index named zRight, check to see if there is a
1220       ** WITHOUT ROWID table named zRight, and if there is, show the
1221       ** structure of the PRIMARY KEY index for that table. */
1222       pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1223       if( pTab && !HasRowid(pTab) ){
1224         pIdx = sqlite3PrimaryKeyIndex(pTab);
1225       }
1226     }
1227     if( pIdx ){
1228       int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1229       int i;
1230       int mx;
1231       if( pPragma->iArg ){
1232         /* PRAGMA index_xinfo (newer version with more rows and columns) */
1233         mx = pIdx->nColumn;
1234         pParse->nMem = 6;
1235       }else{
1236         /* PRAGMA index_info (legacy version) */
1237         mx = pIdx->nKeyCol;
1238         pParse->nMem = 3;
1239       }
1240       pTab = pIdx->pTable;
1241       sqlite3CodeVerifySchema(pParse, iIdxDb);
1242       assert( pParse->nMem<=pPragma->nPragCName );
1243       for(i=0; i<mx; i++){
1244         i16 cnum = pIdx->aiColumn[i];
1245         sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1246                              cnum<0 ? 0 : pTab->aCol[cnum].zName);
1247         if( pPragma->iArg ){
1248           sqlite3VdbeMultiLoad(v, 4, "isiX",
1249             pIdx->aSortOrder[i],
1250             pIdx->azColl[i],
1251             i<pIdx->nKeyCol);
1252         }
1253         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1254       }
1255     }
1256   }
1257   break;
1258 
1259   case PragTyp_INDEX_LIST: if( zRight ){
1260     Index *pIdx;
1261     Table *pTab;
1262     int i;
1263     pTab = sqlite3FindTable(db, zRight, zDb);
1264     if( pTab ){
1265       int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1266       pParse->nMem = 5;
1267       sqlite3CodeVerifySchema(pParse, iTabDb);
1268       for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1269         const char *azOrigin[] = { "c", "u", "pk" };
1270         sqlite3VdbeMultiLoad(v, 1, "isisi",
1271            i,
1272            pIdx->zName,
1273            IsUniqueIndex(pIdx),
1274            azOrigin[pIdx->idxType],
1275            pIdx->pPartIdxWhere!=0);
1276       }
1277     }
1278   }
1279   break;
1280 
1281   case PragTyp_DATABASE_LIST: {
1282     int i;
1283     pParse->nMem = 3;
1284     for(i=0; i<db->nDb; i++){
1285       if( db->aDb[i].pBt==0 ) continue;
1286       assert( db->aDb[i].zDbSName!=0 );
1287       sqlite3VdbeMultiLoad(v, 1, "iss",
1288          i,
1289          db->aDb[i].zDbSName,
1290          sqlite3BtreeGetFilename(db->aDb[i].pBt));
1291     }
1292   }
1293   break;
1294 
1295   case PragTyp_COLLATION_LIST: {
1296     int i = 0;
1297     HashElem *p;
1298     pParse->nMem = 2;
1299     for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1300       CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1301       sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1302     }
1303   }
1304   break;
1305 
1306 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
1307   case PragTyp_FUNCTION_LIST: {
1308     int i;
1309     HashElem *j;
1310     FuncDef *p;
1311     int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
1312     pParse->nMem = 6;
1313     for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1314       for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1315         pragmaFunclistLine(v, p, 1, showInternFunc);
1316       }
1317     }
1318     for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1319       p = (FuncDef*)sqliteHashData(j);
1320       pragmaFunclistLine(v, p, 0, showInternFunc);
1321     }
1322   }
1323   break;
1324 
1325 #ifndef SQLITE_OMIT_VIRTUALTABLE
1326   case PragTyp_MODULE_LIST: {
1327     HashElem *j;
1328     pParse->nMem = 1;
1329     for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1330       Module *pMod = (Module*)sqliteHashData(j);
1331       sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1332     }
1333   }
1334   break;
1335 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1336 
1337   case PragTyp_PRAGMA_LIST: {
1338     int i;
1339     for(i=0; i<ArraySize(aPragmaName); i++){
1340       sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1341     }
1342   }
1343   break;
1344 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1345 
1346 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1347 
1348 #ifndef SQLITE_OMIT_FOREIGN_KEY
1349   case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1350     FKey *pFK;
1351     Table *pTab;
1352     pTab = sqlite3FindTable(db, zRight, zDb);
1353     if( pTab ){
1354       pFK = pTab->pFKey;
1355       if( pFK ){
1356         int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1357         int i = 0;
1358         pParse->nMem = 8;
1359         sqlite3CodeVerifySchema(pParse, iTabDb);
1360         while(pFK){
1361           int j;
1362           for(j=0; j<pFK->nCol; j++){
1363             sqlite3VdbeMultiLoad(v, 1, "iissssss",
1364                    i,
1365                    j,
1366                    pFK->zTo,
1367                    pTab->aCol[pFK->aCol[j].iFrom].zName,
1368                    pFK->aCol[j].zCol,
1369                    actionName(pFK->aAction[1]),  /* ON UPDATE */
1370                    actionName(pFK->aAction[0]),  /* ON DELETE */
1371                    "NONE");
1372           }
1373           ++i;
1374           pFK = pFK->pNextFrom;
1375         }
1376       }
1377     }
1378   }
1379   break;
1380 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1381 
1382 #ifndef SQLITE_OMIT_FOREIGN_KEY
1383 #ifndef SQLITE_OMIT_TRIGGER
1384   case PragTyp_FOREIGN_KEY_CHECK: {
1385     FKey *pFK;             /* A foreign key constraint */
1386     Table *pTab;           /* Child table contain "REFERENCES" keyword */
1387     Table *pParent;        /* Parent table that child points to */
1388     Index *pIdx;           /* Index in the parent table */
1389     int i;                 /* Loop counter:  Foreign key number for pTab */
1390     int j;                 /* Loop counter:  Field of the foreign key */
1391     HashElem *k;           /* Loop counter:  Next table in schema */
1392     int x;                 /* result variable */
1393     int regResult;         /* 3 registers to hold a result row */
1394     int regKey;            /* Register to hold key for checking the FK */
1395     int regRow;            /* Registers to hold a row from pTab */
1396     int addrTop;           /* Top of a loop checking foreign keys */
1397     int addrOk;            /* Jump here if the key is OK */
1398     int *aiCols;           /* child to parent column mapping */
1399 
1400     regResult = pParse->nMem+1;
1401     pParse->nMem += 4;
1402     regKey = ++pParse->nMem;
1403     regRow = ++pParse->nMem;
1404     k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1405     while( k ){
1406       int iTabDb;
1407       if( zRight ){
1408         pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1409         k = 0;
1410       }else{
1411         pTab = (Table*)sqliteHashData(k);
1412         k = sqliteHashNext(k);
1413       }
1414       if( pTab==0 || pTab->pFKey==0 ) continue;
1415       iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1416       sqlite3CodeVerifySchema(pParse, iTabDb);
1417       sqlite3TableLock(pParse, iTabDb, pTab->tnum, 0, pTab->zName);
1418       if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1419       sqlite3OpenTable(pParse, 0, iTabDb, pTab, OP_OpenRead);
1420       sqlite3VdbeLoadString(v, regResult, pTab->zName);
1421       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1422         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1423         if( pParent==0 ) continue;
1424         pIdx = 0;
1425         sqlite3TableLock(pParse, iTabDb, pParent->tnum, 0, pParent->zName);
1426         x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1427         if( x==0 ){
1428           if( pIdx==0 ){
1429             sqlite3OpenTable(pParse, i, iTabDb, pParent, OP_OpenRead);
1430           }else{
1431             sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iTabDb);
1432             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1433           }
1434         }else{
1435           k = 0;
1436           break;
1437         }
1438       }
1439       assert( pParse->nErr>0 || pFK==0 );
1440       if( pFK ) break;
1441       if( pParse->nTab<i ) pParse->nTab = i;
1442       addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1443       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1444         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1445         pIdx = 0;
1446         aiCols = 0;
1447         if( pParent ){
1448           x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1449           assert( x==0 );
1450         }
1451         addrOk = sqlite3VdbeMakeLabel(pParse);
1452 
1453         /* Generate code to read the child key values into registers
1454         ** regRow..regRow+n. If any of the child key values are NULL, this
1455         ** row cannot cause an FK violation. Jump directly to addrOk in
1456         ** this case. */
1457         for(j=0; j<pFK->nCol; j++){
1458           int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1459           sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1460           sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1461         }
1462 
1463         /* Generate code to query the parent index for a matching parent
1464         ** key. If a match is found, jump to addrOk. */
1465         if( pIdx ){
1466           sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1467               sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1468           sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1469           VdbeCoverage(v);
1470         }else if( pParent ){
1471           int jmp = sqlite3VdbeCurrentAddr(v)+2;
1472           sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1473           sqlite3VdbeGoto(v, addrOk);
1474           assert( pFK->nCol==1 );
1475         }
1476 
1477         /* Generate code to report an FK violation to the caller. */
1478         if( HasRowid(pTab) ){
1479           sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1480         }else{
1481           sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1482         }
1483         sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1484         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1485         sqlite3VdbeResolveLabel(v, addrOk);
1486         sqlite3DbFree(db, aiCols);
1487       }
1488       sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1489       sqlite3VdbeJumpHere(v, addrTop);
1490     }
1491   }
1492   break;
1493 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1494 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1495 
1496 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
1497   /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
1498   ** used will be case sensitive or not depending on the RHS.
1499   */
1500   case PragTyp_CASE_SENSITIVE_LIKE: {
1501     if( zRight ){
1502       sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1503     }
1504   }
1505   break;
1506 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
1507 
1508 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1509 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1510 #endif
1511 
1512 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1513   /*    PRAGMA integrity_check
1514   **    PRAGMA integrity_check(N)
1515   **    PRAGMA quick_check
1516   **    PRAGMA quick_check(N)
1517   **
1518   ** Verify the integrity of the database.
1519   **
1520   ** The "quick_check" is reduced version of
1521   ** integrity_check designed to detect most database corruption
1522   ** without the overhead of cross-checking indexes.  Quick_check
1523   ** is linear time wherease integrity_check is O(NlogN).
1524   */
1525   case PragTyp_INTEGRITY_CHECK: {
1526     int i, j, addr, mxErr;
1527 
1528     int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1529 
1530     /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1531     ** then iDb is set to the index of the database identified by <db>.
1532     ** In this case, the integrity of database iDb only is verified by
1533     ** the VDBE created below.
1534     **
1535     ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1536     ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1537     ** to -1 here, to indicate that the VDBE should verify the integrity
1538     ** of all attached databases.  */
1539     assert( iDb>=0 );
1540     assert( iDb==0 || pId2->z );
1541     if( pId2->z==0 ) iDb = -1;
1542 
1543     /* Initialize the VDBE program */
1544     pParse->nMem = 6;
1545 
1546     /* Set the maximum error count */
1547     mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1548     if( zRight ){
1549       sqlite3GetInt32(zRight, &mxErr);
1550       if( mxErr<=0 ){
1551         mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1552       }
1553     }
1554     sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1555 
1556     /* Do an integrity check on each database file */
1557     for(i=0; i<db->nDb; i++){
1558       HashElem *x;     /* For looping over tables in the schema */
1559       Hash *pTbls;     /* Set of all tables in the schema */
1560       int *aRoot;      /* Array of root page numbers of all btrees */
1561       int cnt = 0;     /* Number of entries in aRoot[] */
1562       int mxIdx = 0;   /* Maximum number of indexes for any table */
1563 
1564       if( OMIT_TEMPDB && i==1 ) continue;
1565       if( iDb>=0 && i!=iDb ) continue;
1566 
1567       sqlite3CodeVerifySchema(pParse, i);
1568 
1569       /* Do an integrity check of the B-Tree
1570       **
1571       ** Begin by finding the root pages numbers
1572       ** for all tables and indices in the database.
1573       */
1574       assert( sqlite3SchemaMutexHeld(db, i, 0) );
1575       pTbls = &db->aDb[i].pSchema->tblHash;
1576       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1577         Table *pTab = sqliteHashData(x);  /* Current table */
1578         Index *pIdx;                      /* An index on pTab */
1579         int nIdx;                         /* Number of indexes on pTab */
1580         if( HasRowid(pTab) ) cnt++;
1581         for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1582         if( nIdx>mxIdx ) mxIdx = nIdx;
1583       }
1584       aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1585       if( aRoot==0 ) break;
1586       for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1587         Table *pTab = sqliteHashData(x);
1588         Index *pIdx;
1589         if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1590         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1591           aRoot[++cnt] = pIdx->tnum;
1592         }
1593       }
1594       aRoot[0] = cnt;
1595 
1596       /* Make sure sufficient number of registers have been allocated */
1597       pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1598       sqlite3ClearTempRegCache(pParse);
1599 
1600       /* Do the b-tree integrity checks */
1601       sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1602       sqlite3VdbeChangeP5(v, (u8)i);
1603       addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1604       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1605          sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1606          P4_DYNAMIC);
1607       sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1608       integrityCheckResultRow(v);
1609       sqlite3VdbeJumpHere(v, addr);
1610 
1611       /* Make sure all the indices are constructed correctly.
1612       */
1613       for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1614         Table *pTab = sqliteHashData(x);
1615         Index *pIdx, *pPk;
1616         Index *pPrior = 0;
1617         int loopTop;
1618         int iDataCur, iIdxCur;
1619         int r1 = -1;
1620 
1621         if( pTab->tnum<1 ) continue;  /* Skip VIEWs or VIRTUAL TABLEs */
1622         pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1623         sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1624                                    1, 0, &iDataCur, &iIdxCur);
1625         /* reg[7] counts the number of entries in the table.
1626         ** reg[8+i] counts the number of entries in the i-th index
1627         */
1628         sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1629         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1630           sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1631         }
1632         assert( pParse->nMem>=8+j );
1633         assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1634         sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1635         loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1636         if( !isQuick ){
1637           /* Sanity check on record header decoding */
1638           sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3);
1639           sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1640         }
1641         /* Verify that all NOT NULL columns really are NOT NULL */
1642         for(j=0; j<pTab->nCol; j++){
1643           char *zErr;
1644           int jmp2;
1645           if( j==pTab->iPKey ) continue;
1646           if( pTab->aCol[j].notNull==0 ) continue;
1647           sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1648           if( sqlite3VdbeGetOp(v,-1)->opcode==OP_Column ){
1649             sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1650           }
1651           jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1652           zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1653                               pTab->aCol[j].zName);
1654           sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1655           integrityCheckResultRow(v);
1656           sqlite3VdbeJumpHere(v, jmp2);
1657         }
1658         /* Verify CHECK constraints */
1659         if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1660           ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1661           if( db->mallocFailed==0 ){
1662             int addrCkFault = sqlite3VdbeMakeLabel(pParse);
1663             int addrCkOk = sqlite3VdbeMakeLabel(pParse);
1664             char *zErr;
1665             int k;
1666             pParse->iSelfTab = iDataCur + 1;
1667             for(k=pCheck->nExpr-1; k>0; k--){
1668               sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1669             }
1670             sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1671                 SQLITE_JUMPIFNULL);
1672             sqlite3VdbeResolveLabel(v, addrCkFault);
1673             pParse->iSelfTab = 0;
1674             zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1675                 pTab->zName);
1676             sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1677             integrityCheckResultRow(v);
1678             sqlite3VdbeResolveLabel(v, addrCkOk);
1679           }
1680           sqlite3ExprListDelete(db, pCheck);
1681         }
1682         if( !isQuick ){ /* Omit the remaining tests for quick_check */
1683           /* Validate index entries for the current row */
1684           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1685             int jmp2, jmp3, jmp4, jmp5;
1686             int ckUniq = sqlite3VdbeMakeLabel(pParse);
1687             if( pPk==pIdx ) continue;
1688             r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1689                                          pPrior, r1);
1690             pPrior = pIdx;
1691             sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1692             /* Verify that an index entry exists for the current table row */
1693             jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1694                                         pIdx->nColumn); VdbeCoverage(v);
1695             sqlite3VdbeLoadString(v, 3, "row ");
1696             sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1697             sqlite3VdbeLoadString(v, 4, " missing from index ");
1698             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1699             jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1700             sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1701             jmp4 = integrityCheckResultRow(v);
1702             sqlite3VdbeJumpHere(v, jmp2);
1703             /* For UNIQUE indexes, verify that only one entry exists with the
1704             ** current key.  The entry is unique if (1) any column is NULL
1705             ** or (2) the next entry has a different key */
1706             if( IsUniqueIndex(pIdx) ){
1707               int uniqOk = sqlite3VdbeMakeLabel(pParse);
1708               int jmp6;
1709               int kk;
1710               for(kk=0; kk<pIdx->nKeyCol; kk++){
1711                 int iCol = pIdx->aiColumn[kk];
1712                 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1713                 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1714                 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1715                 VdbeCoverage(v);
1716               }
1717               jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1718               sqlite3VdbeGoto(v, uniqOk);
1719               sqlite3VdbeJumpHere(v, jmp6);
1720               sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1721                                    pIdx->nKeyCol); VdbeCoverage(v);
1722               sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1723               sqlite3VdbeGoto(v, jmp5);
1724               sqlite3VdbeResolveLabel(v, uniqOk);
1725             }
1726             sqlite3VdbeJumpHere(v, jmp4);
1727             sqlite3ResolvePartIdxLabel(pParse, jmp3);
1728           }
1729         }
1730         sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1731         sqlite3VdbeJumpHere(v, loopTop-1);
1732 #ifndef SQLITE_OMIT_BTREECOUNT
1733         if( !isQuick ){
1734           sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1735           for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1736             if( pPk==pIdx ) continue;
1737             sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1738             addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1739             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1740             sqlite3VdbeLoadString(v, 4, pIdx->zName);
1741             sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1742             integrityCheckResultRow(v);
1743             sqlite3VdbeJumpHere(v, addr);
1744           }
1745         }
1746 #endif /* SQLITE_OMIT_BTREECOUNT */
1747       }
1748     }
1749     {
1750       static const int iLn = VDBE_OFFSET_LINENO(2);
1751       static const VdbeOpList endCode[] = {
1752         { OP_AddImm,      1, 0,        0},    /* 0 */
1753         { OP_IfNotZero,   1, 4,        0},    /* 1 */
1754         { OP_String8,     0, 3,        0},    /* 2 */
1755         { OP_ResultRow,   3, 1,        0},    /* 3 */
1756         { OP_Halt,        0, 0,        0},    /* 4 */
1757         { OP_String8,     0, 3,        0},    /* 5 */
1758         { OP_Goto,        0, 3,        0},    /* 6 */
1759       };
1760       VdbeOp *aOp;
1761 
1762       aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1763       if( aOp ){
1764         aOp[0].p2 = 1-mxErr;
1765         aOp[2].p4type = P4_STATIC;
1766         aOp[2].p4.z = "ok";
1767         aOp[5].p4type = P4_STATIC;
1768         aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1769       }
1770       sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1771     }
1772   }
1773   break;
1774 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1775 
1776 #ifndef SQLITE_OMIT_UTF16
1777   /*
1778   **   PRAGMA encoding
1779   **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1780   **
1781   ** In its first form, this pragma returns the encoding of the main
1782   ** database. If the database is not initialized, it is initialized now.
1783   **
1784   ** The second form of this pragma is a no-op if the main database file
1785   ** has not already been initialized. In this case it sets the default
1786   ** encoding that will be used for the main database file if a new file
1787   ** is created. If an existing main database file is opened, then the
1788   ** default text encoding for the existing database is used.
1789   **
1790   ** In all cases new databases created using the ATTACH command are
1791   ** created to use the same default text encoding as the main database. If
1792   ** the main database has not been initialized and/or created when ATTACH
1793   ** is executed, this is done before the ATTACH operation.
1794   **
1795   ** In the second form this pragma sets the text encoding to be used in
1796   ** new database files created using this database handle. It is only
1797   ** useful if invoked immediately after the main database i
1798   */
1799   case PragTyp_ENCODING: {
1800     static const struct EncName {
1801       char *zName;
1802       u8 enc;
1803     } encnames[] = {
1804       { "UTF8",     SQLITE_UTF8        },
1805       { "UTF-8",    SQLITE_UTF8        },  /* Must be element [1] */
1806       { "UTF-16le", SQLITE_UTF16LE     },  /* Must be element [2] */
1807       { "UTF-16be", SQLITE_UTF16BE     },  /* Must be element [3] */
1808       { "UTF16le",  SQLITE_UTF16LE     },
1809       { "UTF16be",  SQLITE_UTF16BE     },
1810       { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
1811       { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
1812       { 0, 0 }
1813     };
1814     const struct EncName *pEnc;
1815     if( !zRight ){    /* "PRAGMA encoding" */
1816       if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1817       assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1818       assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1819       assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1820       returnSingleText(v, encnames[ENC(pParse->db)].zName);
1821     }else{                        /* "PRAGMA encoding = XXX" */
1822       /* Only change the value of sqlite.enc if the database handle is not
1823       ** initialized. If the main database exists, the new sqlite.enc value
1824       ** will be overwritten when the schema is next loaded. If it does not
1825       ** already exists, it will be created to use the new encoding value.
1826       */
1827       int canChangeEnc = 1;  /* True if allowed to change the encoding */
1828       int i;                 /* For looping over all attached databases */
1829       for(i=0; i<db->nDb; i++){
1830         if( db->aDb[i].pBt!=0
1831          && DbHasProperty(db,i,DB_SchemaLoaded)
1832          && !DbHasProperty(db,i,DB_Empty)
1833         ){
1834           canChangeEnc = 0;
1835         }
1836       }
1837       if( canChangeEnc ){
1838         for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1839           if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1840             SCHEMA_ENC(db) = ENC(db) =
1841                 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1842             break;
1843           }
1844         }
1845         if( !pEnc->zName ){
1846           sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1847         }
1848       }
1849     }
1850   }
1851   break;
1852 #endif /* SQLITE_OMIT_UTF16 */
1853 
1854 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1855   /*
1856   **   PRAGMA [schema.]schema_version
1857   **   PRAGMA [schema.]schema_version = <integer>
1858   **
1859   **   PRAGMA [schema.]user_version
1860   **   PRAGMA [schema.]user_version = <integer>
1861   **
1862   **   PRAGMA [schema.]freelist_count
1863   **
1864   **   PRAGMA [schema.]data_version
1865   **
1866   **   PRAGMA [schema.]application_id
1867   **   PRAGMA [schema.]application_id = <integer>
1868   **
1869   ** The pragma's schema_version and user_version are used to set or get
1870   ** the value of the schema-version and user-version, respectively. Both
1871   ** the schema-version and the user-version are 32-bit signed integers
1872   ** stored in the database header.
1873   **
1874   ** The schema-cookie is usually only manipulated internally by SQLite. It
1875   ** is incremented by SQLite whenever the database schema is modified (by
1876   ** creating or dropping a table or index). The schema version is used by
1877   ** SQLite each time a query is executed to ensure that the internal cache
1878   ** of the schema used when compiling the SQL query matches the schema of
1879   ** the database against which the compiled query is actually executed.
1880   ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1881   ** the schema-version is potentially dangerous and may lead to program
1882   ** crashes or database corruption. Use with caution!
1883   **
1884   ** The user-version is not used internally by SQLite. It may be used by
1885   ** applications for any purpose.
1886   */
1887   case PragTyp_HEADER_VALUE: {
1888     int iCookie = pPragma->iArg;  /* Which cookie to read or write */
1889     sqlite3VdbeUsesBtree(v, iDb);
1890     if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1891       /* Write the specified cookie value */
1892       static const VdbeOpList setCookie[] = {
1893         { OP_Transaction,    0,  1,  0},    /* 0 */
1894         { OP_SetCookie,      0,  0,  0},    /* 1 */
1895       };
1896       VdbeOp *aOp;
1897       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1898       aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1899       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1900       aOp[0].p1 = iDb;
1901       aOp[1].p1 = iDb;
1902       aOp[1].p2 = iCookie;
1903       aOp[1].p3 = sqlite3Atoi(zRight);
1904     }else{
1905       /* Read the specified cookie value */
1906       static const VdbeOpList readCookie[] = {
1907         { OP_Transaction,     0,  0,  0},    /* 0 */
1908         { OP_ReadCookie,      0,  1,  0},    /* 1 */
1909         { OP_ResultRow,       1,  1,  0}
1910       };
1911       VdbeOp *aOp;
1912       sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1913       aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1914       if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1915       aOp[0].p1 = iDb;
1916       aOp[1].p1 = iDb;
1917       aOp[1].p3 = iCookie;
1918       sqlite3VdbeReusable(v);
1919     }
1920   }
1921   break;
1922 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1923 
1924 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1925   /*
1926   **   PRAGMA compile_options
1927   **
1928   ** Return the names of all compile-time options used in this build,
1929   ** one option per row.
1930   */
1931   case PragTyp_COMPILE_OPTIONS: {
1932     int i = 0;
1933     const char *zOpt;
1934     pParse->nMem = 1;
1935     while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1936       sqlite3VdbeLoadString(v, 1, zOpt);
1937       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1938     }
1939     sqlite3VdbeReusable(v);
1940   }
1941   break;
1942 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1943 
1944 #ifndef SQLITE_OMIT_WAL
1945   /*
1946   **   PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1947   **
1948   ** Checkpoint the database.
1949   */
1950   case PragTyp_WAL_CHECKPOINT: {
1951     int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1952     int eMode = SQLITE_CHECKPOINT_PASSIVE;
1953     if( zRight ){
1954       if( sqlite3StrICmp(zRight, "full")==0 ){
1955         eMode = SQLITE_CHECKPOINT_FULL;
1956       }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1957         eMode = SQLITE_CHECKPOINT_RESTART;
1958       }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1959         eMode = SQLITE_CHECKPOINT_TRUNCATE;
1960       }
1961     }
1962     pParse->nMem = 3;
1963     sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1964     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1965   }
1966   break;
1967 
1968   /*
1969   **   PRAGMA wal_autocheckpoint
1970   **   PRAGMA wal_autocheckpoint = N
1971   **
1972   ** Configure a database connection to automatically checkpoint a database
1973   ** after accumulating N frames in the log. Or query for the current value
1974   ** of N.
1975   */
1976   case PragTyp_WAL_AUTOCHECKPOINT: {
1977     if( zRight ){
1978       sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1979     }
1980     returnSingleInt(v,
1981        db->xWalCallback==sqlite3WalDefaultHook ?
1982            SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1983   }
1984   break;
1985 #endif
1986 
1987   /*
1988   **  PRAGMA shrink_memory
1989   **
1990   ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1991   ** connection on which it is invoked to free up as much memory as it
1992   ** can, by calling sqlite3_db_release_memory().
1993   */
1994   case PragTyp_SHRINK_MEMORY: {
1995     sqlite3_db_release_memory(db);
1996     break;
1997   }
1998 
1999   /*
2000   **  PRAGMA optimize
2001   **  PRAGMA optimize(MASK)
2002   **  PRAGMA schema.optimize
2003   **  PRAGMA schema.optimize(MASK)
2004   **
2005   ** Attempt to optimize the database.  All schemas are optimized in the first
2006   ** two forms, and only the specified schema is optimized in the latter two.
2007   **
2008   ** The details of optimizations performed by this pragma are expected
2009   ** to change and improve over time.  Applications should anticipate that
2010   ** this pragma will perform new optimizations in future releases.
2011   **
2012   ** The optional argument is a bitmask of optimizations to perform:
2013   **
2014   **    0x0001    Debugging mode.  Do not actually perform any optimizations
2015   **              but instead return one line of text for each optimization
2016   **              that would have been done.  Off by default.
2017   **
2018   **    0x0002    Run ANALYZE on tables that might benefit.  On by default.
2019   **              See below for additional information.
2020   **
2021   **    0x0004    (Not yet implemented) Record usage and performance
2022   **              information from the current session in the
2023   **              database file so that it will be available to "optimize"
2024   **              pragmas run by future database connections.
2025   **
2026   **    0x0008    (Not yet implemented) Create indexes that might have
2027   **              been helpful to recent queries
2028   **
2029   ** The default MASK is and always shall be 0xfffe.  0xfffe means perform all
2030   ** of the optimizations listed above except Debug Mode, including new
2031   ** optimizations that have not yet been invented.  If new optimizations are
2032   ** ever added that should be off by default, those off-by-default
2033   ** optimizations will have bitmasks of 0x10000 or larger.
2034   **
2035   ** DETERMINATION OF WHEN TO RUN ANALYZE
2036   **
2037   ** In the current implementation, a table is analyzed if only if all of
2038   ** the following are true:
2039   **
2040   ** (1) MASK bit 0x02 is set.
2041   **
2042   ** (2) The query planner used sqlite_stat1-style statistics for one or
2043   **     more indexes of the table at some point during the lifetime of
2044   **     the current connection.
2045   **
2046   ** (3) One or more indexes of the table are currently unanalyzed OR
2047   **     the number of rows in the table has increased by 25 times or more
2048   **     since the last time ANALYZE was run.
2049   **
2050   ** The rules for when tables are analyzed are likely to change in
2051   ** future releases.
2052   */
2053   case PragTyp_OPTIMIZE: {
2054     int iDbLast;           /* Loop termination point for the schema loop */
2055     int iTabCur;           /* Cursor for a table whose size needs checking */
2056     HashElem *k;           /* Loop over tables of a schema */
2057     Schema *pSchema;       /* The current schema */
2058     Table *pTab;           /* A table in the schema */
2059     Index *pIdx;           /* An index of the table */
2060     LogEst szThreshold;    /* Size threshold above which reanalysis is needd */
2061     char *zSubSql;         /* SQL statement for the OP_SqlExec opcode */
2062     u32 opMask;            /* Mask of operations to perform */
2063 
2064     if( zRight ){
2065       opMask = (u32)sqlite3Atoi(zRight);
2066       if( (opMask & 0x02)==0 ) break;
2067     }else{
2068       opMask = 0xfffe;
2069     }
2070     iTabCur = pParse->nTab++;
2071     for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
2072       if( iDb==1 ) continue;
2073       sqlite3CodeVerifySchema(pParse, iDb);
2074       pSchema = db->aDb[iDb].pSchema;
2075       for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2076         pTab = (Table*)sqliteHashData(k);
2077 
2078         /* If table pTab has not been used in a way that would benefit from
2079         ** having analysis statistics during the current session, then skip it.
2080         ** This also has the effect of skipping virtual tables and views */
2081         if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2082 
2083         /* Reanalyze if the table is 25 times larger than the last analysis */
2084         szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2085         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2086           if( !pIdx->hasStat1 ){
2087             szThreshold = 0; /* Always analyze if any index lacks statistics */
2088             break;
2089           }
2090         }
2091         if( szThreshold ){
2092           sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2093           sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2094                          sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2095           VdbeCoverage(v);
2096         }
2097         zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2098                                  db->aDb[iDb].zDbSName, pTab->zName);
2099         if( opMask & 0x01 ){
2100           int r1 = sqlite3GetTempReg(pParse);
2101           sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2102           sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2103         }else{
2104           sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2105         }
2106       }
2107     }
2108     sqlite3VdbeAddOp0(v, OP_Expire);
2109     break;
2110   }
2111 
2112   /*
2113   **   PRAGMA busy_timeout
2114   **   PRAGMA busy_timeout = N
2115   **
2116   ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
2117   ** if one is set.  If no busy handler or a different busy handler is set
2118   ** then 0 is returned.  Setting the busy_timeout to 0 or negative
2119   ** disables the timeout.
2120   */
2121   /*case PragTyp_BUSY_TIMEOUT*/ default: {
2122     assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2123     if( zRight ){
2124       sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2125     }
2126     returnSingleInt(v, db->busyTimeout);
2127     break;
2128   }
2129 
2130   /*
2131   **   PRAGMA soft_heap_limit
2132   **   PRAGMA soft_heap_limit = N
2133   **
2134   ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2135   ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2136   ** specified and is a non-negative integer.
2137   ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2138   ** returns the same integer that would be returned by the
2139   ** sqlite3_soft_heap_limit64(-1) C-language function.
2140   */
2141   case PragTyp_SOFT_HEAP_LIMIT: {
2142     sqlite3_int64 N;
2143     if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2144       sqlite3_soft_heap_limit64(N);
2145     }
2146     returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2147     break;
2148   }
2149 
2150   /*
2151   **   PRAGMA hard_heap_limit
2152   **   PRAGMA hard_heap_limit = N
2153   **
2154   ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
2155   ** limit.  The hard heap limit can be activated or lowered by this
2156   ** pragma, but not raised or deactivated.  Only the
2157   ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
2158   ** the hard heap limit.  This allows an application to set a heap limit
2159   ** constraint that cannot be relaxed by an untrusted SQL script.
2160   */
2161   case PragTyp_HARD_HEAP_LIMIT: {
2162     sqlite3_int64 N;
2163     if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2164       sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
2165       if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
2166     }
2167     returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
2168     break;
2169   }
2170 
2171   /*
2172   **   PRAGMA threads
2173   **   PRAGMA threads = N
2174   **
2175   ** Configure the maximum number of worker threads.  Return the new
2176   ** maximum, which might be less than requested.
2177   */
2178   case PragTyp_THREADS: {
2179     sqlite3_int64 N;
2180     if( zRight
2181      && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2182      && N>=0
2183     ){
2184       sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2185     }
2186     returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2187     break;
2188   }
2189 
2190 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2191   /*
2192   ** Report the current state of file logs for all databases
2193   */
2194   case PragTyp_LOCK_STATUS: {
2195     static const char *const azLockName[] = {
2196       "unlocked", "shared", "reserved", "pending", "exclusive"
2197     };
2198     int i;
2199     pParse->nMem = 2;
2200     for(i=0; i<db->nDb; i++){
2201       Btree *pBt;
2202       const char *zState = "unknown";
2203       int j;
2204       if( db->aDb[i].zDbSName==0 ) continue;
2205       pBt = db->aDb[i].pBt;
2206       if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2207         zState = "closed";
2208       }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2209                                      SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2210          zState = azLockName[j];
2211       }
2212       sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2213     }
2214     break;
2215   }
2216 #endif
2217 
2218 #ifdef SQLITE_HAS_CODEC
2219   /* Pragma        iArg
2220   ** ----------   ------
2221   **  key           0
2222   **  rekey         1
2223   **  hexkey        2
2224   **  hexrekey      3
2225   **  textkey       4
2226   **  textrekey     5
2227   */
2228   case PragTyp_KEY: {
2229     if( zRight ){
2230       char zBuf[40];
2231       const char *zKey = zRight;
2232       int n;
2233       if( pPragma->iArg==2 || pPragma->iArg==3 ){
2234         u8 iByte;
2235         int i;
2236         for(i=0, iByte=0; i<sizeof(zBuf)*2 && sqlite3Isxdigit(zRight[i]); i++){
2237           iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
2238           if( (i&1)!=0 ) zBuf[i/2] = iByte;
2239         }
2240         zKey = zBuf;
2241         n = i/2;
2242       }else{
2243         n = pPragma->iArg<4 ? sqlite3Strlen30(zRight) : -1;
2244       }
2245       if( (pPragma->iArg & 1)==0 ){
2246         rc = sqlite3_key_v2(db, zDb, zKey, n);
2247       }else{
2248         rc = sqlite3_rekey_v2(db, zDb, zKey, n);
2249       }
2250       if( rc==SQLITE_OK && n!=0 ){
2251         sqlite3VdbeSetNumCols(v, 1);
2252         sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "ok", SQLITE_STATIC);
2253         returnSingleText(v, "ok");
2254       }
2255     }
2256     break;
2257   }
2258 #endif
2259 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
2260   case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2261 #ifdef SQLITE_HAS_CODEC
2262     if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
2263       sqlite3_activate_see(&zRight[4]);
2264     }
2265 #endif
2266 #ifdef SQLITE_ENABLE_CEROD
2267     if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2268       sqlite3_activate_cerod(&zRight[6]);
2269     }
2270 #endif
2271   }
2272   break;
2273 #endif
2274 
2275   } /* End of the PRAGMA switch */
2276 
2277   /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2278   ** purpose is to execute assert() statements to verify that if the
2279   ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2280   ** to the PRAGMA, the implementation has not added any OP_ResultRow
2281   ** instructions to the VM.  */
2282   if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2283     sqlite3VdbeVerifyNoResultRow(v);
2284   }
2285 
2286 pragma_out:
2287   sqlite3DbFree(db, zLeft);
2288   sqlite3DbFree(db, zRight);
2289 }
2290 #ifndef SQLITE_OMIT_VIRTUALTABLE
2291 /*****************************************************************************
2292 ** Implementation of an eponymous virtual table that runs a pragma.
2293 **
2294 */
2295 typedef struct PragmaVtab PragmaVtab;
2296 typedef struct PragmaVtabCursor PragmaVtabCursor;
2297 struct PragmaVtab {
2298   sqlite3_vtab base;        /* Base class.  Must be first */
2299   sqlite3 *db;              /* The database connection to which it belongs */
2300   const PragmaName *pName;  /* Name of the pragma */
2301   u8 nHidden;               /* Number of hidden columns */
2302   u8 iHidden;               /* Index of the first hidden column */
2303 };
2304 struct PragmaVtabCursor {
2305   sqlite3_vtab_cursor base; /* Base class.  Must be first */
2306   sqlite3_stmt *pPragma;    /* The pragma statement to run */
2307   sqlite_int64 iRowid;      /* Current rowid */
2308   char *azArg[2];           /* Value of the argument and schema */
2309 };
2310 
2311 /*
2312 ** Pragma virtual table module xConnect method.
2313 */
pragmaVtabConnect(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)2314 static int pragmaVtabConnect(
2315   sqlite3 *db,
2316   void *pAux,
2317   int argc, const char *const*argv,
2318   sqlite3_vtab **ppVtab,
2319   char **pzErr
2320 ){
2321   const PragmaName *pPragma = (const PragmaName*)pAux;
2322   PragmaVtab *pTab = 0;
2323   int rc;
2324   int i, j;
2325   char cSep = '(';
2326   StrAccum acc;
2327   char zBuf[200];
2328 
2329   UNUSED_PARAMETER(argc);
2330   UNUSED_PARAMETER(argv);
2331   sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2332   sqlite3_str_appendall(&acc, "CREATE TABLE x");
2333   for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2334     sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2335     cSep = ',';
2336   }
2337   if( i==0 ){
2338     sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2339     i++;
2340   }
2341   j = 0;
2342   if( pPragma->mPragFlg & PragFlg_Result1 ){
2343     sqlite3_str_appendall(&acc, ",arg HIDDEN");
2344     j++;
2345   }
2346   if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2347     sqlite3_str_appendall(&acc, ",schema HIDDEN");
2348     j++;
2349   }
2350   sqlite3_str_append(&acc, ")", 1);
2351   sqlite3StrAccumFinish(&acc);
2352   assert( strlen(zBuf) < sizeof(zBuf)-1 );
2353   rc = sqlite3_declare_vtab(db, zBuf);
2354   if( rc==SQLITE_OK ){
2355     pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2356     if( pTab==0 ){
2357       rc = SQLITE_NOMEM;
2358     }else{
2359       memset(pTab, 0, sizeof(PragmaVtab));
2360       pTab->pName = pPragma;
2361       pTab->db = db;
2362       pTab->iHidden = i;
2363       pTab->nHidden = j;
2364     }
2365   }else{
2366     *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2367   }
2368 
2369   *ppVtab = (sqlite3_vtab*)pTab;
2370   return rc;
2371 }
2372 
2373 /*
2374 ** Pragma virtual table module xDisconnect method.
2375 */
pragmaVtabDisconnect(sqlite3_vtab * pVtab)2376 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2377   PragmaVtab *pTab = (PragmaVtab*)pVtab;
2378   sqlite3_free(pTab);
2379   return SQLITE_OK;
2380 }
2381 
2382 /* Figure out the best index to use to search a pragma virtual table.
2383 **
2384 ** There are not really any index choices.  But we want to encourage the
2385 ** query planner to give == constraints on as many hidden parameters as
2386 ** possible, and especially on the first hidden parameter.  So return a
2387 ** high cost if hidden parameters are unconstrained.
2388 */
pragmaVtabBestIndex(sqlite3_vtab * tab,sqlite3_index_info * pIdxInfo)2389 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2390   PragmaVtab *pTab = (PragmaVtab*)tab;
2391   const struct sqlite3_index_constraint *pConstraint;
2392   int i, j;
2393   int seen[2];
2394 
2395   pIdxInfo->estimatedCost = (double)1;
2396   if( pTab->nHidden==0 ){ return SQLITE_OK; }
2397   pConstraint = pIdxInfo->aConstraint;
2398   seen[0] = 0;
2399   seen[1] = 0;
2400   for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2401     if( pConstraint->usable==0 ) continue;
2402     if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2403     if( pConstraint->iColumn < pTab->iHidden ) continue;
2404     j = pConstraint->iColumn - pTab->iHidden;
2405     assert( j < 2 );
2406     seen[j] = i+1;
2407   }
2408   if( seen[0]==0 ){
2409     pIdxInfo->estimatedCost = (double)2147483647;
2410     pIdxInfo->estimatedRows = 2147483647;
2411     return SQLITE_OK;
2412   }
2413   j = seen[0]-1;
2414   pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2415   pIdxInfo->aConstraintUsage[j].omit = 1;
2416   if( seen[1]==0 ) return SQLITE_OK;
2417   pIdxInfo->estimatedCost = (double)20;
2418   pIdxInfo->estimatedRows = 20;
2419   j = seen[1]-1;
2420   pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2421   pIdxInfo->aConstraintUsage[j].omit = 1;
2422   return SQLITE_OK;
2423 }
2424 
2425 /* Create a new cursor for the pragma virtual table */
pragmaVtabOpen(sqlite3_vtab * pVtab,sqlite3_vtab_cursor ** ppCursor)2426 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2427   PragmaVtabCursor *pCsr;
2428   pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2429   if( pCsr==0 ) return SQLITE_NOMEM;
2430   memset(pCsr, 0, sizeof(PragmaVtabCursor));
2431   pCsr->base.pVtab = pVtab;
2432   *ppCursor = &pCsr->base;
2433   return SQLITE_OK;
2434 }
2435 
2436 /* Clear all content from pragma virtual table cursor. */
pragmaVtabCursorClear(PragmaVtabCursor * pCsr)2437 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2438   int i;
2439   sqlite3_finalize(pCsr->pPragma);
2440   pCsr->pPragma = 0;
2441   for(i=0; i<ArraySize(pCsr->azArg); i++){
2442     sqlite3_free(pCsr->azArg[i]);
2443     pCsr->azArg[i] = 0;
2444   }
2445 }
2446 
2447 /* Close a pragma virtual table cursor */
pragmaVtabClose(sqlite3_vtab_cursor * cur)2448 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2449   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2450   pragmaVtabCursorClear(pCsr);
2451   sqlite3_free(pCsr);
2452   return SQLITE_OK;
2453 }
2454 
2455 /* Advance the pragma virtual table cursor to the next row */
pragmaVtabNext(sqlite3_vtab_cursor * pVtabCursor)2456 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2457   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2458   int rc = SQLITE_OK;
2459 
2460   /* Increment the xRowid value */
2461   pCsr->iRowid++;
2462   assert( pCsr->pPragma );
2463   if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2464     rc = sqlite3_finalize(pCsr->pPragma);
2465     pCsr->pPragma = 0;
2466     pragmaVtabCursorClear(pCsr);
2467   }
2468   return rc;
2469 }
2470 
2471 /*
2472 ** Pragma virtual table module xFilter method.
2473 */
pragmaVtabFilter(sqlite3_vtab_cursor * pVtabCursor,int idxNum,const char * idxStr,int argc,sqlite3_value ** argv)2474 static int pragmaVtabFilter(
2475   sqlite3_vtab_cursor *pVtabCursor,
2476   int idxNum, const char *idxStr,
2477   int argc, sqlite3_value **argv
2478 ){
2479   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2480   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2481   int rc;
2482   int i, j;
2483   StrAccum acc;
2484   char *zSql;
2485 
2486   UNUSED_PARAMETER(idxNum);
2487   UNUSED_PARAMETER(idxStr);
2488   pragmaVtabCursorClear(pCsr);
2489   j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2490   for(i=0; i<argc; i++, j++){
2491     const char *zText = (const char*)sqlite3_value_text(argv[i]);
2492     assert( j<ArraySize(pCsr->azArg) );
2493     assert( pCsr->azArg[j]==0 );
2494     if( zText ){
2495       pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2496       if( pCsr->azArg[j]==0 ){
2497         return SQLITE_NOMEM;
2498       }
2499     }
2500   }
2501   sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2502   sqlite3_str_appendall(&acc, "PRAGMA ");
2503   if( pCsr->azArg[1] ){
2504     sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2505   }
2506   sqlite3_str_appendall(&acc, pTab->pName->zName);
2507   if( pCsr->azArg[0] ){
2508     sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2509   }
2510   zSql = sqlite3StrAccumFinish(&acc);
2511   if( zSql==0 ) return SQLITE_NOMEM;
2512   rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2513   sqlite3_free(zSql);
2514   if( rc!=SQLITE_OK ){
2515     pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2516     return rc;
2517   }
2518   return pragmaVtabNext(pVtabCursor);
2519 }
2520 
2521 /*
2522 ** Pragma virtual table module xEof method.
2523 */
pragmaVtabEof(sqlite3_vtab_cursor * pVtabCursor)2524 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2525   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2526   return (pCsr->pPragma==0);
2527 }
2528 
2529 /* The xColumn method simply returns the corresponding column from
2530 ** the PRAGMA.
2531 */
pragmaVtabColumn(sqlite3_vtab_cursor * pVtabCursor,sqlite3_context * ctx,int i)2532 static int pragmaVtabColumn(
2533   sqlite3_vtab_cursor *pVtabCursor,
2534   sqlite3_context *ctx,
2535   int i
2536 ){
2537   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2538   PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2539   if( i<pTab->iHidden ){
2540     sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2541   }else{
2542     sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2543   }
2544   return SQLITE_OK;
2545 }
2546 
2547 /*
2548 ** Pragma virtual table module xRowid method.
2549 */
pragmaVtabRowid(sqlite3_vtab_cursor * pVtabCursor,sqlite_int64 * p)2550 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2551   PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2552   *p = pCsr->iRowid;
2553   return SQLITE_OK;
2554 }
2555 
2556 /* The pragma virtual table object */
2557 static const sqlite3_module pragmaVtabModule = {
2558   0,                           /* iVersion */
2559   0,                           /* xCreate - create a table */
2560   pragmaVtabConnect,           /* xConnect - connect to an existing table */
2561   pragmaVtabBestIndex,         /* xBestIndex - Determine search strategy */
2562   pragmaVtabDisconnect,        /* xDisconnect - Disconnect from a table */
2563   0,                           /* xDestroy - Drop a table */
2564   pragmaVtabOpen,              /* xOpen - open a cursor */
2565   pragmaVtabClose,             /* xClose - close a cursor */
2566   pragmaVtabFilter,            /* xFilter - configure scan constraints */
2567   pragmaVtabNext,              /* xNext - advance a cursor */
2568   pragmaVtabEof,               /* xEof */
2569   pragmaVtabColumn,            /* xColumn - read data */
2570   pragmaVtabRowid,             /* xRowid - read data */
2571   0,                           /* xUpdate - write data */
2572   0,                           /* xBegin - begin transaction */
2573   0,                           /* xSync - sync transaction */
2574   0,                           /* xCommit - commit transaction */
2575   0,                           /* xRollback - rollback transaction */
2576   0,                           /* xFindFunction - function overloading */
2577   0,                           /* xRename - rename the table */
2578   0,                           /* xSavepoint */
2579   0,                           /* xRelease */
2580   0,                           /* xRollbackTo */
2581   0                            /* xShadowName */
2582 };
2583 
2584 /*
2585 ** Check to see if zTabName is really the name of a pragma.  If it is,
2586 ** then register an eponymous virtual table for that pragma and return
2587 ** a pointer to the Module object for the new virtual table.
2588 */
sqlite3PragmaVtabRegister(sqlite3 * db,const char * zName)2589 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2590   const PragmaName *pName;
2591   assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2592   pName = pragmaLocate(zName+7);
2593   if( pName==0 ) return 0;
2594   if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2595   assert( sqlite3HashFind(&db->aModule, zName)==0 );
2596   return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2597 }
2598 
2599 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2600 
2601 #endif /* SQLITE_OMIT_PRAGMA */
2602