xref: /dragonfly/sys/dev/sound/pcm/channel.c (revision 52b1a712)
1 /*-
2  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
3  * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006
4  * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org>
5  * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #ifdef HAVE_KERNEL_OPTION_HEADERS
31 #include "opt_snd.h"
32 #endif
33 
34 #include <dev/sound/pcm/sound.h>
35 #include <dev/sound/pcm/vchan.h>
36 #include <sys/vnode.h>
37 
38 #include "feeder_if.h"
39 
40 SND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pcm/channel.c 267992 2014-06-28 03:56:17Z hselasky $");
41 
42 int report_soft_formats = 1;
43 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW,
44 	&report_soft_formats, 1, "report software-emulated formats");
45 
46 int report_soft_matrix = 1;
47 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW,
48 	&report_soft_matrix, 1, "report software-emulated channel matrixing");
49 
50 int chn_latency = CHN_LATENCY_DEFAULT;
51 TUNABLE_INT("hw.snd.latency", &chn_latency);
52 
53 static int
sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)54 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)
55 {
56 	int err, val;
57 
58 	val = chn_latency;
59 	err = sysctl_handle_int(oidp, &val, 0, req);
60 	if (err != 0 || req->newptr == NULL)
61 		return err;
62 	if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX)
63 		err = EINVAL;
64 	else
65 		chn_latency = val;
66 
67 	return err;
68 }
69 SYSCTL_PROC(_hw_snd, OID_AUTO, latency, CTLTYPE_INT | CTLFLAG_RW,
70 	0, sizeof(int), sysctl_hw_snd_latency, "I",
71 	"buffering latency (0=low ... 10=high)");
72 
73 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
74 TUNABLE_INT("hw.snd.latency_profile", &chn_latency_profile);
75 
76 static int
sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)77 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)
78 {
79 	int err, val;
80 
81 	val = chn_latency_profile;
82 	err = sysctl_handle_int(oidp, &val, 0, req);
83 	if (err != 0 || req->newptr == NULL)
84 		return err;
85 	if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX)
86 		err = EINVAL;
87 	else
88 		chn_latency_profile = val;
89 
90 	return err;
91 }
92 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, CTLTYPE_INT | CTLFLAG_RW,
93 	0, sizeof(int), sysctl_hw_snd_latency_profile, "I",
94 	"buffering latency profile (0=aggressive 1=safe)");
95 
96 static int chn_timeout = CHN_TIMEOUT;
97 TUNABLE_INT("hw.snd.timeout", &chn_timeout);
98 #ifdef SND_DEBUG
99 static int
sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)100 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)
101 {
102 	int err, val;
103 
104 	val = chn_timeout;
105 	err = sysctl_handle_int(oidp, &val, 0, req);
106 	if (err != 0 || req->newptr == NULL)
107 		return err;
108 	if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX)
109 		err = EINVAL;
110 	else
111 		chn_timeout = val;
112 
113 	return err;
114 }
115 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, CTLTYPE_INT | CTLFLAG_RW,
116 	0, sizeof(int), sysctl_hw_snd_timeout, "I",
117 	"interrupt timeout (1 - 10) seconds");
118 #endif
119 
120 static int chn_vpc_autoreset = 1;
121 TUNABLE_INT("hw.snd.vpc_autoreset", &chn_vpc_autoreset);
122 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RW,
123 	&chn_vpc_autoreset, 0, "automatically reset channels volume to 0db");
124 
125 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM;
126 TUNABLE_INT("hw.snd.vpc_0db", &chn_vol_0db_pcm);
127 
128 static void
chn_vpc_proc(int reset,int db)129 chn_vpc_proc(int reset, int db)
130 {
131 	struct snddev_info *d;
132 	struct pcm_channel *c;
133 	int i;
134 
135 	for (i = 0; pcm_devclass != NULL &&
136 	    i < devclass_get_maxunit(pcm_devclass); i++) {
137 		d = devclass_get_softc(pcm_devclass, i);
138 		if (!PCM_REGISTERED(d))
139 			continue;
140 		PCM_LOCK(d);
141 		PCM_WAIT(d);
142 		PCM_ACQUIRE(d);
143 		CHN_FOREACH(c, d, channels.pcm) {
144 			CHN_LOCK(c);
145 			CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db);
146 			if (reset != 0)
147 				chn_vpc_reset(c, SND_VOL_C_PCM, 1);
148 			CHN_UNLOCK(c);
149 		}
150 		PCM_RELEASE(d);
151 		PCM_UNLOCK(d);
152 	}
153 }
154 
155 static int
sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)156 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)
157 {
158 	int err, val;
159 
160 	val = chn_vol_0db_pcm;
161 	err = sysctl_handle_int(oidp, &val, 0, req);
162 	if (err != 0 || req->newptr == NULL)
163 		return (err);
164 	if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX)
165 		return (EINVAL);
166 
167 	chn_vol_0db_pcm = val;
168 	chn_vpc_proc(0, val);
169 
170 	return (0);
171 }
172 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, CTLTYPE_INT | CTLFLAG_RW,
173 	0, sizeof(int), sysctl_hw_snd_vpc_0db, "I",
174 	"0db relative level");
175 
176 static int
sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)177 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)
178 {
179 	int err, val;
180 
181 	val = 0;
182 	err = sysctl_handle_int(oidp, &val, 0, req);
183 	if (err != 0 || req->newptr == NULL || val == 0)
184 		return (err);
185 
186 	chn_vol_0db_pcm = SND_VOL_0DB_PCM;
187 	chn_vpc_proc(1, SND_VOL_0DB_PCM);
188 
189 	return (0);
190 }
191 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, CTLTYPE_INT | CTLFLAG_RW,
192 	0, sizeof(int), sysctl_hw_snd_vpc_reset, "I",
193 	"reset volume on all channels");
194 
195 static int chn_usefrags = 0;
196 TUNABLE_INT("hw.snd.usefrags", &chn_usefrags);
197 static int chn_syncdelay = -1;
198 TUNABLE_INT("hw.snd.syncdelay", &chn_syncdelay);
199 #ifdef SND_DEBUG
200 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RW,
201 	&chn_usefrags, 1, "prefer setfragments() over setblocksize()");
202 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RW,
203 	&chn_syncdelay, 1,
204 	"append (0-1000) millisecond trailing buffer delay on each sync");
205 #endif
206 
207 /**
208  * @brief Channel sync group lock
209  *
210  * Clients should acquire this lock @b without holding any channel locks
211  * before touching syncgroups or the main syncgroup list.
212  */
213 struct lock snd_pcm_syncgroups_mtx;
214 LOCK_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx,
215 	"PCM channel sync group lock", LK_CANRECURSE);
216 /**
217  * @brief syncgroups' master list
218  *
219  * Each time a channel syncgroup is created, it's added to this list.  This
220  * list should only be accessed with @sa snd_pcm_syncgroups_mtx held.
221  *
222  * See SNDCTL_DSP_SYNCGROUP for more information.
223  */
224 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups);
225 
226 static void
chn_lockinit(struct pcm_channel * c,int dir)227 chn_lockinit(struct pcm_channel *c, int dir)
228 {
229 	switch (dir) {
230 	case PCMDIR_PLAY:
231 		c->lock = snd_mtxcreate(c->name, "pcm play channel");
232 		cv_init(&c->intr_cv, "pcmwr");
233 		break;
234 	case PCMDIR_PLAY_VIRTUAL:
235 		c->lock = snd_mtxcreate(c->name, "pcm virtual play channel");
236 		cv_init(&c->intr_cv, "pcmwrv");
237 		break;
238 	case PCMDIR_REC:
239 		c->lock = snd_mtxcreate(c->name, "pcm record channel");
240 		cv_init(&c->intr_cv, "pcmrd");
241 		break;
242 	case PCMDIR_REC_VIRTUAL:
243 		c->lock = snd_mtxcreate(c->name, "pcm virtual record channel");
244 		cv_init(&c->intr_cv, "pcmrdv");
245 		break;
246 	default:
247 		panic("%s(): Invalid direction=%d", __func__, dir);
248 		break;
249 	}
250 
251 	cv_init(&c->cv, "pcmchn");
252 }
253 
254 static void
chn_lockdestroy(struct pcm_channel * c)255 chn_lockdestroy(struct pcm_channel *c)
256 {
257 	CHN_LOCKASSERT(c);
258 
259 	CHN_BROADCAST(&c->cv);
260 	CHN_BROADCAST(&c->intr_cv);
261 
262 	cv_destroy(&c->cv);
263 	cv_destroy(&c->intr_cv);
264 
265 	snd_mtxfree(c->lock);
266 }
267 
268 /**
269  * @brief Determine channel is ready for I/O
270  *
271  * @retval 1 = ready for I/O
272  * @retval 0 = not ready for I/O
273  */
274 static int
chn_polltrigger(struct pcm_channel * c)275 chn_polltrigger(struct pcm_channel *c)
276 {
277 	struct snd_dbuf *bs = c->bufsoft;
278 	u_int delta;
279 
280 	CHN_LOCKASSERT(c);
281 
282 	if (c->flags & CHN_F_MMAP) {
283 		if (sndbuf_getprevtotal(bs) < c->lw)
284 			delta = c->lw;
285 		else
286 			delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs);
287 	} else {
288 		if (c->direction == PCMDIR_PLAY)
289 			delta = sndbuf_getfree(bs);
290 		else
291 			delta = sndbuf_getready(bs);
292 
293 		/*
294 		 * XXX really bad hack.  Force 50% hysteresis.
295 		 * when audio is playing via audio/alsa-plugins
296 		 * (work/.../oss) from firefox the playback thread
297 		 * for some reason is cpu-bound and continuously
298 		 * poll()s in a situation where there is on the
299 		 * order of ~30000 bytes of buffer space left.
300 		 *
301 		 * The real bug seems to be in the ioplug library,
302 		 * or perhaps some very stringent assumption for the
303 		 * ioctls that we aren't following.
304 		 */
305 		if (c->direction == PCMDIR_PLAY &&
306 		    delta < sndbuf_getsize(bs) / 2) {
307 			delta = 0;
308 		}
309 	}
310 
311 	return ((delta < c->lw) ? 0 : 1);
312 }
313 
314 static void
chn_pollreset(struct pcm_channel * c)315 chn_pollreset(struct pcm_channel *c)
316 {
317 
318 	CHN_LOCKASSERT(c);
319 	sndbuf_updateprevtotal(c->bufsoft);
320 }
321 
322 static void
chn_wakeup(struct pcm_channel * c)323 chn_wakeup(struct pcm_channel *c)
324 {
325 	struct snd_dbuf *bs;
326 	struct pcm_channel *ch;
327 
328 	CHN_LOCKASSERT(c);
329 
330 	bs = c->bufsoft;
331 
332 	if (CHN_EMPTY(c, children.busy)) {
333 		/*if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c))*/
334 		if (SLIST_FIRST(&sndbuf_getkq(bs)->ki_note) && chn_polltrigger(c)) {
335 			KNOTE(&sndbuf_getkq(bs)->ki_note, 0);
336 		}
337 		if (c->flags & CHN_F_SLEEPING) {
338 			/*
339 			 * Ok, I can just panic it right here since it is
340 			 * quite obvious that we never allow multiple waiters
341 			 * from userland. I'm too generous...
342 			 */
343 			CHN_BROADCAST(&c->intr_cv);
344 		}
345 	} else {
346 		CHN_FOREACH(ch, c, children.busy) {
347 			CHN_LOCK(ch);
348 			chn_wakeup(ch);
349 			CHN_UNLOCK(ch);
350 		}
351 	}
352 }
353 
354 static int
chn_sleep(struct pcm_channel * c,int timeout)355 chn_sleep(struct pcm_channel *c, int timeout)
356 {
357 	int ret;
358 
359 	CHN_LOCKASSERT(c);
360 
361 	if (c->flags & CHN_F_DEAD)
362 		return (EINVAL);
363 
364 	c->flags |= CHN_F_SLEEPING;
365 	ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout);
366 	c->flags &= ~CHN_F_SLEEPING;
367 
368 	return ((c->flags & CHN_F_DEAD) ? EINVAL : ret);
369 }
370 
371 /*
372  * chn_dmaupdate() tracks the status of a dma transfer,
373  * updating pointers.
374  */
375 
376 static unsigned int
chn_dmaupdate(struct pcm_channel * c)377 chn_dmaupdate(struct pcm_channel *c)
378 {
379 	struct snd_dbuf *b = c->bufhard;
380 	unsigned int delta, old, hwptr, amt;
381 
382 	KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0"));
383 	CHN_LOCKASSERT(c);
384 
385 	old = sndbuf_gethwptr(b);
386 	hwptr = chn_getptr(c);
387 	delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b);
388 	sndbuf_sethwptr(b, hwptr);
389 
390 	if (c->direction == PCMDIR_PLAY) {
391 		amt = min(delta, sndbuf_getready(b));
392 		amt -= amt % sndbuf_getalign(b);
393 		if (amt > 0)
394 			sndbuf_dispose(b, NULL, amt);
395 	} else {
396 		amt = min(delta, sndbuf_getfree(b));
397 		amt -= amt % sndbuf_getalign(b);
398 		if (amt > 0)
399 		       sndbuf_acquire(b, NULL, amt);
400 	}
401 	if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) {
402 		device_printf(c->dev, "WARNING: %s DMA completion "
403 			"too fast/slow ! hwptr=%u, old=%u "
404 			"delta=%u amt=%u ready=%u free=%u\n",
405 			CHN_DIRSTR(c), hwptr, old, delta, amt,
406 			sndbuf_getready(b), sndbuf_getfree(b));
407 	}
408 
409 	return delta;
410 }
411 
412 static void
chn_wrfeed(struct pcm_channel * c)413 chn_wrfeed(struct pcm_channel *c)
414 {
415     	struct snd_dbuf *b = c->bufhard;
416     	struct snd_dbuf *bs = c->bufsoft;
417 	unsigned int amt, want, wasfree;
418 
419 	CHN_LOCKASSERT(c);
420 
421 	if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING))
422 		sndbuf_acquire(bs, NULL, sndbuf_getfree(bs));
423 
424 	wasfree = sndbuf_getfree(b);
425 	want = min(sndbuf_getsize(b),
426 	    imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) -
427 	     sndbuf_getready(b)));
428 	amt = min(wasfree, want);
429 	if (amt > 0)
430 		sndbuf_feed(bs, b, c, c->feeder, amt);
431 
432 	/*
433 	 * Possible xruns. There should be no empty space left in buffer.
434 	 */
435 	if (sndbuf_getready(b) < want)
436 		c->xruns++;
437 
438 	if (sndbuf_getfree(b) < wasfree)
439 		chn_wakeup(c);
440 }
441 
442 #if 0
443 static void
444 chn_wrupdate(struct pcm_channel *c)
445 {
446 
447 	CHN_LOCKASSERT(c);
448 	KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__));
449 
450 	if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c))
451 		return;
452 	chn_dmaupdate(c);
453 	chn_wrfeed(c);
454 	/* tell the driver we've updated the primary buffer */
455 	chn_trigger(c, PCMTRIG_EMLDMAWR);
456 }
457 #endif
458 
459 static void
chn_wrintr(struct pcm_channel * c)460 chn_wrintr(struct pcm_channel *c)
461 {
462 
463 	CHN_LOCKASSERT(c);
464 	/* update pointers in primary buffer */
465 	chn_dmaupdate(c);
466 	/* ...and feed from secondary to primary */
467 	chn_wrfeed(c);
468 	/* tell the driver we've updated the primary buffer */
469 	chn_trigger(c, PCMTRIG_EMLDMAWR);
470 }
471 
472 /*
473  * user write routine - uiomove data into secondary buffer, trigger if necessary
474  * if blocking, sleep, rinse and repeat.
475  *
476  * called externally, so must handle locking
477  */
478 
479 int
chn_write(struct pcm_channel * c,struct uio * buf,int ioflags)480 chn_write(struct pcm_channel *c, struct uio *buf, int ioflags)
481 {
482 	struct snd_dbuf *bs = c->bufsoft;
483 	void *off;
484 	int ret, timeout, sz, t, p;
485 
486 	CHN_LOCKASSERT(c);
487 
488 	ret = 0;
489 	timeout = chn_timeout * hz;
490 
491 	while (ret == 0 && buf->uio_resid > 0) {
492 		sz = min(buf->uio_resid, sndbuf_getfree(bs));
493 		if (sz > 0) {
494 			/*
495 			 * The following assumes that the free space in
496 			 * the buffer can never be less around the
497 			 * unlock-uiomove-lock sequence.
498 			 */
499 			while (ret == 0 && sz > 0) {
500 				p = sndbuf_getfreeptr(bs);
501 				t = min(sz, sndbuf_getsize(bs) - p);
502 				off = sndbuf_getbufofs(bs, p);
503 				CHN_UNLOCK(c);
504 				ret = uiomove(off, t, buf);
505 				CHN_LOCK(c);
506 				sz -= t;
507 				sndbuf_acquire(bs, NULL, t);
508 			}
509 			ret = 0;
510 			if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
511 				ret = chn_start(c, 0);
512 				if (ret != 0)
513 					c->flags |= CHN_F_DEAD;
514 			}
515 		} else if ((ioflags & IO_NDELAY) ||
516 		    (c->flags & CHN_F_NOTRIGGER)) {
517 			/**
518 			 * @todo Evaluate whether EAGAIN is truly desirable.
519 			 * 	 4Front drivers behave like this, but I'm
520 			 * 	 not sure if it at all violates the "write
521 			 * 	 should be allowed to block" model.
522 			 *
523 			 * 	 The idea is that, while set with CHN_F_NOTRIGGER,
524 			 * 	 a channel isn't playing, *but* without this we
525 			 * 	 end up with "interrupt timeout / channel dead".
526 			 */
527 			ret = EAGAIN;
528 		} else {
529    			ret = chn_sleep(c, timeout);
530 			if (ret == EAGAIN) {
531 				ret = EINVAL;
532 				c->flags |= CHN_F_DEAD;
533 				device_printf(c->dev, "%s(): %s: "
534 				    "play interrupt timeout, channel dead\n",
535 				    __func__, c->name);
536 			} else if (ret == ERESTART || ret == EINTR)
537 				c->flags |= CHN_F_ABORTING;
538 		}
539 	}
540 
541 	return (ret);
542 }
543 
544 /*
545  * Feed new data from the read buffer. Can be called in the bottom half.
546  */
547 static void
chn_rdfeed(struct pcm_channel * c)548 chn_rdfeed(struct pcm_channel *c)
549 {
550     	struct snd_dbuf *b = c->bufhard;
551     	struct snd_dbuf *bs = c->bufsoft;
552 	unsigned int amt;
553 
554 	CHN_LOCKASSERT(c);
555 
556 	if (c->flags & CHN_F_MMAP)
557 		sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
558 
559 	amt = sndbuf_getfree(bs);
560 	if (amt > 0)
561 		sndbuf_feed(b, bs, c, c->feeder, amt);
562 
563 	amt = sndbuf_getready(b);
564 	if (amt > 0) {
565 		c->xruns++;
566 		sndbuf_dispose(b, NULL, amt);
567 	}
568 
569 	if (sndbuf_getready(bs) > 0)
570 		chn_wakeup(c);
571 }
572 
573 #if 0
574 static void
575 chn_rdupdate(struct pcm_channel *c)
576 {
577 
578 	CHN_LOCKASSERT(c);
579 	KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel"));
580 
581 	if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c))
582 		return;
583 	chn_trigger(c, PCMTRIG_EMLDMARD);
584 	chn_dmaupdate(c);
585 	chn_rdfeed(c);
586 }
587 #endif
588 
589 /* read interrupt routine. Must be called with interrupts blocked. */
590 static void
chn_rdintr(struct pcm_channel * c)591 chn_rdintr(struct pcm_channel *c)
592 {
593 
594 	CHN_LOCKASSERT(c);
595 	/* tell the driver to update the primary buffer if non-dma */
596 	chn_trigger(c, PCMTRIG_EMLDMARD);
597 	/* update pointers in primary buffer */
598 	chn_dmaupdate(c);
599 	/* ...and feed from primary to secondary */
600 	chn_rdfeed(c);
601 }
602 
603 /*
604  * user read routine - trigger if necessary, uiomove data from secondary buffer
605  * if blocking, sleep, rinse and repeat.
606  *
607  * called externally, so must handle locking
608  */
609 
610 int
chn_read(struct pcm_channel * c,struct uio * buf,int ioflags)611 chn_read(struct pcm_channel *c, struct uio *buf, int ioflags)
612 {
613 	struct snd_dbuf *bs = c->bufsoft;
614 	void *off;
615 	int ret, timeout, sz, t, p;
616 
617 	CHN_LOCKASSERT(c);
618 
619 	if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
620 		ret = chn_start(c, 0);
621 		if (ret != 0) {
622 			c->flags |= CHN_F_DEAD;
623 			return (ret);
624 		}
625 	}
626 
627 	ret = 0;
628 	timeout = chn_timeout * hz;
629 
630 	while (ret == 0 && buf->uio_resid > 0) {
631 		sz = min(buf->uio_resid, sndbuf_getready(bs));
632 		if (sz > 0) {
633 			/*
634 			 * The following assumes that the free space in
635 			 * the buffer can never be less around the
636 			 * unlock-uiomove-lock sequence.
637 			 */
638 			while (ret == 0 && sz > 0) {
639 				p = sndbuf_getreadyptr(bs);
640 				t = min(sz, sndbuf_getsize(bs) - p);
641 				off = sndbuf_getbufofs(bs, p);
642 				CHN_UNLOCK(c);
643 				ret = uiomove(off, t, buf);
644 				CHN_LOCK(c);
645 				sz -= t;
646 				sndbuf_dispose(bs, NULL, t);
647 			}
648 			ret = 0;
649 		} else if ((ioflags & IO_NDELAY) ||
650 		    (c->flags & CHN_F_NOTRIGGER)) {
651 			ret = EAGAIN;
652 		} else {
653    			ret = chn_sleep(c, timeout);
654 			if (ret == EAGAIN) {
655 				ret = EINVAL;
656 				c->flags |= CHN_F_DEAD;
657 				device_printf(c->dev, "%s(): %s: "
658 				    "record interrupt timeout, channel dead\n",
659 				    __func__, c->name);
660 			} else if (ret == ERESTART || ret == EINTR)
661 				c->flags |= CHN_F_ABORTING;
662 		}
663 	}
664 
665 	return (ret);
666 }
667 
668 void
chn_intr_locked(struct pcm_channel * c)669 chn_intr_locked(struct pcm_channel *c)
670 {
671 
672 	CHN_LOCKASSERT(c);
673 
674 	c->interrupts++;
675 
676 	if (c->direction == PCMDIR_PLAY)
677 		chn_wrintr(c);
678 	else
679 		chn_rdintr(c);
680 }
681 
682 void
chn_intr(struct pcm_channel * c)683 chn_intr(struct pcm_channel *c)
684 {
685 
686 	if (CHN_LOCKOWNED(c)) {
687 		chn_intr_locked(c);
688 		return;
689 	}
690 
691 	CHN_LOCK(c);
692 	chn_intr_locked(c);
693 	CHN_UNLOCK(c);
694 }
695 
696 u_int32_t
chn_start(struct pcm_channel * c,int force)697 chn_start(struct pcm_channel *c, int force)
698 {
699 	u_int32_t i, j;
700 	struct snd_dbuf *b = c->bufhard;
701 	struct snd_dbuf *bs = c->bufsoft;
702 	int err;
703 
704 	CHN_LOCKASSERT(c);
705 	/* if we're running, or if we're prevented from triggering, bail */
706 	if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force))
707 		return (EINVAL);
708 
709 	err = 0;
710 
711 	if (force) {
712 		i = 1;
713 		j = 0;
714 	} else {
715 		if (c->direction == PCMDIR_REC) {
716 			i = sndbuf_getfree(bs);
717 			j = (i > 0) ? 1 : sndbuf_getready(b);
718 		} else {
719 			if (sndbuf_getfree(bs) == 0) {
720 				i = 1;
721 				j = 0;
722 			} else {
723 				struct snd_dbuf *pb;
724 
725 				pb = CHN_BUF_PARENT(c, b);
726 				i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb);
727 				j = sndbuf_getalign(pb);
728 			}
729 		}
730 		if (snd_verbose > 3 && CHN_EMPTY(c, children))
731 			device_printf(c->dev, "%s(): %s (%s) threshold "
732 			    "i=%d j=%d\n", __func__, CHN_DIRSTR(c),
733 			    (c->flags & CHN_F_VIRTUAL) ? "virtual" :
734 			    "hardware", i, j);
735 	}
736 
737 	if (i >= j) {
738 		c->flags |= CHN_F_TRIGGERED;
739 		sndbuf_setrun(b, 1);
740 		if (c->flags & CHN_F_CLOSING)
741 			c->feedcount = 2;
742 		else {
743 			c->feedcount = 0;
744 			c->interrupts = 0;
745 			c->xruns = 0;
746 		}
747 		if (c->parentchannel == NULL) {
748 			if (c->direction == PCMDIR_PLAY)
749 				sndbuf_fillsilence_rl(b,
750 				    sndbuf_xbytes(sndbuf_getsize(bs), bs, b));
751 			if (snd_verbose > 3)
752 				device_printf(c->dev,
753 				    "%s(): %s starting! (%s/%s) "
754 				    "(ready=%d force=%d i=%d j=%d "
755 				    "intrtimeout=%u latency=%dms)\n",
756 				    __func__,
757 				    (c->flags & CHN_F_HAS_VCHAN) ?
758 				    "VCHAN PARENT" : "HW", CHN_DIRSTR(c),
759 				    (c->flags & CHN_F_CLOSING) ? "closing" :
760 				    "running",
761 				    sndbuf_getready(b),
762 				    force, i, j, c->timeout,
763 				    (sndbuf_getsize(b) * 1000) /
764 				    (sndbuf_getalign(b) * sndbuf_getspd(b)));
765 		}
766 		err = chn_trigger(c, PCMTRIG_START);
767 	}
768 
769 	return (err);
770 }
771 
772 void
chn_resetbuf(struct pcm_channel * c)773 chn_resetbuf(struct pcm_channel *c)
774 {
775 	struct snd_dbuf *b = c->bufhard;
776 	struct snd_dbuf *bs = c->bufsoft;
777 
778 	c->blocks = 0;
779 	sndbuf_reset(b);
780 	sndbuf_reset(bs);
781 }
782 
783 /*
784  * chn_sync waits until the space in the given channel goes above
785  * a threshold. The threshold is checked against fl or rl respectively.
786  * Assume that the condition can become true, do not check here...
787  */
788 int
chn_sync(struct pcm_channel * c,int threshold)789 chn_sync(struct pcm_channel *c, int threshold)
790 {
791     	struct snd_dbuf *b, *bs;
792 	int ret, count, hcount, minflush, resid, residp, syncdelay, blksz;
793 	u_int32_t cflag;
794 
795 	CHN_LOCKASSERT(c);
796 
797 	if (c->direction != PCMDIR_PLAY)
798 		return (EINVAL);
799 
800 	bs = c->bufsoft;
801 
802 	if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) ||
803 	    (threshold < 1 && sndbuf_getready(bs) < 1))
804 		return (0);
805 
806 	/* if we haven't yet started and nothing is buffered, else start*/
807 	if (CHN_STOPPED(c)) {
808 		if (threshold > 0 || sndbuf_getready(bs) > 0) {
809 			ret = chn_start(c, 1);
810 			if (ret != 0)
811 				return (ret);
812 		} else
813 			return (0);
814 	}
815 
816 	b = CHN_BUF_PARENT(c, c->bufhard);
817 
818 	minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs);
819 
820 	syncdelay = chn_syncdelay;
821 
822 	if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0))
823 		minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs);
824 
825 	/*
826 	 * Append (0-1000) millisecond trailing buffer (if needed)
827 	 * for slower / high latency hardwares (notably USB audio)
828 	 * to avoid audible truncation.
829 	 */
830 	if (syncdelay > 0)
831 		minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) *
832 		    ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000;
833 
834 	minflush -= minflush % sndbuf_getalign(bs);
835 
836 	if (minflush > 0) {
837 		threshold = min(minflush, sndbuf_getfree(bs));
838 		sndbuf_clear(bs, threshold);
839 		sndbuf_acquire(bs, NULL, threshold);
840 		minflush -= threshold;
841 	}
842 
843 	resid = sndbuf_getready(bs);
844 	residp = resid;
845 	blksz = sndbuf_getblksz(b);
846 	if (blksz < 1) {
847 		device_printf(c->dev,
848 		    "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n",
849 		    __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b),
850 		    sndbuf_getblksz(b), sndbuf_getblkcnt(b));
851 		if (sndbuf_getblkcnt(b) > 0)
852 			blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b);
853 		if (blksz < 1)
854 			blksz = 1;
855 	}
856 	count = sndbuf_xbytes(minflush + resid, bs, b) / blksz;
857 	hcount = count;
858 	ret = 0;
859 
860 	if (snd_verbose > 3)
861 		device_printf(c->dev, "%s(): [begin] timeout=%d count=%d "
862 		    "minflush=%d resid=%d\n", __func__, c->timeout, count,
863 		    minflush, resid);
864 
865 	cflag = c->flags & CHN_F_CLOSING;
866 	c->flags |= CHN_F_CLOSING;
867 	while (count > 0 && (resid > 0 || minflush > 0)) {
868 		ret = chn_sleep(c, c->timeout);
869     		if (ret == ERESTART || ret == EINTR) {
870 			c->flags |= CHN_F_ABORTING;
871 			break;
872 		} else if (ret == 0 || ret == EAGAIN) {
873 			resid = sndbuf_getready(bs);
874 			if (resid == residp) {
875 				--count;
876 				if (snd_verbose > 3)
877 					device_printf(c->dev,
878 					    "%s(): [stalled] timeout=%d "
879 					    "count=%d hcount=%d "
880 					    "resid=%d minflush=%d\n",
881 					    __func__, c->timeout, count,
882 					    hcount, resid, minflush);
883 			} else if (resid < residp && count < hcount) {
884 				++count;
885 				if (snd_verbose > 3)
886 					device_printf(c->dev,
887 					    "%s((): [resume] timeout=%d "
888 					    "count=%d hcount=%d "
889 					    "resid=%d minflush=%d\n",
890 					    __func__, c->timeout, count,
891 					    hcount, resid, minflush);
892 			}
893 			if (minflush > 0 && sndbuf_getfree(bs) > 0) {
894 				threshold = min(minflush,
895 				    sndbuf_getfree(bs));
896 				sndbuf_clear(bs, threshold);
897 				sndbuf_acquire(bs, NULL, threshold);
898 				resid = sndbuf_getready(bs);
899 				minflush -= threshold;
900 			}
901 			residp = resid;
902 		} else
903 			break;
904 	}
905 	c->flags &= ~CHN_F_CLOSING;
906 	c->flags |= cflag;
907 
908 	if (snd_verbose > 3)
909 		device_printf(c->dev,
910 		    "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d "
911 		    "minflush=%d ret=%d\n",
912 		    __func__, c->timeout, count, hcount, resid, residp,
913 		    minflush, ret);
914 
915     	return (0);
916 }
917 
918 /* called externally, handle locking */
919 int
chn_poll(struct pcm_channel * c,int ev,struct thread * td)920 chn_poll(struct pcm_channel *c, int ev, struct thread *td)
921 {
922 	int ret;
923 
924 	CHN_LOCKASSERT(c);
925 
926     	if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) {
927 		ret = chn_start(c, 1);
928 		if (ret != 0)
929 			return (0);
930 	}
931 
932 	ret = 0;
933 	if (chn_polltrigger(c)) {
934 		chn_pollreset(c);
935 		ret = ev;
936 	}
937 
938 	return (ret);
939 }
940 
941 /*
942  * chn_abort terminates a running dma transfer.  it may sleep up to 200ms.
943  * it returns the number of bytes that have not been transferred.
944  *
945  * called from: dsp_close, dsp_ioctl, with channel locked
946  */
947 int
chn_abort(struct pcm_channel * c)948 chn_abort(struct pcm_channel *c)
949 {
950     	int missing = 0;
951     	struct snd_dbuf *b = c->bufhard;
952     	struct snd_dbuf *bs = c->bufsoft;
953 
954 	CHN_LOCKASSERT(c);
955 	if (CHN_STOPPED(c))
956 		return 0;
957 	c->flags |= CHN_F_ABORTING;
958 
959 	c->flags &= ~CHN_F_TRIGGERED;
960 	/* kill the channel */
961 	chn_trigger(c, PCMTRIG_ABORT);
962 	sndbuf_setrun(b, 0);
963 	if (!(c->flags & CHN_F_VIRTUAL))
964 		chn_dmaupdate(c);
965     	missing = sndbuf_getready(bs);
966 
967 	c->flags &= ~CHN_F_ABORTING;
968 	return missing;
969 }
970 
971 /*
972  * this routine tries to flush the dma transfer. It is called
973  * on a close of a playback channel.
974  * first, if there is data in the buffer, but the dma has not yet
975  * begun, we need to start it.
976  * next, we wait for the play buffer to drain
977  * finally, we stop the dma.
978  *
979  * called from: dsp_close, not valid for record channels.
980  */
981 
982 int
chn_flush(struct pcm_channel * c)983 chn_flush(struct pcm_channel *c)
984 {
985     	struct snd_dbuf *b = c->bufhard;
986 
987 	CHN_LOCKASSERT(c);
988 	KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel"));
989     	DEB(kprintf("chn_flush: c->flags 0x%08x\n", c->flags));
990 
991 	c->flags |= CHN_F_CLOSING;
992 	chn_sync(c, 0);
993 	c->flags &= ~CHN_F_TRIGGERED;
994 	/* kill the channel */
995 	chn_trigger(c, PCMTRIG_ABORT);
996 	sndbuf_setrun(b, 0);
997 
998     	c->flags &= ~CHN_F_CLOSING;
999     	return 0;
1000 }
1001 
1002 int
snd_fmtvalid(uint32_t fmt,uint32_t * fmtlist)1003 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist)
1004 {
1005 	int i;
1006 
1007 	for (i = 0; fmtlist[i] != 0; i++) {
1008 		if (fmt == fmtlist[i] ||
1009 		    ((fmt & AFMT_PASSTHROUGH) &&
1010 		    (AFMT_ENCODING(fmt) & fmtlist[i])))
1011 			return (1);
1012 	}
1013 
1014 	return (0);
1015 }
1016 
1017 static const struct {
1018 	char *name, *alias1, *alias2;
1019 	uint32_t afmt;
1020 } afmt_tab[] = {
1021 	{  "alaw",  NULL, NULL, AFMT_A_LAW  },
1022 	{ "mulaw",  NULL, NULL, AFMT_MU_LAW },
1023 	{    "u8",   "8", NULL, AFMT_U8     },
1024 	{    "s8",  NULL, NULL, AFMT_S8     },
1025 #if BYTE_ORDER == LITTLE_ENDIAN
1026 	{ "s16le", "s16", "16", AFMT_S16_LE },
1027 	{ "s16be",  NULL, NULL, AFMT_S16_BE },
1028 #else
1029 	{ "s16le",  NULL, NULL, AFMT_S16_LE },
1030 	{ "s16be", "s16", "16", AFMT_S16_BE },
1031 #endif
1032 	{ "u16le",  NULL, NULL, AFMT_U16_LE },
1033 	{ "u16be",  NULL, NULL, AFMT_U16_BE },
1034 	{ "s24le",  NULL, NULL, AFMT_S24_LE },
1035 	{ "s24be",  NULL, NULL, AFMT_S24_BE },
1036 	{ "u24le",  NULL, NULL, AFMT_U24_LE },
1037 	{ "u24be",  NULL, NULL, AFMT_U24_BE },
1038 #if BYTE_ORDER == LITTLE_ENDIAN
1039 	{ "s32le", "s32", "32", AFMT_S32_LE },
1040 	{ "s32be",  NULL, NULL, AFMT_S32_BE },
1041 #else
1042 	{ "s32le",  NULL, NULL, AFMT_S32_LE },
1043 	{ "s32be", "s32", "32", AFMT_S32_BE },
1044 #endif
1045 	{ "u32le",  NULL, NULL, AFMT_U32_LE },
1046 	{ "u32be",  NULL, NULL, AFMT_U32_BE },
1047 	{   "ac3",  NULL, NULL, AFMT_AC3    },
1048 	{    NULL,  NULL, NULL, 0           }
1049 };
1050 
1051 static const struct {
1052 	char *name, *alias1, *alias2;
1053 	int matrix_id;
1054 } matrix_id_tab[] = {
1055 	{ "1.0",  "1",   "mono", SND_CHN_MATRIX_1_0     },
1056 	{ "2.0",  "2", "stereo", SND_CHN_MATRIX_2_0     },
1057 	{ "2.1", NULL,     NULL, SND_CHN_MATRIX_2_1     },
1058 	{ "3.0",  "3",     NULL, SND_CHN_MATRIX_3_0     },
1059 	{ "3.1", NULL,     NULL, SND_CHN_MATRIX_3_1     },
1060 	{ "4.0",  "4",   "quad", SND_CHN_MATRIX_4_0     },
1061 	{ "4.1", NULL,     NULL, SND_CHN_MATRIX_4_1     },
1062 	{ "5.0",  "5",     NULL, SND_CHN_MATRIX_5_0     },
1063 	{ "5.1",  "6",     NULL, SND_CHN_MATRIX_5_1     },
1064 	{ "6.0", NULL,     NULL, SND_CHN_MATRIX_6_0     },
1065 	{ "6.1",  "7",     NULL, SND_CHN_MATRIX_6_1     },
1066 	{ "7.0", NULL,     NULL, SND_CHN_MATRIX_7_0     },
1067 	{ "7.1",  "8",     NULL, SND_CHN_MATRIX_7_1     },
1068 	{  NULL, NULL,     NULL, SND_CHN_MATRIX_UNKNOWN }
1069 };
1070 
1071 uint32_t
snd_str2afmt(const char * req)1072 snd_str2afmt(const char *req)
1073 {
1074 	uint32_t i, afmt;
1075 	int matrix_id;
1076 	char b1[8], b2[8];
1077 
1078 	i = ksscanf(req, "%5[^:]:%6s", b1, b2);
1079 
1080 	if (i == 1) {
1081 		if (strlen(req) != strlen(b1))
1082 			return (0);
1083 		strlcpy(b2, "2.0", sizeof(b2));
1084 	} else if (i == 2) {
1085 		if (strlen(req) != (strlen(b1) + 1 + strlen(b2)))
1086 			return (0);
1087 	} else
1088 		return (0);
1089 
1090 	afmt = 0;
1091 	matrix_id = SND_CHN_MATRIX_UNKNOWN;
1092 
1093 	for (i = 0; afmt == 0 && afmt_tab[i].name != NULL; i++) {
1094 		if (strcasecmp(afmt_tab[i].name, b1) == 0 ||
1095 		    (afmt_tab[i].alias1 != NULL &&
1096 		    strcasecmp(afmt_tab[i].alias1, b1) == 0) ||
1097 		    (afmt_tab[i].alias2 != NULL &&
1098 		    strcasecmp(afmt_tab[i].alias2, b1) == 0)) {
1099 			afmt = afmt_tab[i].afmt;
1100 			strlcpy(b1, afmt_tab[i].name, sizeof(b1));
1101 		}
1102 	}
1103 
1104 	if (afmt == 0)
1105 		return (0);
1106 
1107 	for (i = 0; matrix_id == SND_CHN_MATRIX_UNKNOWN &&
1108 	    matrix_id_tab[i].name != NULL; i++) {
1109 		if (strcmp(matrix_id_tab[i].name, b2) == 0 ||
1110 		    (matrix_id_tab[i].alias1 != NULL &&
1111 		    strcmp(matrix_id_tab[i].alias1, b2) == 0) ||
1112 		    (matrix_id_tab[i].alias2 != NULL &&
1113 		    strcasecmp(matrix_id_tab[i].alias2, b2) == 0)) {
1114 			matrix_id = matrix_id_tab[i].matrix_id;
1115 			strlcpy(b2, matrix_id_tab[i].name, sizeof(b2));
1116 		}
1117 	}
1118 
1119 	if (matrix_id == SND_CHN_MATRIX_UNKNOWN)
1120 		return (0);
1121 
1122 #ifndef _KERNEL
1123 	printf("Parse OK: '%s' -> '%s:%s' %d\n", req, b1, b2,
1124 	    (int)(b2[0]) - '0' + (int)(b2[2]) - '0');
1125 #endif
1126 
1127 	return (SND_FORMAT(afmt, b2[0] - '0' + b2[2] - '0', b2[2] - '0'));
1128 }
1129 
1130 uint32_t
snd_afmt2str(uint32_t afmt,char * buf,size_t len)1131 snd_afmt2str(uint32_t afmt, char *buf, size_t len)
1132 {
1133 	uint32_t i, enc, ch, ext;
1134 	char tmp[AFMTSTR_LEN];
1135 
1136 	if (buf == NULL || len < AFMTSTR_LEN)
1137 		return (0);
1138 
1139 
1140 	bzero(tmp, sizeof(tmp));
1141 
1142 	enc = AFMT_ENCODING(afmt);
1143 	ch = AFMT_CHANNEL(afmt);
1144 	ext = AFMT_EXTCHANNEL(afmt);
1145 
1146 	for (i = 0; afmt_tab[i].name != NULL; i++) {
1147 		if (enc == afmt_tab[i].afmt) {
1148 			strlcpy(tmp, afmt_tab[i].name, sizeof(tmp));
1149 			strlcat(tmp, ":", sizeof(tmp));
1150 			break;
1151 		}
1152 	}
1153 
1154 	if (strlen(tmp) == 0)
1155 		return (0);
1156 
1157 	for (i = 0; matrix_id_tab[i].name != NULL; i++) {
1158 		if (ch == (matrix_id_tab[i].name[0] - '0' +
1159 		    matrix_id_tab[i].name[2] - '0') &&
1160 		    ext == (matrix_id_tab[i].name[2] - '0')) {
1161 			strlcat(tmp, matrix_id_tab[i].name, sizeof(tmp));
1162 			break;
1163 		}
1164 	}
1165 
1166 	if (strlen(tmp) == 0)
1167 		return (0);
1168 
1169 	strlcpy(buf, tmp, len);
1170 
1171 	return (snd_str2afmt(buf));
1172 }
1173 
1174 int
chn_reset(struct pcm_channel * c,uint32_t fmt,uint32_t spd)1175 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd)
1176 {
1177 	int r;
1178 
1179 	CHN_LOCKASSERT(c);
1180 	c->feedcount = 0;
1181 	c->flags &= CHN_F_RESET;
1182 	c->interrupts = 0;
1183 	c->timeout = 1;
1184 	c->xruns = 0;
1185 
1186 	c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ?
1187 	    CHN_F_BITPERFECT : 0;
1188 
1189 	r = CHANNEL_RESET(c->methods, c->devinfo);
1190 	if (r == 0 && fmt != 0 && spd != 0) {
1191 		r = chn_setparam(c, fmt, spd);
1192 		fmt = 0;
1193 		spd = 0;
1194 	}
1195 	if (r == 0 && fmt != 0)
1196 		r = chn_setformat(c, fmt);
1197 	if (r == 0 && spd != 0)
1198 		r = chn_setspeed(c, spd);
1199 	if (r == 0)
1200 		r = chn_setlatency(c, chn_latency);
1201 	if (r == 0) {
1202 		chn_resetbuf(c);
1203 		r = CHANNEL_RESETDONE(c->methods, c->devinfo);
1204 	}
1205 	return r;
1206 }
1207 
1208 int
chn_init(struct pcm_channel * c,void * devinfo,int dir,int direction)1209 chn_init(struct pcm_channel *c, void *devinfo, int dir, int direction)
1210 {
1211 	struct feeder_class *fc;
1212 	struct snd_dbuf *b, *bs;
1213 	int i, ret;
1214 
1215 	if (chn_timeout < CHN_TIMEOUT_MIN || chn_timeout > CHN_TIMEOUT_MAX)
1216 		chn_timeout = CHN_TIMEOUT;
1217 
1218 	chn_lockinit(c, dir);
1219 
1220 	b = NULL;
1221 	bs = NULL;
1222 	CHN_INIT(c, children);
1223 	CHN_INIT(c, children.busy);
1224 	c->devinfo = NULL;
1225 	c->feeder = NULL;
1226 	c->latency = -1;
1227 	c->timeout = 1;
1228 
1229 	ret = ENOMEM;
1230 	b = sndbuf_create(c->dev, c->name, "primary", c);
1231 	if (b == NULL)
1232 		goto out;
1233 	bs = sndbuf_create(c->dev, c->name, "secondary", c);
1234 	if (bs == NULL)
1235 		goto out;
1236 
1237 	CHN_LOCK(c);
1238 
1239 	ret = EINVAL;
1240 	fc = feeder_getclass(NULL);
1241 	if (fc == NULL)
1242 		goto out;
1243 	if (chn_addfeeder(c, fc, NULL))
1244 		goto out;
1245 
1246 	/*
1247 	 * XXX - sndbuf_setup() & sndbuf_resize() expect to be called
1248 	 *	 with the channel unlocked because they are also called
1249 	 *	 from driver methods that don't know about locking
1250 	 */
1251 	CHN_UNLOCK(c);
1252 	sndbuf_setup(bs, NULL, 0);
1253 	CHN_LOCK(c);
1254 	c->bufhard = b;
1255 	c->bufsoft = bs;
1256 	c->flags = 0;
1257 	c->feederflags = 0;
1258 	c->sm = NULL;
1259 	c->format = SND_FORMAT(AFMT_U8, 1, 0);
1260 	c->speed = DSP_DEFAULT_SPEED;
1261 
1262 	c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0);
1263 	c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1264 
1265 	for (i = 0; i < SND_CHN_T_MAX; i++) {
1266 		c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER;
1267 	}
1268 
1269 	c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER;
1270 	c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm;
1271 
1272 	chn_vpc_reset(c, SND_VOL_C_PCM, 1);
1273 
1274 	ret = ENODEV;
1275 	CHN_UNLOCK(c); /* XXX - Unlock for CHANNEL_INIT() malloc() call */
1276 	c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction);
1277 	CHN_LOCK(c);
1278 	if (c->devinfo == NULL)
1279 		goto out;
1280 
1281 	ret = ENOMEM;
1282 	if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0))
1283 		goto out;
1284 
1285 	ret = 0;
1286 	c->direction = direction;
1287 
1288 	sndbuf_setfmt(b, c->format);
1289 	sndbuf_setspd(b, c->speed);
1290 	sndbuf_setfmt(bs, c->format);
1291 	sndbuf_setspd(bs, c->speed);
1292 
1293 	/**
1294 	 * @todo Should this be moved somewhere else?  The primary buffer
1295 	 * 	 is allocated by the driver or via DMA map setup, and tmpbuf
1296 	 * 	 seems to only come into existence in sndbuf_resize().
1297 	 */
1298 	if (c->direction == PCMDIR_PLAY) {
1299 		bs->sl = sndbuf_getmaxsize(bs);
1300 		bs->shadbuf = kmalloc(bs->sl, M_DEVBUF, M_WAITOK | M_ZERO);
1301 		if (bs->shadbuf == NULL) {
1302 			ret = ENOMEM;
1303 			goto out;
1304 		}
1305 	}
1306 
1307 out:
1308 	CHN_UNLOCK(c);
1309 	if (ret) {
1310 		if (c->devinfo) {
1311 			if (CHANNEL_FREE(c->methods, c->devinfo))
1312 				sndbuf_free(b);
1313 		}
1314 		if (bs)
1315 			sndbuf_destroy(bs);
1316 		if (b)
1317 			sndbuf_destroy(b);
1318 		CHN_LOCK(c);
1319 		c->flags |= CHN_F_DEAD;
1320 		chn_lockdestroy(c);
1321 
1322 		return ret;
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 int
chn_kill(struct pcm_channel * c)1329 chn_kill(struct pcm_channel *c)
1330 {
1331     	struct snd_dbuf *b = c->bufhard;
1332     	struct snd_dbuf *bs = c->bufsoft;
1333 
1334 	if (CHN_STARTED(c)) {
1335 		CHN_LOCK(c);
1336 		chn_trigger(c, PCMTRIG_ABORT);
1337 		CHN_UNLOCK(c);
1338 	}
1339 	while (chn_removefeeder(c) == 0)
1340 		;
1341 	if (CHANNEL_FREE(c->methods, c->devinfo))
1342 		sndbuf_free(b);
1343 	sndbuf_destroy(bs);
1344 	sndbuf_destroy(b);
1345 	CHN_LOCK(c);
1346 	c->flags |= CHN_F_DEAD;
1347 	chn_lockdestroy(c);
1348 
1349 	return (0);
1350 }
1351 
1352 /* XXX Obsolete. Use *_matrix() variant instead. */
1353 int
chn_setvolume(struct pcm_channel * c,int left,int right)1354 chn_setvolume(struct pcm_channel *c, int left, int right)
1355 {
1356 	int ret;
1357 
1358 	ret = chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FL, left);
1359 	ret |= chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FR,
1360 	    right) << 8;
1361 
1362 	return (ret);
1363 }
1364 
1365 int
chn_setvolume_multi(struct pcm_channel * c,int vc,int left,int right,int center)1366 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right,
1367     int center)
1368 {
1369 	int i, ret;
1370 
1371 	ret = 0;
1372 
1373 	for (i = 0; i < SND_CHN_T_MAX; i++) {
1374 		if ((1 << i) & SND_CHN_LEFT_MASK)
1375 			ret |= chn_setvolume_matrix(c, vc, i, left);
1376 		else if ((1 << i) & SND_CHN_RIGHT_MASK)
1377 			ret |= chn_setvolume_matrix(c, vc, i, right) << 8;
1378 		else
1379 			ret |= chn_setvolume_matrix(c, vc, i, center) << 16;
1380 	}
1381 
1382 	return (ret);
1383 }
1384 
1385 int
chn_setvolume_matrix(struct pcm_channel * c,int vc,int vt,int val)1386 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val)
1387 {
1388 	int i;
1389 
1390 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1391 	    (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1392 	    (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN &&
1393 	    vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB ||
1394 	    (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)),
1395 	    ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d",
1396 	    __func__, c, vc, vt, val));
1397 	CHN_LOCKASSERT(c);
1398 
1399 	if (val < 0)
1400 		val = 0;
1401 	if (val > 100)
1402 		val = 100;
1403 
1404 	c->volume[vc][vt] = val;
1405 
1406 	/*
1407 	 * Do relative calculation here and store it into class + 1
1408 	 * to ease the job of feeder_volume.
1409 	 */
1410 	if (vc == SND_VOL_C_MASTER) {
1411 		for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1412 		    vc += SND_VOL_C_STEP)
1413 			c->volume[SND_VOL_C_VAL(vc)][vt] =
1414 			    SND_VOL_CALC_VAL(c->volume, vc, vt);
1415 	} else if (vc & 1) {
1416 		if (vt == SND_CHN_T_VOL_0DB)
1417 			for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1418 			    i += SND_CHN_T_STEP) {
1419 				c->volume[SND_VOL_C_VAL(vc)][i] =
1420 				    SND_VOL_CALC_VAL(c->volume, vc, i);
1421 			}
1422 		else
1423 			c->volume[SND_VOL_C_VAL(vc)][vt] =
1424 			    SND_VOL_CALC_VAL(c->volume, vc, vt);
1425 	}
1426 
1427 	return (val);
1428 }
1429 
1430 int
chn_getvolume_matrix(struct pcm_channel * c,int vc,int vt)1431 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt)
1432 {
1433 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1434 	    (vt == SND_CHN_T_VOL_0DB ||
1435 	    (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1436 	    ("%s(): invalid volume matrix c=%p vc=%d vt=%d",
1437 	    __func__, c, vc, vt));
1438 	CHN_LOCKASSERT(c);
1439 
1440 	return (c->volume[vc][vt]);
1441 }
1442 
1443 struct pcmchan_matrix *
chn_getmatrix(struct pcm_channel * c)1444 chn_getmatrix(struct pcm_channel *c)
1445 {
1446 
1447 	KASSERT(c != NULL, ("%s(): NULL channel", __func__));
1448 	CHN_LOCKASSERT(c);
1449 
1450 	if (!(c->format & AFMT_CONVERTIBLE))
1451 		return (NULL);
1452 
1453 	return (&c->matrix);
1454 }
1455 
1456 int
chn_setmatrix(struct pcm_channel * c,struct pcmchan_matrix * m)1457 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m)
1458 {
1459 
1460 	KASSERT(c != NULL && m != NULL,
1461 	    ("%s(): NULL channel or matrix", __func__));
1462 	CHN_LOCKASSERT(c);
1463 
1464 	if (!(c->format & AFMT_CONVERTIBLE))
1465 		return (EINVAL);
1466 
1467 	c->matrix = *m;
1468 	c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1469 
1470 	return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext)));
1471 }
1472 
1473 /*
1474  * XXX chn_oss_* exists for the sake of compatibility.
1475  */
1476 int
chn_oss_getorder(struct pcm_channel * c,unsigned long long * map)1477 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map)
1478 {
1479 
1480 	KASSERT(c != NULL && map != NULL,
1481 	    ("%s(): NULL channel or map", __func__));
1482 	CHN_LOCKASSERT(c);
1483 
1484 	if (!(c->format & AFMT_CONVERTIBLE))
1485 		return (EINVAL);
1486 
1487 	return (feeder_matrix_oss_get_channel_order(&c->matrix, map));
1488 }
1489 
1490 int
chn_oss_setorder(struct pcm_channel * c,unsigned long long * map)1491 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map)
1492 {
1493 	struct pcmchan_matrix m;
1494 	int ret;
1495 
1496 	KASSERT(c != NULL && map != NULL,
1497 	    ("%s(): NULL channel or map", __func__));
1498 	CHN_LOCKASSERT(c);
1499 
1500 	if (!(c->format & AFMT_CONVERTIBLE))
1501 		return (EINVAL);
1502 
1503 	m = c->matrix;
1504 	ret = feeder_matrix_oss_set_channel_order(&m, map);
1505 	if (ret != 0)
1506 		return (ret);
1507 
1508 	return (chn_setmatrix(c, &m));
1509 }
1510 
1511 #define SND_CHN_OSS_FRONT	(SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR)
1512 #define SND_CHN_OSS_SURR	(SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR)
1513 #define SND_CHN_OSS_CENTER_LFE	(SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF)
1514 #define SND_CHN_OSS_REAR	(SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR)
1515 
1516 int
chn_oss_getmask(struct pcm_channel * c,uint32_t * retmask)1517 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask)
1518 {
1519 	struct pcmchan_matrix *m;
1520 	struct pcmchan_caps *caps;
1521 	uint32_t i, format;
1522 
1523 	KASSERT(c != NULL && retmask != NULL,
1524 	    ("%s(): NULL channel or retmask", __func__));
1525 	CHN_LOCKASSERT(c);
1526 
1527 	caps = chn_getcaps(c);
1528 	if (caps == NULL || caps->fmtlist == NULL)
1529 		return (ENODEV);
1530 
1531 	for (i = 0; caps->fmtlist[i] != 0; i++) {
1532 		format = caps->fmtlist[i];
1533 		if (!(format & AFMT_CONVERTIBLE)) {
1534 			*retmask |= DSP_BIND_SPDIF;
1535 			continue;
1536 		}
1537 		m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format);
1538 		if (m == NULL)
1539 			continue;
1540 		if (m->mask & SND_CHN_OSS_FRONT)
1541 			*retmask |= DSP_BIND_FRONT;
1542 		if (m->mask & SND_CHN_OSS_SURR)
1543 			*retmask |= DSP_BIND_SURR;
1544 		if (m->mask & SND_CHN_OSS_CENTER_LFE)
1545 			*retmask |= DSP_BIND_CENTER_LFE;
1546 		if (m->mask & SND_CHN_OSS_REAR)
1547 			*retmask |= DSP_BIND_REAR;
1548 	}
1549 
1550 	/* report software-supported binding mask */
1551 	if (!CHN_BITPERFECT(c) && report_soft_matrix)
1552 		*retmask |= DSP_BIND_FRONT | DSP_BIND_SURR |
1553 		    DSP_BIND_CENTER_LFE | DSP_BIND_REAR;
1554 
1555 	return (0);
1556 }
1557 
1558 void
chn_vpc_reset(struct pcm_channel * c,int vc,int force)1559 chn_vpc_reset(struct pcm_channel *c, int vc, int force)
1560 {
1561 	int i;
1562 
1563 	KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END,
1564 	    ("%s(): invalid reset c=%p vc=%d", __func__, c, vc));
1565 	CHN_LOCKASSERT(c);
1566 
1567 	if (force == 0 && chn_vpc_autoreset == 0)
1568 		return;
1569 
1570 	for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP)
1571 		CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]);
1572 }
1573 
1574 static u_int32_t
round_pow2(u_int32_t v)1575 round_pow2(u_int32_t v)
1576 {
1577 	u_int32_t ret;
1578 
1579 	if (v < 2)
1580 		v = 2;
1581 	ret = 0;
1582 	while (v >> ret)
1583 		ret++;
1584 	ret = 1 << (ret - 1);
1585 	while (ret < v)
1586 		ret <<= 1;
1587 	return ret;
1588 }
1589 
1590 static u_int32_t
round_blksz(u_int32_t v,int round)1591 round_blksz(u_int32_t v, int round)
1592 {
1593 	u_int32_t ret, tmp;
1594 
1595 	if (round < 1)
1596 		round = 1;
1597 
1598 	ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1);
1599 
1600 	if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2))
1601 		ret >>= 1;
1602 
1603 	tmp = ret - (ret % round);
1604 	while (tmp < 16 || tmp < round) {
1605 		ret <<= 1;
1606 		tmp = ret - (ret % round);
1607 	}
1608 
1609 	return ret;
1610 }
1611 
1612 /*
1613  * 4Front call it DSP Policy, while we call it "Latency Profile". The idea
1614  * is to keep 2nd buffer short so that it doesn't cause long queue during
1615  * buffer transfer.
1616  *
1617  *    Latency reference table for 48khz stereo 16bit: (PLAY)
1618  *
1619  *      +---------+------------+-----------+------------+
1620  *      | Latency | Blockcount | Blocksize | Buffersize |
1621  *      +---------+------------+-----------+------------+
1622  *      |     0   |       2    |   64      |    128     |
1623  *      +---------+------------+-----------+------------+
1624  *      |     1   |       4    |   128     |    512     |
1625  *      +---------+------------+-----------+------------+
1626  *      |     2   |       8    |   512     |    4096    |
1627  *      +---------+------------+-----------+------------+
1628  *      |     3   |      16    |   512     |    8192    |
1629  *      +---------+------------+-----------+------------+
1630  *      |     4   |      32    |   512     |    16384   |
1631  *      +---------+------------+-----------+------------+
1632  *      |     5   |      32    |   1024    |    32768   |
1633  *      +---------+------------+-----------+------------+
1634  *      |     6   |      16    |   2048    |    32768   |
1635  *      +---------+------------+-----------+------------+
1636  *      |     7   |       8    |   4096    |    32768   |
1637  *      +---------+------------+-----------+------------+
1638  *      |     8   |       4    |   8192    |    32768   |
1639  *      +---------+------------+-----------+------------+
1640  *      |     9   |       2    |   16384   |    32768   |
1641  *      +---------+------------+-----------+------------+
1642  *      |    10   |       2    |   32768   |    65536   |
1643  *      +---------+------------+-----------+------------+
1644  *
1645  * Recording need a different reference table. All we care is
1646  * gobbling up everything within reasonable buffering threshold.
1647  *
1648  *    Latency reference table for 48khz stereo 16bit: (REC)
1649  *
1650  *      +---------+------------+-----------+------------+
1651  *      | Latency | Blockcount | Blocksize | Buffersize |
1652  *      +---------+------------+-----------+------------+
1653  *      |     0   |     512    |   32      |    16384   |
1654  *      +---------+------------+-----------+------------+
1655  *      |     1   |     256    |   64      |    16384   |
1656  *      +---------+------------+-----------+------------+
1657  *      |     2   |     128    |   128     |    16384   |
1658  *      +---------+------------+-----------+------------+
1659  *      |     3   |      64    |   256     |    16384   |
1660  *      +---------+------------+-----------+------------+
1661  *      |     4   |      32    |   512     |    16384   |
1662  *      +---------+------------+-----------+------------+
1663  *      |     5   |      32    |   1024    |    32768   |
1664  *      +---------+------------+-----------+------------+
1665  *      |     6   |      16    |   2048    |    32768   |
1666  *      +---------+------------+-----------+------------+
1667  *      |     7   |       8    |   4096    |    32768   |
1668  *      +---------+------------+-----------+------------+
1669  *      |     8   |       4    |   8192    |    32768   |
1670  *      +---------+------------+-----------+------------+
1671  *      |     9   |       2    |   16384   |    32768   |
1672  *      +---------+------------+-----------+------------+
1673  *      |    10   |       2    |   32768   |    65536   |
1674  *      +---------+------------+-----------+------------+
1675  *
1676  * Calculations for other data rate are entirely based on these reference
1677  * tables. For normal operation, Latency 5 seems give the best, well
1678  * balanced performance for typical workload. Anything below 5 will
1679  * eat up CPU to keep up with increasing context switches because of
1680  * shorter buffer space and usually require the application to handle it
1681  * aggresively through possibly real time programming technique.
1682  *
1683  */
1684 #define CHN_LATENCY_PBLKCNT_REF				\
1685 	{{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1},		\
1686 	{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}}
1687 #define CHN_LATENCY_PBUFSZ_REF				\
1688 	{{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16},	\
1689 	{11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}}
1690 
1691 #define CHN_LATENCY_RBLKCNT_REF				\
1692 	{{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1},		\
1693 	{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}}
1694 #define CHN_LATENCY_RBUFSZ_REF				\
1695 	{{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16},	\
1696 	{15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}}
1697 
1698 #define CHN_LATENCY_DATA_REF	192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */
1699 
1700 static int
chn_calclatency(int dir,int latency,int bps,u_int32_t datarate,u_int32_t max,int * rblksz,int * rblkcnt)1701 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate,
1702 				u_int32_t max, int *rblksz, int *rblkcnt)
1703 {
1704 	static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1705 	    CHN_LATENCY_PBLKCNT_REF;
1706 	static int  pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1707 	    CHN_LATENCY_PBUFSZ_REF;
1708 	static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1709 	    CHN_LATENCY_RBLKCNT_REF;
1710 	static int  rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1711 	    CHN_LATENCY_RBUFSZ_REF;
1712 	u_int32_t bufsz;
1713 	int lprofile, blksz, blkcnt;
1714 
1715 	if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX ||
1716 	    bps < 1 || datarate < 1 ||
1717 	    !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) {
1718 		if (rblksz != NULL)
1719 			*rblksz = CHN_2NDBUFMAXSIZE >> 1;
1720 		if (rblkcnt != NULL)
1721 			*rblkcnt = 2;
1722 		kprintf("%s(): FAILED dir=%d latency=%d bps=%d "
1723 		    "datarate=%u max=%u\n",
1724 		    __func__, dir, latency, bps, datarate, max);
1725 		return CHN_2NDBUFMAXSIZE;
1726 	}
1727 
1728 	lprofile = chn_latency_profile;
1729 
1730 	if (dir == PCMDIR_PLAY) {
1731 		blkcnt = pblkcnts[lprofile][latency];
1732 		bufsz = pbufszs[lprofile][latency];
1733 	} else {
1734 		blkcnt = rblkcnts[lprofile][latency];
1735 		bufsz = rbufszs[lprofile][latency];
1736 	}
1737 
1738 	bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF,
1739 	    datarate));
1740 	if (bufsz > max)
1741 		bufsz = max;
1742 	blksz = round_blksz(bufsz >> blkcnt, bps);
1743 
1744 	if (rblksz != NULL)
1745 		*rblksz = blksz;
1746 	if (rblkcnt != NULL)
1747 		*rblkcnt = 1 << blkcnt;
1748 
1749 	return blksz << blkcnt;
1750 }
1751 
1752 static int
chn_resizebuf(struct pcm_channel * c,int latency,int blkcnt,int blksz)1753 chn_resizebuf(struct pcm_channel *c, int latency,
1754 					int blkcnt, int blksz)
1755 {
1756 	struct snd_dbuf *b, *bs, *pb;
1757 	int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt;
1758 	int ret;
1759 
1760 	CHN_LOCKASSERT(c);
1761 
1762 	if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) ||
1763 	    !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC))
1764 		return EINVAL;
1765 
1766 	if (latency == -1) {
1767 		c->latency = -1;
1768 		latency = chn_latency;
1769 	} else if (latency == -2) {
1770 		latency = c->latency;
1771 		if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1772 			latency = chn_latency;
1773 	} else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1774 		return EINVAL;
1775 	else {
1776 		c->latency = latency;
1777 	}
1778 
1779 	bs = c->bufsoft;
1780 	b = c->bufhard;
1781 
1782 	if (!(blksz == 0 || blkcnt == -1) &&
1783 	    (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 ||
1784 	    (blksz * blkcnt) > CHN_2NDBUFMAXSIZE))
1785 		return EINVAL;
1786 
1787 	chn_calclatency(c->direction, latency, sndbuf_getalign(bs),
1788 	    sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE,
1789 	    &sblksz, &sblkcnt);
1790 
1791 	if (blksz == 0 || blkcnt == -1) {
1792 		if (blkcnt == -1)
1793 			c->flags &= ~CHN_F_HAS_SIZE;
1794 		if (c->flags & CHN_F_HAS_SIZE) {
1795 			blksz = sndbuf_getblksz(bs);
1796 			blkcnt = sndbuf_getblkcnt(bs);
1797 		}
1798 	} else
1799 		c->flags |= CHN_F_HAS_SIZE;
1800 
1801 	if (c->flags & CHN_F_HAS_SIZE) {
1802 		/*
1803 		 * The application has requested their own blksz/blkcnt.
1804 		 * Just obey with it, and let them toast alone. We can
1805 		 * clamp it to the nearest latency profile, but that would
1806 		 * defeat the purpose of having custom control. The least
1807 		 * we can do is round it to the nearest ^2 and align it.
1808 		 */
1809 		sblksz = round_blksz(blksz, sndbuf_getalign(bs));
1810 		sblkcnt = round_pow2(blkcnt);
1811 	}
1812 
1813 	if (c->parentchannel != NULL) {
1814 		pb = c->parentchannel->bufsoft;
1815 		CHN_UNLOCK(c);
1816 		CHN_LOCK(c->parentchannel);
1817 		chn_notify(c->parentchannel, CHN_N_BLOCKSIZE);
1818 		CHN_UNLOCK(c->parentchannel);
1819 		CHN_LOCK(c);
1820 		if (c->direction == PCMDIR_PLAY) {
1821 			limit = (pb != NULL) ?
1822 			    sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0;
1823 		} else {
1824 			limit = (pb != NULL) ?
1825 			    sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0;
1826 		}
1827 	} else {
1828 		hblkcnt = 2;
1829 		if (c->flags & CHN_F_HAS_SIZE) {
1830 			hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b),
1831 			    sndbuf_getalign(b));
1832 			hblkcnt = round_pow2(sndbuf_getblkcnt(bs));
1833 		} else
1834 			chn_calclatency(c->direction, latency,
1835 			    sndbuf_getalign(b),
1836 			    sndbuf_getalign(b) * sndbuf_getspd(b),
1837 			    CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt);
1838 
1839 		if ((hblksz << 1) > sndbuf_getmaxsize(b))
1840 			hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1,
1841 			    sndbuf_getalign(b));
1842 
1843 		while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) {
1844 			if (hblkcnt < 4)
1845 				hblksz >>= 1;
1846 			else
1847 				hblkcnt >>= 1;
1848 		}
1849 
1850 		hblksz -= hblksz % sndbuf_getalign(b);
1851 
1852 #if 0
1853 		hblksz = sndbuf_getmaxsize(b) >> 1;
1854 		hblksz -= hblksz % sndbuf_getalign(b);
1855 		hblkcnt = 2;
1856 #endif
1857 
1858 		CHN_UNLOCK(c);
1859 		if (chn_usefrags == 0 ||
1860 		    CHANNEL_SETFRAGMENTS(c->methods, c->devinfo,
1861 		    hblksz, hblkcnt) != 0)
1862 			sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods,
1863 			    c->devinfo, hblksz));
1864 		CHN_LOCK(c);
1865 
1866 		if (!CHN_EMPTY(c, children)) {
1867 			nsblksz = round_blksz(
1868 			    sndbuf_xbytes(sndbuf_getblksz(b), b, bs),
1869 			    sndbuf_getalign(bs));
1870 			nsblkcnt = sndbuf_getblkcnt(b);
1871 			if (c->direction == PCMDIR_PLAY) {
1872 				do {
1873 					nsblkcnt--;
1874 				} while (nsblkcnt >= 2 &&
1875 				    nsblksz * nsblkcnt >= sblksz * sblkcnt);
1876 				nsblkcnt++;
1877 			}
1878 			sblksz = nsblksz;
1879 			sblkcnt = nsblkcnt;
1880 			limit = 0;
1881 		} else
1882 			limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2;
1883 	}
1884 
1885 	if (limit > CHN_2NDBUFMAXSIZE)
1886 		limit = CHN_2NDBUFMAXSIZE;
1887 
1888 #if 0
1889 	while (limit > 0 && (sblksz * sblkcnt) > limit) {
1890 		if (sblkcnt < 4)
1891 			break;
1892 		sblkcnt >>= 1;
1893 	}
1894 #endif
1895 
1896 	while ((sblksz * sblkcnt) < limit)
1897 		sblkcnt <<= 1;
1898 
1899 	while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) {
1900 		if (sblkcnt < 4)
1901 			sblksz >>= 1;
1902 		else
1903 			sblkcnt >>= 1;
1904 	}
1905 
1906 	sblksz -= sblksz % sndbuf_getalign(bs);
1907 
1908 	if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz ||
1909 	    sndbuf_getsize(bs) != (sblkcnt * sblksz)) {
1910 		ret = sndbuf_remalloc(bs, sblkcnt, sblksz);
1911 		if (ret != 0) {
1912 			device_printf(c->dev, "%s(): Failed: %d %d\n",
1913 			    __func__, sblkcnt, sblksz);
1914 			return ret;
1915 		}
1916 	}
1917 
1918 	/*
1919 	 * Interrupt timeout
1920 	 */
1921 	c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) /
1922 	    ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs));
1923 	if (c->parentchannel != NULL)
1924 		c->timeout = min(c->timeout, c->parentchannel->timeout);
1925 	if (c->timeout < 1)
1926 		c->timeout = 1;
1927 
1928 	/*
1929 	 * OSSv4 docs: "By default OSS will set the low water level equal
1930 	 * to the fragment size which is optimal in most cases."
1931 	 */
1932 	c->lw = sndbuf_getblksz(bs);
1933 	chn_resetbuf(c);
1934 
1935 	if (snd_verbose > 3)
1936 		device_printf(c->dev, "%s(): %s (%s) timeout=%u "
1937 		    "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n",
1938 		    __func__, CHN_DIRSTR(c),
1939 		    (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
1940 		    c->timeout,
1941 		    sndbuf_getsize(b), sndbuf_getblksz(b),
1942 		    sndbuf_getblkcnt(b),
1943 		    sndbuf_getsize(bs), sndbuf_getblksz(bs),
1944 		    sndbuf_getblkcnt(bs), limit);
1945 
1946 	return 0;
1947 }
1948 
1949 int
chn_setlatency(struct pcm_channel * c,int latency)1950 chn_setlatency(struct pcm_channel *c, int latency)
1951 {
1952 	CHN_LOCKASSERT(c);
1953 	/* Destroy blksz/blkcnt, enforce latency profile. */
1954 	return chn_resizebuf(c, latency, -1, 0);
1955 }
1956 
1957 int
chn_setblocksize(struct pcm_channel * c,int blkcnt,int blksz)1958 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz)
1959 {
1960 	CHN_LOCKASSERT(c);
1961 	/* Destroy latency profile, enforce blksz/blkcnt */
1962 	return chn_resizebuf(c, -1, blkcnt, blksz);
1963 }
1964 
1965 int
chn_setparam(struct pcm_channel * c,uint32_t format,uint32_t speed)1966 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed)
1967 {
1968 	struct pcmchan_caps *caps;
1969 	uint32_t hwspeed, delta;
1970 	int ret;
1971 
1972 	CHN_LOCKASSERT(c);
1973 
1974 	if (speed < 1 || format == 0 || CHN_STARTED(c))
1975 		return (EINVAL);
1976 
1977 	c->format = format;
1978 	c->speed = speed;
1979 
1980 	caps = chn_getcaps(c);
1981 
1982 	hwspeed = speed;
1983 	RANGE(hwspeed, caps->minspeed, caps->maxspeed);
1984 
1985 	sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo,
1986 	    hwspeed));
1987 	hwspeed = sndbuf_getspd(c->bufhard);
1988 
1989 	delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed);
1990 
1991 	if (delta <= feeder_rate_round)
1992 		c->speed = hwspeed;
1993 
1994 	ret = feeder_chain(c);
1995 
1996 	if (ret == 0)
1997 		ret = CHANNEL_SETFORMAT(c->methods, c->devinfo,
1998 		    sndbuf_getfmt(c->bufhard));
1999 
2000 	if (ret == 0)
2001 		ret = chn_resizebuf(c, -2, 0, 0);
2002 
2003 	return (ret);
2004 }
2005 
2006 int
chn_setspeed(struct pcm_channel * c,uint32_t speed)2007 chn_setspeed(struct pcm_channel *c, uint32_t speed)
2008 {
2009 	uint32_t oldformat, oldspeed, format;
2010 	int ret;
2011 
2012 #if 0
2013 	/* XXX force 48k */
2014 	if (c->format & AFMT_PASSTHROUGH)
2015 		speed = AFMT_PASSTHROUGH_RATE;
2016 #endif
2017 
2018 	oldformat = c->format;
2019 	oldspeed = c->speed;
2020 	format = oldformat;
2021 
2022 	ret = chn_setparam(c, format, speed);
2023 	if (ret != 0) {
2024 		if (snd_verbose > 3)
2025 			device_printf(c->dev,
2026 			    "%s(): Setting speed %d failed, "
2027 			    "falling back to %d\n",
2028 			    __func__, speed, oldspeed);
2029 		chn_setparam(c, c->format, oldspeed);
2030 	}
2031 
2032 	return (ret);
2033 }
2034 
2035 int
chn_setformat(struct pcm_channel * c,uint32_t format)2036 chn_setformat(struct pcm_channel *c, uint32_t format)
2037 {
2038 	uint32_t oldformat, oldspeed, speed;
2039 	int ret;
2040 
2041 	/* XXX force stereo */
2042 	if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) {
2043 		format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL,
2044 		    AFMT_PASSTHROUGH_EXTCHANNEL);
2045 	}
2046 
2047 	oldformat = c->format;
2048 	oldspeed = c->speed;
2049 	speed = oldspeed;
2050 
2051 	ret = chn_setparam(c, format, speed);
2052 	if (ret != 0) {
2053 		if (snd_verbose > 3)
2054 			device_printf(c->dev,
2055 			    "%s(): Format change 0x%08x failed, "
2056 			    "falling back to 0x%08x\n",
2057 			    __func__, format, oldformat);
2058 		chn_setparam(c, oldformat, oldspeed);
2059 	}
2060 
2061 	return (ret);
2062 }
2063 
2064 void
chn_syncstate(struct pcm_channel * c)2065 chn_syncstate(struct pcm_channel *c)
2066 {
2067 	struct snddev_info *d;
2068 	struct snd_mixer *m;
2069 
2070 	d = (c != NULL) ? c->parentsnddev : NULL;
2071 	m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 :
2072 	    NULL;
2073 
2074 	if (d == NULL || m == NULL)
2075 		return;
2076 
2077 	CHN_LOCKASSERT(c);
2078 
2079 	if (c->feederflags & (1 << FEEDER_VOLUME)) {
2080 		uint32_t parent;
2081 		int vol, pvol, left, right, center;
2082 
2083 		if (c->direction == PCMDIR_PLAY &&
2084 		    (d->flags & SD_F_SOFTPCMVOL)) {
2085 			/* CHN_UNLOCK(c); */
2086 			vol = mix_get(m, SOUND_MIXER_PCM);
2087 			parent = mix_getparent(m, SOUND_MIXER_PCM);
2088 			if (parent != SOUND_MIXER_NONE)
2089 				pvol = mix_get(m, parent);
2090 			else
2091 				pvol = 100 | (100 << 8);
2092 			/* CHN_LOCK(c); */
2093 		} else {
2094 			vol = 100 | (100 << 8);
2095 			pvol = vol;
2096 		}
2097 
2098 		if (vol == -1) {
2099 			device_printf(c->dev,
2100 			    "Soft PCM Volume: Failed to read pcm "
2101 			    "default value\n");
2102 			vol = 100 | (100 << 8);
2103 		}
2104 
2105 		if (pvol == -1) {
2106 			device_printf(c->dev,
2107 			    "Soft PCM Volume: Failed to read parent "
2108 			    "default value\n");
2109 			pvol = 100 | (100 << 8);
2110 		}
2111 
2112 		left = ((vol & 0x7f) * (pvol & 0x7f)) / 100;
2113 		right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100;
2114 		center = (left + right) >> 1;
2115 
2116 		chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center);
2117 	}
2118 
2119 	if (c->feederflags & (1 << FEEDER_EQ)) {
2120 		struct pcm_feeder *f;
2121 		int treble, bass, state;
2122 
2123 		/* CHN_UNLOCK(c); */
2124 		treble = mix_get(m, SOUND_MIXER_TREBLE);
2125 		bass = mix_get(m, SOUND_MIXER_BASS);
2126 		/* CHN_LOCK(c); */
2127 
2128 		if (treble == -1)
2129 			treble = 50;
2130 		else
2131 			treble = ((treble & 0x7f) +
2132 			    ((treble >> 8) & 0x7f)) >> 1;
2133 
2134 		if (bass == -1)
2135 			bass = 50;
2136 		else
2137 			bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1;
2138 
2139 		f = chn_findfeeder(c, FEEDER_EQ);
2140 		if (f != NULL) {
2141 			if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0)
2142 				device_printf(c->dev,
2143 				    "EQ: Failed to set treble -- %d\n",
2144 				    treble);
2145 			if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0)
2146 				device_printf(c->dev,
2147 				    "EQ: Failed to set bass -- %d\n",
2148 				    bass);
2149 			if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0)
2150 				device_printf(c->dev,
2151 				    "EQ: Failed to set preamp -- %d\n",
2152 				    d->eqpreamp);
2153 			if (d->flags & SD_F_EQ_BYPASSED)
2154 				state = FEEDEQ_BYPASS;
2155 			else if (d->flags & SD_F_EQ_ENABLED)
2156 				state = FEEDEQ_ENABLE;
2157 			else
2158 				state = FEEDEQ_DISABLE;
2159 			if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0)
2160 				device_printf(c->dev,
2161 				    "EQ: Failed to set state -- %d\n", state);
2162 		}
2163 	}
2164 }
2165 
2166 int
chn_trigger(struct pcm_channel * c,int go)2167 chn_trigger(struct pcm_channel *c, int go)
2168 {
2169 #ifdef DEV_ISA
2170     	struct snd_dbuf *b = c->bufhard;
2171 #endif
2172 	struct snddev_info *d = c->parentsnddev;
2173 	int ret;
2174 
2175 	CHN_LOCKASSERT(c);
2176 #ifdef DEV_ISA
2177 	if (SND_DMA(b) && (go == PCMTRIG_EMLDMAWR || go == PCMTRIG_EMLDMARD))
2178 		sndbuf_dmabounce(b);
2179 #endif
2180 	if (!PCMTRIG_COMMON(go))
2181 		return (CHANNEL_TRIGGER(c->methods, c->devinfo, go));
2182 
2183 	if (go == c->trigger)
2184 		return (0);
2185 
2186 	ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go);
2187 	if (ret != 0)
2188 		return (ret);
2189 
2190 	switch (go) {
2191 	case PCMTRIG_START:
2192 		if (snd_verbose > 3)
2193 			device_printf(c->dev,
2194 			    "%s() %s: calling go=0x%08x , "
2195 			    "prev=0x%08x\n", __func__, c->name, go,
2196 			    c->trigger);
2197 		if (c->trigger != PCMTRIG_START) {
2198 			c->trigger = go;
2199 			CHN_UNLOCK(c);
2200 			PCM_LOCK(d);
2201 			CHN_INSERT_HEAD(d, c, channels.pcm.busy);
2202 			PCM_UNLOCK(d);
2203 			CHN_LOCK(c);
2204 			chn_syncstate(c);
2205 		}
2206 		break;
2207 	case PCMTRIG_STOP:
2208 	case PCMTRIG_ABORT:
2209 		if (snd_verbose > 3)
2210 			device_printf(c->dev,
2211 			    "%s() %s: calling go=0x%08x , "
2212 			    "prev=0x%08x\n", __func__, c->name, go,
2213 			    c->trigger);
2214 		if (c->trigger == PCMTRIG_START) {
2215 			c->trigger = go;
2216 			CHN_UNLOCK(c);
2217 			PCM_LOCK(d);
2218 			CHN_REMOVE(d, c, channels.pcm.busy);
2219 			PCM_UNLOCK(d);
2220 			CHN_LOCK(c);
2221 		}
2222 		break;
2223 	default:
2224 		break;
2225 	}
2226 
2227 	return (0);
2228 }
2229 
2230 /**
2231  * @brief Queries sound driver for sample-aligned hardware buffer pointer index
2232  *
2233  * This function obtains the hardware pointer location, then aligns it to
2234  * the current bytes-per-sample value before returning.  (E.g., a channel
2235  * running in 16 bit stereo mode would require 4 bytes per sample, so a
2236  * hwptr value ranging from 32-35 would be returned as 32.)
2237  *
2238  * @param c	PCM channel context
2239  * @returns 	sample-aligned hardware buffer pointer index
2240  */
2241 int
chn_getptr(struct pcm_channel * c)2242 chn_getptr(struct pcm_channel *c)
2243 {
2244 	int hwptr;
2245 
2246 	CHN_LOCKASSERT(c);
2247 	hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0;
2248 	return (hwptr - (hwptr % sndbuf_getalign(c->bufhard)));
2249 }
2250 
2251 struct pcmchan_caps *
chn_getcaps(struct pcm_channel * c)2252 chn_getcaps(struct pcm_channel *c)
2253 {
2254 	CHN_LOCKASSERT(c);
2255 	return CHANNEL_GETCAPS(c->methods, c->devinfo);
2256 }
2257 
2258 u_int32_t
chn_getformats(struct pcm_channel * c)2259 chn_getformats(struct pcm_channel *c)
2260 {
2261 	u_int32_t *fmtlist, fmts;
2262 	int i;
2263 
2264 	fmtlist = chn_getcaps(c)->fmtlist;
2265 	fmts = 0;
2266 	for (i = 0; fmtlist[i]; i++)
2267 		fmts |= fmtlist[i];
2268 
2269 	/* report software-supported formats */
2270 	if (!CHN_BITPERFECT(c) && report_soft_formats)
2271 		fmts |= AFMT_CONVERTIBLE;
2272 
2273 	return (AFMT_ENCODING(fmts));
2274 }
2275 
2276 int
chn_notify(struct pcm_channel * c,u_int32_t flags)2277 chn_notify(struct pcm_channel *c, u_int32_t flags)
2278 {
2279 	struct pcm_channel *ch;
2280 	struct pcmchan_caps *caps;
2281 	uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate;
2282 	uint32_t vpflags;
2283 	int dirty, err, run, nrun;
2284 
2285 	CHN_LOCKASSERT(c);
2286 
2287 	if (CHN_EMPTY(c, children))
2288 		return (ENODEV);
2289 
2290 	err = 0;
2291 
2292 	/*
2293 	 * If the hwchan is running, we can't change its rate, format or
2294 	 * blocksize
2295 	 */
2296 	run = (CHN_STARTED(c)) ? 1 : 0;
2297 	if (run)
2298 		flags &= CHN_N_VOLUME | CHN_N_TRIGGER;
2299 
2300 	if (flags & CHN_N_RATE) {
2301 		/*
2302 		 * XXX I'll make good use of this someday.
2303 		 *     However this is currently being superseded by
2304 		 *     the availability of CHN_F_VCHAN_DYNAMIC.
2305 		 */
2306 	}
2307 
2308 	if (flags & CHN_N_FORMAT) {
2309 		/*
2310 		 * XXX I'll make good use of this someday.
2311 		 *     However this is currently being superseded by
2312 		 *     the availability of CHN_F_VCHAN_DYNAMIC.
2313 		 */
2314 	}
2315 
2316 	if (flags & CHN_N_VOLUME) {
2317 		/*
2318 		 * XXX I'll make good use of this someday, though
2319 		 *     soft volume control is currently pretty much
2320 		 *     integrated.
2321 		 */
2322 	}
2323 
2324 	if (flags & CHN_N_BLOCKSIZE) {
2325 		/*
2326 		 * Set to default latency profile
2327 		 */
2328 		chn_setlatency(c, chn_latency);
2329 	}
2330 
2331 	if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) {
2332 		nrun = CHN_EMPTY(c, children.busy) ? 0 : 1;
2333 		if (nrun && !run)
2334 			err = chn_start(c, 1);
2335 		if (!nrun && run)
2336 			chn_abort(c);
2337 		flags &= ~CHN_N_TRIGGER;
2338 	}
2339 
2340 	if (flags & CHN_N_TRIGGER) {
2341 		if (c->direction == PCMDIR_PLAY) {
2342 			vchanformat = &c->parentsnddev->pvchanformat;
2343 			vchanrate = &c->parentsnddev->pvchanrate;
2344 		} else {
2345 			vchanformat = &c->parentsnddev->rvchanformat;
2346 			vchanrate = &c->parentsnddev->rvchanrate;
2347 		}
2348 
2349 		/* Dynamic Virtual Channel */
2350 		if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) {
2351 			bestformat = *vchanformat;
2352 			bestspeed = *vchanrate;
2353 		} else {
2354 			bestformat = 0;
2355 			bestspeed = 0;
2356 		}
2357 
2358 		besthwformat = 0;
2359 		nrun = 0;
2360 		caps = chn_getcaps(c);
2361 		dirty = 0;
2362 		vpflags = 0;
2363 
2364 		CHN_FOREACH(ch, c, children.busy) {
2365 			CHN_LOCK(ch);
2366 			if ((ch->format & AFMT_PASSTHROUGH) &&
2367 			    snd_fmtvalid(ch->format, caps->fmtlist)) {
2368 				bestformat = ch->format;
2369 				bestspeed = ch->speed;
2370 				CHN_UNLOCK(ch);
2371 				vpflags = CHN_F_PASSTHROUGH;
2372 				nrun++;
2373 				break;
2374 			}
2375 			if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) {
2376 				if (c->flags & CHN_F_VCHAN_ADAPTIVE) {
2377 					bestspeed = ch->speed;
2378 					RANGE(bestspeed, caps->minspeed,
2379 					    caps->maxspeed);
2380 					besthwformat = snd_fmtbest(ch->format,
2381 					    caps->fmtlist);
2382 					if (besthwformat != 0)
2383 						bestformat = besthwformat;
2384 				}
2385 				CHN_UNLOCK(ch);
2386 				vpflags = CHN_F_EXCLUSIVE;
2387 				nrun++;
2388 				continue;
2389 			}
2390 			if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) ||
2391 			    vpflags != 0) {
2392 				CHN_UNLOCK(ch);
2393 				nrun++;
2394 				continue;
2395 			}
2396 			if (ch->speed > bestspeed) {
2397 				bestspeed = ch->speed;
2398 				RANGE(bestspeed, caps->minspeed,
2399 				    caps->maxspeed);
2400 			}
2401 			besthwformat = snd_fmtbest(ch->format, caps->fmtlist);
2402 			if (!(besthwformat & AFMT_VCHAN)) {
2403 				CHN_UNLOCK(ch);
2404 				nrun++;
2405 				continue;
2406 			}
2407 			if (AFMT_CHANNEL(besthwformat) >
2408 			    AFMT_CHANNEL(bestformat))
2409 				bestformat = besthwformat;
2410 			else if (AFMT_CHANNEL(besthwformat) ==
2411 			    AFMT_CHANNEL(bestformat) &&
2412 			    AFMT_BIT(besthwformat) > AFMT_BIT(bestformat))
2413 				bestformat = besthwformat;
2414 			CHN_UNLOCK(ch);
2415 			nrun++;
2416 		}
2417 
2418 		if (bestformat == 0)
2419 			bestformat = c->format;
2420 		if (bestspeed == 0)
2421 			bestspeed = c->speed;
2422 
2423 		if (bestformat != c->format || bestspeed != c->speed)
2424 			dirty = 1;
2425 
2426 		c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2427 		c->flags |= vpflags;
2428 
2429 		if (nrun && !run) {
2430 			if (dirty) {
2431 				bestspeed = CHANNEL_SETSPEED(c->methods,
2432 				    c->devinfo, bestspeed);
2433 				err = chn_reset(c, bestformat, bestspeed);
2434 			}
2435 			if (err == 0 && dirty) {
2436 				CHN_FOREACH(ch, c, children.busy) {
2437 					CHN_LOCK(ch);
2438 					if (VCHAN_SYNC_REQUIRED(ch))
2439 						vchan_sync(ch);
2440 					CHN_UNLOCK(ch);
2441 				}
2442 			}
2443 			if (err == 0) {
2444 				if (dirty)
2445 					c->flags |= CHN_F_DIRTY;
2446 				err = chn_start(c, 1);
2447 			}
2448 		}
2449 
2450 		if (nrun && run && dirty) {
2451 			chn_abort(c);
2452 			bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo,
2453 			    bestspeed);
2454 			err = chn_reset(c, bestformat, bestspeed);
2455 			if (err == 0) {
2456 				CHN_FOREACH(ch, c, children.busy) {
2457 					CHN_LOCK(ch);
2458 					if (VCHAN_SYNC_REQUIRED(ch))
2459 						vchan_sync(ch);
2460 					CHN_UNLOCK(ch);
2461 				}
2462 			}
2463 			if (err == 0) {
2464 				c->flags |= CHN_F_DIRTY;
2465 				err = chn_start(c, 1);
2466 			}
2467 		}
2468 
2469 		if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) &&
2470 		    (bestformat & AFMT_VCHAN)) {
2471 			*vchanformat = bestformat;
2472 			*vchanrate = bestspeed;
2473 		}
2474 
2475 		if (!nrun && run) {
2476 			c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2477 			bestformat = *vchanformat;
2478 			bestspeed = *vchanrate;
2479 			chn_abort(c);
2480 			if (c->format != bestformat || c->speed != bestspeed)
2481 				chn_reset(c, bestformat, bestspeed);
2482 		}
2483 	}
2484 
2485 	return (err);
2486 }
2487 
2488 /**
2489  * @brief Fetch array of supported discrete sample rates
2490  *
2491  * Wrapper for CHANNEL_GETRATES.  Please see channel_if.m:getrates() for
2492  * detailed information.
2493  *
2494  * @note If the operation isn't supported, this function will just return 0
2495  *       (no rates in the array), and *rates will be set to NULL.  Callers
2496  *       should examine rates @b only if this function returns non-zero.
2497  *
2498  * @param c	pcm channel to examine
2499  * @param rates	pointer to array of integers; rate table will be recorded here
2500  *
2501  * @return number of rates in the array pointed to be @c rates
2502  */
2503 int
chn_getrates(struct pcm_channel * c,int ** rates)2504 chn_getrates(struct pcm_channel *c, int **rates)
2505 {
2506 	KASSERT(rates != NULL, ("rates is null"));
2507 	CHN_LOCKASSERT(c);
2508 	return CHANNEL_GETRATES(c->methods, c->devinfo, rates);
2509 }
2510 
2511 /**
2512  * @brief Remove channel from a sync group, if there is one.
2513  *
2514  * This function is initially intended for the following conditions:
2515  *   - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl)
2516  *   - Closing a device.  (A channel can't be destroyed if it's still in use.)
2517  *
2518  * @note Before calling this function, the syncgroup list mutex must be
2519  * held.  (Consider pcm_channel::sm protected by the SG list mutex
2520  * whether @c c is locked or not.)
2521  *
2522  * @param c	channel device to be started or closed
2523  * @returns	If this channel was the only member of a group, the group ID
2524  * 		is returned to the caller so that the caller can release it
2525  * 		via free_unr() after giving up the syncgroup lock.  Else it
2526  * 		returns 0.
2527  */
2528 int
chn_syncdestroy(struct pcm_channel * c)2529 chn_syncdestroy(struct pcm_channel *c)
2530 {
2531 	struct pcmchan_syncmember *sm;
2532 	struct pcmchan_syncgroup *sg;
2533 	int sg_id;
2534 
2535 	sg_id = 0;
2536 
2537 	PCM_SG_ASSERTOWNED;
2538 
2539 	if (c->sm != NULL) {
2540 		sm = c->sm;
2541 		sg = sm->parent;
2542 		c->sm = NULL;
2543 
2544 		KASSERT(sg != NULL, ("syncmember has null parent"));
2545 
2546 		SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link);
2547 		kfree(sm, M_DEVBUF);
2548 
2549 		if (SLIST_EMPTY(&sg->members)) {
2550 			SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link);
2551 			sg_id = sg->id;
2552 			kfree(sg, M_DEVBUF);
2553 		}
2554 	}
2555 
2556 	return sg_id;
2557 }
2558 
2559 #ifdef OSSV4_EXPERIMENT
2560 int
chn_getpeaks(struct pcm_channel * c,int * lpeak,int * rpeak)2561 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak)
2562 {
2563 	CHN_LOCKASSERT(c);
2564 	return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak);
2565 }
2566 #endif
2567