xref: /netbsd/sys/arch/arm/arm32/pmap.c (revision 70e8a6bc)
1 /*	$NetBSD: pmap.c,v 1.439 2023/04/20 08:28:03 skrll Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40  * Copyright (c) 2001 Richard Earnshaw
41  * Copyright (c) 2001-2002 Christopher Gilbert
42  * All rights reserved.
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. The name of the company nor the name of the author may be used to
50  *   endorse or promote products derived from this software without specific
51  *    prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  */
65 
66 /*-
67  * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68  * All rights reserved.
69  *
70  * This code is derived from software contributed to The NetBSD Foundation
71  * by Charles M. Hannum.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  *
82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92  * POSSIBILITY OF SUCH DAMAGE.
93  */
94 
95 /*
96  * Copyright (c) 1994-1998 Mark Brinicombe.
97  * Copyright (c) 1994 Brini.
98  * All rights reserved.
99  *
100  * This code is derived from software written for Brini by Mark Brinicombe
101  *
102  * Redistribution and use in source and binary forms, with or without
103  * modification, are permitted provided that the following conditions
104  * are met:
105  * 1. Redistributions of source code must retain the above copyright
106  *    notice, this list of conditions and the following disclaimer.
107  * 2. Redistributions in binary form must reproduce the above copyright
108  *    notice, this list of conditions and the following disclaimer in the
109  *    documentation and/or other materials provided with the distribution.
110  * 3. All advertising materials mentioning features or use of this software
111  *    must display the following acknowledgement:
112  *	This product includes software developed by Mark Brinicombe.
113  * 4. The name of the author may not be used to endorse or promote products
114  *    derived from this software without specific prior written permission.
115  *
116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125  *
126  * RiscBSD kernel project
127  *
128  * pmap.c
129  *
130  * Machine dependent vm stuff
131  *
132  * Created      : 20/09/94
133  */
134 
135 /*
136  * armv6 and VIPT cache support by 3am Software Foundry,
137  * Copyright (c) 2007 Microsoft
138  */
139 
140 /*
141  * Performance improvements, UVM changes, overhauls and part-rewrites
142  * were contributed by Neil A. Carson <neil@causality.com>.
143  */
144 
145 /*
146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148  * Systems, Inc.
149  *
150  * There are still a few things outstanding at this time:
151  *
152  *   - There are some unresolved issues for MP systems:
153  *
154  *     o The L1 metadata needs a lock, or more specifically, some places
155  *       need to acquire an exclusive lock when modifying L1 translation
156  *       table entries.
157  *
158  *     o When one cpu modifies an L1 entry, and that L1 table is also
159  *       being used by another cpu, then the latter will need to be told
160  *       that a tlb invalidation may be necessary. (But only if the old
161  *       domain number in the L1 entry being over-written is currently
162  *       the active domain on that cpu). I guess there are lots more tlb
163  *       shootdown issues too...
164  *
165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
166  *       then MP systems will lose big-time because of the MMU domain hack.
167  *       The only way this can be solved (apart from moving the vector
168  *       page to 0xffff0000) is to reserve the first 1MB of user address
169  *       space for kernel use only. This would require re-linking all
170  *       applications so that the text section starts above this 1MB
171  *       boundary.
172  *
173  *     o Tracking which VM space is resident in the cache/tlb has not yet
174  *       been implemented for MP systems.
175  *
176  *     o Finally, there is a pathological condition where two cpus running
177  *       two separate processes (not lwps) which happen to share an L1
178  *       can get into a fight over one or more L1 entries. This will result
179  *       in a significant slow-down if both processes are in tight loops.
180  */
181 
182 /* Include header files */
183 
184 #include "opt_arm_debug.h"
185 #include "opt_cpuoptions.h"
186 #include "opt_ddb.h"
187 #include "opt_efi.h"
188 #include "opt_lockdebug.h"
189 #include "opt_multiprocessor.h"
190 
191 #ifdef MULTIPROCESSOR
192 #define _INTR_PRIVATE
193 #endif
194 
195 #include <sys/cdefs.h>
196 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.439 2023/04/20 08:28:03 skrll Exp $");
197 
198 #include <sys/param.h>
199 #include <sys/types.h>
200 
201 #include <sys/asan.h>
202 #include <sys/atomic.h>
203 #include <sys/bus.h>
204 #include <sys/cpu.h>
205 #include <sys/intr.h>
206 #include <sys/kernel.h>
207 #include <sys/kernhist.h>
208 #include <sys/kmem.h>
209 #include <sys/pool.h>
210 #include <sys/proc.h>
211 #include <sys/sysctl.h>
212 #include <sys/systm.h>
213 
214 #include <uvm/uvm.h>
215 #include <uvm/pmap/pmap_pvt.h>
216 
217 #include <arm/locore.h>
218 
219 #ifdef DDB
220 #include <arm/db_machdep.h>
221 #endif
222 
223 #ifdef VERBOSE_INIT_ARM
224 #define VPRINTF(...)	printf(__VA_ARGS__)
225 #else
226 #define VPRINTF(...)	__nothing
227 #endif
228 
229 #if defined(EFI_RUNTIME)
230 #if !defined(ARM_MMU_EXTENDED)
231 #error EFI_RUNTIME is only supported with ARM_MMU_EXTENDED
232 #endif
233 #endif
234 
235 /*
236  * pmap_kernel() points here
237  */
238 static struct pmap	kernel_pmap_store = {
239 #ifndef ARM_MMU_EXTENDED
240 	.pm_activated = true,
241 	.pm_domain = PMAP_DOMAIN_KERNEL,
242 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
243 #endif
244 };
245 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
246 #undef pmap_kernel
247 #define pmap_kernel()	(&kernel_pmap_store)
248 
249 #if defined(EFI_RUNTIME)
250 static struct pmap	efirt_pmap;
251 
252 struct pmap *
pmap_efirt(void)253 pmap_efirt(void)
254 {
255 	return &efirt_pmap;
256 }
257 #endif
258 
259 #ifdef PMAP_NEED_ALLOC_POOLPAGE
260 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
261 #endif
262 
263 /*
264  * Pool and cache that pmap structures are allocated from.
265  * We use a cache to avoid clearing the pm_l2[] array (1KB)
266  * in pmap_create().
267  */
268 static struct pool_cache pmap_cache;
269 
270 /*
271  * Pool of PV structures
272  */
273 static struct pool pmap_pv_pool;
274 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
275 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
276 static struct pool_allocator pmap_bootstrap_pv_allocator = {
277 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
278 };
279 
280 /*
281  * Pool and cache of l2_dtable structures.
282  * We use a cache to avoid clearing the structures when they're
283  * allocated. (196 bytes)
284  */
285 static struct pool_cache pmap_l2dtable_cache;
286 static vaddr_t pmap_kernel_l2dtable_kva;
287 
288 /*
289  * Pool and cache of L2 page descriptors.
290  * We use a cache to avoid clearing the descriptor table
291  * when they're allocated. (1KB)
292  */
293 static struct pool_cache pmap_l2ptp_cache;
294 static vaddr_t pmap_kernel_l2ptp_kva;
295 static paddr_t pmap_kernel_l2ptp_phys;
296 
297 #ifdef PMAPCOUNTERS
298 #define	PMAP_EVCNT_INITIALIZER(name) \
299 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
300 
301 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
302 static struct evcnt pmap_ev_vac_clean_one =
303    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
304 static struct evcnt pmap_ev_vac_flush_one =
305    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
306 static struct evcnt pmap_ev_vac_flush_lots =
307    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
308 static struct evcnt pmap_ev_vac_flush_lots2 =
309    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
310 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
311 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
312 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
313 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
314 
315 static struct evcnt pmap_ev_vac_color_new =
316    PMAP_EVCNT_INITIALIZER("new page color");
317 static struct evcnt pmap_ev_vac_color_reuse =
318    PMAP_EVCNT_INITIALIZER("ok first page color");
319 static struct evcnt pmap_ev_vac_color_ok =
320    PMAP_EVCNT_INITIALIZER("ok page color");
321 static struct evcnt pmap_ev_vac_color_blind =
322    PMAP_EVCNT_INITIALIZER("blind page color");
323 static struct evcnt pmap_ev_vac_color_change =
324    PMAP_EVCNT_INITIALIZER("change page color");
325 static struct evcnt pmap_ev_vac_color_erase =
326    PMAP_EVCNT_INITIALIZER("erase page color");
327 static struct evcnt pmap_ev_vac_color_none =
328    PMAP_EVCNT_INITIALIZER("no page color");
329 static struct evcnt pmap_ev_vac_color_restore =
330    PMAP_EVCNT_INITIALIZER("restore page color");
331 
332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
337 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
338 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
339 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
340 #endif
341 
342 static struct evcnt pmap_ev_mappings =
343    PMAP_EVCNT_INITIALIZER("pages mapped");
344 static struct evcnt pmap_ev_unmappings =
345    PMAP_EVCNT_INITIALIZER("pages unmapped");
346 static struct evcnt pmap_ev_remappings =
347    PMAP_EVCNT_INITIALIZER("pages remapped");
348 
349 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
350 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
351 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
352 
353 static struct evcnt pmap_ev_kernel_mappings =
354    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
355 static struct evcnt pmap_ev_kernel_unmappings =
356    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
357 static struct evcnt pmap_ev_kernel_remappings =
358    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
359 
360 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
361 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
362 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
363 
364 static struct evcnt pmap_ev_kenter_mappings =
365    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
366 static struct evcnt pmap_ev_kenter_unmappings =
367    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
368 static struct evcnt pmap_ev_kenter_remappings =
369    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
370 static struct evcnt pmap_ev_pt_mappings =
371    PMAP_EVCNT_INITIALIZER("page table pages mapped");
372 
373 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
374 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
377 
378 static struct evcnt pmap_ev_fixup_mod =
379    PMAP_EVCNT_INITIALIZER("page modification emulations");
380 static struct evcnt pmap_ev_fixup_ref =
381    PMAP_EVCNT_INITIALIZER("page reference emulations");
382 static struct evcnt pmap_ev_fixup_exec =
383    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
384 static struct evcnt pmap_ev_fixup_pdes =
385    PMAP_EVCNT_INITIALIZER("pdes fixed up");
386 #ifndef ARM_MMU_EXTENDED
387 static struct evcnt pmap_ev_fixup_ptesync =
388    PMAP_EVCNT_INITIALIZER("ptesync fixed");
389 #endif
390 
391 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
392 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
393 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
394 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
395 #ifndef ARM_MMU_EXTENDED
396 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
397 #endif
398 
399 #ifdef PMAP_CACHE_VIPT
400 static struct evcnt pmap_ev_exec_mappings =
401    PMAP_EVCNT_INITIALIZER("exec pages mapped");
402 static struct evcnt pmap_ev_exec_cached =
403    PMAP_EVCNT_INITIALIZER("exec pages cached");
404 
405 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
406 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
407 
408 static struct evcnt pmap_ev_exec_synced =
409    PMAP_EVCNT_INITIALIZER("exec pages synced");
410 static struct evcnt pmap_ev_exec_synced_map =
411    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
412 static struct evcnt pmap_ev_exec_synced_unmap =
413    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
414 static struct evcnt pmap_ev_exec_synced_remap =
415    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
416 static struct evcnt pmap_ev_exec_synced_clearbit =
417    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
418 #ifndef ARM_MMU_EXTENDED
419 static struct evcnt pmap_ev_exec_synced_kremove =
420    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
421 #endif
422 
423 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
424 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
425 #ifndef ARM_MMU_EXTENDED
426 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
427 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
428 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
429 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
430 #endif
431 
432 static struct evcnt pmap_ev_exec_discarded_unmap =
433    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
434 static struct evcnt pmap_ev_exec_discarded_zero =
435    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
436 static struct evcnt pmap_ev_exec_discarded_copy =
437    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
438 static struct evcnt pmap_ev_exec_discarded_page_protect =
439    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
440 static struct evcnt pmap_ev_exec_discarded_clearbit =
441    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
442 static struct evcnt pmap_ev_exec_discarded_kremove =
443    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
444 #ifdef ARM_MMU_EXTENDED
445 static struct evcnt pmap_ev_exec_discarded_modfixup =
446    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
447 #endif
448 
449 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
450 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
451 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
452 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
453 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
454 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
455 #ifdef ARM_MMU_EXTENDED
456 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
457 #endif
458 #endif /* PMAP_CACHE_VIPT */
459 
460 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
461 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
462 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
463 
464 EVCNT_ATTACH_STATIC(pmap_ev_updates);
465 EVCNT_ATTACH_STATIC(pmap_ev_collects);
466 EVCNT_ATTACH_STATIC(pmap_ev_activations);
467 
468 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
469 #else
470 #define	PMAPCOUNT(x)	((void)0)
471 #endif
472 
473 #ifdef ARM_MMU_EXTENDED
474 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
475 void pmap_md_pdetab_deactivate(pmap_t pm);
476 #endif
477 
478 /*
479  * pmap copy/zero page, and mem(5) hook point
480  */
481 static pt_entry_t *csrc_pte, *cdst_pte;
482 static vaddr_t csrcp, cdstp;
483 #ifdef MULTIPROCESSOR
484 static size_t cnptes;
485 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
486 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
487 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
488 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
489 #else
490 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
491 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
492 #define	cpu_csrcp(o)	(csrcp + (o))
493 #define	cpu_cdstp(o)	(cdstp + (o))
494 #endif
495 vaddr_t memhook;			/* used by mem.c & others */
496 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
497 kmutex_t pmap_lock __cacheline_aligned;
498 kmutex_t kpm_lock __cacheline_aligned;
499 extern void *msgbufaddr;
500 int pmap_kmpages;
501 /*
502  * Flag to indicate if pmap_init() has done its thing
503  */
504 bool pmap_initialized;
505 
506 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
507 /*
508  * Virtual end of direct-mapped memory
509  */
510 vaddr_t pmap_directlimit;
511 #endif
512 
513 /*
514  * Misc. locking data structures
515  */
516 
517 static inline void
pmap_acquire_pmap_lock(pmap_t pm)518 pmap_acquire_pmap_lock(pmap_t pm)
519 {
520 #if defined(MULTIPROCESSOR) && defined(DDB)
521 	if (__predict_false(db_onproc != NULL))
522 		return;
523 #endif
524 
525 	mutex_enter(&pm->pm_lock);
526 }
527 
528 static inline void
pmap_release_pmap_lock(pmap_t pm)529 pmap_release_pmap_lock(pmap_t pm)
530 {
531 #if defined(MULTIPROCESSOR) && defined(DDB)
532 	if (__predict_false(db_onproc != NULL))
533 		return;
534 #endif
535 	mutex_exit(&pm->pm_lock);
536 }
537 
538 static inline void
pmap_acquire_page_lock(struct vm_page_md * md)539 pmap_acquire_page_lock(struct vm_page_md *md)
540 {
541 	mutex_enter(&pmap_lock);
542 }
543 
544 static inline void
pmap_release_page_lock(struct vm_page_md * md)545 pmap_release_page_lock(struct vm_page_md *md)
546 {
547 	mutex_exit(&pmap_lock);
548 }
549 
550 static inline int
pmap_page_locked_p(struct vm_page_md * md)551 pmap_page_locked_p(struct vm_page_md *md)
552 {
553 	return mutex_owned(&pmap_lock);
554 }
555 
556 
557 /*
558  * Metadata for L1 translation tables.
559  */
560 #ifndef ARM_MMU_EXTENDED
561 struct l1_ttable {
562 	/* Entry on the L1 Table list */
563 	SLIST_ENTRY(l1_ttable) l1_link;
564 
565 	/* Entry on the L1 Least Recently Used list */
566 	TAILQ_ENTRY(l1_ttable) l1_lru;
567 
568 	/* Track how many domains are allocated from this L1 */
569 	volatile u_int l1_domain_use_count;
570 
571 	/*
572 	 * A free-list of domain numbers for this L1.
573 	 * We avoid using ffs() and a bitmap to track domains since ffs()
574 	 * is slow on ARM.
575 	 */
576 	uint8_t l1_domain_first;
577 	uint8_t l1_domain_free[PMAP_DOMAINS];
578 
579 	/* Physical address of this L1 page table */
580 	paddr_t l1_physaddr;
581 
582 	/* KVA of this L1 page table */
583 	pd_entry_t *l1_kva;
584 };
585 
586 /*
587  * L1 Page Tables are tracked using a Least Recently Used list.
588  *  - New L1s are allocated from the HEAD.
589  *  - Freed L1s are added to the TAIL.
590  *  - Recently accessed L1s (where an 'access' is some change to one of
591  *    the userland pmaps which owns this L1) are moved to the TAIL.
592  */
593 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
594 static kmutex_t l1_lru_lock __cacheline_aligned;
595 
596 /*
597  * A list of all L1 tables
598  */
599 static SLIST_HEAD(, l1_ttable) l1_list;
600 #endif /* ARM_MMU_EXTENDED */
601 
602 /*
603  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
604  *
605  * This is normally 16MB worth L2 page descriptors for any given pmap.
606  * Reference counts are maintained for L2 descriptors so they can be
607  * freed when empty.
608  */
609 struct l2_bucket {
610 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
611 	paddr_t l2b_pa;			/* Physical address of same */
612 	u_short l2b_l1slot;		/* This L2 table's L1 index */
613 	u_short l2b_occupancy;		/* How many active descriptors */
614 };
615 
616 struct l2_dtable {
617 	/* The number of L2 page descriptors allocated to this l2_dtable */
618 	u_int l2_occupancy;
619 
620 	/* List of L2 page descriptors */
621 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
622 };
623 
624 /*
625  * Given an L1 table index, calculate the corresponding l2_dtable index
626  * and bucket index within the l2_dtable.
627  */
628 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
629 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
630 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
631 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
632 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
633 
634 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
635 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
636 
637 /*
638  * Given a virtual address, this macro returns the
639  * virtual address required to drop into the next L2 bucket.
640  */
641 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
642 
643 /*
644  * L2 allocation.
645  */
646 #define	pmap_alloc_l2_dtable()		\
647 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
648 #define	pmap_free_l2_dtable(l2)		\
649 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
650 #define pmap_alloc_l2_ptp(pap)		\
651 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
652 	    PR_NOWAIT, (pap)))
653 
654 /*
655  * We try to map the page tables write-through, if possible.  However, not
656  * all CPUs have a write-through cache mode, so on those we have to sync
657  * the cache when we frob page tables.
658  *
659  * We try to evaluate this at compile time, if possible.  However, it's
660  * not always possible to do that, hence this run-time var.
661  */
662 int	pmap_needs_pte_sync;
663 
664 /*
665  * Real definition of pv_entry.
666  */
667 struct pv_entry {
668 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
669 	pmap_t		pv_pmap;        /* pmap where mapping lies */
670 	vaddr_t		pv_va;          /* virtual address for mapping */
671 	u_int		pv_flags;       /* flags */
672 };
673 
674 /*
675  * Macros to determine if a mapping might be resident in the
676  * instruction/data cache and/or TLB
677  */
678 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
679 /*
680  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
681  * there are no explicit accesses, so there may be always be TLB entries to
682  * flush.  If we used ASIDs then this would not be a problem.
683  */
684 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
685 #define	PV_BEEN_REFD(f)   (true)
686 #else
687 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
688 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
689 #endif
690 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
691 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
692 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
693 
694 /*
695  * Local prototypes
696  */
697 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
698 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
699 			    pt_entry_t **);
700 static bool		pmap_is_current(pmap_t) __unused;
701 static bool		pmap_is_cached(pmap_t);
702 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
703 			    pmap_t, vaddr_t, u_int);
704 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
705 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
706 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
707 			    u_int, u_int);
708 
709 static void		pmap_pinit(pmap_t);
710 static int		pmap_pmap_ctor(void *, void *, int);
711 
712 static void		pmap_alloc_l1(pmap_t);
713 static void		pmap_free_l1(pmap_t);
714 #ifndef ARM_MMU_EXTENDED
715 static void		pmap_use_l1(pmap_t);
716 #endif
717 
718 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
719 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
720 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
721 static int		pmap_l2ptp_ctor(void *, void *, int);
722 static int		pmap_l2dtable_ctor(void *, void *, int);
723 
724 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
725 #ifdef PMAP_CACHE_VIVT
726 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
727 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
728 #endif
729 
730 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
731 #ifdef PMAP_CACHE_VIVT
732 static bool		pmap_clean_page(struct vm_page_md *, bool);
733 #endif
734 #ifdef PMAP_CACHE_VIPT
735 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
736 enum pmap_flush_op {
737 	PMAP_FLUSH_PRIMARY,
738 	PMAP_FLUSH_SECONDARY,
739 	PMAP_CLEAN_PRIMARY
740 };
741 #ifndef ARM_MMU_EXTENDED
742 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
743 #endif
744 #endif
745 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
746 static void		pmap_pv_remove(paddr_t);
747 
748 #ifndef ARM_MMU_EXTENDED
749 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
750 #endif
751 static vaddr_t		kernel_pt_lookup(paddr_t);
752 
753 #ifdef ARM_MMU_EXTENDED
754 static struct pool_cache pmap_l1tt_cache;
755 
756 static int		pmap_l1tt_ctor(void *, void *, int);
757 static void *		pmap_l1tt_alloc(struct pool *, int);
758 static void		pmap_l1tt_free(struct pool *, void *);
759 
760 static struct pool_allocator pmap_l1tt_allocator = {
761 	.pa_alloc = pmap_l1tt_alloc,
762 	.pa_free = pmap_l1tt_free,
763 	.pa_pagesz = L1TT_SIZE,
764 };
765 #endif
766 
767 /*
768  * Misc variables
769  */
770 vaddr_t virtual_avail;
771 vaddr_t virtual_end;
772 vaddr_t pmap_curmaxkvaddr;
773 
774 paddr_t avail_start;
775 paddr_t avail_end;
776 
777 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
778 pv_addr_t kernelpages;
779 pv_addr_t kernel_l1pt;
780 pv_addr_t systempage;
781 #if defined(EFI_RUNTIME)
782 pv_addr_t efirt_l1pt;
783 #endif
784 
785 #ifdef PMAP_CACHE_VIPT
786 #define PMAP_VALIDATE_MD_PAGE(md)	\
787 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
788 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
789 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
790 #endif /* PMAP_CACHE_VIPT */
791 /*
792  * A bunch of routines to conditionally flush the caches/TLB depending
793  * on whether the specified pmap actually needs to be flushed at any
794  * given time.
795  */
796 static inline void
pmap_tlb_flush_SE(pmap_t pm,vaddr_t va,u_int flags)797 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
798 {
799 #ifdef ARM_MMU_EXTENDED
800 	pmap_tlb_invalidate_addr(pm, va);
801 #else
802 	if (pm->pm_cstate.cs_tlb_id != 0) {
803 		if (PV_BEEN_EXECD(flags)) {
804 			cpu_tlb_flushID_SE(va);
805 		} else if (PV_BEEN_REFD(flags)) {
806 			cpu_tlb_flushD_SE(va);
807 		}
808 	}
809 #endif /* ARM_MMU_EXTENDED */
810 }
811 
812 #ifndef ARM_MMU_EXTENDED
813 static inline void
pmap_tlb_flushID(pmap_t pm)814 pmap_tlb_flushID(pmap_t pm)
815 {
816 	if (pm->pm_cstate.cs_tlb_id) {
817 		cpu_tlb_flushID();
818 #if ARM_MMU_V7 == 0
819 		/*
820 		 * Speculative loads by Cortex cores can cause TLB entries to
821 		 * be filled even if there are no explicit accesses, so there
822 		 * may be always be TLB entries to flush.  If we used ASIDs
823 		 * then it would not be a problem.
824 		 * This is not true for other CPUs.
825 		 */
826 		pm->pm_cstate.cs_tlb = 0;
827 #endif /* ARM_MMU_V7 */
828 	}
829 }
830 
831 static inline void
pmap_tlb_flushD(pmap_t pm)832 pmap_tlb_flushD(pmap_t pm)
833 {
834 	if (pm->pm_cstate.cs_tlb_d) {
835 		cpu_tlb_flushD();
836 #if ARM_MMU_V7 == 0
837 		/*
838 		 * Speculative loads by Cortex cores can cause TLB entries to
839 		 * be filled even if there are no explicit accesses, so there
840 		 * may be always be TLB entries to flush.  If we used ASIDs
841 		 * then it would not be a problem.
842 		 * This is not true for other CPUs.
843 		 */
844 		pm->pm_cstate.cs_tlb_d = 0;
845 #endif /* ARM_MMU_V7 */
846 	}
847 }
848 #endif /* ARM_MMU_EXTENDED */
849 
850 #ifdef PMAP_CACHE_VIVT
851 static inline void
pmap_cache_wbinv_page(pmap_t pm,vaddr_t va,bool do_inv,u_int flags)852 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
853 {
854 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
855 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
856 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
857 		if (do_inv) {
858 			if (flags & PVF_WRITE)
859 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
860 			else
861 				cpu_dcache_inv_range(va, PAGE_SIZE);
862 		} else if (flags & PVF_WRITE) {
863 			cpu_dcache_wb_range(va, PAGE_SIZE);
864 		}
865 	}
866 }
867 
868 static inline void
pmap_cache_wbinv_all(pmap_t pm,u_int flags)869 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
870 {
871 	if (PV_BEEN_EXECD(flags)) {
872 		if (pm->pm_cstate.cs_cache_id) {
873 			cpu_idcache_wbinv_all();
874 			pm->pm_cstate.cs_cache = 0;
875 		}
876 	} else if (pm->pm_cstate.cs_cache_d) {
877 		cpu_dcache_wbinv_all();
878 		pm->pm_cstate.cs_cache_d = 0;
879 	}
880 }
881 #endif /* PMAP_CACHE_VIVT */
882 
883 static inline uint8_t
pmap_domain(pmap_t pm)884 pmap_domain(pmap_t pm)
885 {
886 #ifdef ARM_MMU_EXTENDED
887 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
888 #else
889 	return pm->pm_domain;
890 #endif
891 }
892 
893 static inline pd_entry_t *
pmap_l1_kva(pmap_t pm)894 pmap_l1_kva(pmap_t pm)
895 {
896 #ifdef ARM_MMU_EXTENDED
897 	return pm->pm_l1;
898 #else
899 	return pm->pm_l1->l1_kva;
900 #endif
901 }
902 
903 static inline bool
pmap_is_current(pmap_t pm)904 pmap_is_current(pmap_t pm)
905 {
906 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
907 		return true;
908 
909 	return false;
910 }
911 
912 static inline bool
pmap_is_cached(pmap_t pm)913 pmap_is_cached(pmap_t pm)
914 {
915 #ifdef ARM_MMU_EXTENDED
916 	if (pm == pmap_kernel())
917 		return true;
918 #ifdef MULTIPROCESSOR
919 	// Is this pmap active on any CPU?
920 	if (!kcpuset_iszero(pm->pm_active))
921 		return true;
922 #else
923 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
924 	// Is this pmap active?
925 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
926 		return true;
927 #endif
928 #else
929 	struct cpu_info * const ci = curcpu();
930 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
931 	    || ci->ci_pmap_lastuser == pm)
932 		return true;
933 #endif /* ARM_MMU_EXTENDED */
934 
935 	return false;
936 }
937 
938 /*
939  * PTE_SYNC_CURRENT:
940  *
941  *     Make sure the pte is written out to RAM.
942  *     We need to do this for one of two cases:
943  *       - We're dealing with the kernel pmap
944  *       - There is no pmap active in the cache/tlb.
945  *       - The specified pmap is 'active' in the cache/tlb.
946  */
947 
948 #ifdef PMAP_INCLUDE_PTE_SYNC
949 static inline void
pmap_pte_sync_current(pmap_t pm,pt_entry_t * ptep)950 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
951 {
952 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
953 		PTE_SYNC(ptep);
954 	dsb(sy);
955 }
956 
957 # define PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
958 #else
959 # define PTE_SYNC_CURRENT(pm, ptep)	__nothing
960 #endif
961 
962 /*
963  * main pv_entry manipulation functions:
964  *   pmap_enter_pv: enter a mapping onto a vm_page list
965  *   pmap_remove_pv: remove a mapping from a vm_page list
966  *
967  * NOTE: pmap_enter_pv expects to lock the pvh itself
968  *       pmap_remove_pv expects the caller to lock the pvh before calling
969  */
970 
971 /*
972  * pmap_enter_pv: enter a mapping onto a vm_page lst
973  *
974  * => caller should hold the proper lock on pmap_main_lock
975  * => caller should have pmap locked
976  * => we will gain the lock on the vm_page and allocate the new pv_entry
977  * => caller should adjust ptp's wire_count before calling
978  * => caller should not adjust pmap's wire_count
979  */
980 static void
pmap_enter_pv(struct vm_page_md * md,paddr_t pa,struct pv_entry * pv,pmap_t pm,vaddr_t va,u_int flags)981 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
982     vaddr_t va, u_int flags)
983 {
984 	UVMHIST_FUNC(__func__);
985 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
986 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
987 	UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
988 	    (uintptr_t)pv, flags, 0, 0);
989 
990 	struct pv_entry **pvp;
991 
992 	pv->pv_pmap = pm;
993 	pv->pv_va = va;
994 	pv->pv_flags = flags;
995 
996 	pvp = &SLIST_FIRST(&md->pvh_list);
997 #ifdef PMAP_CACHE_VIPT
998 	/*
999 	 * Insert unmanaged entries, writeable first, at the head of
1000 	 * the pv list.
1001 	 */
1002 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
1003 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
1004 			pvp = &SLIST_NEXT(*pvp, pv_link);
1005 	}
1006 	if (!PV_IS_WRITE_P(flags)) {
1007 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
1008 			pvp = &SLIST_NEXT(*pvp, pv_link);
1009 	}
1010 #endif
1011 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
1012 	*pvp = pv;				/* ... locked list */
1013 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1014 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1015 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1016 		md->pvh_attrs |= PVF_KMOD;
1017 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1018 		md->pvh_attrs |= PVF_DIRTY;
1019 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1020 #endif
1021 	if (pm == pmap_kernel()) {
1022 		PMAPCOUNT(kernel_mappings);
1023 		if (flags & PVF_WRITE)
1024 			md->krw_mappings++;
1025 		else
1026 			md->kro_mappings++;
1027 	} else {
1028 		if (flags & PVF_WRITE)
1029 			md->urw_mappings++;
1030 		else
1031 			md->uro_mappings++;
1032 	}
1033 
1034 #ifdef PMAP_CACHE_VIPT
1035 #ifndef ARM_MMU_EXTENDED
1036 	/*
1037 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1038 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
1039 	 */
1040 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1041 		md->pvh_attrs |= PVF_WRITE;
1042 	}
1043 #endif
1044 	/*
1045 	 * If this is an exec mapping and its the first exec mapping
1046 	 * for this page, make sure to sync the I-cache.
1047 	 */
1048 	if (PV_IS_EXEC_P(flags)) {
1049 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1050 			pmap_syncicache_page(md, pa);
1051 			PMAPCOUNT(exec_synced_map);
1052 		}
1053 		PMAPCOUNT(exec_mappings);
1054 	}
1055 #endif
1056 
1057 	PMAPCOUNT(mappings);
1058 
1059 	if (pv->pv_flags & PVF_WIRED)
1060 		++pm->pm_stats.wired_count;
1061 }
1062 
1063 /*
1064  *
1065  * pmap_find_pv: Find a pv entry
1066  *
1067  * => caller should hold lock on vm_page
1068  */
1069 static inline struct pv_entry *
pmap_find_pv(struct vm_page_md * md,pmap_t pm,vaddr_t va)1070 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1071 {
1072 	struct pv_entry *pv;
1073 
1074 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1075 		if (pm == pv->pv_pmap && va == pv->pv_va)
1076 			break;
1077 	}
1078 
1079 	return pv;
1080 }
1081 
1082 /*
1083  * pmap_remove_pv: try to remove a mapping from a pv_list
1084  *
1085  * => caller should hold proper lock on pmap_main_lock
1086  * => pmap should be locked
1087  * => caller should hold lock on vm_page [so that attrs can be adjusted]
1088  * => caller should adjust ptp's wire_count and free PTP if needed
1089  * => caller should NOT adjust pmap's wire_count
1090  * => we return the removed pv
1091  */
1092 static struct pv_entry *
pmap_remove_pv(struct vm_page_md * md,paddr_t pa,pmap_t pm,vaddr_t va)1093 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1094 {
1095 	UVMHIST_FUNC(__func__);
1096 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1097 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1098 
1099 	struct pv_entry *pv, **prevptr;
1100 
1101 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1102 	pv = *prevptr;
1103 
1104 	while (pv) {
1105 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
1106 			UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1107 			    (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1108 			if (pv->pv_flags & PVF_WIRED) {
1109 				--pm->pm_stats.wired_count;
1110 			}
1111 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
1112 			if (pm == pmap_kernel()) {
1113 				PMAPCOUNT(kernel_unmappings);
1114 				if (pv->pv_flags & PVF_WRITE)
1115 					md->krw_mappings--;
1116 				else
1117 					md->kro_mappings--;
1118 			} else {
1119 				if (pv->pv_flags & PVF_WRITE)
1120 					md->urw_mappings--;
1121 				else
1122 					md->uro_mappings--;
1123 			}
1124 
1125 			PMAPCOUNT(unmappings);
1126 #ifdef PMAP_CACHE_VIPT
1127 			/*
1128 			 * If this page has had an exec mapping, then if
1129 			 * this was the last mapping, discard the contents,
1130 			 * otherwise sync the i-cache for this page.
1131 			 */
1132 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
1133 				if (SLIST_EMPTY(&md->pvh_list)) {
1134 					md->pvh_attrs &= ~PVF_EXEC;
1135 					PMAPCOUNT(exec_discarded_unmap);
1136 				} else if (pv->pv_flags & PVF_WRITE) {
1137 					pmap_syncicache_page(md, pa);
1138 					PMAPCOUNT(exec_synced_unmap);
1139 				}
1140 			}
1141 #endif /* PMAP_CACHE_VIPT */
1142 			break;
1143 		}
1144 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
1145 		pv = *prevptr;				/* advance */
1146 	}
1147 
1148 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1149 	/*
1150 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
1151 	 * clear the KMOD attribute from the page.
1152 	 */
1153 	if (SLIST_FIRST(&md->pvh_list) == NULL
1154 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1155 		md->pvh_attrs &= ~PVF_KMOD;
1156 
1157 	/*
1158 	 * If this was a writeable page and there are no more writeable
1159 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1160 	 * the contents to memory.
1161 	 */
1162 	if (arm_cache_prefer_mask != 0) {
1163 		if (md->krw_mappings + md->urw_mappings == 0)
1164 			md->pvh_attrs &= ~PVF_WRITE;
1165 		PMAP_VALIDATE_MD_PAGE(md);
1166 	}
1167 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1168 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1169 
1170 	/* return removed pv */
1171 	return pv;
1172 }
1173 
1174 /*
1175  *
1176  * pmap_modify_pv: Update pv flags
1177  *
1178  * => caller should hold lock on vm_page [so that attrs can be adjusted]
1179  * => caller should NOT adjust pmap's wire_count
1180  * => caller must call pmap_vac_me_harder() if writable status of a page
1181  *    may have changed.
1182  * => we return the old flags
1183  *
1184  * Modify a physical-virtual mapping in the pv table
1185  */
1186 static u_int
pmap_modify_pv(struct vm_page_md * md,paddr_t pa,pmap_t pm,vaddr_t va,u_int clr_mask,u_int set_mask)1187 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1188     u_int clr_mask, u_int set_mask)
1189 {
1190 	struct pv_entry *npv;
1191 	u_int flags, oflags;
1192 	UVMHIST_FUNC(__func__);
1193 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1194 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1195 	UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1196 
1197 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
1198 	KASSERT(!PV_IS_KENTRY_P(set_mask));
1199 
1200 	if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1201 		UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1202 		return 0;
1203 	}
1204 
1205 	/*
1206 	 * There is at least one VA mapping this page.
1207 	 */
1208 
1209 	if (clr_mask & (PVF_REF | PVF_MOD)) {
1210 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1211 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1212 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1213 			md->pvh_attrs |= PVF_DIRTY;
1214 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1215 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1216 	}
1217 
1218 	oflags = npv->pv_flags;
1219 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1220 
1221 	if ((flags ^ oflags) & PVF_WIRED) {
1222 		if (flags & PVF_WIRED)
1223 			++pm->pm_stats.wired_count;
1224 		else
1225 			--pm->pm_stats.wired_count;
1226 	}
1227 
1228 	if ((flags ^ oflags) & PVF_WRITE) {
1229 		if (pm == pmap_kernel()) {
1230 			if (flags & PVF_WRITE) {
1231 				md->krw_mappings++;
1232 				md->kro_mappings--;
1233 			} else {
1234 				md->kro_mappings++;
1235 				md->krw_mappings--;
1236 			}
1237 		} else {
1238 			if (flags & PVF_WRITE) {
1239 				md->urw_mappings++;
1240 				md->uro_mappings--;
1241 			} else {
1242 				md->uro_mappings++;
1243 				md->urw_mappings--;
1244 			}
1245 		}
1246 	}
1247 #ifdef PMAP_CACHE_VIPT
1248 	if (arm_cache_prefer_mask != 0) {
1249 		if (md->urw_mappings + md->krw_mappings == 0) {
1250 			md->pvh_attrs &= ~PVF_WRITE;
1251 		} else {
1252 			md->pvh_attrs |= PVF_WRITE;
1253 		}
1254 	}
1255 	/*
1256 	 * We have two cases here: the first is from enter_pv (new exec
1257 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1258 	 * Since in latter, pmap_enter_pv won't do anything, we just have
1259 	 * to do what pmap_remove_pv would do.
1260 	 */
1261 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1262 	    || (PV_IS_EXEC_P(md->pvh_attrs)
1263 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1264 		pmap_syncicache_page(md, pa);
1265 		PMAPCOUNT(exec_synced_remap);
1266 	}
1267 #ifndef ARM_MMU_EXTENDED
1268 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1269 #endif /* !ARM_MMU_EXTENDED */
1270 #endif /* PMAP_CACHE_VIPT */
1271 
1272 	PMAPCOUNT(remappings);
1273 
1274 	UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1275 
1276 	return oflags;
1277 }
1278 
1279 
1280 #if defined(ARM_MMU_EXTENDED)
1281 int
pmap_maxproc_set(int nmaxproc)1282 pmap_maxproc_set(int nmaxproc)
1283 {
1284 	static const char pmap_l1ttpool_warnmsg[] =
1285 	    "WARNING: l1ttpool limit reached; increase kern.maxproc";
1286 
1287 	pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1288 
1289 	/*
1290 	 * Set the hard limit on the pmap_l1tt_cache to the number
1291 	 * of processes the kernel is to support.  Log the limit
1292 	 * reached message max once a minute.
1293 	 */
1294 	pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1295 	    pmap_l1ttpool_warnmsg, 60);
1296 
1297 	return 0;
1298 }
1299 
1300 #endif
1301 
1302 /*
1303  * Allocate an L1 translation table for the specified pmap.
1304  * This is called at pmap creation time.
1305  */
1306 static void
pmap_alloc_l1(pmap_t pm)1307 pmap_alloc_l1(pmap_t pm)
1308 {
1309 #ifdef ARM_MMU_EXTENDED
1310 	vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1311 	    &pm->pm_l1_pa);
1312 
1313 	pm->pm_l1 = (pd_entry_t *)va;
1314 	PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1315 #else
1316 	struct l1_ttable *l1;
1317 	uint8_t domain;
1318 
1319 	/*
1320 	 * Remove the L1 at the head of the LRU list
1321 	 */
1322 	mutex_spin_enter(&l1_lru_lock);
1323 	l1 = TAILQ_FIRST(&l1_lru_list);
1324 	KDASSERT(l1 != NULL);
1325 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1326 
1327 	/*
1328 	 * Pick the first available domain number, and update
1329 	 * the link to the next number.
1330 	 */
1331 	domain = l1->l1_domain_first;
1332 	l1->l1_domain_first = l1->l1_domain_free[domain];
1333 
1334 	/*
1335 	 * If there are still free domain numbers in this L1,
1336 	 * put it back on the TAIL of the LRU list.
1337 	 */
1338 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1339 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1340 
1341 	mutex_spin_exit(&l1_lru_lock);
1342 
1343 	/*
1344 	 * Fix up the relevant bits in the pmap structure
1345 	 */
1346 	pm->pm_l1 = l1;
1347 	pm->pm_domain = domain + 1;
1348 #endif
1349 }
1350 
1351 /*
1352  * Free an L1 translation table.
1353  * This is called at pmap destruction time.
1354  */
1355 static void
pmap_free_l1(pmap_t pm)1356 pmap_free_l1(pmap_t pm)
1357 {
1358 #ifdef ARM_MMU_EXTENDED
1359 	pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1360 
1361 	pm->pm_l1 = NULL;
1362 	pm->pm_l1_pa = 0;
1363 #else
1364 	struct l1_ttable *l1 = pm->pm_l1;
1365 
1366 	mutex_spin_enter(&l1_lru_lock);
1367 
1368 	/*
1369 	 * If this L1 is currently on the LRU list, remove it.
1370 	 */
1371 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
1372 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1373 
1374 	/*
1375 	 * Free up the domain number which was allocated to the pmap
1376 	 */
1377 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1378 	l1->l1_domain_first = pmap_domain(pm) - 1;
1379 	l1->l1_domain_use_count--;
1380 
1381 	/*
1382 	 * The L1 now must have at least 1 free domain, so add
1383 	 * it back to the LRU list. If the use count is zero,
1384 	 * put it at the head of the list, otherwise it goes
1385 	 * to the tail.
1386 	 */
1387 	if (l1->l1_domain_use_count == 0)
1388 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1389 	else
1390 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1391 
1392 	mutex_spin_exit(&l1_lru_lock);
1393 #endif /* ARM_MMU_EXTENDED */
1394 }
1395 
1396 #ifndef ARM_MMU_EXTENDED
1397 static inline void
pmap_use_l1(pmap_t pm)1398 pmap_use_l1(pmap_t pm)
1399 {
1400 	struct l1_ttable *l1;
1401 
1402 	/*
1403 	 * Do nothing if we're in interrupt context.
1404 	 * Access to an L1 by the kernel pmap must not affect
1405 	 * the LRU list.
1406 	 */
1407 	if (cpu_intr_p() || pm == pmap_kernel())
1408 		return;
1409 
1410 	l1 = pm->pm_l1;
1411 
1412 	/*
1413 	 * If the L1 is not currently on the LRU list, just return
1414 	 */
1415 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
1416 		return;
1417 
1418 	mutex_spin_enter(&l1_lru_lock);
1419 
1420 	/*
1421 	 * Check the use count again, now that we've acquired the lock
1422 	 */
1423 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1424 		mutex_spin_exit(&l1_lru_lock);
1425 		return;
1426 	}
1427 
1428 	/*
1429 	 * Move the L1 to the back of the LRU list
1430 	 */
1431 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1432 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1433 
1434 	mutex_spin_exit(&l1_lru_lock);
1435 }
1436 #endif /* !ARM_MMU_EXTENDED */
1437 
1438 /*
1439  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1440  *
1441  * Free an L2 descriptor table.
1442  */
1443 static inline void
1444 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
pmap_free_l2_ptp(bool need_sync,pt_entry_t * l2,paddr_t pa)1445 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1446 #else
1447 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1448 #endif
1449 {
1450 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1451 	/*
1452 	 * Note: With a write-back cache, we may need to sync this
1453 	 * L2 table before re-using it.
1454 	 * This is because it may have belonged to a non-current
1455 	 * pmap, in which case the cache syncs would have been
1456 	 * skipped for the pages that were being unmapped. If the
1457 	 * L2 table were then to be immediately re-allocated to
1458 	 * the *current* pmap, it may well contain stale mappings
1459 	 * which have not yet been cleared by a cache write-back
1460 	 * and so would still be visible to the mmu.
1461 	 */
1462 	if (need_sync)
1463 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1464 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1465 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1466 }
1467 
1468 /*
1469  * Returns a pointer to the L2 bucket associated with the specified pmap
1470  * and VA, or NULL if no L2 bucket exists for the address.
1471  */
1472 static inline struct l2_bucket *
pmap_get_l2_bucket(pmap_t pm,vaddr_t va)1473 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1474 {
1475 	const size_t l1slot = l1pte_index(va);
1476 	struct l2_dtable *l2;
1477 	struct l2_bucket *l2b;
1478 
1479 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1480 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1481 		return NULL;
1482 
1483 	return l2b;
1484 }
1485 
1486 /*
1487  * Returns a pointer to the L2 bucket associated with the specified pmap
1488  * and VA.
1489  *
1490  * If no L2 bucket exists, perform the necessary allocations to put an L2
1491  * bucket/page table in place.
1492  *
1493  * Note that if a new L2 bucket/page was allocated, the caller *must*
1494  * increment the bucket occupancy counter appropriately *before*
1495  * releasing the pmap's lock to ensure no other thread or cpu deallocates
1496  * the bucket/page in the meantime.
1497  */
1498 static struct l2_bucket *
pmap_alloc_l2_bucket(pmap_t pm,vaddr_t va)1499 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1500 {
1501 	const size_t l1slot = l1pte_index(va);
1502 	struct l2_dtable *l2;
1503 
1504 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1505 		/*
1506 		 * No mapping at this address, as there is
1507 		 * no entry in the L1 table.
1508 		 * Need to allocate a new l2_dtable.
1509 		 */
1510 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1511 			return NULL;
1512 
1513 		/*
1514 		 * Link it into the parent pmap
1515 		 */
1516 		pm->pm_l2[L2_IDX(l1slot)] = l2;
1517 	}
1518 
1519 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1520 
1521 	/*
1522 	 * Fetch pointer to the L2 page table associated with the address.
1523 	 */
1524 	if (l2b->l2b_kva == NULL) {
1525 		pt_entry_t *ptep;
1526 
1527 		/*
1528 		 * No L2 page table has been allocated. Chances are, this
1529 		 * is because we just allocated the l2_dtable, above.
1530 		 */
1531 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1532 			/*
1533 			 * Oops, no more L2 page tables available at this
1534 			 * time. We may need to deallocate the l2_dtable
1535 			 * if we allocated a new one above.
1536 			 */
1537 			if (l2->l2_occupancy == 0) {
1538 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
1539 				pmap_free_l2_dtable(l2);
1540 			}
1541 			return NULL;
1542 		}
1543 
1544 		l2->l2_occupancy++;
1545 		l2b->l2b_kva = ptep;
1546 		l2b->l2b_l1slot = l1slot;
1547 
1548 #ifdef ARM_MMU_EXTENDED
1549 		/*
1550 		 * We know there will be a mapping here, so simply
1551 		 * enter this PTP into the L1 now.
1552 		 */
1553 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1554 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1555 		    | L1_C_DOM(pmap_domain(pm));
1556 		KASSERT(*pdep == 0);
1557 		l1pte_setone(pdep, npde);
1558 		PDE_SYNC(pdep);
1559 #endif
1560 	}
1561 
1562 	return l2b;
1563 }
1564 
1565 /*
1566  * One or more mappings in the specified L2 descriptor table have just been
1567  * invalidated.
1568  *
1569  * Garbage collect the metadata and descriptor table itself if necessary.
1570  *
1571  * The pmap lock must be acquired when this is called (not necessary
1572  * for the kernel pmap).
1573  */
1574 static void
pmap_free_l2_bucket(pmap_t pm,struct l2_bucket * l2b,u_int count)1575 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1576 {
1577 	KDASSERT(count <= l2b->l2b_occupancy);
1578 
1579 	/*
1580 	 * Update the bucket's reference count according to how many
1581 	 * PTEs the caller has just invalidated.
1582 	 */
1583 	l2b->l2b_occupancy -= count;
1584 
1585 	/*
1586 	 * Note:
1587 	 *
1588 	 * Level 2 page tables allocated to the kernel pmap are never freed
1589 	 * as that would require checking all Level 1 page tables and
1590 	 * removing any references to the Level 2 page table. See also the
1591 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
1592 	 *
1593 	 * We make do with just invalidating the mapping in the L2 table.
1594 	 *
1595 	 * This isn't really a big deal in practice and, in fact, leads
1596 	 * to a performance win over time as we don't need to continually
1597 	 * alloc/free.
1598 	 */
1599 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1600 		return;
1601 
1602 	/*
1603 	 * There are no more valid mappings in this level 2 page table.
1604 	 * Go ahead and NULL-out the pointer in the bucket, then
1605 	 * free the page table.
1606 	 */
1607 	const size_t l1slot = l2b->l2b_l1slot;
1608 	pt_entry_t * const ptep = l2b->l2b_kva;
1609 	l2b->l2b_kva = NULL;
1610 
1611 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1612 	pd_entry_t pde __diagused = *pdep;
1613 
1614 #ifdef ARM_MMU_EXTENDED
1615 	/*
1616 	 * Invalidate the L1 slot.
1617 	 */
1618 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1619 #else
1620 	/*
1621 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
1622 	 */
1623 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1624 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1625 #endif
1626 		l1pte_setone(pdep, 0);
1627 		PDE_SYNC(pdep);
1628 #ifndef ARM_MMU_EXTENDED
1629 	}
1630 #endif
1631 
1632 	/*
1633 	 * Release the L2 descriptor table back to the pool cache.
1634 	 */
1635 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1636 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1637 #else
1638 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1639 #endif
1640 
1641 	/*
1642 	 * Update the reference count in the associated l2_dtable
1643 	 */
1644 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1645 	if (--l2->l2_occupancy > 0)
1646 		return;
1647 
1648 	/*
1649 	 * There are no more valid mappings in any of the Level 1
1650 	 * slots managed by this l2_dtable. Go ahead and NULL-out
1651 	 * the pointer in the parent pmap and free the l2_dtable.
1652 	 */
1653 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
1654 	pmap_free_l2_dtable(l2);
1655 }
1656 
1657 #if defined(ARM_MMU_EXTENDED)
1658 /*
1659  * Pool cache constructors for L1 translation tables
1660  */
1661 
1662 static int
pmap_l1tt_ctor(void * arg,void * v,int flags)1663 pmap_l1tt_ctor(void *arg, void *v, int flags)
1664 {
1665 #ifndef PMAP_INCLUDE_PTE_SYNC
1666 #error not supported
1667 #endif
1668 
1669 	memset(v, 0, L1TT_SIZE);
1670 	PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1671 	return 0;
1672 }
1673 #endif
1674 
1675 /*
1676  * Pool cache constructors for L2 descriptor tables, metadata and pmap
1677  * structures.
1678  */
1679 static int
pmap_l2ptp_ctor(void * arg,void * v,int flags)1680 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1681 {
1682 #ifndef PMAP_INCLUDE_PTE_SYNC
1683 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
1684 
1685 	/*
1686 	 * The mappings for these page tables were initially made using
1687 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1688 	 * mode will not be right for page table mappings. To avoid
1689 	 * polluting the pmap_kenter_pa() code with a special case for
1690 	 * page tables, we simply fix up the cache-mode here if it's not
1691 	 * correct.
1692 	 */
1693 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1694 		const struct l2_bucket * const l2b =
1695 		    pmap_get_l2_bucket(pmap_kernel(), va);
1696 		KASSERTMSG(l2b != NULL, "%#lx", va);
1697 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1698 		const pt_entry_t opte = *ptep;
1699 
1700 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1701 			/*
1702 			 * Page tables must have the cache-mode set correctly.
1703 			 */
1704 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1705 			    | pte_l2_s_cache_mode_pt;
1706 			l2pte_set(ptep, npte, opte);
1707 			PTE_SYNC(ptep);
1708 			cpu_tlb_flushD_SE(va);
1709 			cpu_cpwait();
1710 		}
1711 	}
1712 #endif
1713 
1714 	memset(v, 0, L2_TABLE_SIZE_REAL);
1715 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1716 	return 0;
1717 }
1718 
1719 static int
pmap_l2dtable_ctor(void * arg,void * v,int flags)1720 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1721 {
1722 
1723 	memset(v, 0, sizeof(struct l2_dtable));
1724 	return 0;
1725 }
1726 
1727 static int
pmap_pmap_ctor(void * arg,void * v,int flags)1728 pmap_pmap_ctor(void *arg, void *v, int flags)
1729 {
1730 
1731 	memset(v, 0, sizeof(struct pmap));
1732 	return 0;
1733 }
1734 
1735 static void
pmap_pinit(pmap_t pm)1736 pmap_pinit(pmap_t pm)
1737 {
1738 #ifndef ARM_HAS_VBAR
1739 	struct l2_bucket *l2b;
1740 
1741 	if (vector_page < KERNEL_BASE) {
1742 		/*
1743 		 * Map the vector page.
1744 		 */
1745 		pmap_enter(pm, vector_page, systempage.pv_pa,
1746 		    VM_PROT_READ | VM_PROT_EXECUTE,
1747 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1748 		pmap_update(pm);
1749 
1750 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1751 		l2b = pmap_get_l2_bucket(pm, vector_page);
1752 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1753 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1754 		    L1_C_DOM(pmap_domain(pm));
1755 	} else
1756 		pm->pm_pl1vec = NULL;
1757 #endif
1758 }
1759 
1760 #ifdef PMAP_CACHE_VIVT
1761 /*
1762  * Since we have a virtually indexed cache, we may need to inhibit caching if
1763  * there is more than one mapping and at least one of them is writable.
1764  * Since we purge the cache on every context switch, we only need to check for
1765  * other mappings within the same pmap, or kernel_pmap.
1766  * This function is also called when a page is unmapped, to possibly reenable
1767  * caching on any remaining mappings.
1768  *
1769  * The code implements the following logic, where:
1770  *
1771  * KW = # of kernel read/write pages
1772  * KR = # of kernel read only pages
1773  * UW = # of user read/write pages
1774  * UR = # of user read only pages
1775  *
1776  * KC = kernel mapping is cacheable
1777  * UC = user mapping is cacheable
1778  *
1779  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
1780  *             +---------------------------------------------
1781  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
1782  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
1783  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1784  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1785  */
1786 
1787 static const int pmap_vac_flags[4][4] = {
1788 	{-1,		0,		0,		PVF_KNC},
1789 	{0,		0,		PVF_NC,		PVF_NC},
1790 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
1791 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
1792 };
1793 
1794 static inline int
pmap_get_vac_flags(const struct vm_page_md * md)1795 pmap_get_vac_flags(const struct vm_page_md *md)
1796 {
1797 	int kidx, uidx;
1798 
1799 	kidx = 0;
1800 	if (md->kro_mappings || md->krw_mappings > 1)
1801 		kidx |= 1;
1802 	if (md->krw_mappings)
1803 		kidx |= 2;
1804 
1805 	uidx = 0;
1806 	if (md->uro_mappings || md->urw_mappings > 1)
1807 		uidx |= 1;
1808 	if (md->urw_mappings)
1809 		uidx |= 2;
1810 
1811 	return pmap_vac_flags[uidx][kidx];
1812 }
1813 
1814 static inline void
pmap_vac_me_harder(struct vm_page_md * md,paddr_t pa,pmap_t pm,vaddr_t va)1815 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1816 {
1817 	int nattr;
1818 
1819 	nattr = pmap_get_vac_flags(md);
1820 
1821 	if (nattr < 0) {
1822 		md->pvh_attrs &= ~PVF_NC;
1823 		return;
1824 	}
1825 
1826 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1827 		return;
1828 
1829 	if (pm == pmap_kernel())
1830 		pmap_vac_me_kpmap(md, pa, pm, va);
1831 	else
1832 		pmap_vac_me_user(md, pa, pm, va);
1833 
1834 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1835 }
1836 
1837 static void
pmap_vac_me_kpmap(struct vm_page_md * md,paddr_t pa,pmap_t pm,vaddr_t va)1838 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1839 {
1840 	u_int u_cacheable, u_entries;
1841 	struct pv_entry *pv;
1842 	pmap_t last_pmap = pm;
1843 
1844 	/*
1845 	 * Pass one, see if there are both kernel and user pmaps for
1846 	 * this page.  Calculate whether there are user-writable or
1847 	 * kernel-writable pages.
1848 	 */
1849 	u_cacheable = 0;
1850 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1851 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1852 			u_cacheable++;
1853 	}
1854 
1855 	u_entries = md->urw_mappings + md->uro_mappings;
1856 
1857 	/*
1858 	 * We know we have just been updating a kernel entry, so if
1859 	 * all user pages are already cacheable, then there is nothing
1860 	 * further to do.
1861 	 */
1862 	if (md->k_mappings == 0 && u_cacheable == u_entries)
1863 		return;
1864 
1865 	if (u_entries) {
1866 		/*
1867 		 * Scan over the list again, for each entry, if it
1868 		 * might not be set correctly, call pmap_vac_me_user
1869 		 * to recalculate the settings.
1870 		 */
1871 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1872 			/*
1873 			 * We know kernel mappings will get set
1874 			 * correctly in other calls.  We also know
1875 			 * that if the pmap is the same as last_pmap
1876 			 * then we've just handled this entry.
1877 			 */
1878 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1879 				continue;
1880 
1881 			/*
1882 			 * If there are kernel entries and this page
1883 			 * is writable but non-cacheable, then we can
1884 			 * skip this entry also.
1885 			 */
1886 			if (md->k_mappings &&
1887 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1888 			    (PVF_NC | PVF_WRITE))
1889 				continue;
1890 
1891 			/*
1892 			 * Similarly if there are no kernel-writable
1893 			 * entries and the page is already
1894 			 * read-only/cacheable.
1895 			 */
1896 			if (md->krw_mappings == 0 &&
1897 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1898 				continue;
1899 
1900 			/*
1901 			 * For some of the remaining cases, we know
1902 			 * that we must recalculate, but for others we
1903 			 * can't tell if they are correct or not, so
1904 			 * we recalculate anyway.
1905 			 */
1906 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1907 		}
1908 
1909 		if (md->k_mappings == 0)
1910 			return;
1911 	}
1912 
1913 	pmap_vac_me_user(md, pa, pm, va);
1914 }
1915 
1916 static void
pmap_vac_me_user(struct vm_page_md * md,paddr_t pa,pmap_t pm,vaddr_t va)1917 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1918 {
1919 	pmap_t kpmap = pmap_kernel();
1920 	struct pv_entry *pv, *npv = NULL;
1921 	u_int entries = 0;
1922 	u_int writable = 0;
1923 	u_int cacheable_entries = 0;
1924 	u_int kern_cacheable = 0;
1925 	u_int other_writable = 0;
1926 
1927 	/*
1928 	 * Count mappings and writable mappings in this pmap.
1929 	 * Include kernel mappings as part of our own.
1930 	 * Keep a pointer to the first one.
1931 	 */
1932 	npv = NULL;
1933 	KASSERT(pmap_page_locked_p(md));
1934 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1935 		/* Count mappings in the same pmap */
1936 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1937 			if (entries++ == 0)
1938 				npv = pv;
1939 
1940 			/* Cacheable mappings */
1941 			if ((pv->pv_flags & PVF_NC) == 0) {
1942 				cacheable_entries++;
1943 				if (kpmap == pv->pv_pmap)
1944 					kern_cacheable++;
1945 			}
1946 
1947 			/* Writable mappings */
1948 			if (pv->pv_flags & PVF_WRITE)
1949 				++writable;
1950 		} else if (pv->pv_flags & PVF_WRITE)
1951 			other_writable = 1;
1952 	}
1953 
1954 	/*
1955 	 * Enable or disable caching as necessary.
1956 	 * Note: the first entry might be part of the kernel pmap,
1957 	 * so we can't assume this is indicative of the state of the
1958 	 * other (maybe non-kpmap) entries.
1959 	 */
1960 	if ((entries > 1 && writable) ||
1961 	    (entries > 0 && pm == kpmap && other_writable)) {
1962 		if (cacheable_entries == 0) {
1963 			return;
1964 		}
1965 
1966 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1967 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1968 			    (pv->pv_flags & PVF_NC))
1969 				continue;
1970 
1971 			pv->pv_flags |= PVF_NC;
1972 
1973 			struct l2_bucket * const l2b
1974 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1975 			KASSERTMSG(l2b != NULL, "%#lx", va);
1976 			pt_entry_t * const ptep
1977 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1978 			const pt_entry_t opte = *ptep;
1979 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1980 
1981 			if ((va != pv->pv_va || pm != pv->pv_pmap)
1982 			    && l2pte_valid_p(opte)) {
1983 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1984 				    true, pv->pv_flags);
1985 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1986 				    pv->pv_flags);
1987 			}
1988 
1989 			l2pte_set(ptep, npte, opte);
1990 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1991 		}
1992 		cpu_cpwait();
1993 	} else if (entries > cacheable_entries) {
1994 		/*
1995 		 * Turn cacheing back on for some pages.  If it is a kernel
1996 		 * page, only do so if there are no other writable pages.
1997 		 */
1998 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1999 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
2000 			    (kpmap != pv->pv_pmap || other_writable)))
2001 				continue;
2002 
2003 			pv->pv_flags &= ~PVF_NC;
2004 
2005 			struct l2_bucket * const l2b
2006 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2007 			KASSERTMSG(l2b != NULL, "%#lx", va);
2008 			pt_entry_t * const ptep
2009 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2010 			const pt_entry_t opte = *ptep;
2011 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
2012 			    | pte_l2_s_cache_mode;
2013 
2014 			if (l2pte_valid_p(opte)) {
2015 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
2016 				    pv->pv_flags);
2017 			}
2018 
2019 			l2pte_set(ptep, npte, opte);
2020 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2021 		}
2022 	}
2023 }
2024 #endif
2025 
2026 #ifdef PMAP_CACHE_VIPT
2027 static void
pmap_vac_me_harder(struct vm_page_md * md,paddr_t pa,pmap_t pm,vaddr_t va)2028 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2029 {
2030 
2031 #ifndef ARM_MMU_EXTENDED
2032 	struct pv_entry *pv;
2033 	vaddr_t tst_mask;
2034 	bool bad_alias;
2035 	const u_int
2036 	    rw_mappings = md->urw_mappings + md->krw_mappings,
2037 	    ro_mappings = md->uro_mappings + md->kro_mappings;
2038 
2039 	/* do we need to do anything? */
2040 	if (arm_cache_prefer_mask == 0)
2041 		return;
2042 
2043 	UVMHIST_FUNC(__func__);
2044 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2045 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2046 
2047 	KASSERT(!va || pm);
2048 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2049 
2050 	/* Already a conflict? */
2051 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
2052 		/* just an add, things are already non-cached */
2053 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2054 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2055 		bad_alias = false;
2056 		if (va) {
2057 			PMAPCOUNT(vac_color_none);
2058 			bad_alias = true;
2059 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2060 			goto fixup;
2061 		}
2062 		pv = SLIST_FIRST(&md->pvh_list);
2063 		/* the list can't be empty because it would be cachable */
2064 		if (md->pvh_attrs & PVF_KMPAGE) {
2065 			tst_mask = md->pvh_attrs;
2066 		} else {
2067 			KASSERT(pv);
2068 			tst_mask = pv->pv_va;
2069 			pv = SLIST_NEXT(pv, pv_link);
2070 		}
2071 		/*
2072 		 * Only check for a bad alias if we have writable mappings.
2073 		 */
2074 		tst_mask &= arm_cache_prefer_mask;
2075 		if (rw_mappings > 0) {
2076 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2077 				/* if there's a bad alias, stop checking. */
2078 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2079 					bad_alias = true;
2080 			}
2081 			md->pvh_attrs |= PVF_WRITE;
2082 			if (!bad_alias)
2083 				md->pvh_attrs |= PVF_DIRTY;
2084 		} else {
2085 			/*
2086 			 * We have only read-only mappings.  Let's see if there
2087 			 * are multiple colors in use or if we mapped a KMPAGE.
2088 			 * If the latter, we have a bad alias.  If the former,
2089 			 * we need to remember that.
2090 			 */
2091 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2092 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2093 					if (md->pvh_attrs & PVF_KMPAGE)
2094 						bad_alias = true;
2095 					break;
2096 				}
2097 			}
2098 			md->pvh_attrs &= ~PVF_WRITE;
2099 			/*
2100 			 * No KMPAGE and we exited early, so we must have
2101 			 * multiple color mappings.
2102 			 */
2103 			if (!bad_alias && pv != NULL)
2104 				md->pvh_attrs |= PVF_MULTCLR;
2105 		}
2106 
2107 		/* If no conflicting colors, set everything back to cached */
2108 		if (!bad_alias) {
2109 #ifdef DEBUG
2110 			if ((md->pvh_attrs & PVF_WRITE)
2111 			    || ro_mappings < 2) {
2112 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2113 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2114 			}
2115 #endif
2116 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2117 			md->pvh_attrs |= tst_mask | PVF_COLORED;
2118 			/*
2119 			 * Restore DIRTY bit if page is modified
2120 			 */
2121 			if (md->pvh_attrs & PVF_DMOD)
2122 				md->pvh_attrs |= PVF_DIRTY;
2123 			PMAPCOUNT(vac_color_restore);
2124 		} else {
2125 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2126 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2127 		}
2128 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2129 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2130 	} else if (!va) {
2131 		KASSERT(pmap_is_page_colored_p(md));
2132 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
2133 		    || (md->pvh_attrs & PVF_DIRTY));
2134 		if (rw_mappings == 0) {
2135 			md->pvh_attrs &= ~PVF_WRITE;
2136 			if (ro_mappings == 1
2137 			    && (md->pvh_attrs & PVF_MULTCLR)) {
2138 				/*
2139 				 * If this is the last readonly mapping
2140 				 * but it doesn't match the current color
2141 				 * for the page, change the current color
2142 				 * to match this last readonly mapping.
2143 				 */
2144 				pv = SLIST_FIRST(&md->pvh_list);
2145 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
2146 				    & arm_cache_prefer_mask;
2147 				if (tst_mask) {
2148 					md->pvh_attrs ^= tst_mask;
2149 					PMAPCOUNT(vac_color_change);
2150 				}
2151 			}
2152 		}
2153 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2154 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2155 		return;
2156 	} else if (!pmap_is_page_colored_p(md)) {
2157 		/* not colored so we just use its color */
2158 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2159 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2160 		PMAPCOUNT(vac_color_new);
2161 		md->pvh_attrs &= PAGE_SIZE - 1;
2162 		md->pvh_attrs |= PVF_COLORED
2163 		    | (va & arm_cache_prefer_mask)
2164 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
2165 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2166 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2167 		return;
2168 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2169 		bad_alias = false;
2170 		if (rw_mappings > 0) {
2171 			/*
2172 			 * We now have writeable mappings and if we have
2173 			 * readonly mappings in more than once color, we have
2174 			 * an aliasing problem.  Regardless mark the page as
2175 			 * writeable.
2176 			 */
2177 			if (md->pvh_attrs & PVF_MULTCLR) {
2178 				if (ro_mappings < 2) {
2179 					/*
2180 					 * If we only have less than two
2181 					 * read-only mappings, just flush the
2182 					 * non-primary colors from the cache.
2183 					 */
2184 					pmap_flush_page(md, pa,
2185 					    PMAP_FLUSH_SECONDARY);
2186 				} else {
2187 					bad_alias = true;
2188 				}
2189 			}
2190 			md->pvh_attrs |= PVF_WRITE;
2191 		}
2192 		/* If no conflicting colors, set everything back to cached */
2193 		if (!bad_alias) {
2194 #ifdef DEBUG
2195 			if (rw_mappings > 0
2196 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
2197 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2198 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2199 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2200 			}
2201 #endif
2202 			if (SLIST_EMPTY(&md->pvh_list))
2203 				PMAPCOUNT(vac_color_reuse);
2204 			else
2205 				PMAPCOUNT(vac_color_ok);
2206 
2207 			/* matching color, just return */
2208 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2209 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2210 			return;
2211 		}
2212 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2213 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2214 
2215 		/* color conflict.  evict from cache. */
2216 
2217 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2218 		md->pvh_attrs &= ~PVF_COLORED;
2219 		md->pvh_attrs |= PVF_NC;
2220 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2221 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2222 		PMAPCOUNT(vac_color_erase);
2223 	} else if (rw_mappings == 0
2224 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2225 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2226 
2227 		/*
2228 		 * If the page has dirty cache lines, clean it.
2229 		 */
2230 		if (md->pvh_attrs & PVF_DIRTY)
2231 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2232 
2233 		/*
2234 		 * If this is the first remapping (we know that there are no
2235 		 * writeable mappings), then this is a simple color change.
2236 		 * Otherwise this is a seconary r/o mapping, which means
2237 		 * we don't have to do anything.
2238 		 */
2239 		if (ro_mappings == 1) {
2240 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2241 			md->pvh_attrs &= PAGE_SIZE - 1;
2242 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
2243 			PMAPCOUNT(vac_color_change);
2244 		} else {
2245 			PMAPCOUNT(vac_color_blind);
2246 		}
2247 		md->pvh_attrs |= PVF_MULTCLR;
2248 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2249 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2250 		return;
2251 	} else {
2252 		if (rw_mappings > 0)
2253 			md->pvh_attrs |= PVF_WRITE;
2254 
2255 		/* color conflict.  evict from cache. */
2256 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2257 
2258 		/* the list can't be empty because this was a enter/modify */
2259 		pv = SLIST_FIRST(&md->pvh_list);
2260 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2261 			KASSERT(pv);
2262 			/*
2263 			 * If there's only one mapped page, change color to the
2264 			 * page's new color and return.  Restore the DIRTY bit
2265 			 * that was erased by pmap_flush_page.
2266 			 */
2267 			if (SLIST_NEXT(pv, pv_link) == NULL) {
2268 				md->pvh_attrs &= PAGE_SIZE - 1;
2269 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
2270 				if (md->pvh_attrs & PVF_DMOD)
2271 					md->pvh_attrs |= PVF_DIRTY;
2272 				PMAPCOUNT(vac_color_change);
2273 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2274 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2275 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2276 				return;
2277 			}
2278 		}
2279 		bad_alias = true;
2280 		md->pvh_attrs &= ~PVF_COLORED;
2281 		md->pvh_attrs |= PVF_NC;
2282 		PMAPCOUNT(vac_color_erase);
2283 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2284 	}
2285 
2286   fixup:
2287 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2288 
2289 	/*
2290 	 * Turn cacheing on/off for all pages.
2291 	 */
2292 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2293 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2294 		    pv->pv_va);
2295 		KASSERTMSG(l2b != NULL, "%#lx", va);
2296 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2297 		const pt_entry_t opte = *ptep;
2298 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2299 		if (bad_alias) {
2300 			pv->pv_flags |= PVF_NC;
2301 		} else {
2302 			pv->pv_flags &= ~PVF_NC;
2303 			npte |= pte_l2_s_cache_mode;
2304 		}
2305 
2306 		if (opte == npte)	/* only update is there's a change */
2307 			continue;
2308 
2309 		if (l2pte_valid_p(opte)) {
2310 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2311 		}
2312 
2313 		l2pte_set(ptep, npte, opte);
2314 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2315 	}
2316 #endif /* !ARM_MMU_EXTENDED */
2317 }
2318 #endif	/* PMAP_CACHE_VIPT */
2319 
2320 
2321 /*
2322  * Modify pte bits for all ptes corresponding to the given physical address.
2323  * We use `maskbits' rather than `clearbits' because we're always passing
2324  * constants and the latter would require an extra inversion at run-time.
2325  */
2326 static void
pmap_clearbit(struct vm_page_md * md,paddr_t pa,u_int maskbits)2327 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2328 {
2329 	struct pv_entry *pv;
2330 #ifdef PMAP_CACHE_VIPT
2331 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2332 	bool need_syncicache = false;
2333 #ifdef ARM_MMU_EXTENDED
2334 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2335 #else
2336 	const u_int execbits = 0;
2337 	bool need_vac_me_harder = false;
2338 #endif
2339 #else
2340 	const u_int execbits = 0;
2341 #endif
2342 
2343 	UVMHIST_FUNC(__func__);
2344 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2345 	    (uintptr_t)md, pa, maskbits, 0);
2346 
2347 #ifdef PMAP_CACHE_VIPT
2348 	/*
2349 	 * If we might want to sync the I-cache and we've modified it,
2350 	 * then we know we definitely need to sync or discard it.
2351 	 */
2352 	if (want_syncicache) {
2353 		if (md->pvh_attrs & PVF_MOD) {
2354 			need_syncicache = true;
2355 		}
2356 	}
2357 #endif
2358 	KASSERT(pmap_page_locked_p(md));
2359 
2360 	/*
2361 	 * Clear saved attributes (modify, reference)
2362 	 */
2363 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2364 
2365 	if (SLIST_EMPTY(&md->pvh_list)) {
2366 #if defined(PMAP_CACHE_VIPT)
2367 		if (need_syncicache) {
2368 			/*
2369 			 * No one has it mapped, so just discard it.  The next
2370 			 * exec remapping will cause it to be synced.
2371 			 */
2372 			md->pvh_attrs &= ~PVF_EXEC;
2373 			PMAPCOUNT(exec_discarded_clearbit);
2374 		}
2375 #endif
2376 		return;
2377 	}
2378 
2379 	/*
2380 	 * Loop over all current mappings setting/clearing as appropriate
2381 	 */
2382 	for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2383 		pmap_t pm = pv->pv_pmap;
2384 		const vaddr_t va = pv->pv_va;
2385 		const u_int oflags = pv->pv_flags;
2386 #ifndef ARM_MMU_EXTENDED
2387 		/*
2388 		 * Kernel entries are unmanaged and as such not to be changed.
2389 		 */
2390 		if (PV_IS_KENTRY_P(oflags)) {
2391 			pv = SLIST_NEXT(pv, pv_link);
2392 			continue;
2393 		}
2394 #endif
2395 
2396 		/*
2397 		 * Try to get a hold on the pmap's lock.  We must do this
2398 		 * while still holding the page locked, to know that the
2399 		 * page is still associated with the pmap and the mapping is
2400 		 * in place.  If a hold can't be had, unlock and wait for
2401 		 * the pmap's lock to become available and retry.  The pmap
2402 		 * must be ref'd over this dance to stop it disappearing
2403 		 * behind us.
2404 		 */
2405 		if (!mutex_tryenter(&pm->pm_lock)) {
2406 			pmap_reference(pm);
2407 			pmap_release_page_lock(md);
2408 			pmap_acquire_pmap_lock(pm);
2409 			/* nothing, just wait for it */
2410 			pmap_release_pmap_lock(pm);
2411 			pmap_destroy(pm);
2412 			/* Restart from the beginning. */
2413 			pmap_acquire_page_lock(md);
2414 			pv = SLIST_FIRST(&md->pvh_list);
2415 			continue;
2416 		}
2417 		pv->pv_flags &= ~maskbits;
2418 
2419 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2420 		KASSERTMSG(l2b != NULL, "%#lx", va);
2421 
2422 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2423 		const pt_entry_t opte = *ptep;
2424 		pt_entry_t npte = opte | execbits;
2425 
2426 #ifdef ARM_MMU_EXTENDED
2427 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2428 #endif
2429 
2430 		UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2431 		    (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2432 
2433 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
2434 #ifdef PMAP_CACHE_VIVT
2435 			if ((oflags & PVF_NC)) {
2436 				/*
2437 				 * Entry is not cacheable:
2438 				 *
2439 				 * Don't turn caching on again if this is a
2440 				 * modified emulation. This would be
2441 				 * inconsitent with the settings created by
2442 				 * pmap_vac_me_harder(). Otherwise, it's safe
2443 				 * to re-enable cacheing.
2444 				 *
2445 				 * There's no need to call pmap_vac_me_harder()
2446 				 * here: all pages are losing their write
2447 				 * permission.
2448 				 */
2449 				if (maskbits & PVF_WRITE) {
2450 					npte |= pte_l2_s_cache_mode;
2451 					pv->pv_flags &= ~PVF_NC;
2452 				}
2453 			} else if (l2pte_writable_p(opte)) {
2454 				/*
2455 				 * Entry is writable/cacheable: check if pmap
2456 				 * is current if it is flush it, otherwise it
2457 				 * won't be in the cache
2458 				 */
2459 				pmap_cache_wbinv_page(pm, va,
2460 				    (maskbits & PVF_REF) != 0,
2461 				    oflags|PVF_WRITE);
2462 			}
2463 #endif
2464 
2465 			/* make the pte read only */
2466 			npte = l2pte_set_readonly(npte);
2467 
2468 			if ((maskbits & oflags & PVF_WRITE)) {
2469 				/*
2470 				 * Keep alias accounting up to date
2471 				 */
2472 				if (pm == pmap_kernel()) {
2473 					md->krw_mappings--;
2474 					md->kro_mappings++;
2475 				} else {
2476 					md->urw_mappings--;
2477 					md->uro_mappings++;
2478 				}
2479 #ifdef PMAP_CACHE_VIPT
2480 				if (arm_cache_prefer_mask != 0) {
2481 					if (md->urw_mappings + md->krw_mappings == 0) {
2482 						md->pvh_attrs &= ~PVF_WRITE;
2483 					} else {
2484 						PMAP_VALIDATE_MD_PAGE(md);
2485 					}
2486 				}
2487 				if (want_syncicache)
2488 					need_syncicache = true;
2489 #ifndef ARM_MMU_EXTENDED
2490 				need_vac_me_harder = true;
2491 #endif
2492 #endif /* PMAP_CACHE_VIPT */
2493 			}
2494 		}
2495 
2496 		if (maskbits & PVF_REF) {
2497 			if (true
2498 #ifndef ARM_MMU_EXTENDED
2499 			    && (oflags & PVF_NC) == 0
2500 #endif
2501 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2502 			    && l2pte_valid_p(npte)) {
2503 #ifdef PMAP_CACHE_VIVT
2504 				/*
2505 				 * Check npte here; we may have already
2506 				 * done the wbinv above, and the validity
2507 				 * of the PTE is the same for opte and
2508 				 * npte.
2509 				 */
2510 				pmap_cache_wbinv_page(pm, va, true, oflags);
2511 #endif
2512 			}
2513 
2514 			/*
2515 			 * Make the PTE invalid so that we will take a
2516 			 * page fault the next time the mapping is
2517 			 * referenced.
2518 			 */
2519 			npte &= ~L2_TYPE_MASK;
2520 			npte |= L2_TYPE_INV;
2521 		}
2522 
2523 		if (npte != opte) {
2524 			l2pte_reset(ptep);
2525 			PTE_SYNC(ptep);
2526 
2527 			/* Flush the TLB entry if a current pmap. */
2528 			pmap_tlb_flush_SE(pm, va, oflags);
2529 
2530 			l2pte_set(ptep, npte, 0);
2531 			PTE_SYNC(ptep);
2532 		}
2533 
2534 		pmap_release_pmap_lock(pm);
2535 
2536 		UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2537 		    (uintptr_t)pm, va, opte, npte);
2538 
2539 		/* Move to next entry. */
2540 		pv = SLIST_NEXT(pv, pv_link);
2541 	}
2542 
2543 #if defined(PMAP_CACHE_VIPT)
2544 	/*
2545 	 * If we need to sync the I-cache and we haven't done it yet, do it.
2546 	 */
2547 	if (need_syncicache) {
2548 		pmap_syncicache_page(md, pa);
2549 		PMAPCOUNT(exec_synced_clearbit);
2550 	}
2551 #ifndef ARM_MMU_EXTENDED
2552 	/*
2553 	 * If we are changing this to read-only, we need to call vac_me_harder
2554 	 * so we can change all the read-only pages to cacheable.  We pretend
2555 	 * this as a page deletion.
2556 	 */
2557 	if (need_vac_me_harder) {
2558 		if (md->pvh_attrs & PVF_NC)
2559 			pmap_vac_me_harder(md, pa, NULL, 0);
2560 	}
2561 #endif /* !ARM_MMU_EXTENDED */
2562 #endif /* PMAP_CACHE_VIPT */
2563 }
2564 
2565 /*
2566  * pmap_clean_page()
2567  *
2568  * This is a local function used to work out the best strategy to clean
2569  * a single page referenced by its entry in the PV table. It's used by
2570  * pmap_copy_page, pmap_zero_page and maybe some others later on.
2571  *
2572  * Its policy is effectively:
2573  *  o If there are no mappings, we don't bother doing anything with the cache.
2574  *  o If there is one mapping, we clean just that page.
2575  *  o If there are multiple mappings, we clean the entire cache.
2576  *
2577  * So that some functions can be further optimised, it returns 0 if it didn't
2578  * clean the entire cache, or 1 if it did.
2579  *
2580  * XXX One bug in this routine is that if the pv_entry has a single page
2581  * mapped at 0x00000000 a whole cache clean will be performed rather than
2582  * just the 1 page. Since this should not occur in everyday use and if it does
2583  * it will just result in not the most efficient clean for the page.
2584  */
2585 #ifdef PMAP_CACHE_VIVT
2586 static bool
pmap_clean_page(struct vm_page_md * md,bool is_src)2587 pmap_clean_page(struct vm_page_md *md, bool is_src)
2588 {
2589 	struct pv_entry *pv;
2590 	pmap_t pm_to_clean = NULL;
2591 	bool cache_needs_cleaning = false;
2592 	vaddr_t page_to_clean = 0;
2593 	u_int flags = 0;
2594 
2595 	/*
2596 	 * Since we flush the cache each time we change to a different
2597 	 * user vmspace, we only need to flush the page if it is in the
2598 	 * current pmap.
2599 	 */
2600 	KASSERT(pmap_page_locked_p(md));
2601 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2602 		if (pmap_is_current(pv->pv_pmap)) {
2603 			flags |= pv->pv_flags;
2604 			/*
2605 			 * The page is mapped non-cacheable in
2606 			 * this map.  No need to flush the cache.
2607 			 */
2608 			if (pv->pv_flags & PVF_NC) {
2609 #ifdef DIAGNOSTIC
2610 				KASSERT(!cache_needs_cleaning);
2611 #endif
2612 				break;
2613 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2614 				continue;
2615 			if (cache_needs_cleaning) {
2616 				page_to_clean = 0;
2617 				break;
2618 			} else {
2619 				page_to_clean = pv->pv_va;
2620 				pm_to_clean = pv->pv_pmap;
2621 			}
2622 			cache_needs_cleaning = true;
2623 		}
2624 	}
2625 
2626 	if (page_to_clean) {
2627 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2628 		    !is_src, flags | PVF_REF);
2629 	} else if (cache_needs_cleaning) {
2630 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2631 
2632 		pmap_cache_wbinv_all(pm, flags);
2633 		return true;
2634 	}
2635 	return false;
2636 }
2637 #endif
2638 
2639 #ifdef PMAP_CACHE_VIPT
2640 /*
2641  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
2642  * right cache alias to make sure we flush the right stuff.
2643  */
2644 void
pmap_syncicache_page(struct vm_page_md * md,paddr_t pa)2645 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2646 {
2647 	pmap_t kpm = pmap_kernel();
2648 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2649 	    ? PAGE_SIZE
2650 	    : arm_pcache.icache_way_size;
2651 
2652 	UVMHIST_FUNC(__func__);
2653 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2654 	    (uintptr_t)md, pa, md->pvh_attrs, 0);
2655 
2656 	/*
2657 	 * No need to clean the page if it's non-cached.
2658 	 */
2659 #ifndef ARM_MMU_EXTENDED
2660 	if (md->pvh_attrs & PVF_NC)
2661 		return;
2662 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2663 #endif
2664 
2665 	pt_entry_t * const ptep = cpu_cdst_pte(0);
2666 	const vaddr_t dstp = cpu_cdstp(0);
2667 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2668 	if (way_size <= PAGE_SIZE) {
2669 		bool ok = false;
2670 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2671 		if (ok) {
2672 			cpu_icache_sync_range(vdstp, way_size);
2673 			return;
2674 		}
2675 	}
2676 #endif
2677 
2678 	/*
2679 	 * We don't worry about the color of the exec page, we map the
2680 	 * same page to pages in the way and then do the icache_sync on
2681 	 * the entire way making sure we are cleaned.
2682 	 */
2683 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2684 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2685 
2686 	for (size_t i = 0, j = 0; i < way_size;
2687 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2688 		l2pte_reset(ptep + j);
2689 		PTE_SYNC(ptep + j);
2690 
2691 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2692 		/*
2693 		 * Set up a PTE with to flush these cache lines.
2694 		 */
2695 		l2pte_set(ptep + j, npte, 0);
2696 	}
2697 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2698 
2699 	/*
2700 	 * Flush it.
2701 	 */
2702 	cpu_icache_sync_range(dstp, way_size);
2703 
2704 	for (size_t i = 0, j = 0; i < way_size;
2705 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2706 		/*
2707 		 * Unmap the page(s).
2708 		 */
2709 		l2pte_reset(ptep + j);
2710 		PTE_SYNC(ptep + j);
2711 
2712 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2713 	}
2714 
2715 	md->pvh_attrs |= PVF_EXEC;
2716 	PMAPCOUNT(exec_synced);
2717 }
2718 
2719 #ifndef ARM_MMU_EXTENDED
2720 void
pmap_flush_page(struct vm_page_md * md,paddr_t pa,enum pmap_flush_op flush)2721 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2722 {
2723 	vsize_t va_offset, end_va;
2724 	bool wbinv_p;
2725 
2726 	if (arm_cache_prefer_mask == 0)
2727 		return;
2728 
2729 	UVMHIST_FUNC(__func__);
2730 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2731 	    (uintptr_t)md, pa, op, 0);
2732 
2733 	switch (flush) {
2734 	case PMAP_FLUSH_PRIMARY:
2735 		if (md->pvh_attrs & PVF_MULTCLR) {
2736 			va_offset = 0;
2737 			end_va = arm_cache_prefer_mask;
2738 			md->pvh_attrs &= ~PVF_MULTCLR;
2739 			PMAPCOUNT(vac_flush_lots);
2740 		} else {
2741 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2742 			end_va = va_offset;
2743 			PMAPCOUNT(vac_flush_one);
2744 		}
2745 		/*
2746 		 * Mark that the page is no longer dirty.
2747 		 */
2748 		md->pvh_attrs &= ~PVF_DIRTY;
2749 		wbinv_p = true;
2750 		break;
2751 	case PMAP_FLUSH_SECONDARY:
2752 		va_offset = 0;
2753 		end_va = arm_cache_prefer_mask;
2754 		wbinv_p = true;
2755 		md->pvh_attrs &= ~PVF_MULTCLR;
2756 		PMAPCOUNT(vac_flush_lots);
2757 		break;
2758 	case PMAP_CLEAN_PRIMARY:
2759 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2760 		end_va = va_offset;
2761 		wbinv_p = false;
2762 		/*
2763 		 * Mark that the page is no longer dirty.
2764 		 */
2765 		if ((md->pvh_attrs & PVF_DMOD) == 0)
2766 			md->pvh_attrs &= ~PVF_DIRTY;
2767 		PMAPCOUNT(vac_clean_one);
2768 		break;
2769 	default:
2770 		return;
2771 	}
2772 
2773 	KASSERT(!(md->pvh_attrs & PVF_NC));
2774 
2775 	UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2776 	    md->pvh_attrs, 0, 0);
2777 
2778 	const size_t scache_line_size = arm_scache.dcache_line_size;
2779 
2780 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2781 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2782 		const vaddr_t dstp = cpu_cdstp(va_offset);
2783 		const pt_entry_t opte = *ptep;
2784 
2785 		if (flush == PMAP_FLUSH_SECONDARY
2786 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2787 			continue;
2788 
2789 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2790 		/*
2791 		 * Set up a PTE with the right coloring to flush
2792 		 * existing cache entries.
2793 		 */
2794 		const pt_entry_t npte = L2_S_PROTO
2795 		    | pa
2796 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2797 		    | pte_l2_s_cache_mode;
2798 		l2pte_set(ptep, npte, opte);
2799 		PTE_SYNC(ptep);
2800 
2801 		/*
2802 		 * Flush it.  Make sure to flush secondary cache too since
2803 		 * bus_dma will ignore uncached pages.
2804 		 */
2805 		if (scache_line_size != 0) {
2806 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
2807 			if (wbinv_p) {
2808 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2809 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
2810 			} else {
2811 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2812 			}
2813 		} else {
2814 			if (wbinv_p) {
2815 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2816 			} else {
2817 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
2818 			}
2819 		}
2820 
2821 		/*
2822 		 * Restore the page table entry since we might have interrupted
2823 		 * pmap_zero_page or pmap_copy_page which was already using
2824 		 * this pte.
2825 		 */
2826 		if (opte) {
2827 			l2pte_set(ptep, opte, npte);
2828 		} else {
2829 			l2pte_reset(ptep);
2830 		}
2831 		PTE_SYNC(ptep);
2832 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2833 	}
2834 }
2835 #endif /* ARM_MMU_EXTENDED */
2836 #endif /* PMAP_CACHE_VIPT */
2837 
2838 /*
2839  * Routine:	pmap_page_remove
2840  * Function:
2841  *		Removes this physical page from
2842  *		all physical maps in which it resides.
2843  *		Reflects back modify bits to the pager.
2844  */
2845 static void
pmap_page_remove(struct vm_page_md * md,paddr_t pa)2846 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2847 {
2848 	struct l2_bucket *l2b;
2849 	struct pv_entry *pv;
2850 	pt_entry_t *ptep;
2851 #ifndef ARM_MMU_EXTENDED
2852 	bool flush = false;
2853 #endif
2854 	u_int flags = 0;
2855 
2856 	UVMHIST_FUNC(__func__);
2857 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2858 
2859 	kpreempt_disable();
2860 	pmap_acquire_page_lock(md);
2861 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2862 	if (*pvp == NULL) {
2863 #ifdef PMAP_CACHE_VIPT
2864 		/*
2865 		 * We *know* the page contents are about to be replaced.
2866 		 * Discard the exec contents
2867 		 */
2868 		if (PV_IS_EXEC_P(md->pvh_attrs))
2869 			PMAPCOUNT(exec_discarded_page_protect);
2870 		md->pvh_attrs &= ~PVF_EXEC;
2871 		PMAP_VALIDATE_MD_PAGE(md);
2872 #endif
2873 		pmap_release_page_lock(md);
2874 		kpreempt_enable();
2875 
2876 		return;
2877 	}
2878 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2879 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2880 #endif
2881 
2882 	/*
2883 	 * Clear alias counts
2884 	 */
2885 #ifdef PMAP_CACHE_VIVT
2886 	md->k_mappings = 0;
2887 #endif
2888 	md->urw_mappings = md->uro_mappings = 0;
2889 
2890 #ifdef PMAP_CACHE_VIVT
2891 	pmap_clean_page(md, false);
2892 #endif
2893 
2894 	for (pv = *pvp; pv != NULL;) {
2895 		pmap_t pm = pv->pv_pmap;
2896 #ifndef ARM_MMU_EXTENDED
2897 		if (flush == false && pmap_is_current(pm))
2898 			flush = true;
2899 #endif
2900 
2901 #ifdef PMAP_CACHE_VIPT
2902 		if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2903 			/* If this was unmanaged mapping, it must be ignored. */
2904 			pvp = &SLIST_NEXT(pv, pv_link);
2905 			pv = *pvp;
2906 			continue;
2907 		}
2908 #endif
2909 
2910 		/*
2911 		 * Try to get a hold on the pmap's lock.  We must do this
2912 		 * while still holding the page locked, to know that the
2913 		 * page is still associated with the pmap and the mapping is
2914 		 * in place.  If a hold can't be had, unlock and wait for
2915 		 * the pmap's lock to become available and retry.  The pmap
2916 		 * must be ref'd over this dance to stop it disappearing
2917 		 * behind us.
2918 		 */
2919 		if (!mutex_tryenter(&pm->pm_lock)) {
2920 			pmap_reference(pm);
2921 			pmap_release_page_lock(md);
2922 			pmap_acquire_pmap_lock(pm);
2923 			/* nothing, just wait for it */
2924 			pmap_release_pmap_lock(pm);
2925 			pmap_destroy(pm);
2926 			/* Restart from the beginning. */
2927 			pmap_acquire_page_lock(md);
2928 			pvp = &SLIST_FIRST(&md->pvh_list);
2929 			pv = *pvp;
2930 			continue;
2931 		}
2932 
2933 		if (pm == pmap_kernel()) {
2934 #ifdef PMAP_CACHE_VIPT
2935 			if (pv->pv_flags & PVF_WRITE)
2936 				md->krw_mappings--;
2937 			else
2938 				md->kro_mappings--;
2939 #endif
2940 			PMAPCOUNT(kernel_unmappings);
2941 		}
2942 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2943 		PMAPCOUNT(unmappings);
2944 
2945 		pmap_release_page_lock(md);
2946 
2947 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2948 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2949 
2950 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2951 
2952 		/*
2953 		 * Update statistics
2954 		 */
2955 		--pm->pm_stats.resident_count;
2956 
2957 		/* Wired bit */
2958 		if (pv->pv_flags & PVF_WIRED)
2959 			--pm->pm_stats.wired_count;
2960 
2961 		flags |= pv->pv_flags;
2962 
2963 		/*
2964 		 * Invalidate the PTEs.
2965 		 */
2966 		l2pte_reset(ptep);
2967 		PTE_SYNC_CURRENT(pm, ptep);
2968 
2969 #ifdef ARM_MMU_EXTENDED
2970 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
2971 #endif
2972 
2973 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2974 
2975 		pmap_release_pmap_lock(pm);
2976 
2977 		pool_put(&pmap_pv_pool, pv);
2978 		pmap_acquire_page_lock(md);
2979 
2980 		/*
2981 		 * Restart at the beginning of the list.
2982 		 */
2983 		pvp = &SLIST_FIRST(&md->pvh_list);
2984 		pv = *pvp;
2985 	}
2986 	/*
2987 	 * if we reach the end of the list and there are still mappings, they
2988 	 * might be able to be cached now.  And they must be kernel mappings.
2989 	 */
2990 	if (!SLIST_EMPTY(&md->pvh_list)) {
2991 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2992 	}
2993 
2994 #ifdef PMAP_CACHE_VIPT
2995 	/*
2996 	 * Its EXEC cache is now gone.
2997 	 */
2998 	if (PV_IS_EXEC_P(md->pvh_attrs))
2999 		PMAPCOUNT(exec_discarded_page_protect);
3000 	md->pvh_attrs &= ~PVF_EXEC;
3001 	KASSERT(md->urw_mappings == 0);
3002 	KASSERT(md->uro_mappings == 0);
3003 #ifndef ARM_MMU_EXTENDED
3004 	if (arm_cache_prefer_mask != 0) {
3005 		if (md->krw_mappings == 0)
3006 			md->pvh_attrs &= ~PVF_WRITE;
3007 		PMAP_VALIDATE_MD_PAGE(md);
3008 	}
3009 #endif /* ARM_MMU_EXTENDED */
3010 #endif /* PMAP_CACHE_VIPT */
3011 	pmap_release_page_lock(md);
3012 
3013 #ifndef ARM_MMU_EXTENDED
3014 	if (flush) {
3015 		/*
3016 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
3017 		 * would need a subsequent call to pmap_update() to ensure
3018 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
3019 		 * required to do that (see pmap(9)), so we can't modify
3020 		 * the current pmap's state.
3021 		 */
3022 		if (PV_BEEN_EXECD(flags))
3023 			cpu_tlb_flushID();
3024 		else
3025 			cpu_tlb_flushD();
3026 	}
3027 	cpu_cpwait();
3028 #endif /* ARM_MMU_EXTENDED */
3029 
3030 	kpreempt_enable();
3031 }
3032 
3033 /*
3034  * pmap_t pmap_create(void)
3035  *
3036  *      Create a new pmap structure from scratch.
3037  */
3038 pmap_t
pmap_create(void)3039 pmap_create(void)
3040 {
3041 	pmap_t pm;
3042 
3043 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3044 
3045 	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3046 
3047 	pm->pm_refs = 1;
3048 	pm->pm_stats.wired_count = 0;
3049 	pm->pm_stats.resident_count = 1;
3050 #ifdef ARM_MMU_EXTENDED
3051 #ifdef MULTIPROCESSOR
3052 	kcpuset_create(&pm->pm_active, true);
3053 	kcpuset_create(&pm->pm_onproc, true);
3054 #endif
3055 #else
3056 	pm->pm_cstate.cs_all = 0;
3057 #endif
3058 	pmap_alloc_l1(pm);
3059 
3060 	/*
3061 	 * Note: The pool cache ensures that the pm_l2[] array is already
3062 	 * initialised to zero.
3063 	 */
3064 
3065 	pmap_pinit(pm);
3066 
3067 	return pm;
3068 }
3069 
3070 u_int
arm32_mmap_flags(paddr_t pa)3071 arm32_mmap_flags(paddr_t pa)
3072 {
3073 	/*
3074 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3075 	 * and we're using the upper bits in page numbers to pass flags around
3076 	 * so we might as well use the same bits
3077 	 */
3078 	return (u_int)pa & PMAP_MD_MASK;
3079 }
3080 /*
3081  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3082  *      u_int flags)
3083  *
3084  *      Insert the given physical page (p) at
3085  *      the specified virtual address (v) in the
3086  *      target physical map with the protection requested.
3087  *
3088  *      NB:  This is the only routine which MAY NOT lazy-evaluate
3089  *      or lose information.  That is, this routine must actually
3090  *      insert this page into the given map NOW.
3091  */
3092 int
pmap_enter(pmap_t pm,vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)3093 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3094 {
3095 	struct l2_bucket *l2b;
3096 	struct vm_page *pg, *opg;
3097 	u_int nflags;
3098 	u_int oflags;
3099 	const bool kpm_p = pm == pmap_kernel();
3100 #if defined(EFI_RUNTIME)
3101 	const bool efirt_p = pm == pmap_efirt();
3102 #else
3103 	const bool efirt_p = false;
3104 #endif
3105 #ifdef ARM_HAS_VBAR
3106 	const bool vector_page_p = false;
3107 #else
3108 	const bool vector_page_p = (va == vector_page);
3109 #endif
3110 	struct pmap_page *pp = pmap_pv_tracked(pa);
3111 	struct pv_entry *new_pv = NULL;
3112 	struct pv_entry *old_pv = NULL;
3113 	int error = 0;
3114 
3115 	UVMHIST_FUNC(__func__);
3116 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3117 	    (uintptr_t)pm, va, pa, prot);
3118 	UVMHIST_LOG(maphist, "  flag %#jx", flags, 0, 0, 0);
3119 
3120 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3121 	KDASSERT(((va | pa) & PGOFSET) == 0);
3122 
3123 	/*
3124 	 * Get a pointer to the page.  Later on in this function, we
3125 	 * test for a managed page by checking pg != NULL.
3126 	 */
3127 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3128 	/*
3129 	 * if we may need a new pv entry allocate if now, as we can't do it
3130 	 * with the kernel_pmap locked
3131 	 */
3132 	if (pg || pp)
3133 		new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3134 
3135 	nflags = 0;
3136 	if (prot & VM_PROT_WRITE)
3137 		nflags |= PVF_WRITE;
3138 	if (prot & VM_PROT_EXECUTE)
3139 		nflags |= PVF_EXEC;
3140 	if (flags & PMAP_WIRED)
3141 		nflags |= PVF_WIRED;
3142 
3143 	kpreempt_disable();
3144 	pmap_acquire_pmap_lock(pm);
3145 
3146 	/*
3147 	 * Fetch the L2 bucket which maps this page, allocating one if
3148 	 * necessary for user pmaps.
3149 	 */
3150 	if (kpm_p) {
3151 		l2b = pmap_get_l2_bucket(pm, va);
3152 	} else {
3153 		l2b = pmap_alloc_l2_bucket(pm, va);
3154 	}
3155 	if (l2b == NULL) {
3156 		if (flags & PMAP_CANFAIL) {
3157 			pmap_release_pmap_lock(pm);
3158 			kpreempt_enable();
3159 
3160 			error = ENOMEM;
3161 			goto free_pv;
3162 		}
3163 		panic("pmap_enter: failed to allocate L2 bucket");
3164 	}
3165 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3166 	const pt_entry_t opte = *ptep;
3167 	pt_entry_t npte = pa;
3168 	oflags = 0;
3169 
3170 	if (opte) {
3171 		/*
3172 		 * There is already a mapping at this address.
3173 		 * If the physical address is different, lookup the
3174 		 * vm_page.
3175 		 */
3176 		if (l2pte_pa(opte) != pa) {
3177 			KASSERT(!pmap_pv_tracked(pa));
3178 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3179 		} else
3180 			opg = pg;
3181 	} else
3182 		opg = NULL;
3183 
3184 	if (pg || pp) {
3185 		KASSERT((pg != NULL) != (pp != NULL));
3186 		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3187 		    PMAP_PAGE_TO_MD(pp);
3188 
3189 		UVMHIST_LOG(maphist, "  pg %#jx pp %#jx pvh_attrs %#jx "
3190 		    "nflags %#jx", (uintptr_t)pg, (uintptr_t)pp,
3191 		    md->pvh_attrs, nflags);
3192 
3193 		/*
3194 		 * This is to be a managed mapping.
3195 		 */
3196 		pmap_acquire_page_lock(md);
3197 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3198 			/*
3199 			 * - The access type indicates that we don't need
3200 			 *   to do referenced emulation.
3201 			 * OR
3202 			 * - The physical page has already been referenced
3203 			 *   so no need to re-do referenced emulation here.
3204 			 */
3205 			npte |= l2pte_set_readonly(L2_S_PROTO);
3206 
3207 			nflags |= PVF_REF;
3208 
3209 			if ((prot & VM_PROT_WRITE) != 0 &&
3210 			    ((flags & VM_PROT_WRITE) != 0 ||
3211 			     (md->pvh_attrs & PVF_MOD) != 0)) {
3212 				/*
3213 				 * This is a writable mapping, and the
3214 				 * page's mod state indicates it has
3215 				 * already been modified. Make it
3216 				 * writable from the outset.
3217 				 */
3218 				npte = l2pte_set_writable(npte);
3219 				nflags |= PVF_MOD;
3220 			}
3221 
3222 #ifdef ARM_MMU_EXTENDED
3223 			/*
3224 			 * If the page has been cleaned, then the pvh_attrs
3225 			 * will have PVF_EXEC set, so mark it execute so we
3226 			 * don't get an access fault when trying to execute
3227 			 * from it.
3228 			 */
3229 			if (md->pvh_attrs & nflags & PVF_EXEC) {
3230 				npte &= ~L2_XS_XN;
3231 			}
3232 #endif
3233 		} else {
3234 			/*
3235 			 * Need to do page referenced emulation.
3236 			 */
3237 			npte |= L2_TYPE_INV;
3238 		}
3239 
3240 		if (flags & ARM32_MMAP_WRITECOMBINE) {
3241 			npte |= pte_l2_s_wc_mode;
3242 		} else
3243 			npte |= pte_l2_s_cache_mode;
3244 
3245 		if (pg != NULL && pg == opg) {
3246 			/*
3247 			 * We're changing the attrs of an existing mapping.
3248 			 */
3249 			oflags = pmap_modify_pv(md, pa, pm, va,
3250 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3251 			    PVF_MOD | PVF_REF, nflags);
3252 
3253 #ifdef PMAP_CACHE_VIVT
3254 			/*
3255 			 * We may need to flush the cache if we're
3256 			 * doing rw-ro...
3257 			 */
3258 			if (pm->pm_cstate.cs_cache_d &&
3259 			    (oflags & PVF_NC) == 0 &&
3260 			    l2pte_writable_p(opte) &&
3261 			    (prot & VM_PROT_WRITE) == 0)
3262 				cpu_dcache_wb_range(va, PAGE_SIZE);
3263 #endif
3264 		} else {
3265 			struct pv_entry *pv;
3266 			/*
3267 			 * New mapping, or changing the backing page
3268 			 * of an existing mapping.
3269 			 */
3270 			if (opg) {
3271 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3272 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
3273 
3274 				/*
3275 				 * Replacing an existing mapping with a new one.
3276 				 * It is part of our managed memory so we
3277 				 * must remove it from the PV list
3278 				 */
3279 				pv = pmap_remove_pv(omd, opa, pm, va);
3280 				pmap_vac_me_harder(omd, opa, pm, 0);
3281 				oflags = pv->pv_flags;
3282 
3283 #ifdef PMAP_CACHE_VIVT
3284 				/*
3285 				 * If the old mapping was valid (ref/mod
3286 				 * emulation creates 'invalid' mappings
3287 				 * initially) then make sure to frob
3288 				 * the cache.
3289 				 */
3290 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3291 					pmap_cache_wbinv_page(pm, va, true,
3292 					    oflags);
3293 				}
3294 #endif
3295 			} else {
3296 				pv = new_pv;
3297 				new_pv = NULL;
3298 				if (pv == NULL) {
3299 					pmap_release_page_lock(md);
3300 					pmap_release_pmap_lock(pm);
3301 					if ((flags & PMAP_CANFAIL) == 0)
3302 						panic("pmap_enter: "
3303 						    "no pv entries");
3304 
3305 					pmap_free_l2_bucket(pm, l2b, 0);
3306 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
3307 					    0, 0, 0, 0);
3308 					kpreempt_enable();
3309 
3310 					return ENOMEM;
3311 				}
3312 			}
3313 
3314 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
3315 		}
3316 		pmap_release_page_lock(md);
3317 	} else {
3318 		/*
3319 		 * We're mapping an unmanaged page.
3320 		 * These are always readable, and possibly writable, from
3321 		 * the get go as we don't need to track ref/mod status.
3322 		 */
3323 		npte |= l2pte_set_readonly(L2_S_PROTO);
3324 		if (prot & VM_PROT_WRITE)
3325 			npte = l2pte_set_writable(npte);
3326 
3327 		if (efirt_p) {
3328 			if (prot & VM_PROT_EXECUTE) {
3329 				npte &= ~L2_XS_XN;	/* and executable */
3330 			}
3331 		}
3332 
3333 		/*
3334 		 * Make sure the vector table is mapped cacheable
3335 		 */
3336 		if ((vector_page_p && !kpm_p)
3337 		    || (flags & ARM32_MMAP_CACHEABLE)) {
3338 			npte |= pte_l2_s_cache_mode;
3339 #ifdef ARM_MMU_EXTENDED
3340 			npte &= ~L2_XS_XN;	/* and executable */
3341 #endif
3342 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
3343 			npte |= pte_l2_s_wc_mode;
3344 		}
3345 		if (opg) {
3346 			/*
3347 			 * Looks like there's an existing 'managed' mapping
3348 			 * at this address.
3349 			 */
3350 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3351 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
3352 
3353 			pmap_acquire_page_lock(omd);
3354 			old_pv = pmap_remove_pv(omd, opa, pm, va);
3355 			pmap_vac_me_harder(omd, opa, pm, 0);
3356 			oflags = old_pv->pv_flags;
3357 			pmap_release_page_lock(omd);
3358 
3359 #ifdef PMAP_CACHE_VIVT
3360 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3361 				pmap_cache_wbinv_page(pm, va, true, oflags);
3362 			}
3363 #endif
3364 		}
3365 	}
3366 
3367 	/*
3368 	 * Make sure userland mappings get the right permissions
3369 	 */
3370 	if (!vector_page_p && !kpm_p) {
3371 		npte |= L2_S_PROT_U;
3372 #ifdef ARM_MMU_EXTENDED
3373 		npte |= L2_XS_nG;	/* user pages are not global */
3374 #endif
3375 	}
3376 
3377 	/*
3378 	 * Keep the stats up to date
3379 	 */
3380 	if (opte == 0) {
3381 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3382 		pm->pm_stats.resident_count++;
3383 	}
3384 
3385 	UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3386 
3387 #if defined(ARM_MMU_EXTENDED)
3388 	/*
3389 	 * If exec protection was requested but the page hasn't been synced,
3390 	 * sync it now and allow execution from it.
3391 	 */
3392 
3393 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3394 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3395 		npte &= ~L2_XS_XN;
3396 		pmap_syncicache_page(md, pa);
3397 		PMAPCOUNT(exec_synced_map);
3398 	}
3399 #endif
3400 	/*
3401 	 * If this is just a wiring change, the two PTEs will be
3402 	 * identical, so there's no need to update the page table.
3403 	 */
3404 	if (npte != opte) {
3405 		l2pte_reset(ptep);
3406 		PTE_SYNC(ptep);
3407 		if (l2pte_valid_p(opte)) {
3408 			pmap_tlb_flush_SE(pm, va, oflags);
3409 		}
3410 		l2pte_set(ptep, npte, 0);
3411 		PTE_SYNC(ptep);
3412 #ifndef ARM_MMU_EXTENDED
3413 		bool is_cached = pmap_is_cached(pm);
3414 		if (is_cached) {
3415 			/*
3416 			 * We only need to frob the cache/tlb if this pmap
3417 			 * is current
3418 			 */
3419 			if (!vector_page_p && l2pte_valid_p(npte)) {
3420 				/*
3421 				 * This mapping is likely to be accessed as
3422 				 * soon as we return to userland. Fix up the
3423 				 * L1 entry to avoid taking another
3424 				 * page/domain fault.
3425 				 */
3426 				pd_entry_t *pdep = pmap_l1_kva(pm)
3427 				     + l1pte_index(va);
3428 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3429 				    | L1_C_DOM(pmap_domain(pm));
3430 				if (*pdep != pde) {
3431 					l1pte_setone(pdep, pde);
3432 					PDE_SYNC(pdep);
3433 				}
3434 			}
3435 		}
3436 
3437 		UVMHIST_LOG(maphist, "  is_cached %jd cs 0x%08jx",
3438 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
3439 
3440 		if (pg != NULL) {
3441 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3442 
3443 			pmap_acquire_page_lock(md);
3444 			pmap_vac_me_harder(md, pa, pm, va);
3445 			pmap_release_page_lock(md);
3446 		}
3447 #endif
3448 	}
3449 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3450 	if (pg) {
3451 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3452 
3453 		pmap_acquire_page_lock(md);
3454 #ifndef ARM_MMU_EXTENDED
3455 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3456 #endif
3457 		PMAP_VALIDATE_MD_PAGE(md);
3458 		pmap_release_page_lock(md);
3459 	}
3460 #endif
3461 
3462 	pmap_release_pmap_lock(pm);
3463 	kpreempt_enable();
3464 
3465 	if (old_pv)
3466 		pool_put(&pmap_pv_pool, old_pv);
3467 free_pv:
3468 	if (new_pv)
3469 		pool_put(&pmap_pv_pool, new_pv);
3470 
3471 	return error;
3472 }
3473 
3474 /*
3475  * pmap_remove()
3476  *
3477  * pmap_remove is responsible for nuking a number of mappings for a range
3478  * of virtual address space in the current pmap. To do this efficiently
3479  * is interesting, because in a number of cases a wide virtual address
3480  * range may be supplied that contains few actual mappings. So, the
3481  * optimisations are:
3482  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
3483  *  2. Build up a list of pages we've hit, up to a maximum, so we can
3484  *     maybe do just a partial cache clean. This path of execution is
3485  *     complicated by the fact that the cache must be flushed _before_
3486  *     the PTE is nuked, being a VAC :-)
3487  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
3488  *     all invalidations until pmap_update(), since pmap_remove_all() has
3489  *     already flushed the cache.
3490  *  4. Maybe later fast-case a single page, but I don't think this is
3491  *     going to make _that_ much difference overall.
3492  */
3493 
3494 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
3495 
3496 void
pmap_remove(pmap_t pm,vaddr_t sva,vaddr_t eva)3497 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3498 {
3499 	SLIST_HEAD(,pv_entry) opv_list;
3500 	struct pv_entry *pv, *npv;
3501 	UVMHIST_FUNC(__func__);
3502 	UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3503 	    (uintptr_t)pm, sva, eva, 0);
3504 
3505 #ifdef PMAP_FAULTINFO
3506 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3507 	curpcb->pcb_faultinfo.pfi_repeats = 0;
3508 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3509 #endif
3510 
3511 	SLIST_INIT(&opv_list);
3512 	/*
3513 	 * we lock in the pmap => pv_head direction
3514 	 */
3515 	kpreempt_disable();
3516 	pmap_acquire_pmap_lock(pm);
3517 
3518 #ifndef ARM_MMU_EXTENDED
3519 	u_int cleanlist_idx, total, cnt;
3520 	struct {
3521 		vaddr_t va;
3522 		pt_entry_t *ptep;
3523 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3524 
3525 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3526 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3527 		if (pm->pm_cstate.cs_tlb == 0)
3528 			pm->pm_remove_all = true;
3529 	} else
3530 		cleanlist_idx = 0;
3531 	total = 0;
3532 #endif
3533 
3534 	while (sva < eva) {
3535 		/*
3536 		 * Do one L2 bucket's worth at a time.
3537 		 */
3538 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3539 		if (next_bucket > eva)
3540 			next_bucket = eva;
3541 
3542 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3543 		if (l2b == NULL) {
3544 			sva = next_bucket;
3545 			continue;
3546 		}
3547 
3548 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3549 		u_int mappings = 0;
3550 
3551 		for (;sva < next_bucket;
3552 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3553 			pt_entry_t opte = *ptep;
3554 
3555 			if (opte == 0) {
3556 				/* Nothing here, move along */
3557 				continue;
3558 			}
3559 
3560 			u_int flags = PVF_REF;
3561 			paddr_t pa = l2pte_pa(opte);
3562 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3563 
3564 			/*
3565 			 * Update flags. In a number of circumstances,
3566 			 * we could cluster a lot of these and do a
3567 			 * number of sequential pages in one go.
3568 			 */
3569 			if (pg != NULL) {
3570 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3571 
3572 				pmap_acquire_page_lock(md);
3573 				pv = pmap_remove_pv(md, pa, pm, sva);
3574 				pmap_vac_me_harder(md, pa, pm, 0);
3575 				pmap_release_page_lock(md);
3576 				if (pv != NULL) {
3577 					if (pm->pm_remove_all == false) {
3578 						flags = pv->pv_flags;
3579 					}
3580 					SLIST_INSERT_HEAD(&opv_list,
3581 					    pv, pv_link);
3582 				}
3583 			}
3584 			mappings += PAGE_SIZE / L2_S_SIZE;
3585 
3586 			if (!l2pte_valid_p(opte)) {
3587 				/*
3588 				 * Ref/Mod emulation is still active for this
3589 				 * mapping, therefore it is has not yet been
3590 				 * accessed. No need to frob the cache/tlb.
3591 				 */
3592 				l2pte_reset(ptep);
3593 				PTE_SYNC_CURRENT(pm, ptep);
3594 				continue;
3595 			}
3596 
3597 #ifdef ARM_MMU_EXTENDED
3598 			l2pte_reset(ptep);
3599 			PTE_SYNC(ptep);
3600 			if (__predict_false(pm->pm_remove_all == false)) {
3601 				pmap_tlb_flush_SE(pm, sva, flags);
3602 			}
3603 #else
3604 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3605 				/* Add to the clean list. */
3606 				cleanlist[cleanlist_idx].ptep = ptep;
3607 				cleanlist[cleanlist_idx].va =
3608 				    sva | (flags & PVF_EXEC);
3609 				cleanlist_idx++;
3610 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3611 				/* Nuke everything if needed. */
3612 #ifdef PMAP_CACHE_VIVT
3613 				pmap_cache_wbinv_all(pm, PVF_EXEC);
3614 #endif
3615 				/*
3616 				 * Roll back the previous PTE list,
3617 				 * and zero out the current PTE.
3618 				 */
3619 				for (cnt = 0;
3620 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3621 					l2pte_reset(cleanlist[cnt].ptep);
3622 					PTE_SYNC(cleanlist[cnt].ptep);
3623 				}
3624 				l2pte_reset(ptep);
3625 				PTE_SYNC(ptep);
3626 				cleanlist_idx++;
3627 				pm->pm_remove_all = true;
3628 			} else {
3629 				l2pte_reset(ptep);
3630 				PTE_SYNC(ptep);
3631 				if (pm->pm_remove_all == false) {
3632 					pmap_tlb_flush_SE(pm, sva, flags);
3633 				}
3634 			}
3635 #endif
3636 		}
3637 
3638 #ifndef ARM_MMU_EXTENDED
3639 		/*
3640 		 * Deal with any left overs
3641 		 */
3642 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3643 			total += cleanlist_idx;
3644 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3645 				l2pte_reset(cleanlist[cnt].ptep);
3646 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3647 				vaddr_t va = cleanlist[cnt].va;
3648 				if (pm->pm_cstate.cs_all != 0) {
3649 					vaddr_t clva = va & ~PAGE_MASK;
3650 					u_int flags = va & PVF_EXEC;
3651 #ifdef PMAP_CACHE_VIVT
3652 					pmap_cache_wbinv_page(pm, clva, true,
3653 					    PVF_REF | PVF_WRITE | flags);
3654 #endif
3655 					pmap_tlb_flush_SE(pm, clva,
3656 					    PVF_REF | flags);
3657 				}
3658 			}
3659 
3660 			/*
3661 			 * If it looks like we're removing a whole bunch
3662 			 * of mappings, it's faster to just write-back
3663 			 * the whole cache now and defer TLB flushes until
3664 			 * pmap_update() is called.
3665 			 */
3666 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3667 				cleanlist_idx = 0;
3668 			else {
3669 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3670 #ifdef PMAP_CACHE_VIVT
3671 				pmap_cache_wbinv_all(pm, PVF_EXEC);
3672 #endif
3673 				pm->pm_remove_all = true;
3674 			}
3675 		}
3676 #endif /* ARM_MMU_EXTENDED */
3677 
3678 		pmap_free_l2_bucket(pm, l2b, mappings);
3679 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3680 	}
3681 
3682 	pmap_release_pmap_lock(pm);
3683 	kpreempt_enable();
3684 
3685 	SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3686 		pool_put(&pmap_pv_pool, pv);
3687 	}
3688 }
3689 
3690 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3691 static struct pv_entry *
pmap_kremove_pg(struct vm_page * pg,vaddr_t va)3692 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3693 {
3694 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3695 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
3696 	struct pv_entry *pv;
3697 
3698 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3699 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3700 	KASSERT(pmap_page_locked_p(md));
3701 
3702 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3703 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3704 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3705 
3706 	/*
3707 	 * We are removing a writeable mapping to a cached exec page, if
3708 	 * it's the last mapping then clear its execness otherwise sync
3709 	 * the page to the icache.
3710 	 */
3711 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3712 	    && (pv->pv_flags & PVF_WRITE) != 0) {
3713 		if (SLIST_EMPTY(&md->pvh_list)) {
3714 			md->pvh_attrs &= ~PVF_EXEC;
3715 			PMAPCOUNT(exec_discarded_kremove);
3716 		} else {
3717 			pmap_syncicache_page(md, pa);
3718 			PMAPCOUNT(exec_synced_kremove);
3719 		}
3720 	}
3721 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3722 
3723 	return pv;
3724 }
3725 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3726 
3727 /*
3728  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3729  *
3730  * We assume there is already sufficient KVM space available
3731  * to do this, as we can't allocate L2 descriptor tables/metadata
3732  * from here.
3733  */
3734 void
pmap_kenter_pa(vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)3735 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3736 {
3737 #ifdef PMAP_CACHE_VIVT
3738 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3739 #endif
3740 #ifdef PMAP_CACHE_VIPT
3741 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3742 	struct vm_page *opg;
3743 #ifndef ARM_MMU_EXTENDED
3744 	struct pv_entry *pv = NULL;
3745 #endif
3746 #endif
3747 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3748 
3749 	UVMHIST_FUNC(__func__);
3750 
3751 	if (pmap_initialized) {
3752 		UVMHIST_CALLARGS(maphist,
3753 		    "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3754 		     flags);
3755 	}
3756 
3757 	kpreempt_disable();
3758 	pmap_t kpm = pmap_kernel();
3759 	pmap_acquire_pmap_lock(kpm);
3760 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3761 	const size_t l1slot __diagused = l1pte_index(va);
3762 	KASSERTMSG(l2b != NULL,
3763 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3764 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3765 	    kpm->pm_l2[L2_IDX(l1slot)]
3766 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3767 		: NULL,
3768 	    kpm->pm_l2[L2_IDX(l1slot)]
3769 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3770 		: NULL);
3771 	KASSERT(l2b->l2b_kva != NULL);
3772 
3773 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3774 	const pt_entry_t opte = *ptep;
3775 
3776 	if (opte == 0) {
3777 		PMAPCOUNT(kenter_mappings);
3778 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3779 	} else {
3780 		PMAPCOUNT(kenter_remappings);
3781 #ifdef PMAP_CACHE_VIPT
3782 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3783 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3784 		if (opg && arm_cache_prefer_mask != 0) {
3785 			KASSERT(opg != pg);
3786 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3787 			KASSERT((flags & PMAP_KMPAGE) == 0);
3788 #ifndef ARM_MMU_EXTENDED
3789 			pmap_acquire_page_lock(omd);
3790 			pv = pmap_kremove_pg(opg, va);
3791 			pmap_release_page_lock(omd);
3792 #endif
3793 		}
3794 #endif
3795 		if (l2pte_valid_p(opte)) {
3796 			l2pte_reset(ptep);
3797 			PTE_SYNC(ptep);
3798 #ifdef PMAP_CACHE_VIVT
3799 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
3800 #endif
3801 			cpu_tlb_flushD_SE(va);
3802 			cpu_cpwait();
3803 		}
3804 	}
3805 	pmap_release_pmap_lock(kpm);
3806 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3807 
3808 	if (flags & PMAP_PTE) {
3809 		KASSERT((flags & PMAP_CACHE_MASK) == 0);
3810 		if (!(flags & PMAP_NOCACHE))
3811 			npte |= pte_l2_s_cache_mode_pt;
3812 	} else {
3813 		switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3814 		case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3815 			break;
3816 		case PMAP_NOCACHE:
3817 			npte |= pte_l2_s_nocache_mode;
3818 			break;
3819 		case PMAP_WRITE_COMBINE:
3820 			npte |= pte_l2_s_wc_mode;
3821 			break;
3822 		default:
3823 			npte |= pte_l2_s_cache_mode;
3824 			break;
3825 		}
3826 	}
3827 #ifdef ARM_MMU_EXTENDED
3828 	if (prot & VM_PROT_EXECUTE)
3829 		npte &= ~L2_XS_XN;
3830 #endif
3831 	l2pte_set(ptep, npte, 0);
3832 	PTE_SYNC(ptep);
3833 
3834 	if (pg) {
3835 		if (flags & PMAP_KMPAGE) {
3836 			KASSERT(md->urw_mappings == 0);
3837 			KASSERT(md->uro_mappings == 0);
3838 			KASSERT(md->krw_mappings == 0);
3839 			KASSERT(md->kro_mappings == 0);
3840 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3841 			KASSERT(pv == NULL);
3842 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3843 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
3844 			/* if there is a color conflict, evict from cache. */
3845 			if (pmap_is_page_colored_p(md)
3846 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3847 				PMAPCOUNT(vac_color_change);
3848 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3849 			} else if (md->pvh_attrs & PVF_MULTCLR) {
3850 				/*
3851 				 * If this page has multiple colors, expunge
3852 				 * them.
3853 				 */
3854 				PMAPCOUNT(vac_flush_lots2);
3855 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3856 			}
3857 			/*
3858 			 * Since this is a KMPAGE, there can be no contention
3859 			 * for this page so don't lock it.
3860 			 */
3861 			md->pvh_attrs &= PAGE_SIZE - 1;
3862 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3863 			    | (va & arm_cache_prefer_mask);
3864 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3865 			md->pvh_attrs |= PVF_KMPAGE;
3866 #endif
3867 			atomic_inc_32(&pmap_kmpages);
3868 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3869 		} else if (arm_cache_prefer_mask != 0) {
3870 			if (pv == NULL) {
3871 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3872 				KASSERT(pv != NULL);
3873 			}
3874 			pmap_acquire_page_lock(md);
3875 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3876 			    PVF_WIRED | PVF_KENTRY
3877 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3878 			if ((prot & VM_PROT_WRITE)
3879 			    && !(md->pvh_attrs & PVF_NC))
3880 				md->pvh_attrs |= PVF_DIRTY;
3881 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3882 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3883 			pmap_release_page_lock(md);
3884 #endif
3885 		}
3886 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3887 	} else {
3888 		if (pv != NULL)
3889 			pool_put(&pmap_pv_pool, pv);
3890 #endif
3891 	}
3892 	kpreempt_enable();
3893 
3894 	if (pmap_initialized) {
3895 		UVMHIST_LOG(maphist, "  <-- done (ptep %#jx: %#jx -> %#jx)",
3896 		    (uintptr_t)ptep, opte, npte, 0);
3897 	}
3898 
3899 }
3900 
3901 void
pmap_kremove(vaddr_t va,vsize_t len)3902 pmap_kremove(vaddr_t va, vsize_t len)
3903 {
3904 #ifdef UVMHIST
3905 	u_int total_mappings = 0;
3906 #endif
3907 
3908 	PMAPCOUNT(kenter_unmappings);
3909 
3910 	UVMHIST_FUNC(__func__);
3911 	UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3912 
3913 	const vaddr_t eva = va + len;
3914 	pmap_t kpm = pmap_kernel();
3915 
3916 	kpreempt_disable();
3917 	pmap_acquire_pmap_lock(kpm);
3918 
3919 	while (va < eva) {
3920 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3921 		if (next_bucket > eva)
3922 			next_bucket = eva;
3923 
3924 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3925 		KDASSERT(l2b != NULL);
3926 
3927 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3928 		pt_entry_t *ptep = sptep;
3929 		u_int mappings = 0;
3930 
3931 		while (va < next_bucket) {
3932 			const pt_entry_t opte = *ptep;
3933 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3934 			if (opg != NULL) {
3935 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3936 
3937 				if (omd->pvh_attrs & PVF_KMPAGE) {
3938 					KASSERT(omd->urw_mappings == 0);
3939 					KASSERT(omd->uro_mappings == 0);
3940 					KASSERT(omd->krw_mappings == 0);
3941 					KASSERT(omd->kro_mappings == 0);
3942 					omd->pvh_attrs &= ~PVF_KMPAGE;
3943 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3944 					if (arm_cache_prefer_mask != 0) {
3945 						omd->pvh_attrs &= ~PVF_WRITE;
3946 					}
3947 #endif
3948 					atomic_dec_32(&pmap_kmpages);
3949 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3950 				} else if (arm_cache_prefer_mask != 0) {
3951 					pmap_acquire_page_lock(omd);
3952 					pool_put(&pmap_pv_pool,
3953 					    pmap_kremove_pg(opg, va));
3954 					pmap_release_page_lock(omd);
3955 #endif
3956 				}
3957 			}
3958 			if (l2pte_valid_p(opte)) {
3959 				l2pte_reset(ptep);
3960 				PTE_SYNC(ptep);
3961 #ifdef PMAP_CACHE_VIVT
3962 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
3963 #endif
3964 				cpu_tlb_flushD_SE(va);
3965 
3966 				mappings += PAGE_SIZE / L2_S_SIZE;
3967 			}
3968 			va += PAGE_SIZE;
3969 			ptep += PAGE_SIZE / L2_S_SIZE;
3970 		}
3971 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3972 		    mappings, l2b->l2b_occupancy);
3973 		l2b->l2b_occupancy -= mappings;
3974 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3975 #ifdef UVMHIST
3976 		total_mappings += mappings;
3977 #endif
3978 	}
3979 	pmap_release_pmap_lock(kpm);
3980 	cpu_cpwait();
3981 	kpreempt_enable();
3982 
3983 	UVMHIST_LOG(maphist, "  <--- done (%ju mappings removed)",
3984 	    total_mappings, 0, 0, 0);
3985 }
3986 
3987 bool
pmap_extract(pmap_t pm,vaddr_t va,paddr_t * pap)3988 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3989 {
3990 
3991 	return pmap_extract_coherency(pm, va, pap, NULL);
3992 }
3993 
3994 bool
pmap_extract_coherency(pmap_t pm,vaddr_t va,paddr_t * pap,bool * coherentp)3995 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3996 {
3997 	struct l2_dtable *l2;
3998 	pd_entry_t *pdep, pde;
3999 	pt_entry_t *ptep, pte;
4000 	paddr_t pa;
4001 	u_int l1slot;
4002 	bool coherent;
4003 
4004 	kpreempt_disable();
4005 	pmap_acquire_pmap_lock(pm);
4006 
4007 	l1slot = l1pte_index(va);
4008 	pdep = pmap_l1_kva(pm) + l1slot;
4009 	pde = *pdep;
4010 
4011 	if (l1pte_section_p(pde)) {
4012 		/*
4013 		 * These should only happen for pmap_kernel()
4014 		 */
4015 		KDASSERT(pm == pmap_kernel());
4016 		pmap_release_pmap_lock(pm);
4017 		kpreempt_enable();
4018 
4019 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4020 		if (l1pte_supersection_p(pde)) {
4021 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
4022 		} else
4023 #endif
4024 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
4025 		coherent = (pde & L1_S_CACHE_MASK) == 0;
4026 	} else {
4027 		/*
4028 		 * Note that we can't rely on the validity of the L1
4029 		 * descriptor as an indication that a mapping exists.
4030 		 * We have to look it up in the L2 dtable.
4031 		 */
4032 		l2 = pm->pm_l2[L2_IDX(l1slot)];
4033 
4034 		if (l2 == NULL ||
4035 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
4036 			pmap_release_pmap_lock(pm);
4037 			kpreempt_enable();
4038 
4039 			return false;
4040 		}
4041 
4042 		pte = ptep[l2pte_index(va)];
4043 		pmap_release_pmap_lock(pm);
4044 		kpreempt_enable();
4045 
4046 		if (pte == 0)
4047 			return false;
4048 
4049 		switch (pte & L2_TYPE_MASK) {
4050 		case L2_TYPE_L:
4051 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
4052 			coherent = (pte & L2_L_CACHE_MASK) == 0;
4053 			break;
4054 
4055 		default:
4056 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
4057 			coherent = (pte & L2_S_CACHE_MASK) == 0;
4058 			break;
4059 		}
4060 	}
4061 
4062 	if (pap != NULL)
4063 		*pap = pa;
4064 
4065 	if (coherentp != NULL)
4066 		*coherentp = (pm == pmap_kernel() && coherent);
4067 
4068 	return true;
4069 }
4070 
4071 /*
4072  * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4073  *	that map it
4074  */
4075 
4076 static void
pmap_pv_remove(paddr_t pa)4077 pmap_pv_remove(paddr_t pa)
4078 {
4079 	struct pmap_page *pp;
4080 
4081 	KASSERT(kpreempt_disabled());
4082 	pp = pmap_pv_tracked(pa);
4083 	if (pp == NULL)
4084 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4085 		    pa);
4086 
4087 	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4088 	pmap_page_remove(md, pa);
4089 }
4090 
4091 void
pmap_pv_protect(paddr_t pa,vm_prot_t prot)4092 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4093 {
4094 
4095 	/* the only case is remove at the moment */
4096 	KASSERT(prot == VM_PROT_NONE);
4097 	pmap_pv_remove(pa);
4098 }
4099 
4100 void
pmap_protect(pmap_t pm,vaddr_t sva,vaddr_t eva,vm_prot_t prot)4101 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4102 {
4103 	struct l2_bucket *l2b;
4104 	vaddr_t next_bucket;
4105 
4106 	UVMHIST_FUNC(__func__);
4107 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4108 	    (uintptr_t)pm, sva, eva, prot);
4109 
4110 	if ((prot & VM_PROT_READ) == 0) {
4111 		pmap_remove(pm, sva, eva);
4112 		return;
4113 	}
4114 
4115 	if (prot & VM_PROT_WRITE) {
4116 		/*
4117 		 * If this is a read->write transition, just ignore it and let
4118 		 * uvm_fault() take care of it later.
4119 		 */
4120 		return;
4121 	}
4122 
4123 	kpreempt_disable();
4124 	pmap_acquire_pmap_lock(pm);
4125 
4126 #ifndef ARM_MMU_EXTENDED
4127 	const bool flush = eva - sva >= PAGE_SIZE * 4;
4128 	u_int flags = 0;
4129 #endif
4130 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4131 
4132 	while (sva < eva) {
4133 		next_bucket = L2_NEXT_BUCKET_VA(sva);
4134 		if (next_bucket > eva)
4135 			next_bucket = eva;
4136 
4137 		l2b = pmap_get_l2_bucket(pm, sva);
4138 		if (l2b == NULL) {
4139 			sva = next_bucket;
4140 			continue;
4141 		}
4142 
4143 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4144 
4145 		while (sva < next_bucket) {
4146 			const pt_entry_t opte = *ptep;
4147 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4148 				struct vm_page *pg;
4149 #ifndef ARM_MMU_EXTENDED
4150 				u_int f;
4151 #endif
4152 
4153 #ifdef PMAP_CACHE_VIVT
4154 				/*
4155 				 * OK, at this point, we know we're doing
4156 				 * write-protect operation.  If the pmap is
4157 				 * active, write-back the page.
4158 				 */
4159 				pmap_cache_wbinv_page(pm, sva, false,
4160 				    PVF_REF | PVF_WRITE);
4161 #endif
4162 
4163 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4164 				pt_entry_t npte = l2pte_set_readonly(opte);
4165 				l2pte_reset(ptep);
4166 				PTE_SYNC(ptep);
4167 #ifdef ARM_MMU_EXTENDED
4168 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
4169 #endif
4170 				l2pte_set(ptep, npte, 0);
4171 				PTE_SYNC(ptep);
4172 
4173 				if (pg != NULL) {
4174 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4175 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
4176 
4177 					pmap_acquire_page_lock(md);
4178 #ifndef ARM_MMU_EXTENDED
4179 					f =
4180 #endif
4181 					    pmap_modify_pv(md, pa, pm, sva,
4182 					       clr_mask, 0);
4183 					pmap_vac_me_harder(md, pa, pm, sva);
4184 					pmap_release_page_lock(md);
4185 #ifndef ARM_MMU_EXTENDED
4186 				} else {
4187 					f = PVF_REF | PVF_EXEC;
4188 				}
4189 
4190 				if (flush) {
4191 					flags |= f;
4192 				} else {
4193 					pmap_tlb_flush_SE(pm, sva, f);
4194 #endif
4195 				}
4196 			}
4197 
4198 			sva += PAGE_SIZE;
4199 			ptep += PAGE_SIZE / L2_S_SIZE;
4200 		}
4201 	}
4202 
4203 #ifndef ARM_MMU_EXTENDED
4204 	if (flush) {
4205 		if (PV_BEEN_EXECD(flags)) {
4206 			pmap_tlb_flushID(pm);
4207 		} else if (PV_BEEN_REFD(flags)) {
4208 			pmap_tlb_flushD(pm);
4209 		}
4210 	}
4211 #endif
4212 
4213 	pmap_release_pmap_lock(pm);
4214 	kpreempt_enable();
4215 }
4216 
4217 void
pmap_icache_sync_range(pmap_t pm,vaddr_t sva,vaddr_t eva)4218 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4219 {
4220 	struct l2_bucket *l2b;
4221 	pt_entry_t *ptep;
4222 	vaddr_t next_bucket;
4223 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4224 
4225 	UVMHIST_FUNC(__func__);
4226 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4227 	    (uintptr_t)pm, sva, eva, 0);
4228 
4229 	pmap_acquire_pmap_lock(pm);
4230 
4231 	while (sva < eva) {
4232 		next_bucket = L2_NEXT_BUCKET_VA(sva);
4233 		if (next_bucket > eva)
4234 			next_bucket = eva;
4235 
4236 		l2b = pmap_get_l2_bucket(pm, sva);
4237 		if (l2b == NULL) {
4238 			sva = next_bucket;
4239 			continue;
4240 		}
4241 
4242 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4243 		     sva < next_bucket;
4244 		     sva += page_size,
4245 		     ptep += PAGE_SIZE / L2_S_SIZE,
4246 		     page_size = PAGE_SIZE) {
4247 			if (l2pte_valid_p(*ptep)) {
4248 				cpu_icache_sync_range(sva,
4249 				    uimin(page_size, eva - sva));
4250 			}
4251 		}
4252 	}
4253 
4254 	pmap_release_pmap_lock(pm);
4255 }
4256 
4257 void
pmap_page_protect(struct vm_page * pg,vm_prot_t prot)4258 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4259 {
4260 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4261 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4262 
4263 	UVMHIST_FUNC(__func__);
4264 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4265 	    (uintptr_t)md, pa, prot, 0);
4266 
4267 	switch(prot) {
4268 	case VM_PROT_READ|VM_PROT_WRITE:
4269 #if defined(ARM_MMU_EXTENDED)
4270 		pmap_acquire_page_lock(md);
4271 		pmap_clearbit(md, pa, PVF_EXEC);
4272 		pmap_release_page_lock(md);
4273 		break;
4274 #endif
4275 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4276 		break;
4277 
4278 	case VM_PROT_READ:
4279 #if defined(ARM_MMU_EXTENDED)
4280 		pmap_acquire_page_lock(md);
4281 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4282 		pmap_release_page_lock(md);
4283 		break;
4284 #endif
4285 	case VM_PROT_READ|VM_PROT_EXECUTE:
4286 		pmap_acquire_page_lock(md);
4287 		pmap_clearbit(md, pa, PVF_WRITE);
4288 		pmap_release_page_lock(md);
4289 		break;
4290 
4291 	default:
4292 		pmap_page_remove(md, pa);
4293 		break;
4294 	}
4295 }
4296 
4297 /*
4298  * pmap_clear_modify:
4299  *
4300  *	Clear the "modified" attribute for a page.
4301  */
4302 bool
pmap_clear_modify(struct vm_page * pg)4303 pmap_clear_modify(struct vm_page *pg)
4304 {
4305 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4306 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4307 	bool rv;
4308 
4309 	pmap_acquire_page_lock(md);
4310 
4311 	if (md->pvh_attrs & PVF_MOD) {
4312 		rv = true;
4313 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4314 		/*
4315 		 * If we are going to clear the modified bit and there are
4316 		 * no other modified bits set, flush the page to memory and
4317 		 * mark it clean.
4318 		 */
4319 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4320 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4321 #endif
4322 		pmap_clearbit(md, pa, PVF_MOD);
4323 	} else {
4324 		rv = false;
4325 	}
4326 	pmap_release_page_lock(md);
4327 
4328 	return rv;
4329 }
4330 
4331 /*
4332  * pmap_clear_reference:
4333  *
4334  *	Clear the "referenced" attribute for a page.
4335  */
4336 bool
pmap_clear_reference(struct vm_page * pg)4337 pmap_clear_reference(struct vm_page *pg)
4338 {
4339 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4340 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4341 	bool rv;
4342 
4343 	pmap_acquire_page_lock(md);
4344 
4345 	if (md->pvh_attrs & PVF_REF) {
4346 		rv = true;
4347 		pmap_clearbit(md, pa, PVF_REF);
4348 	} else {
4349 		rv = false;
4350 	}
4351 	pmap_release_page_lock(md);
4352 
4353 	return rv;
4354 }
4355 
4356 /*
4357  * pmap_is_modified:
4358  *
4359  *	Test if a page has the "modified" attribute.
4360  */
4361 /* See <arm/arm32/pmap.h> */
4362 
4363 /*
4364  * pmap_is_referenced:
4365  *
4366  *	Test if a page has the "referenced" attribute.
4367  */
4368 /* See <arm/arm32/pmap.h> */
4369 
4370 #if defined(ARM_MMU_EXTENDED) && 0
4371 int
pmap_prefetchabt_fixup(void * v)4372 pmap_prefetchabt_fixup(void *v)
4373 {
4374 	struct trapframe * const tf = v;
4375 	vaddr_t va = trunc_page(tf->tf_pc);
4376 	int rv = ABORT_FIXUP_FAILED;
4377 
4378 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4379 		return rv;
4380 
4381 	kpreempt_disable();
4382 	pmap_t pm = curcpu()->ci_pmap_cur;
4383 	const size_t l1slot = l1pte_index(va);
4384 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4385 	if (l2 == NULL)
4386 		goto out;
4387 
4388 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4389 	if (l2b->l2b_kva == NULL)
4390 		goto out;
4391 
4392 	/*
4393 	 * Check the PTE itself.
4394 	 */
4395 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4396 	const pt_entry_t opte = *ptep;
4397 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4398 		goto out;
4399 
4400 	paddr_t pa = l2pte_pa(opte);
4401 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4402 	KASSERT(pg != NULL);
4403 
4404 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4405 
4406 	pmap_acquire_page_lock(md);
4407 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4408 	KASSERT(pv != NULL);
4409 
4410 	if (PV_IS_EXEC_P(pv->pv_flags)) {
4411 		l2pte_reset(ptep);
4412 		PTE_SYNC(ptep);
4413 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4414 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4415 			pmap_syncicache_page(md, pa);
4416 		}
4417 		rv = ABORT_FIXUP_RETURN;
4418 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4419 		PTE_SYNC(ptep);
4420 	}
4421 	pmap_release_page_lock(md);
4422 
4423   out:
4424 	kpreempt_enable();
4425 
4426 	return rv;
4427 }
4428 #endif
4429 
4430 int
pmap_fault_fixup(pmap_t pm,vaddr_t va,vm_prot_t ftype,int user)4431 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4432 {
4433 	struct l2_dtable *l2;
4434 	struct l2_bucket *l2b;
4435 	paddr_t pa;
4436 	const size_t l1slot = l1pte_index(va);
4437 	int rv = 0;
4438 
4439 	UVMHIST_FUNC(__func__);
4440 	UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4441 	    (uintptr_t)pm, va, ftype, user);
4442 
4443 	va = trunc_page(va);
4444 
4445 	KASSERT(!user || (pm != pmap_kernel()));
4446 
4447 #ifdef ARM_MMU_EXTENDED
4448 	UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4449 	    (uintptr_t)cpu_tlb_info(curcpu()),
4450 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4451 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4452 #endif
4453 
4454 	kpreempt_disable();
4455 	pmap_acquire_pmap_lock(pm);
4456 
4457 	/*
4458 	 * If there is no l2_dtable for this address, then the process
4459 	 * has no business accessing it.
4460 	 *
4461 	 * Note: This will catch userland processes trying to access
4462 	 * kernel addresses.
4463 	 */
4464 	l2 = pm->pm_l2[L2_IDX(l1slot)];
4465 	if (l2 == NULL) {
4466 		UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4467 		goto out;
4468 	}
4469 
4470 	/*
4471 	 * Likewise if there is no L2 descriptor table
4472 	 */
4473 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4474 	if (l2b->l2b_kva == NULL) {
4475 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4476 		    l1slot, 0, 0, 0);
4477 		goto out;
4478 	}
4479 
4480 	/*
4481 	 * Check the PTE itself.
4482 	 */
4483 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4484 	pt_entry_t const opte = *ptep;
4485 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4486 		UVMHIST_LOG(maphist, " <-- done (empty pte)",
4487 		    0, 0, 0, 0);
4488 		goto out;
4489 	}
4490 
4491 #ifndef ARM_HAS_VBAR
4492 	/*
4493 	 * Catch a userland access to the vector page mapped at 0x0
4494 	 */
4495 	if (user && (opte & L2_S_PROT_U) == 0) {
4496 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4497 		goto out;
4498 	}
4499 #endif
4500 
4501 	pa = l2pte_pa(opte);
4502 	UVMHIST_LOG(maphist, " pa %#jx opte %#jx ", pa, opte, 0, 0);
4503 
4504 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4505 		/*
4506 		 * This looks like a good candidate for "page modified"
4507 		 * emulation...
4508 		 */
4509 		struct pv_entry *pv;
4510 		struct vm_page *pg;
4511 
4512 		/* Extract the physical address of the page */
4513 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4514 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4515 			goto out;
4516 		}
4517 
4518 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4519 
4520 		/* Get the current flags for this page. */
4521 		pmap_acquire_page_lock(md);
4522 		pv = pmap_find_pv(md, pm, va);
4523 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4524 			pmap_release_page_lock(md);
4525 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4526 			goto out;
4527 		}
4528 
4529 		/*
4530 		 * Do the flags say this page is writable? If not then it
4531 		 * is a genuine write fault. If yes then the write fault is
4532 		 * our fault as we did not reflect the write access in the
4533 		 * PTE. Now we know a write has occurred we can correct this
4534 		 * and also set the modified bit
4535 		 */
4536 		if ((pv->pv_flags & PVF_WRITE) == 0) {
4537 			pmap_release_page_lock(md);
4538 			UVMHIST_LOG(maphist, " <-- done (write fault)", 0, 0, 0, 0);
4539 			goto out;
4540 		}
4541 
4542 		md->pvh_attrs |= PVF_REF | PVF_MOD;
4543 		pv->pv_flags |= PVF_REF | PVF_MOD;
4544 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4545 		/*
4546 		 * If there are cacheable mappings for this page, mark it dirty.
4547 		 */
4548 		if ((md->pvh_attrs & PVF_NC) == 0)
4549 			md->pvh_attrs |= PVF_DIRTY;
4550 #endif
4551 #ifdef ARM_MMU_EXTENDED
4552 		if (md->pvh_attrs & PVF_EXEC) {
4553 			md->pvh_attrs &= ~PVF_EXEC;
4554 			PMAPCOUNT(exec_discarded_modfixup);
4555 		}
4556 #endif
4557 		pmap_release_page_lock(md);
4558 
4559 		/*
4560 		 * Re-enable write permissions for the page.  No need to call
4561 		 * pmap_vac_me_harder(), since this is just a
4562 		 * modified-emulation fault, and the PVF_WRITE bit isn't
4563 		 * changing. We've already set the cacheable bits based on
4564 		 * the assumption that we can write to this page.
4565 		 */
4566 		const pt_entry_t npte =
4567 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4568 #ifdef ARM_MMU_EXTENDED
4569 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
4570 #endif
4571 		    | 0;
4572 		l2pte_reset(ptep);
4573 		PTE_SYNC(ptep);
4574 		pmap_tlb_flush_SE(pm, va,
4575 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4576 		l2pte_set(ptep, npte, 0);
4577 		PTE_SYNC(ptep);
4578 		PMAPCOUNT(fixup_mod);
4579 		rv = 1;
4580 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4581 		    "from %#jx to %#jx)", opte, npte, 0, 0);
4582 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4583 		/*
4584 		 * This looks like a good candidate for "page referenced"
4585 		 * emulation.
4586 		 */
4587 		struct vm_page *pg;
4588 
4589 		/* Extract the physical address of the page */
4590 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4591 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4592 			goto out;
4593 		}
4594 
4595 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4596 
4597 		/* Get the current flags for this page. */
4598 		pmap_acquire_page_lock(md);
4599 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
4600 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4601 			pmap_release_page_lock(md);
4602 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4603 			goto out;
4604 		}
4605 
4606 		md->pvh_attrs |= PVF_REF;
4607 		pv->pv_flags |= PVF_REF;
4608 
4609 		pt_entry_t npte =
4610 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4611 #ifdef ARM_MMU_EXTENDED
4612 		if (pm != pmap_kernel()) {
4613 			npte |= L2_XS_nG;
4614 		}
4615 		/*
4616 		 * If we got called from prefetch abort, then ftype will have
4617 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
4618 		 * the PTE.
4619 		 */
4620 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4621 			/*
4622 			 * Is this a mapping of an executable page?
4623 			 */
4624 			if ((pv->pv_flags & PVF_EXEC) == 0) {
4625 				pmap_release_page_lock(md);
4626 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4627 				    0, 0, 0, 0);
4628 				goto out;
4629 			}
4630 			/*
4631 			 * If we haven't synced the page, do so now.
4632 			 */
4633 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
4634 				UVMHIST_LOG(maphist, " ref emul: syncicache "
4635 				    "page #%#jx", pa, 0, 0, 0);
4636 				pmap_syncicache_page(md, pa);
4637 				PMAPCOUNT(fixup_exec);
4638 			}
4639 			npte &= ~L2_XS_XN;
4640 		}
4641 #endif /* ARM_MMU_EXTENDED */
4642 		pmap_release_page_lock(md);
4643 		l2pte_reset(ptep);
4644 		PTE_SYNC(ptep);
4645 		pmap_tlb_flush_SE(pm, va,
4646 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4647 		l2pte_set(ptep, npte, 0);
4648 		PTE_SYNC(ptep);
4649 		PMAPCOUNT(fixup_ref);
4650 		rv = 1;
4651 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4652 		    "%#jx to %#jx)", opte, npte, 0, 0);
4653 #ifdef ARM_MMU_EXTENDED
4654 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4655 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4656 		if (pg == NULL) {
4657 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4658 			goto out;
4659 		}
4660 
4661 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4662 
4663 		/* Get the current flags for this page. */
4664 		pmap_acquire_page_lock(md);
4665 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4666 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4667 			pmap_release_page_lock(md);
4668 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4669 			goto out;
4670 		}
4671 
4672 		/*
4673 		 * If we haven't synced the page, do so now.
4674 		 */
4675 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
4676 			UVMHIST_LOG(maphist, "syncicache page #%#jx",
4677 			    pa, 0, 0, 0);
4678 			pmap_syncicache_page(md, pa);
4679 		}
4680 		pmap_release_page_lock(md);
4681 		/*
4682 		 * Turn off no-execute.
4683 		 */
4684 		KASSERT(opte & L2_XS_nG);
4685 		l2pte_reset(ptep);
4686 		PTE_SYNC(ptep);
4687 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4688 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4689 		PTE_SYNC(ptep);
4690 		rv = 1;
4691 		PMAPCOUNT(fixup_exec);
4692 		UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4693 		    opte, opte & ~L2_XS_XN, 0, 0);
4694 #endif
4695 	}
4696 
4697 #ifndef ARM_MMU_EXTENDED
4698 	/*
4699 	 * We know there is a valid mapping here, so simply
4700 	 * fix up the L1 if necessary.
4701 	 */
4702 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4703 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4704 	if (*pdep != pde) {
4705 		l1pte_setone(pdep, pde);
4706 		PDE_SYNC(pdep);
4707 		rv = 1;
4708 		PMAPCOUNT(fixup_pdes);
4709 	}
4710 #endif
4711 
4712 #ifdef CPU_SA110
4713 	/*
4714 	 * There are bugs in the rev K SA110.  This is a check for one
4715 	 * of them.
4716 	 */
4717 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4718 	    curcpu()->ci_arm_cpurev < 3) {
4719 		/* Always current pmap */
4720 		if (l2pte_valid_p(opte)) {
4721 			extern int kernel_debug;
4722 			if (kernel_debug & 1) {
4723 				struct proc *p = curlwp->l_proc;
4724 				printf("prefetch_abort: page is already "
4725 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
4726 				printf("prefetch_abort: pc=%08lx proc=%p "
4727 				    "process=%s\n", va, p, p->p_comm);
4728 				printf("prefetch_abort: far=%08x fs=%x\n",
4729 				    cpu_faultaddress(), cpu_faultstatus());
4730 			}
4731 #ifdef DDB
4732 			if (kernel_debug & 2)
4733 				Debugger();
4734 #endif
4735 			rv = 1;
4736 		}
4737 	}
4738 #endif /* CPU_SA110 */
4739 
4740 #ifndef ARM_MMU_EXTENDED
4741 	/*
4742 	 * If 'rv == 0' at this point, it generally indicates that there is a
4743 	 * stale TLB entry for the faulting address.  That might be due to a
4744 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
4745 	 */
4746 	if (rv == 0
4747 	    && pm->pm_l1->l1_domain_use_count == 1
4748 	    && pmap_needs_pte_sync == 0) {
4749 		pmap_needs_pte_sync = 1;
4750 		PTE_SYNC(ptep);
4751 		PMAPCOUNT(fixup_ptesync);
4752 		rv = 1;
4753 	}
4754 #endif
4755 
4756 #ifndef MULTIPROCESSOR
4757 #if defined(DEBUG) || 1
4758 	/*
4759 	 * If 'rv == 0' at this point, it generally indicates that there is a
4760 	 * stale TLB entry for the faulting address. This happens when two or
4761 	 * more processes are sharing an L1. Since we don't flush the TLB on
4762 	 * a context switch between such processes, we can take domain faults
4763 	 * for mappings which exist at the same VA in both processes. EVEN IF
4764 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4765 	 * example.
4766 	 *
4767 	 * This is extremely likely to happen if pmap_enter() updated the L1
4768 	 * entry for a recently entered mapping. In this case, the TLB is
4769 	 * flushed for the new mapping, but there may still be TLB entries for
4770 	 * other mappings belonging to other processes in the 1MB range
4771 	 * covered by the L1 entry.
4772 	 *
4773 	 * Since 'rv == 0', we know that the L1 already contains the correct
4774 	 * value, so the fault must be due to a stale TLB entry.
4775 	 *
4776 	 * Since we always need to flush the TLB anyway in the case where we
4777 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4778 	 * stale TLB entries dynamically.
4779 	 *
4780 	 * However, the above condition can ONLY happen if the current L1 is
4781 	 * being shared. If it happens when the L1 is unshared, it indicates
4782 	 * that other parts of the pmap are not doing their job WRT managing
4783 	 * the TLB.
4784 	 */
4785 	if (rv == 0
4786 #ifndef ARM_MMU_EXTENDED
4787 	    && pm->pm_l1->l1_domain_use_count == 1
4788 #endif
4789 	    && true) {
4790 #ifdef DEBUG
4791 		extern int last_fault_code;
4792 #else
4793 		int last_fault_code = ftype & VM_PROT_EXECUTE
4794 		    ? armreg_ifsr_read()
4795 		    : armreg_dfsr_read();
4796 #endif
4797 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4798 		    pm, va, ftype);
4799 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4800 		    l2, l2b, ptep, opte);
4801 
4802 #ifndef ARM_MMU_EXTENDED
4803 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4804 		    pdep, pde, last_fault_code);
4805 #else
4806 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4807 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4808 		   armreg_ttbcr_read());
4809 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4810 		    last_fault_code, curcpu()->ci_pmap_cur,
4811 		    curcpu()->ci_pmap_asid_cur,
4812 		    armreg_contextidr_read(), armreg_dacr_read());
4813 #ifdef _ARM_ARCH_7
4814 		if (ftype & VM_PROT_WRITE)
4815 			armreg_ats1cuw_write(va);
4816 		else
4817 			armreg_ats1cur_write(va);
4818 		isb();
4819 		printf("fixup: par %#x\n", armreg_par_read());
4820 #endif
4821 #endif
4822 #ifdef DDB
4823 		extern int kernel_debug;
4824 
4825 		if (kernel_debug & 2) {
4826 			pmap_release_pmap_lock(pm);
4827 #ifdef UVMHIST
4828 			KERNHIST_DUMP(maphist);
4829 #endif
4830 			cpu_Debugger();
4831 			pmap_acquire_pmap_lock(pm);
4832 		}
4833 #endif
4834 	}
4835 #endif
4836 #endif
4837 
4838 #ifndef ARM_MMU_EXTENDED
4839 	/* Flush the TLB in the shared L1 case - see comment above */
4840 	pmap_tlb_flush_SE(pm, va,
4841 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4842 #endif
4843 
4844 	rv = 1;
4845 
4846 out:
4847 	pmap_release_pmap_lock(pm);
4848 	kpreempt_enable();
4849 
4850 	return rv;
4851 }
4852 
4853 /*
4854  * Routine:	pmap_procwr
4855  *
4856  * Function:
4857  *	Synchronize caches corresponding to [addr, addr+len) in p.
4858  *
4859  */
4860 void
pmap_procwr(struct proc * p,vaddr_t va,int len)4861 pmap_procwr(struct proc *p, vaddr_t va, int len)
4862 {
4863 #ifndef ARM_MMU_EXTENDED
4864 
4865 	/* We only need to do anything if it is the current process. */
4866 	if (p == curproc)
4867 		cpu_icache_sync_range(va, len);
4868 #endif
4869 }
4870 
4871 /*
4872  * Routine:	pmap_unwire
4873  * Function:	Clear the wired attribute for a map/virtual-address pair.
4874  *
4875  * In/out conditions:
4876  *		The mapping must already exist in the pmap.
4877  */
4878 void
pmap_unwire(pmap_t pm,vaddr_t va)4879 pmap_unwire(pmap_t pm, vaddr_t va)
4880 {
4881 	struct l2_bucket *l2b;
4882 	pt_entry_t *ptep, pte;
4883 	struct vm_page *pg;
4884 	paddr_t pa;
4885 
4886 	UVMHIST_FUNC(__func__);
4887 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4888 
4889 	kpreempt_disable();
4890 	pmap_acquire_pmap_lock(pm);
4891 
4892 	l2b = pmap_get_l2_bucket(pm, va);
4893 	KDASSERT(l2b != NULL);
4894 
4895 	ptep = &l2b->l2b_kva[l2pte_index(va)];
4896 	pte = *ptep;
4897 
4898 	/* Extract the physical address of the page */
4899 	pa = l2pte_pa(pte);
4900 
4901 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4902 		/* Update the wired bit in the pv entry for this page. */
4903 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4904 
4905 		pmap_acquire_page_lock(md);
4906 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4907 		pmap_release_page_lock(md);
4908 	}
4909 
4910 	pmap_release_pmap_lock(pm);
4911 	kpreempt_enable();
4912 
4913 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4914 }
4915 
4916 #ifdef ARM_MMU_EXTENDED
4917 void
pmap_md_pdetab_activate(pmap_t pm,struct lwp * l)4918 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4919 {
4920 	UVMHIST_FUNC(__func__);
4921 	struct cpu_info * const ci = curcpu();
4922 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4923 
4924 	UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4925 	    (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4926 
4927 	/*
4928 	 * Assume that TTBR1 has only global mappings and TTBR0 only
4929 	 * has non-global mappings.  To prevent speculation from doing
4930 	 * evil things we disable translation table walks using TTBR0
4931 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4932 	 * Once both are set, table walks are reenabled.
4933 	 */
4934 	const uint32_t old_ttbcr = armreg_ttbcr_read();
4935 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4936 	isb();
4937 
4938 	pmap_tlb_asid_acquire(pm, l);
4939 
4940 	cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4941 	/*
4942 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4943 	 * have been updated.
4944 	 */
4945 	isb();
4946 
4947 	if (pm != pmap_kernel()) {
4948 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4949 	}
4950 	cpu_cpwait();
4951 
4952 	KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4953 	    ci->ci_pmap_asid_cur, pai->pai_asid);
4954 	ci->ci_pmap_cur = pm;
4955 }
4956 
4957 void
pmap_md_pdetab_deactivate(pmap_t pm)4958 pmap_md_pdetab_deactivate(pmap_t pm)
4959 {
4960 
4961 	UVMHIST_FUNC(__func__);
4962 	UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4963 
4964 	kpreempt_disable();
4965 	struct cpu_info * const ci = curcpu();
4966 	/*
4967 	 * Disable translation table walks from TTBR0 while no pmap has been
4968 	 * activated.
4969 	 */
4970 	const uint32_t old_ttbcr = armreg_ttbcr_read();
4971 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4972 	isb();
4973 	pmap_tlb_asid_deactivate(pm);
4974 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4975 	isb();
4976 
4977 	ci->ci_pmap_cur = pmap_kernel();
4978 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4979 	    ci->ci_pmap_asid_cur);
4980 	kpreempt_enable();
4981 }
4982 #endif
4983 
4984 
4985 #if defined(EFI_RUNTIME)
4986 void
pmap_activate_efirt(void)4987 pmap_activate_efirt(void)
4988 {
4989 	struct pmap * const pm = &efirt_pmap;
4990 
4991 	UVMHIST_FUNC(__func__);
4992 	UVMHIST_CALLARGS(maphist, " (pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
4993 
4994 	KASSERT(kpreempt_disabled());
4995 
4996 	struct cpu_info * const ci = curcpu();
4997 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4998 
4999 	PMAPCOUNT(activations);
5000 
5001 	/*
5002 	 * Assume that TTBR1 has only global mappings and TTBR0 only
5003 	 * has non-global mappings.  To prevent speculation from doing
5004 	 * evil things we disable translation table walks using TTBR0
5005 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
5006 	 * Once both are set, table walks are reenabled.
5007 	 */
5008 	const uint32_t old_ttbcr = armreg_ttbcr_read();
5009 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
5010 	isb();
5011 
5012 	armreg_contextidr_write(pai->pai_asid);
5013 	armreg_ttbr_write(pm->pm_l1_pa |
5014 	    (ci->ci_mpidr ? TTBR_MPATTR : TTBR_UPATTR));
5015 	/*
5016 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
5017 	 * have been updated.
5018 	 */
5019 	isb();
5020 
5021 	armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
5022 
5023 	ci->ci_pmap_asid_cur = pai->pai_asid;
5024 	ci->ci_pmap_cur = pm;
5025 
5026 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5027 }
5028 
5029 #endif
5030 
5031 
5032 void
pmap_activate(struct lwp * l)5033 pmap_activate(struct lwp *l)
5034 {
5035 	extern int block_userspace_access;
5036 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
5037 
5038 	UVMHIST_FUNC(__func__);
5039 	UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
5040 	    (uintptr_t)npm, 0, 0);
5041 
5042 #ifdef ARM_MMU_EXTENDED
5043 	KASSERT(kpreempt_disabled());
5044 #endif
5045 
5046 	struct cpu_info * const ci = curcpu();
5047 
5048 	/*
5049 	 * If activating a non-current lwp or the current lwp is
5050 	 * already active, just return.
5051 	 */
5052 	if (false
5053 	    || l != curlwp
5054 #ifdef ARM_MMU_EXTENDED
5055 	    || (ci->ci_pmap_cur == npm &&
5056 		(npm == pmap_kernel()
5057 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
5058 #else
5059 	    || npm->pm_activated == true
5060 #endif
5061 	    || false) {
5062 		UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
5063 		    (uintptr_t)l, 0, 0);
5064 		return;
5065 	}
5066 
5067 #ifndef ARM_MMU_EXTENDED
5068 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
5069 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
5070 
5071 	/*
5072 	 * If TTB and DACR are unchanged, short-circuit all the
5073 	 * TLB/cache management stuff.
5074 	 */
5075 	pmap_t opm = ci->ci_lastlwp
5076 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
5077 	    : NULL;
5078 	if (opm != NULL) {
5079 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
5080 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
5081 
5082 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
5083 			goto all_done;
5084 	}
5085 #endif /* !ARM_MMU_EXTENDED */
5086 
5087 	PMAPCOUNT(activations);
5088 	block_userspace_access = 1;
5089 
5090 #ifndef ARM_MMU_EXTENDED
5091 	/*
5092 	 * If switching to a user vmspace which is different to the
5093 	 * most recent one, and the most recent one is potentially
5094 	 * live in the cache, we must write-back and invalidate the
5095 	 * entire cache.
5096 	 */
5097 	pmap_t rpm = ci->ci_pmap_lastuser;
5098 
5099 	/*
5100 	 * XXXSCW: There's a corner case here which can leave turds in the
5101 	 * cache as reported in kern/41058. They're probably left over during
5102 	 * tear-down and switching away from an exiting process. Until the root
5103 	 * cause is identified and fixed, zap the cache when switching pmaps.
5104 	 * This will result in a few unnecessary cache flushes, but that's
5105 	 * better than silently corrupting data.
5106 	 */
5107 #if 0
5108 	if (npm != pmap_kernel() && rpm && npm != rpm &&
5109 	    rpm->pm_cstate.cs_cache) {
5110 		rpm->pm_cstate.cs_cache = 0;
5111 #ifdef PMAP_CACHE_VIVT
5112 		cpu_idcache_wbinv_all();
5113 #endif
5114 	}
5115 #else
5116 	if (rpm) {
5117 		rpm->pm_cstate.cs_cache = 0;
5118 		if (npm == pmap_kernel())
5119 			ci->ci_pmap_lastuser = NULL;
5120 #ifdef PMAP_CACHE_VIVT
5121 		cpu_idcache_wbinv_all();
5122 #endif
5123 	}
5124 #endif
5125 
5126 	/* No interrupts while we frob the TTB/DACR */
5127 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
5128 #endif /* !ARM_MMU_EXTENDED */
5129 
5130 #ifndef ARM_HAS_VBAR
5131 	/*
5132 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5133 	 * entry corresponding to 'vector_page' in the incoming L1 table
5134 	 * before switching to it otherwise subsequent interrupts/exceptions
5135 	 * (including domain faults!) will jump into hyperspace.
5136 	 */
5137 	if (npm->pm_pl1vec != NULL) {
5138 		cpu_tlb_flushID_SE((u_int)vector_page);
5139 		cpu_cpwait();
5140 		*npm->pm_pl1vec = npm->pm_l1vec;
5141 		PTE_SYNC(npm->pm_pl1vec);
5142 	}
5143 #endif
5144 
5145 #ifdef ARM_MMU_EXTENDED
5146 	pmap_md_pdetab_activate(npm, l);
5147 #else
5148 	cpu_domains(ndacr);
5149 	if (npm == pmap_kernel() || npm == rpm) {
5150 		/*
5151 		 * Switching to a kernel thread, or back to the
5152 		 * same user vmspace as before... Simply update
5153 		 * the TTB (no TLB flush required)
5154 		 */
5155 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
5156 		cpu_cpwait();
5157 	} else {
5158 		/*
5159 		 * Otherwise, update TTB and flush TLB
5160 		 */
5161 		cpu_context_switch(npm->pm_l1->l1_physaddr);
5162 		if (rpm != NULL)
5163 			rpm->pm_cstate.cs_tlb = 0;
5164 	}
5165 
5166 	restore_interrupts(oldirqstate);
5167 #endif /* ARM_MMU_EXTENDED */
5168 
5169 	block_userspace_access = 0;
5170 
5171 #ifndef ARM_MMU_EXTENDED
5172  all_done:
5173 	/*
5174 	 * The new pmap is resident. Make sure it's marked
5175 	 * as resident in the cache/TLB.
5176 	 */
5177 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5178 	if (npm != pmap_kernel())
5179 		ci->ci_pmap_lastuser = npm;
5180 
5181 	/* The old pmap is not longer active */
5182 	if (opm != npm) {
5183 		if (opm != NULL)
5184 			opm->pm_activated = false;
5185 
5186 		/* But the new one is */
5187 		npm->pm_activated = true;
5188 	}
5189 	ci->ci_pmap_cur = npm;
5190 #endif
5191 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5192 }
5193 
5194 
5195 void
pmap_deactivate(struct lwp * l)5196 pmap_deactivate(struct lwp *l)
5197 {
5198 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5199 
5200 	UVMHIST_FUNC(__func__);
5201 	UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5202 		(uintptr_t)pm, 0, 0);
5203 
5204 #ifdef ARM_MMU_EXTENDED
5205 	KASSERT(kpreempt_disabled());
5206 	pmap_md_pdetab_deactivate(pm);
5207 #else
5208 	/*
5209 	 * If the process is exiting, make sure pmap_activate() does
5210 	 * a full MMU context-switch and cache flush, which we might
5211 	 * otherwise skip. See PR port-arm/38950.
5212 	 */
5213 	if (l->l_proc->p_sflag & PS_WEXIT)
5214 		curcpu()->ci_lastlwp = NULL;
5215 
5216 	pm->pm_activated = false;
5217 #endif
5218 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5219 }
5220 
5221 
5222 #if defined(EFI_RUNTIME)
5223 void
pmap_deactivate_efirt(void)5224 pmap_deactivate_efirt(void)
5225 {
5226 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
5227 
5228 	KASSERT(kpreempt_disabled());
5229 	struct cpu_info * const ci = curcpu();
5230 
5231 	/*
5232 	 * Disable translation table walks from TTBR0 while no pmap has been
5233 	 * activated.
5234 	 */
5235 	const uint32_t old_ttbcr = armreg_ttbcr_read();
5236 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
5237 	isb();
5238 
5239 	armreg_contextidr_write(KERNEL_PID);
5240 	isb();
5241 
5242 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
5243 	    ci->ci_pmap_asid_cur);
5244 
5245 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5246 }
5247 #endif
5248 
5249 
5250 void
pmap_update(pmap_t pm)5251 pmap_update(pmap_t pm)
5252 {
5253 
5254 	UVMHIST_FUNC(__func__);
5255 	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5256 	    pm->pm_remove_all, 0, 0);
5257 
5258 #ifndef ARM_MMU_EXTENDED
5259 	if (pm->pm_remove_all) {
5260 		/*
5261 		 * Finish up the pmap_remove_all() optimisation by flushing
5262 		 * the TLB.
5263 		 */
5264 		pmap_tlb_flushID(pm);
5265 		pm->pm_remove_all = false;
5266 	}
5267 
5268 	if (pmap_is_current(pm)) {
5269 		/*
5270 		 * If we're dealing with a current userland pmap, move its L1
5271 		 * to the end of the LRU.
5272 		 */
5273 		if (pm != pmap_kernel())
5274 			pmap_use_l1(pm);
5275 
5276 		/*
5277 		 * We can assume we're done with frobbing the cache/tlb for
5278 		 * now. Make sure any future pmap ops don't skip cache/tlb
5279 		 * flushes.
5280 		 */
5281 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5282 	}
5283 #else
5284 
5285 	kpreempt_disable();
5286 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5287 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5288 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5289 		PMAP_COUNT(shootdown_ipis);
5290 	}
5291 #endif
5292 
5293 	/*
5294 	 * If pmap_remove_all was called, we deactivated ourselves and released
5295 	 * our ASID.  Now we have to reactivate ourselves.
5296 	 */
5297 	if (__predict_false(pm->pm_remove_all)) {
5298 		pm->pm_remove_all = false;
5299 
5300 		KASSERT(pm != pmap_kernel());
5301 		pmap_md_pdetab_activate(pm, curlwp);
5302 	}
5303 
5304 	if (arm_has_mpext_p)
5305 		armreg_bpiallis_write(0);
5306 	else
5307 		armreg_bpiall_write(0);
5308 
5309 	kpreempt_enable();
5310 
5311 	KASSERTMSG(pm == pmap_kernel()
5312 	    || curcpu()->ci_pmap_cur != pm
5313 	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5314 	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5315 	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5316 	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5317 #endif
5318 
5319 	PMAPCOUNT(updates);
5320 
5321 	/*
5322 	 * make sure TLB/cache operations have completed.
5323 	 */
5324 	cpu_cpwait();
5325 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5326 }
5327 
5328 bool
pmap_remove_all(pmap_t pm)5329 pmap_remove_all(pmap_t pm)
5330 {
5331 
5332 	UVMHIST_FUNC(__func__);
5333 	UVMHIST_CALLARGS(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
5334 
5335 	KASSERT(pm != pmap_kernel());
5336 
5337 	kpreempt_disable();
5338 	/*
5339 	 * The vmspace described by this pmap is about to be torn down.
5340 	 * Until pmap_update() is called, UVM will only make calls
5341 	 * to pmap_remove(). We can make life much simpler by flushing
5342 	 * the cache now, and deferring TLB invalidation to pmap_update().
5343 	 */
5344 #ifdef PMAP_CACHE_VIVT
5345 	pmap_cache_wbinv_all(pm, PVF_EXEC);
5346 #endif
5347 #ifdef ARM_MMU_EXTENDED
5348 #ifdef MULTIPROCESSOR
5349 	struct cpu_info * const ci = curcpu();
5350 	// This should be the last CPU with this pmap onproc
5351 	KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5352 	if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5353 #endif
5354 		pmap_tlb_asid_deactivate(pm);
5355 #ifdef MULTIPROCESSOR
5356 	KASSERT(kcpuset_iszero(pm->pm_onproc));
5357 #endif
5358 
5359 	pmap_tlb_asid_release_all(pm);
5360 #endif
5361 	pm->pm_remove_all = true;
5362 	kpreempt_enable();
5363 
5364 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5365 	return false;
5366 }
5367 
5368 /*
5369  * Retire the given physical map from service.
5370  * Should only be called if the map contains no valid mappings.
5371  */
5372 void
pmap_destroy(pmap_t pm)5373 pmap_destroy(pmap_t pm)
5374 {
5375 	UVMHIST_FUNC(__func__);
5376 	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5377 	    pm ? pm->pm_remove_all : 0, 0, 0);
5378 
5379 	if (pm == NULL)
5380 		return;
5381 
5382 	if (pm->pm_remove_all) {
5383 #ifdef ARM_MMU_EXTENDED
5384  		pmap_tlb_asid_release_all(pm);
5385 #else
5386 		pmap_tlb_flushID(pm);
5387 #endif
5388 		pm->pm_remove_all = false;
5389 	}
5390 
5391 	/*
5392 	 * Drop reference count
5393 	 */
5394 	membar_release();
5395 	if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5396 #ifndef ARM_MMU_EXTENDED
5397 		if (pmap_is_current(pm)) {
5398 			if (pm != pmap_kernel())
5399 				pmap_use_l1(pm);
5400 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5401 		}
5402 #endif
5403 		return;
5404 	}
5405 	membar_acquire();
5406 
5407 	/*
5408 	 * reference count is zero, free pmap resources and then free pmap.
5409 	 */
5410 
5411 #ifndef ARM_HAS_VBAR
5412 	if (vector_page < KERNEL_BASE) {
5413 		KDASSERT(!pmap_is_current(pm));
5414 
5415 		/* Remove the vector page mapping */
5416 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5417 		pmap_update(pm);
5418 	}
5419 #endif
5420 
5421 	pmap_free_l1(pm);
5422 
5423 #ifdef ARM_MMU_EXTENDED
5424 #ifdef MULTIPROCESSOR
5425 	kcpuset_destroy(pm->pm_active);
5426 	kcpuset_destroy(pm->pm_onproc);
5427 #endif
5428 #else
5429 	struct cpu_info * const ci = curcpu();
5430 	if (ci->ci_pmap_lastuser == pm)
5431 		ci->ci_pmap_lastuser = NULL;
5432 #endif
5433 
5434 	mutex_destroy(&pm->pm_lock);
5435 	pool_cache_put(&pmap_cache, pm);
5436 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5437 }
5438 
5439 
5440 /*
5441  * void pmap_reference(pmap_t pm)
5442  *
5443  * Add a reference to the specified pmap.
5444  */
5445 void
pmap_reference(pmap_t pm)5446 pmap_reference(pmap_t pm)
5447 {
5448 
5449 	if (pm == NULL)
5450 		return;
5451 
5452 #ifndef ARM_MMU_EXTENDED
5453 	pmap_use_l1(pm);
5454 #endif
5455 
5456 	atomic_inc_uint(&pm->pm_refs);
5457 }
5458 
5459 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5460 
5461 static struct evcnt pmap_prefer_nochange_ev =
5462     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5463 static struct evcnt pmap_prefer_change_ev =
5464     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5465 
5466 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5467 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5468 
5469 void
pmap_prefer(vaddr_t hint,vaddr_t * vap,int td)5470 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5471 {
5472 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5473 	vaddr_t va = *vap;
5474 	vaddr_t diff = (hint - va) & mask;
5475 	if (diff == 0) {
5476 		pmap_prefer_nochange_ev.ev_count++;
5477 	} else {
5478 		pmap_prefer_change_ev.ev_count++;
5479 		if (__predict_false(td))
5480 			va -= mask + 1;
5481 		*vap = va + diff;
5482 	}
5483 }
5484 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5485 
5486 /*
5487  * pmap_zero_page()
5488  *
5489  * Zero a given physical page by mapping it at a page hook point.
5490  * In doing the zero page op, the page we zero is mapped cachable, as with
5491  * StrongARM accesses to non-cached pages are non-burst making writing
5492  * _any_ bulk data very slow.
5493  */
5494 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5495 void
pmap_zero_page_generic(paddr_t pa)5496 pmap_zero_page_generic(paddr_t pa)
5497 {
5498 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5499 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5500 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5501 #endif
5502 #if defined(PMAP_CACHE_VIPT)
5503 	/* Choose the last page color it had, if any */
5504 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5505 #else
5506 	const vsize_t va_offset = 0;
5507 #endif
5508 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5509 	/*
5510 	 * Is this page mapped at its natural color?
5511 	 * If we have all of memory mapped, then just convert PA to VA.
5512 	 */
5513 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5514 	   || va_offset == (pa & arm_cache_prefer_mask);
5515 	const vaddr_t vdstp = okcolor
5516 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5517 	    : cpu_cdstp(va_offset);
5518 #else
5519 	const bool okcolor = false;
5520 	const vaddr_t vdstp = cpu_cdstp(va_offset);
5521 #endif
5522 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5523 
5524 
5525 #ifdef DEBUG
5526 	if (!SLIST_EMPTY(&md->pvh_list))
5527 		panic("pmap_zero_page: page has mappings");
5528 #endif
5529 
5530 	KDASSERT((pa & PGOFSET) == 0);
5531 
5532 	if (!okcolor) {
5533 		/*
5534 		 * Hook in the page, zero it, and purge the cache for that
5535 		 * zeroed page. Invalidate the TLB as needed.
5536 		 */
5537 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5538 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5539 		l2pte_set(ptep, npte, 0);
5540 		PTE_SYNC(ptep);
5541 		cpu_tlb_flushD_SE(vdstp);
5542 		cpu_cpwait();
5543 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5544     && !defined(ARM_MMU_EXTENDED)
5545 		/*
5546 		 * If we are direct-mapped and our color isn't ok, then before
5547 		 * we bzero the page invalidate its contents from the cache and
5548 		 * reset the color to its natural color.
5549 		 */
5550 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5551 		md->pvh_attrs &= ~arm_cache_prefer_mask;
5552 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5553 #endif
5554 	}
5555 	bzero_page(vdstp);
5556 	if (!okcolor) {
5557 		/*
5558 		 * Unmap the page.
5559 		 */
5560 		l2pte_reset(ptep);
5561 		PTE_SYNC(ptep);
5562 		cpu_tlb_flushD_SE(vdstp);
5563 #ifdef PMAP_CACHE_VIVT
5564 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5565 #endif
5566 	}
5567 #ifdef PMAP_CACHE_VIPT
5568 	/*
5569 	 * This page is now cache resident so it now has a page color.
5570 	 * Any contents have been obliterated so clear the EXEC flag.
5571 	 */
5572 #ifndef ARM_MMU_EXTENDED
5573 	if (!pmap_is_page_colored_p(md)) {
5574 		PMAPCOUNT(vac_color_new);
5575 		md->pvh_attrs |= PVF_COLORED;
5576 	}
5577 	md->pvh_attrs |= PVF_DIRTY;
5578 #endif
5579 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
5580 		md->pvh_attrs &= ~PVF_EXEC;
5581 		PMAPCOUNT(exec_discarded_zero);
5582 	}
5583 #endif
5584 }
5585 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5586 
5587 #if ARM_MMU_XSCALE == 1
5588 void
pmap_zero_page_xscale(paddr_t pa)5589 pmap_zero_page_xscale(paddr_t pa)
5590 {
5591 #ifdef DEBUG
5592 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5593 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5594 
5595 	if (!SLIST_EMPTY(&md->pvh_list))
5596 		panic("pmap_zero_page: page has mappings");
5597 #endif
5598 
5599 	KDASSERT((pa & PGOFSET) == 0);
5600 
5601 	/*
5602 	 * Hook in the page, zero it, and purge the cache for that
5603 	 * zeroed page. Invalidate the TLB as needed.
5604 	 */
5605 
5606 	pt_entry_t npte = L2_S_PROTO | pa |
5607 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5608 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5609 	l2pte_set(cdst_pte, npte, 0);
5610 	PTE_SYNC(cdst_pte);
5611 	cpu_tlb_flushD_SE(cdstp);
5612 	cpu_cpwait();
5613 	bzero_page(cdstp);
5614 	xscale_cache_clean_minidata();
5615 	l2pte_reset(cdst_pte);
5616 	PTE_SYNC(cdst_pte);
5617 }
5618 #endif /* ARM_MMU_XSCALE == 1 */
5619 
5620 /* pmap_pageidlezero()
5621  *
5622  * The same as above, except that we assume that the page is not
5623  * mapped.  This means we never have to flush the cache first.  Called
5624  * from the idle loop.
5625  */
5626 bool
pmap_pageidlezero(paddr_t pa)5627 pmap_pageidlezero(paddr_t pa)
5628 {
5629 	bool rv = true;
5630 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5631 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5632 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5633 #endif
5634 #ifdef PMAP_CACHE_VIPT
5635 	/* Choose the last page color it had, if any */
5636 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5637 #else
5638 	const vsize_t va_offset = 0;
5639 #endif
5640 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5641 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5642 	   || va_offset == (pa & arm_cache_prefer_mask);
5643 	const vaddr_t vdstp = okcolor
5644 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5645 	    : cpu_cdstp(va_offset);
5646 #else
5647 	const bool okcolor = false;
5648 	const vaddr_t vdstp = cpu_cdstp(va_offset);
5649 #endif
5650 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5651 
5652 
5653 #ifdef DEBUG
5654 	if (!SLIST_EMPTY(&md->pvh_list))
5655 		panic("pmap_pageidlezero: page has mappings");
5656 #endif
5657 
5658 	KDASSERT((pa & PGOFSET) == 0);
5659 
5660 	if (!okcolor) {
5661 		/*
5662 		 * Hook in the page, zero it, and purge the cache for that
5663 		 * zeroed page. Invalidate the TLB as needed.
5664 		 */
5665 		const pt_entry_t npte = L2_S_PROTO | pa |
5666 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5667 		l2pte_set(ptep, npte, 0);
5668 		PTE_SYNC(ptep);
5669 		cpu_tlb_flushD_SE(vdstp);
5670 		cpu_cpwait();
5671 	}
5672 
5673 	uint64_t *ptr = (uint64_t *)vdstp;
5674 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5675 		if (sched_curcpu_runnable_p() != 0) {
5676 			/*
5677 			 * A process has become ready.  Abort now,
5678 			 * so we don't keep it waiting while we
5679 			 * do slow memory access to finish this
5680 			 * page.
5681 			 */
5682 			rv = false;
5683 			break;
5684 		}
5685 		*ptr++ = 0;
5686 	}
5687 
5688 #ifdef PMAP_CACHE_VIVT
5689 	if (rv)
5690 		/*
5691 		 * if we aborted we'll rezero this page again later so don't
5692 		 * purge it unless we finished it
5693 		 */
5694 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5695 #elif defined(PMAP_CACHE_VIPT)
5696 	/*
5697 	 * This page is now cache resident so it now has a page color.
5698 	 * Any contents have been obliterated so clear the EXEC flag.
5699 	 */
5700 #ifndef ARM_MMU_EXTENDED
5701 	if (!pmap_is_page_colored_p(md)) {
5702 		PMAPCOUNT(vac_color_new);
5703 		md->pvh_attrs |= PVF_COLORED;
5704 	}
5705 #endif
5706 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
5707 		md->pvh_attrs &= ~PVF_EXEC;
5708 		PMAPCOUNT(exec_discarded_zero);
5709 	}
5710 #endif
5711 	/*
5712 	 * Unmap the page.
5713 	 */
5714 	if (!okcolor) {
5715 		l2pte_reset(ptep);
5716 		PTE_SYNC(ptep);
5717 		cpu_tlb_flushD_SE(vdstp);
5718 	}
5719 
5720 	return rv;
5721 }
5722 
5723 /*
5724  * pmap_copy_page()
5725  *
5726  * Copy one physical page into another, by mapping the pages into
5727  * hook points. The same comment regarding cachability as in
5728  * pmap_zero_page also applies here.
5729  */
5730 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5731 void
pmap_copy_page_generic(paddr_t src,paddr_t dst)5732 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5733 {
5734 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5735 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5736 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5737 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5738 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5739 #endif
5740 #ifdef PMAP_CACHE_VIPT
5741 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5742 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5743 #else
5744 	const vsize_t src_va_offset = 0;
5745 	const vsize_t dst_va_offset = 0;
5746 #endif
5747 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5748 	/*
5749 	 * Is this page mapped at its natural color?
5750 	 * If we have all of memory mapped, then just convert PA to VA.
5751 	 */
5752 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5753 	    || src_va_offset == (src & arm_cache_prefer_mask);
5754 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5755 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
5756 	const vaddr_t vsrcp = src_okcolor
5757 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
5758 		cpu_csrcp(src_va_offset))
5759 	    : cpu_csrcp(src_va_offset);
5760 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5761 	    cpu_cdstp(dst_va_offset));
5762 #else
5763 	const bool src_okcolor = false;
5764 	const bool dst_okcolor = false;
5765 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5766 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5767 #endif
5768 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5769 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5770 
5771 #ifdef DEBUG
5772 	if (!SLIST_EMPTY(&dst_md->pvh_list))
5773 		panic("pmap_copy_page: dst page has mappings");
5774 #endif
5775 
5776 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5777 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5778 #endif
5779 	KDASSERT((src & PGOFSET) == 0);
5780 	KDASSERT((dst & PGOFSET) == 0);
5781 
5782 	/*
5783 	 * Clean the source page.  Hold the source page's lock for
5784 	 * the duration of the copy so that no other mappings can
5785 	 * be created while we have a potentially aliased mapping.
5786 	 */
5787 #ifdef PMAP_CACHE_VIVT
5788 	pmap_acquire_page_lock(src_md);
5789 	(void) pmap_clean_page(src_md, true);
5790 	pmap_release_page_lock(src_md);
5791 #endif
5792 
5793 	/*
5794 	 * Map the pages into the page hook points, copy them, and purge
5795 	 * the cache for the appropriate page. Invalidate the TLB
5796 	 * as required.
5797 	 */
5798 	if (!src_okcolor) {
5799 		const pt_entry_t nsrc_pte = L2_S_PROTO
5800 		    | src
5801 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5802 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5803 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5804 		    | pte_l2_s_cache_mode
5805 #endif
5806 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5807 		l2pte_set(src_ptep, nsrc_pte, 0);
5808 		PTE_SYNC(src_ptep);
5809 		cpu_tlb_flushD_SE(vsrcp);
5810 		cpu_cpwait();
5811 	}
5812 	if (!dst_okcolor) {
5813 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5814 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5815 		l2pte_set(dst_ptep, ndst_pte, 0);
5816 		PTE_SYNC(dst_ptep);
5817 		cpu_tlb_flushD_SE(vdstp);
5818 		cpu_cpwait();
5819 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5820 		/*
5821 		 * If we are direct-mapped and our color isn't ok, then before
5822 		 * we bcopy to the new page invalidate its contents from the
5823 		 * cache and reset its color to its natural color.
5824 		 */
5825 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5826 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5827 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5828 #endif
5829 	}
5830 	bcopy_page(vsrcp, vdstp);
5831 #ifdef PMAP_CACHE_VIVT
5832 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5833 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5834 #endif
5835 	/*
5836 	 * Unmap the pages.
5837 	 */
5838 	if (!src_okcolor) {
5839 		l2pte_reset(src_ptep);
5840 		PTE_SYNC(src_ptep);
5841 		cpu_tlb_flushD_SE(vsrcp);
5842 		cpu_cpwait();
5843 	}
5844 	if (!dst_okcolor) {
5845 		l2pte_reset(dst_ptep);
5846 		PTE_SYNC(dst_ptep);
5847 		cpu_tlb_flushD_SE(vdstp);
5848 		cpu_cpwait();
5849 	}
5850 #ifdef PMAP_CACHE_VIPT
5851 	/*
5852 	 * Now that the destination page is in the cache, mark it as colored.
5853 	 * If this was an exec page, discard it.
5854 	 */
5855 	pmap_acquire_page_lock(dst_md);
5856 #ifndef ARM_MMU_EXTENDED
5857 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5858 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5859 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5860 	}
5861 	if (!pmap_is_page_colored_p(dst_md)) {
5862 		PMAPCOUNT(vac_color_new);
5863 		dst_md->pvh_attrs |= PVF_COLORED;
5864 	}
5865 	dst_md->pvh_attrs |= PVF_DIRTY;
5866 #endif
5867 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5868 		dst_md->pvh_attrs &= ~PVF_EXEC;
5869 		PMAPCOUNT(exec_discarded_copy);
5870 	}
5871 	pmap_release_page_lock(dst_md);
5872 #endif
5873 }
5874 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5875 
5876 #if ARM_MMU_XSCALE == 1
5877 void
pmap_copy_page_xscale(paddr_t src,paddr_t dst)5878 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5879 {
5880 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5881 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5882 #ifdef DEBUG
5883 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5884 
5885 	if (!SLIST_EMPTY(&dst_md->pvh_list))
5886 		panic("pmap_copy_page: dst page has mappings");
5887 #endif
5888 
5889 	KDASSERT((src & PGOFSET) == 0);
5890 	KDASSERT((dst & PGOFSET) == 0);
5891 
5892 	/*
5893 	 * Clean the source page.  Hold the source page's lock for
5894 	 * the duration of the copy so that no other mappings can
5895 	 * be created while we have a potentially aliased mapping.
5896 	 */
5897 #ifdef PMAP_CACHE_VIVT
5898 	pmap_acquire_page_lock(src_md);
5899 	(void) pmap_clean_page(src_md, true);
5900 	pmap_release_page_lock(src_md);
5901 #endif
5902 
5903 	/*
5904 	 * Map the pages into the page hook points, copy them, and purge
5905 	 * the cache for the appropriate page. Invalidate the TLB
5906 	 * as required.
5907 	 */
5908 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
5909 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5910 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5911 	l2pte_set(csrc_pte, nsrc_pte, 0);
5912 	PTE_SYNC(csrc_pte);
5913 
5914 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
5915 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5916 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5917 	l2pte_set(cdst_pte, ndst_pte, 0);
5918 	PTE_SYNC(cdst_pte);
5919 
5920 	cpu_tlb_flushD_SE(csrcp);
5921 	cpu_tlb_flushD_SE(cdstp);
5922 	cpu_cpwait();
5923 	bcopy_page(csrcp, cdstp);
5924 	xscale_cache_clean_minidata();
5925 	l2pte_reset(csrc_pte);
5926 	l2pte_reset(cdst_pte);
5927 	PTE_SYNC(csrc_pte);
5928 	PTE_SYNC(cdst_pte);
5929 }
5930 #endif /* ARM_MMU_XSCALE == 1 */
5931 
5932 /*
5933  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5934  *
5935  * Return the start and end addresses of the kernel's virtual space.
5936  * These values are setup in pmap_bootstrap and are updated as pages
5937  * are allocated.
5938  */
5939 void
pmap_virtual_space(vaddr_t * start,vaddr_t * end)5940 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5941 {
5942 	*start = virtual_avail;
5943 	*end = virtual_end;
5944 }
5945 
5946 /*
5947  * Helper function for pmap_grow_l2_bucket()
5948  */
5949 static inline int
pmap_grow_map(vaddr_t va,paddr_t * pap)5950 pmap_grow_map(vaddr_t va, paddr_t *pap)
5951 {
5952 	paddr_t pa;
5953 
5954 	KASSERT((va & PGOFSET) == 0);
5955 
5956 	if (uvm.page_init_done == false) {
5957 #ifdef PMAP_STEAL_MEMORY
5958 		pv_addr_t pv;
5959 		pmap_boot_pagealloc(PAGE_SIZE,
5960 #ifdef PMAP_CACHE_VIPT
5961 		    arm_cache_prefer_mask,
5962 		    va & arm_cache_prefer_mask,
5963 #else
5964 		    0, 0,
5965 #endif
5966 		    &pv);
5967 		pa = pv.pv_pa;
5968 #else
5969 		if (uvm_page_physget(&pa) == false)
5970 			return 1;
5971 #endif	/* PMAP_STEAL_MEMORY */
5972 	} else {
5973 		struct vm_page *pg;
5974 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5975 		if (pg == NULL)
5976 			return 1;
5977 		pa = VM_PAGE_TO_PHYS(pg);
5978 		/*
5979 		 * This new page must not have any mappings.
5980 		 */
5981 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5982 		KASSERT(SLIST_EMPTY(&md->pvh_list));
5983 	}
5984 
5985 	/*
5986 	 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5987 	 */
5988 	pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5989 	    PMAP_KMPAGE | PMAP_PTE);
5990 
5991 	if (pap)
5992 		*pap = pa;
5993 
5994 	PMAPCOUNT(pt_mappings);
5995 
5996 	const pmap_t kpm __diagused = pmap_kernel();
5997 	struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5998 	KASSERT(l2b != NULL);
5999 
6000 	pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
6001 	const pt_entry_t pte __diagused = *ptep;
6002 	KASSERT(l2pte_valid_p(pte));
6003 	KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
6004 
6005 	memset((void *)va, 0, PAGE_SIZE);
6006 
6007 	return 0;
6008 }
6009 
6010 /*
6011  * This is the same as pmap_alloc_l2_bucket(), except that it is only
6012  * used by pmap_growkernel().
6013  */
6014 static inline struct l2_bucket *
pmap_grow_l2_bucket(pmap_t pm,vaddr_t va)6015 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
6016 {
6017 	const size_t l1slot = l1pte_index(va);
6018 	struct l2_dtable *l2;
6019 	vaddr_t nva;
6020 
6021 	CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
6022 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6023 		/*
6024 		 * No mapping at this address, as there is
6025 		 * no entry in the L1 table.
6026 		 * Need to allocate a new l2_dtable.
6027 		 */
6028 		nva = pmap_kernel_l2dtable_kva;
6029 		if ((nva & PGOFSET) == 0) {
6030 			/*
6031 			 * Need to allocate a backing page
6032 			 */
6033 			if (pmap_grow_map(nva, NULL))
6034 				return NULL;
6035 		}
6036 
6037 		l2 = (struct l2_dtable *)nva;
6038 		nva += sizeof(struct l2_dtable);
6039 
6040 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
6041 			/*
6042 			 * The new l2_dtable straddles a page boundary.
6043 			 * Map in another page to cover it.
6044 			 */
6045 			if (pmap_grow_map(nva & ~PGOFSET, NULL))
6046 				return NULL;
6047 		}
6048 
6049 		pmap_kernel_l2dtable_kva = nva;
6050 
6051 		/*
6052 		 * Link it into the parent pmap
6053 		 */
6054 		pm->pm_l2[L2_IDX(l1slot)] = l2;
6055 	}
6056 
6057 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6058 
6059 	/*
6060 	 * Fetch pointer to the L2 page table associated with the address.
6061 	 */
6062 	if (l2b->l2b_kva == NULL) {
6063 		pt_entry_t *ptep;
6064 
6065 		/*
6066 		 * No L2 page table has been allocated. Chances are, this
6067 		 * is because we just allocated the l2_dtable, above.
6068 		 */
6069 		nva = pmap_kernel_l2ptp_kva;
6070 		ptep = (pt_entry_t *)nva;
6071 		if ((nva & PGOFSET) == 0) {
6072 			/*
6073 			 * Need to allocate a backing page
6074 			 */
6075 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
6076 				return NULL;
6077 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
6078 		}
6079 
6080 		l2->l2_occupancy++;
6081 		l2b->l2b_kva = ptep;
6082 		l2b->l2b_l1slot = l1slot;
6083 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
6084 
6085 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
6086 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
6087 	}
6088 
6089 	return l2b;
6090 }
6091 
6092 vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)6093 pmap_growkernel(vaddr_t maxkvaddr)
6094 {
6095 	UVMHIST_FUNC(__func__);
6096 	UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx",
6097 	    pmap_curmaxkvaddr, maxkvaddr, 0, 0);
6098 
6099 	pmap_t kpm = pmap_kernel();
6100 #ifndef ARM_MMU_EXTENDED
6101 	struct l1_ttable *l1;
6102 #endif
6103 	int s;
6104 
6105 	if (maxkvaddr <= pmap_curmaxkvaddr)
6106 		goto out;		/* we are OK */
6107 
6108 	KDASSERT(maxkvaddr <= virtual_end);
6109 
6110 	/*
6111 	 * whoops!   we need to add kernel PTPs
6112 	 */
6113 
6114 	vaddr_t pmap_maxkvaddr = pmap_curmaxkvaddr;
6115 
6116 	s = splvm();	/* to be safe */
6117 	mutex_enter(&kpm_lock);
6118 
6119 	/* Map 1MB at a time */
6120 	size_t l1slot = l1pte_index(pmap_maxkvaddr);
6121 #ifdef ARM_MMU_EXTENDED
6122 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
6123 	pd_entry_t *pdep = spdep;
6124 #endif
6125 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
6126 #ifdef ARM_MMU_EXTENDED
6127 	     pdep++,
6128 #endif
6129 	     l1slot++) {
6130 		struct l2_bucket *l2b =
6131 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
6132 		KASSERT(l2b != NULL);
6133 
6134 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
6135 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
6136 #ifdef ARM_MMU_EXTENDED
6137 		KASSERT(*pdep == 0);
6138 		l1pte_setone(pdep, npde);
6139 #else
6140 		/* Distribute new L1 entry to all L1s */
6141 		SLIST_FOREACH(l1, &l1_list, l1_link) {
6142 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
6143 			l1pte_setone(pdep, npde);
6144 			PDE_SYNC(pdep);
6145 		}
6146 #endif
6147 	}
6148 #ifdef ARM_MMU_EXTENDED
6149 	PDE_SYNC_RANGE(spdep, pdep - spdep);
6150 #endif
6151 
6152 #ifdef PMAP_CACHE_VIVT
6153 	/*
6154 	 * flush out the cache, expensive but growkernel will happen so
6155 	 * rarely
6156 	 */
6157 	cpu_dcache_wbinv_all();
6158 	cpu_tlb_flushD();
6159 	cpu_cpwait();
6160 #endif
6161 
6162 	mutex_exit(&kpm_lock);
6163 	splx(s);
6164 
6165 	kasan_shadow_map((void *)pmap_maxkvaddr,
6166 	    (size_t)(pmap_curmaxkvaddr - pmap_maxkvaddr));
6167 
6168 out:
6169 	return pmap_curmaxkvaddr;
6170 }
6171 
6172 /************************ Utility routines ****************************/
6173 
6174 #ifndef ARM_HAS_VBAR
6175 /*
6176  * vector_page_setprot:
6177  *
6178  *	Manipulate the protection of the vector page.
6179  */
6180 void
vector_page_setprot(int prot)6181 vector_page_setprot(int prot)
6182 {
6183 	struct l2_bucket *l2b;
6184 	pt_entry_t *ptep;
6185 
6186 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6187 	/*
6188 	 * If we are using VBAR to use the vectors in the kernel, then it's
6189 	 * already mapped in the kernel text so no need to anything here.
6190 	 */
6191 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6192 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6193 		return;
6194 	}
6195 #endif
6196 
6197 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6198 	KASSERT(l2b != NULL);
6199 
6200 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6201 
6202 	const pt_entry_t opte = *ptep;
6203 #ifdef ARM_MMU_EXTENDED
6204 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6205 	    | L2_S_PROT(PTE_KERNEL, prot);
6206 #else
6207 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6208 	    | L2_S_PROT(PTE_KERNEL, prot);
6209 #endif
6210 	l2pte_set(ptep, npte, opte);
6211 	PTE_SYNC(ptep);
6212 	cpu_tlb_flushD_SE(vector_page);
6213 	cpu_cpwait();
6214 }
6215 #endif
6216 
6217 /*
6218  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6219  * Returns true if the mapping exists, else false.
6220  *
6221  * NOTE: This function is only used by a couple of arm-specific modules.
6222  * It is not safe to take any pmap locks here, since we could be right
6223  * in the middle of debugging the pmap anyway...
6224  *
6225  * It is possible for this routine to return false even though a valid
6226  * mapping does exist. This is because we don't lock, so the metadata
6227  * state may be inconsistent.
6228  *
6229  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6230  * a "section" mapping.
6231  */
6232 bool
pmap_get_pde_pte(pmap_t pm,vaddr_t va,pd_entry_t ** pdp,pt_entry_t ** ptp)6233 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6234 {
6235 	struct l2_dtable *l2;
6236 	pd_entry_t *pdep, pde;
6237 	pt_entry_t *ptep;
6238 	u_short l1slot;
6239 
6240 	if (pm->pm_l1 == NULL)
6241 		return false;
6242 
6243 	l1slot = l1pte_index(va);
6244 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
6245 	pde = *pdep;
6246 
6247 	if (l1pte_section_p(pde)) {
6248 		*ptp = NULL;
6249 		return true;
6250 	}
6251 
6252 	l2 = pm->pm_l2[L2_IDX(l1slot)];
6253 	if (l2 == NULL ||
6254 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6255 		return false;
6256 	}
6257 
6258 	*ptp = &ptep[l2pte_index(va)];
6259 	return true;
6260 }
6261 
6262 bool
pmap_get_pde(pmap_t pm,vaddr_t va,pd_entry_t ** pdp)6263 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6264 {
6265 
6266 	if (pm->pm_l1 == NULL)
6267 		return false;
6268 
6269 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
6270 
6271 	return true;
6272 }
6273 
6274 /************************ Bootstrapping routines ****************************/
6275 
6276 #ifndef ARM_MMU_EXTENDED
6277 static void
pmap_init_l1(struct l1_ttable * l1,pd_entry_t * l1pt)6278 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6279 {
6280 	int i;
6281 
6282 	l1->l1_kva = l1pt;
6283 	l1->l1_domain_use_count = 0;
6284 	l1->l1_domain_first = 0;
6285 
6286 	for (i = 0; i < PMAP_DOMAINS; i++)
6287 		l1->l1_domain_free[i] = i + 1;
6288 
6289 	/*
6290 	 * Copy the kernel's L1 entries to each new L1.
6291 	 */
6292 	if (pmap_initialized)
6293 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6294 
6295 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6296 	    &l1->l1_physaddr) == false)
6297 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6298 
6299 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6300 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6301 }
6302 #endif /* !ARM_MMU_EXTENDED */
6303 
6304 /*
6305  * pmap_bootstrap() is called from the board-specific initarm() routine
6306  * once the kernel L1/L2 descriptors tables have been set up.
6307  *
6308  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6309  * spread over a number of disparate files/functions.
6310  *
6311  * We are passed the following parameters
6312  *  - vstart
6313  *    1MB-aligned start of managed kernel virtual memory.
6314  *  - vend
6315  *    1MB-aligned end of managed kernel virtual memory.
6316  *
6317  * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6318  * struct l2_dtable) necessary to track kernel mappings.
6319  */
6320 #define	PMAP_STATIC_L2_SIZE 16
6321 void
pmap_bootstrap(vaddr_t vstart,vaddr_t vend)6322 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6323 {
6324 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6325 #ifndef ARM_MMU_EXTENDED
6326 	static struct l1_ttable static_l1;
6327 	struct l1_ttable *l1 = &static_l1;
6328 #endif
6329 	struct l2_dtable *l2;
6330 	struct l2_bucket *l2b;
6331 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6332 	pmap_t pm = pmap_kernel();
6333 	pt_entry_t *ptep;
6334 	paddr_t pa;
6335 	vsize_t size;
6336 	int nptes, l2idx, l2next = 0;
6337 
6338 #ifdef ARM_MMU_EXTENDED
6339 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6340 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6341 #endif
6342 
6343 	VPRINTF("kpm ");
6344 	/*
6345 	 * Initialise the kernel pmap object
6346 	 */
6347 	curcpu()->ci_pmap_cur = pm;
6348 	pm->pm_refs = 1;
6349 #ifdef ARM_MMU_EXTENDED
6350 	pm->pm_l1 = l1pt;
6351 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
6352 	VPRINTF("tlb0 ");
6353 	pmap_tlb_info_init(&pmap_tlb0_info);
6354 #ifdef MULTIPROCESSOR
6355 	VPRINTF("kcpusets ");
6356 	pm->pm_onproc = kcpuset_running;
6357 	pm->pm_active = kcpuset_running;
6358 #endif
6359 #else
6360 	pm->pm_l1 = l1;
6361 #endif
6362 	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6363 
6364 
6365 #if defined(EFI_RUNTIME)
6366 	VPRINTF("efirt ");
6367 	memset(&efirt_pmap, 0, sizeof(efirt_pmap));
6368 	struct pmap * const efipm = &efirt_pmap;
6369 	struct pmap_asid_info * const efipai = PMAP_PAI(efipm, cpu_tlb_info(curcpu()));
6370 
6371 	efipai->pai_asid = KERNEL_PID;
6372 	efipm->pm_refs = 1;
6373 	efipm->pm_stats.wired_count = 0;
6374 	efipm->pm_stats.resident_count = 1;
6375 	efipm->pm_l1 = (pd_entry_t *)efirt_l1pt.pv_va;
6376 	efipm->pm_l1_pa = efirt_l1pt.pv_pa;
6377 	// Needed?
6378 #ifdef MULTIPROCESSOR
6379 	kcpuset_create(&efipm->pm_active, true);
6380 	kcpuset_create(&efipm->pm_onproc, true);
6381 #endif
6382 	mutex_init(&efipm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
6383 #endif
6384 
6385 	VPRINTF("locks ");
6386 	/*
6387 	 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6388 	 * context, so its locks have to be at IPL_VM
6389 	 */
6390 	mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6391 	mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6392 
6393 	VPRINTF("l1pt ");
6394 	/*
6395 	 * Scan the L1 translation table created by initarm() and create
6396 	 * the required metadata for all valid mappings found in it.
6397 	 */
6398 	for (size_t l1slot = 0;
6399 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6400 	     l1slot++) {
6401 		pd_entry_t pde = l1pt[l1slot];
6402 
6403 		/*
6404 		 * We're only interested in Coarse mappings.
6405 		 * pmap_extract() can deal with section mappings without
6406 		 * recourse to checking L2 metadata.
6407 		 */
6408 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6409 			continue;
6410 
6411 		/*
6412 		 * Lookup the KVA of this L2 descriptor table
6413 		 */
6414 		pa = l1pte_pa(pde);
6415 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6416 		if (ptep == NULL) {
6417 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6418 			    (u_int)l1slot << L1_S_SHIFT, pa);
6419 		}
6420 
6421 		/*
6422 		 * Fetch the associated L2 metadata structure.
6423 		 * Allocate a new one if necessary.
6424 		 */
6425 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6426 			if (l2next == PMAP_STATIC_L2_SIZE)
6427 				panic("pmap_bootstrap: out of static L2s");
6428 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6429 		}
6430 
6431 		/*
6432 		 * One more L1 slot tracked...
6433 		 */
6434 		l2->l2_occupancy++;
6435 
6436 		/*
6437 		 * Fill in the details of the L2 descriptor in the
6438 		 * appropriate bucket.
6439 		 */
6440 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6441 		l2b->l2b_kva = ptep;
6442 		l2b->l2b_pa = pa;
6443 		l2b->l2b_l1slot = l1slot;
6444 
6445 		/*
6446 		 * Establish an initial occupancy count for this descriptor
6447 		 */
6448 		for (l2idx = 0;
6449 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6450 		    l2idx++) {
6451 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6452 				l2b->l2b_occupancy++;
6453 			}
6454 		}
6455 
6456 		/*
6457 		 * Make sure the descriptor itself has the correct cache mode.
6458 		 * If not, fix it, but whine about the problem. Port-meisters
6459 		 * should consider this a clue to fix up their initarm()
6460 		 * function. :)
6461 		 */
6462 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6463 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
6464 			    "L2 pte @ %p\n", ptep);
6465 		}
6466 	}
6467 
6468 	VPRINTF("cache(l1pt) ");
6469 	/*
6470 	 * Ensure the primary (kernel) L1 has the correct cache mode for
6471 	 * a page table. Bitch if it is not correctly set.
6472 	 */
6473 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6474 		    L1_TABLE_SIZE / L2_S_SIZE)) {
6475 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
6476 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6477 	}
6478 #if defined(EFI_RUNTIME)
6479 	if (pmap_set_pt_cache_mode(l1pt, efirt_l1pt.pv_va,
6480 		    L1_TABLE_SIZE / L2_S_SIZE)) {
6481 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
6482 		    "EFI RT L1 @ 0x%lx\n", efirt_l1pt.pv_va);
6483 	}
6484 #endif
6485 
6486 #ifdef PMAP_CACHE_VIVT
6487 	cpu_dcache_wbinv_all();
6488 	cpu_tlb_flushID();
6489 	cpu_cpwait();
6490 #endif
6491 
6492 	/*
6493 	 * now we allocate the "special" VAs which are used for tmp mappings
6494 	 * by the pmap (and other modules).  we allocate the VAs by advancing
6495 	 * virtual_avail (note that there are no pages mapped at these VAs).
6496 	 *
6497 	 * Managed KVM space start from wherever initarm() tells us.
6498 	 */
6499 	virtual_avail = vstart;
6500 	virtual_end = vend;
6501 
6502 	VPRINTF("specials ");
6503 
6504 	pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
6505 
6506 #ifdef PMAP_CACHE_VIPT
6507 	/*
6508 	 * If we have a VIPT cache, we need one page/pte per possible alias
6509 	 * page so we won't violate cache aliasing rules.
6510 	 */
6511 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6512 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6513 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6514 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6515 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6516 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6517 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6518 	}
6519 #else
6520 	nptes = PAGE_SIZE / L2_S_SIZE;
6521 #endif
6522 #ifdef MULTIPROCESSOR
6523 	cnptes = nptes;
6524 	nptes *= arm_cpu_max;
6525 #endif
6526 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6527 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6528 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6529 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6530 	if (msgbufaddr == NULL) {
6531 		pmap_alloc_specials(&virtual_avail,
6532 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
6533 		    (void *)&msgbufaddr, NULL);
6534 	}
6535 
6536 	/*
6537 	 * Allocate a range of kernel virtual address space to be used
6538 	 * for L2 descriptor tables and metadata allocation in
6539 	 * pmap_growkernel().
6540 	 */
6541 	size = howmany(virtual_end - pmap_curmaxkvaddr, L1_S_SIZE);
6542 	pmap_alloc_specials(&virtual_avail,
6543 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6544 	    &pmap_kernel_l2ptp_kva, NULL);
6545 
6546 	size = howmany(size, L2_BUCKET_SIZE);
6547 	pmap_alloc_specials(&virtual_avail,
6548 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6549 	    &pmap_kernel_l2dtable_kva, NULL);
6550 
6551 #ifndef ARM_MMU_EXTENDED
6552 	/*
6553 	 * init the static-global locks and global pmap list.
6554 	 */
6555 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6556 
6557 	/*
6558 	 * We can now initialise the first L1's metadata.
6559 	 */
6560 	SLIST_INIT(&l1_list);
6561 	TAILQ_INIT(&l1_lru_list);
6562 	pmap_init_l1(l1, l1pt);
6563 #endif /* ARM_MMU_EXTENDED */
6564 
6565 #ifndef ARM_HAS_VBAR
6566 	/* Set up vector page L1 details, if necessary */
6567 	if (vector_page < KERNEL_BASE) {
6568 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6569 		l2b = pmap_get_l2_bucket(pm, vector_page);
6570 		KDASSERT(l2b != NULL);
6571 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6572 		    L1_C_DOM(pmap_domain(pm));
6573 	} else
6574 		pm->pm_pl1vec = NULL;
6575 #endif
6576 
6577 	VPRINTF("pools ");
6578 	/*
6579 	 * Initialize the pmap cache
6580 	 */
6581 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6582 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6583 
6584 	/*
6585 	 * Initialize the pv pool.
6586 	 */
6587 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6588 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
6589 
6590 	/*
6591 	 * Initialize the L2 dtable pool and cache.
6592 	 */
6593 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6594 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6595 
6596 	/*
6597 	 * Initialise the L2 descriptor table pool and cache
6598 	 */
6599 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6600 	    L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6601 	    pmap_l2ptp_ctor, NULL, NULL);
6602 
6603 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6604 
6605 	cpu_dcache_wbinv_all();
6606 }
6607 
6608 static bool
pmap_set_pt_cache_mode(pd_entry_t * kl1,vaddr_t va,size_t nptes)6609 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6610 {
6611 #ifdef ARM_MMU_EXTENDED
6612 	return false;
6613 #else
6614 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6615 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6616 		return false;
6617 
6618 	const vaddr_t eva = va + nptes * PAGE_SIZE;
6619 	int rv = 0;
6620 
6621 	while (va < eva) {
6622 		/*
6623 		 * Make sure the descriptor itself has the correct cache mode
6624 		 */
6625 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6626 		pd_entry_t pde = *pdep;
6627 
6628 		if (l1pte_section_p(pde)) {
6629 			KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6630 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6631 				*pdep = (pde & ~L1_S_CACHE_MASK) |
6632 				    pte_l1_s_cache_mode_pt;
6633 				PDE_SYNC(pdep);
6634 				cpu_dcache_wbinv_range((vaddr_t)pdep,
6635 				    sizeof(*pdep));
6636 				rv = 1;
6637 			}
6638 			return rv;
6639 		}
6640 		vaddr_t pa = l1pte_pa(pde);
6641 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6642 		if (ptep == NULL)
6643 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6644 
6645 		ptep += l2pte_index(va);
6646 		const pt_entry_t opte = *ptep;
6647 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6648 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6649 			    | pte_l2_s_cache_mode_pt;
6650 			l2pte_set(ptep, npte, opte);
6651 			PTE_SYNC(ptep);
6652 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6653 			rv = 1;
6654 		}
6655 		va += PAGE_SIZE;
6656 	}
6657 
6658 	return rv;
6659 #endif
6660 }
6661 
6662 static void
pmap_alloc_specials(vaddr_t * availp,int pages,vaddr_t * vap,pt_entry_t ** ptep)6663 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6664 {
6665 	vaddr_t va = *availp;
6666 	struct l2_bucket *l2b;
6667 
6668 	if (ptep) {
6669 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6670 		if (l2b == NULL)
6671 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6672 
6673 		*ptep = &l2b->l2b_kva[l2pte_index(va)];
6674 	}
6675 
6676 	*vap = va;
6677 	*availp = va + (PAGE_SIZE * pages);
6678 }
6679 
6680 void
pmap_init(void)6681 pmap_init(void)
6682 {
6683 
6684 	/*
6685 	 * Set the available memory vars - These do not map to real memory
6686 	 * addresses and cannot as the physical memory is fragmented.
6687 	 * They are used by ps for %mem calculations.
6688 	 * One could argue whether this should be the entire memory or just
6689 	 * the memory that is useable in a user process.
6690 	 */
6691 	avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6692 	avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6693 
6694 	/*
6695 	 * Now we need to free enough pv_entry structures to allow us to get
6696 	 * the kmem_map/kmem_object allocated and inited (done after this
6697 	 * function is finished).  to do this we allocate one bootstrap page out
6698 	 * of kernel_map and use it to provide an initial pool of pv_entry
6699 	 * structures.   we never free this page.
6700 	 */
6701 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6702 
6703 #ifdef ARM_MMU_EXTENDED
6704 	/*
6705 	 * Initialise the L1 pool and cache.
6706 	 */
6707 
6708 	pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6709 	    0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6710 	     NULL, NULL);
6711 
6712 	int error __diagused = pmap_maxproc_set(maxproc);
6713 	KASSERT(error == 0);
6714 
6715 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6716 #endif
6717 
6718 	pmap_initialized = true;
6719 }
6720 
6721 static vaddr_t last_bootstrap_page = 0;
6722 static void *free_bootstrap_pages = NULL;
6723 
6724 static void *
pmap_bootstrap_pv_page_alloc(struct pool * pp,int flags)6725 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6726 {
6727 	extern void *pool_page_alloc(struct pool *, int);
6728 	vaddr_t new_page;
6729 	void *rv;
6730 
6731 	if (pmap_initialized)
6732 		return pool_page_alloc(pp, flags);
6733 
6734 	if (free_bootstrap_pages) {
6735 		rv = free_bootstrap_pages;
6736 		free_bootstrap_pages = *((void **)rv);
6737 		return rv;
6738 	}
6739 
6740 	KASSERT(kernel_map != NULL);
6741 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6742 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6743 
6744 	KASSERT(new_page > last_bootstrap_page);
6745 	last_bootstrap_page = new_page;
6746 	return (void *)new_page;
6747 }
6748 
6749 static void
pmap_bootstrap_pv_page_free(struct pool * pp,void * v)6750 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6751 {
6752 	extern void pool_page_free(struct pool *, void *);
6753 
6754 	if ((vaddr_t)v <= last_bootstrap_page) {
6755 		*((void **)v) = free_bootstrap_pages;
6756 		free_bootstrap_pages = v;
6757 		return;
6758 	}
6759 
6760 	if (pmap_initialized) {
6761 		pool_page_free(pp, v);
6762 		return;
6763 	}
6764 }
6765 
6766 
6767 #if defined(ARM_MMU_EXTENDED)
6768 static void *
pmap_l1tt_alloc(struct pool * pp,int flags)6769 pmap_l1tt_alloc(struct pool *pp, int flags)
6770 {
6771 	struct pglist plist;
6772 	vaddr_t va;
6773 
6774 	const int waitok = flags & PR_WAITOK;
6775 
6776 	int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6777 	    waitok);
6778 	if (error)
6779 		panic("Cannot allocate L1TT physical pages, %d", error);
6780 
6781 	struct vm_page *pg = TAILQ_FIRST(&plist);
6782 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6783 
6784 	/* Allocate a L1 translation table VA */
6785 	va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6786 	if (va == 0)
6787 		panic("Cannot allocate L1TT KVA");
6788 
6789 	const vaddr_t eva = va + L1TT_SIZE;
6790 	vaddr_t mva = va;
6791 	while (pg && mva < eva) {
6792 		paddr_t pa = VM_PAGE_TO_PHYS(pg);
6793 
6794 		pmap_kenter_pa(mva, pa,
6795 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6796 
6797 		mva += PAGE_SIZE;
6798 		pg = TAILQ_NEXT(pg, pageq.queue);
6799 	}
6800 	KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6801 	    " eva %" PRIxVADDR, pg, mva, eva);
6802 #else
6803 	bool ok;
6804 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
6805 	va = pmap_direct_mapped_phys(pa, &ok, 0);
6806 	KASSERT(ok);
6807 	KASSERT(va >= KERNEL_BASE);
6808 #endif
6809 
6810 	return (void *)va;
6811 }
6812 
6813 static void
pmap_l1tt_free(struct pool * pp,void * v)6814 pmap_l1tt_free(struct pool *pp, void *v)
6815 {
6816 	vaddr_t va = (vaddr_t)v;
6817 
6818 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6819 	uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6820 #else
6821 #if defined(KERNEL_BASE_VOFFSET)
6822 	paddr_t pa = va - KERNEL_BASE_VOFFSET;
6823 #else
6824 	paddr_t pa = va - KERNEL_BASE + physical_start;
6825 #endif
6826 	const paddr_t epa = pa + L1TT_SIZE;
6827 
6828 	for (; pa < epa; pa += PAGE_SIZE) {
6829 		struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6830 		uvm_pagefree(pg);
6831 	}
6832 #endif
6833 }
6834 #endif
6835 
6836 /*
6837  * pmap_postinit()
6838  *
6839  * This routine is called after the vm and kmem subsystems have been
6840  * initialised. This allows the pmap code to perform any initialisation
6841  * that can only be done once the memory allocation is in place.
6842  */
6843 void
pmap_postinit(void)6844 pmap_postinit(void)
6845 {
6846 #ifndef ARM_MMU_EXTENDED
6847 	extern paddr_t physical_start, physical_end;
6848 	struct l1_ttable *l1;
6849 	struct pglist plist;
6850 	struct vm_page *m;
6851 	pd_entry_t *pdep;
6852 	vaddr_t va, eva;
6853 	u_int loop, needed;
6854 	int error;
6855 #endif
6856 
6857 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6858 	pool_cache_setlowat(&pmap_l2dtable_cache,
6859 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6860 
6861 #ifndef ARM_MMU_EXTENDED
6862 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6863 	needed -= 1;
6864 
6865 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6866 
6867 	for (loop = 0; loop < needed; loop++, l1++) {
6868 		/* Allocate a L1 page table */
6869 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6870 		if (va == 0)
6871 			panic("Cannot allocate L1 KVM");
6872 
6873 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6874 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6875 		if (error)
6876 			panic("Cannot allocate L1 physical pages");
6877 
6878 		m = TAILQ_FIRST(&plist);
6879 		eva = va + L1_TABLE_SIZE;
6880 		pdep = (pd_entry_t *)va;
6881 
6882 		while (m && va < eva) {
6883 			paddr_t pa = VM_PAGE_TO_PHYS(m);
6884 
6885 			pmap_kenter_pa(va, pa,
6886 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6887 
6888 			va += PAGE_SIZE;
6889 			m = TAILQ_NEXT(m, pageq.queue);
6890 		}
6891 
6892 #ifdef DIAGNOSTIC
6893 		if (m)
6894 			panic("pmap_alloc_l1pt: pglist not empty");
6895 #endif	/* DIAGNOSTIC */
6896 
6897 		pmap_init_l1(l1, pdep);
6898 	}
6899 
6900 #ifdef DEBUG
6901 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6902 	    needed);
6903 #endif
6904 #endif /* !ARM_MMU_EXTENDED */
6905 }
6906 
6907 /*
6908  * Note that the following routines are used by board-specific initialisation
6909  * code to configure the initial kernel page tables.
6910  *
6911  */
6912 
6913 /*
6914  * This list exists for the benefit of pmap_map_chunk().  It keeps track
6915  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6916  * find them as necessary.
6917  *
6918  * Note that the data on this list MUST remain valid after initarm() returns,
6919  * as pmap_bootstrap() uses it to construct L2 table metadata.
6920  */
6921 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6922 
6923 static vaddr_t
kernel_pt_lookup(paddr_t pa)6924 kernel_pt_lookup(paddr_t pa)
6925 {
6926 	pv_addr_t *pv;
6927 
6928 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6929 		if (pv->pv_pa == (pa & ~PGOFSET))
6930 			return pv->pv_va | (pa & PGOFSET);
6931 	}
6932 	return 0;
6933 }
6934 
6935 /*
6936  * pmap_map_section:
6937  *
6938  *	Create a single section mapping.
6939  */
6940 void
pmap_map_section(vaddr_t l1pt,vaddr_t va,paddr_t pa,int prot,int cache)6941 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6942 {
6943 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6944 	const size_t l1slot = l1pte_index(va);
6945 	pd_entry_t fl;
6946 
6947 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6948 
6949 	switch (cache) {
6950 	case PTE_NOCACHE:
6951 		fl = pte_l1_s_nocache_mode;
6952 		break;
6953 
6954 	case PTE_CACHE:
6955 		fl = pte_l1_s_cache_mode;
6956 		break;
6957 
6958 	case PTE_PAGETABLE:
6959 		fl = pte_l1_s_cache_mode_pt;
6960 		break;
6961 
6962 	case PTE_DEV:
6963 	default:
6964 		fl = 0;
6965 		break;
6966 	}
6967 
6968 	const pd_entry_t npde = L1_S_PROTO | pa |
6969 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6970 	l1pte_setone(pdep + l1slot, npde);
6971 	PDE_SYNC(pdep + l1slot);
6972 }
6973 
6974 /*
6975  * pmap_map_entry:
6976  *
6977  *	Create a single page mapping.
6978  */
6979 void
pmap_map_entry(vaddr_t l1pt,vaddr_t va,paddr_t pa,int prot,int cache)6980 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6981 {
6982 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6983 	const size_t l1slot = l1pte_index(va);
6984 	pt_entry_t npte;
6985 	pt_entry_t *ptep;
6986 
6987 	KASSERT(((va | pa) & PGOFSET) == 0);
6988 
6989 	switch (cache) {
6990 	case PTE_NOCACHE:
6991 		npte = pte_l2_s_nocache_mode;
6992 		break;
6993 
6994 	case PTE_CACHE:
6995 		npte = pte_l2_s_cache_mode;
6996 		break;
6997 
6998 	case PTE_PAGETABLE:
6999 		npte = pte_l2_s_cache_mode_pt;
7000 		break;
7001 
7002 	default:
7003 		npte = 0;
7004 		break;
7005 	}
7006 
7007 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
7008 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
7009 
7010 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
7011 	if (ptep == NULL)
7012 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
7013 
7014 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
7015 #ifdef ARM_MMU_EXTENDED
7016 	if (prot & VM_PROT_EXECUTE) {
7017 		npte &= ~L2_XS_XN;
7018 	}
7019 #endif
7020 	ptep += l2pte_index(va);
7021 	l2pte_set(ptep, npte, 0);
7022 	PTE_SYNC(ptep);
7023 }
7024 
7025 /*
7026  * pmap_link_l2pt:
7027  *
7028  *	Link the L2 page table specified by "l2pv" into the L1
7029  *	page table at the slot for "va".
7030  */
7031 void
pmap_link_l2pt(vaddr_t l1pt,vaddr_t va,pv_addr_t * l2pv)7032 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
7033 {
7034 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
7035 
7036 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
7037 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
7038 
7039 	const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
7040 	    | l2pv->pv_pa;
7041 
7042 	l1pte_set(pdep, npde);
7043 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
7044 
7045 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
7046 }
7047 
7048 /*
7049  * pmap_map_chunk:
7050  *
7051  *	Map a chunk of memory using the most efficient mappings
7052  *	possible (section, large page, small page) into the
7053  *	provided L1 and L2 tables at the specified virtual address.
7054  */
7055 vsize_t
pmap_map_chunk(vaddr_t l1pt,vaddr_t va,paddr_t pa,vsize_t size,int prot,int cache)7056 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
7057     int prot, int cache)
7058 {
7059 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7060 	pt_entry_t f1, f2s, f2l;
7061 	vsize_t resid;
7062 
7063 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
7064 
7065 	if (l1pt == 0)
7066 		panic("pmap_map_chunk: no L1 table provided");
7067 
7068 // 	VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
7069 // 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
7070 
7071 	switch (cache) {
7072 	case PTE_NOCACHE:
7073 		f1 = pte_l1_s_nocache_mode;
7074 		f2l = pte_l2_l_nocache_mode;
7075 		f2s = pte_l2_s_nocache_mode;
7076 		break;
7077 
7078 	case PTE_CACHE:
7079 		f1 = pte_l1_s_cache_mode;
7080 		f2l = pte_l2_l_cache_mode;
7081 		f2s = pte_l2_s_cache_mode;
7082 		break;
7083 
7084 	case PTE_PAGETABLE:
7085 		f1 = pte_l1_s_cache_mode_pt;
7086 		f2l = pte_l2_l_cache_mode_pt;
7087 		f2s = pte_l2_s_cache_mode_pt;
7088 		break;
7089 
7090 	case PTE_DEV:
7091 	default:
7092 		f1 = 0;
7093 		f2l = 0;
7094 		f2s = 0;
7095 		break;
7096 	}
7097 
7098 	size = resid;
7099 
7100 	while (resid > 0) {
7101 		const size_t l1slot = l1pte_index(va);
7102 #ifdef ARM_MMU_EXTENDED
7103 		/* See if we can use a supersection mapping. */
7104 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
7105 			/* Supersection are always domain 0 */
7106 			const pd_entry_t npde = L1_SS_PROTO | pa
7107 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
7108 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
7109 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
7110 			VPRINTF("sS");
7111 			l1pte_set(&pdep[l1slot], npde);
7112 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
7113 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
7114 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
7115 			va += L1_SS_SIZE;
7116 			pa += L1_SS_SIZE;
7117 			resid -= L1_SS_SIZE;
7118 			continue;
7119 		}
7120 #endif
7121 		/* See if we can use a section mapping. */
7122 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
7123 			const pd_entry_t npde = L1_S_PROTO | pa
7124 #ifdef ARM_MMU_EXTENDED
7125 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
7126 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
7127 #endif
7128 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
7129 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
7130 			VPRINTF("S");
7131 			l1pte_set(&pdep[l1slot], npde);
7132 			PDE_SYNC(&pdep[l1slot]);
7133 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
7134 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
7135 			va += L1_S_SIZE;
7136 			pa += L1_S_SIZE;
7137 			resid -= L1_S_SIZE;
7138 			continue;
7139 		}
7140 
7141 		/*
7142 		 * Ok, we're going to use an L2 table.  Make sure
7143 		 * one is actually in the corresponding L1 slot
7144 		 * for the current VA.
7145 		 */
7146 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
7147 			panic("%s: no L2 table for VA %#lx", __func__, va);
7148 
7149 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
7150 		if (ptep == NULL)
7151 			panic("%s: can't find L2 table for VA %#lx", __func__,
7152 			    va);
7153 
7154 		ptep += l2pte_index(va);
7155 
7156 		/* See if we can use a L2 large page mapping. */
7157 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
7158 			const pt_entry_t npte = L2_L_PROTO | pa
7159 #ifdef ARM_MMU_EXTENDED
7160 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
7161 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
7162 #endif
7163 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
7164 			VPRINTF("L");
7165 			l2pte_set(ptep, npte, 0);
7166 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
7167 			va += L2_L_SIZE;
7168 			pa += L2_L_SIZE;
7169 			resid -= L2_L_SIZE;
7170 			continue;
7171 		}
7172 
7173 		VPRINTF("P");
7174 		/* Use a small page mapping. */
7175 		pt_entry_t npte = L2_S_PROTO | pa
7176 #ifdef ARM_MMU_EXTENDED
7177 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
7178 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
7179 #endif
7180 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
7181 #ifdef ARM_MMU_EXTENDED
7182 		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
7183 #endif
7184 		l2pte_set(ptep, npte, 0);
7185 		PTE_SYNC(ptep);
7186 		va += PAGE_SIZE;
7187 		pa += PAGE_SIZE;
7188 		resid -= PAGE_SIZE;
7189 	}
7190 	VPRINTF("\n");
7191 	return size;
7192 }
7193 
7194 /*
7195  * pmap_unmap_chunk:
7196  *
7197  *	Unmap a chunk of memory that was previously pmap_map_chunk
7198  */
7199 void
pmap_unmap_chunk(vaddr_t l1pt,vaddr_t va,vsize_t size)7200 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7201 {
7202 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7203 	const size_t l1slot = l1pte_index(va);
7204 
7205 	KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7206 
7207 	l1pte_set(&pdep[l1slot], 0);
7208 	PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7209 
7210 	pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7211 }
7212 
7213 
7214 vsize_t
pmap_kenter_range(vaddr_t va,paddr_t pa,vsize_t size,vm_prot_t prot,u_int flags)7215 pmap_kenter_range(vaddr_t va, paddr_t pa, vsize_t size, vm_prot_t prot,
7216     u_int flags)
7217 {
7218 	const vaddr_t root = pmap_devmap_root();
7219 
7220 	int cache;
7221 	switch (flags) {
7222 	case PMAP_DEV:
7223 		cache = PTE_DEV;
7224 		break;
7225 	case PMAP_NOCACHE:
7226 		cache = PTE_NOCACHE;
7227 		break;
7228 	default:
7229 		cache = PTE_CACHE;
7230 		break;
7231 	}
7232 
7233 	return pmap_map_chunk(root, va, pa, size, prot, cache);
7234 }
7235 
7236 
7237 /********************** PTE initialization routines **************************/
7238 
7239 /*
7240  * These routines are called when the CPU type is identified to set up
7241  * the PTE prototypes, cache modes, etc.
7242  *
7243  * The variables are always here, just in case modules need to reference
7244  * them (though, they shouldn't).
7245  */
7246 
7247 pt_entry_t	pte_l1_s_nocache_mode;
7248 pt_entry_t	pte_l1_s_cache_mode;
7249 pt_entry_t	pte_l1_s_wc_mode;
7250 pt_entry_t	pte_l1_s_cache_mode_pt;
7251 pt_entry_t	pte_l1_s_cache_mask;
7252 
7253 pt_entry_t	pte_l2_l_nocache_mode;
7254 pt_entry_t	pte_l2_l_cache_mode;
7255 pt_entry_t	pte_l2_l_wc_mode;
7256 pt_entry_t	pte_l2_l_cache_mode_pt;
7257 pt_entry_t	pte_l2_l_cache_mask;
7258 
7259 pt_entry_t	pte_l2_s_nocache_mode;
7260 pt_entry_t	pte_l2_s_cache_mode;
7261 pt_entry_t	pte_l2_s_wc_mode;
7262 pt_entry_t	pte_l2_s_cache_mode_pt;
7263 pt_entry_t	pte_l2_s_cache_mask;
7264 
7265 pt_entry_t	pte_l1_s_prot_u;
7266 pt_entry_t	pte_l1_s_prot_w;
7267 pt_entry_t	pte_l1_s_prot_ro;
7268 pt_entry_t	pte_l1_s_prot_mask;
7269 
7270 pt_entry_t	pte_l2_s_prot_u;
7271 pt_entry_t	pte_l2_s_prot_w;
7272 pt_entry_t	pte_l2_s_prot_ro;
7273 pt_entry_t	pte_l2_s_prot_mask;
7274 
7275 pt_entry_t	pte_l2_l_prot_u;
7276 pt_entry_t	pte_l2_l_prot_w;
7277 pt_entry_t	pte_l2_l_prot_ro;
7278 pt_entry_t	pte_l2_l_prot_mask;
7279 
7280 pt_entry_t	pte_l1_ss_proto;
7281 pt_entry_t	pte_l1_s_proto;
7282 pt_entry_t	pte_l1_c_proto;
7283 pt_entry_t	pte_l2_s_proto;
7284 
7285 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
7286 void		(*pmap_zero_page_func)(paddr_t);
7287 
7288 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7289 void
pmap_pte_init_generic(void)7290 pmap_pte_init_generic(void)
7291 {
7292 
7293 	pte_l1_s_nocache_mode = 0;
7294 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7295 	pte_l1_s_wc_mode = L1_S_B;
7296 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7297 
7298 	pte_l2_l_nocache_mode = 0;
7299 	pte_l2_l_cache_mode = L2_B|L2_C;
7300 	pte_l2_l_wc_mode = L2_B;
7301 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7302 
7303 	pte_l2_s_nocache_mode = 0;
7304 	pte_l2_s_cache_mode = L2_B|L2_C;
7305 	pte_l2_s_wc_mode = L2_B;
7306 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7307 
7308 	/*
7309 	 * If we have a write-through cache, set B and C.  If
7310 	 * we have a write-back cache, then we assume setting
7311 	 * only C will make those pages write-through (except for those
7312 	 * Cortex CPUs which can read the L1 caches).
7313 	 */
7314 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7315 #if ARM_MMU_V7 > 0
7316 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7317 #endif
7318 #if ARM_MMU_V6 > 0
7319 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7320 #endif
7321 	    || false) {
7322 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7323 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
7324 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
7325 	} else {
7326 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
7327 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
7328 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
7329 	}
7330 
7331 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
7332 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
7333 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7334 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7335 
7336 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
7337 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
7338 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7339 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7340 
7341 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
7342 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
7343 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7344 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7345 
7346 	pte_l1_ss_proto = L1_SS_PROTO_generic;
7347 	pte_l1_s_proto = L1_S_PROTO_generic;
7348 	pte_l1_c_proto = L1_C_PROTO_generic;
7349 	pte_l2_s_proto = L2_S_PROTO_generic;
7350 
7351 	pmap_copy_page_func = pmap_copy_page_generic;
7352 	pmap_zero_page_func = pmap_zero_page_generic;
7353 }
7354 
7355 #if defined(CPU_ARM8)
7356 void
pmap_pte_init_arm8(void)7357 pmap_pte_init_arm8(void)
7358 {
7359 
7360 	/*
7361 	 * ARM8 is compatible with generic, but we need to use
7362 	 * the page tables uncached.
7363 	 */
7364 	pmap_pte_init_generic();
7365 
7366 	pte_l1_s_cache_mode_pt = 0;
7367 	pte_l2_l_cache_mode_pt = 0;
7368 	pte_l2_s_cache_mode_pt = 0;
7369 }
7370 #endif /* CPU_ARM8 */
7371 
7372 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7373 void
pmap_pte_init_arm9(void)7374 pmap_pte_init_arm9(void)
7375 {
7376 
7377 	/*
7378 	 * ARM9 is compatible with generic, but we want to use
7379 	 * write-through caching for now.
7380 	 */
7381 	pmap_pte_init_generic();
7382 
7383 	pte_l1_s_cache_mode = L1_S_C;
7384 	pte_l2_l_cache_mode = L2_C;
7385 	pte_l2_s_cache_mode = L2_C;
7386 
7387 	pte_l1_s_wc_mode = L1_S_B;
7388 	pte_l2_l_wc_mode = L2_B;
7389 	pte_l2_s_wc_mode = L2_B;
7390 
7391 	pte_l1_s_cache_mode_pt = L1_S_C;
7392 	pte_l2_l_cache_mode_pt = L2_C;
7393 	pte_l2_s_cache_mode_pt = L2_C;
7394 }
7395 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7396 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7397 
7398 #if defined(CPU_ARM10)
7399 void
pmap_pte_init_arm10(void)7400 pmap_pte_init_arm10(void)
7401 {
7402 
7403 	/*
7404 	 * ARM10 is compatible with generic, but we want to use
7405 	 * write-through caching for now.
7406 	 */
7407 	pmap_pte_init_generic();
7408 
7409 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7410 	pte_l2_l_cache_mode = L2_B | L2_C;
7411 	pte_l2_s_cache_mode = L2_B | L2_C;
7412 
7413 	pte_l1_s_cache_mode = L1_S_B;
7414 	pte_l2_l_cache_mode = L2_B;
7415 	pte_l2_s_cache_mode = L2_B;
7416 
7417 	pte_l1_s_cache_mode_pt = L1_S_C;
7418 	pte_l2_l_cache_mode_pt = L2_C;
7419 	pte_l2_s_cache_mode_pt = L2_C;
7420 
7421 }
7422 #endif /* CPU_ARM10 */
7423 
7424 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7425 void
pmap_pte_init_arm11(void)7426 pmap_pte_init_arm11(void)
7427 {
7428 
7429 	/*
7430 	 * ARM11 is compatible with generic, but we want to use
7431 	 * write-through caching for now.
7432 	 */
7433 	pmap_pte_init_generic();
7434 
7435 	pte_l1_s_cache_mode = L1_S_C;
7436 	pte_l2_l_cache_mode = L2_C;
7437 	pte_l2_s_cache_mode = L2_C;
7438 
7439 	pte_l1_s_wc_mode = L1_S_B;
7440 	pte_l2_l_wc_mode = L2_B;
7441 	pte_l2_s_wc_mode = L2_B;
7442 
7443 	pte_l1_s_cache_mode_pt = L1_S_C;
7444 	pte_l2_l_cache_mode_pt = L2_C;
7445 	pte_l2_s_cache_mode_pt = L2_C;
7446 }
7447 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7448 
7449 #if ARM_MMU_SA1 == 1
7450 void
pmap_pte_init_sa1(void)7451 pmap_pte_init_sa1(void)
7452 {
7453 
7454 	/*
7455 	 * The StrongARM SA-1 cache does not have a write-through
7456 	 * mode.  So, do the generic initialization, then reset
7457 	 * the page table cache mode to B=1,C=1, and note that
7458 	 * the PTEs need to be sync'd.
7459 	 */
7460 	pmap_pte_init_generic();
7461 
7462 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7463 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
7464 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
7465 
7466 	pmap_needs_pte_sync = 1;
7467 }
7468 #endif /* ARM_MMU_SA1 == 1*/
7469 
7470 #if ARM_MMU_XSCALE == 1
7471 #if (ARM_NMMUS > 1)
7472 static u_int xscale_use_minidata;
7473 #endif
7474 
7475 void
pmap_pte_init_xscale(void)7476 pmap_pte_init_xscale(void)
7477 {
7478 	uint32_t auxctl;
7479 	int write_through = 0;
7480 
7481 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7482 	pte_l1_s_wc_mode = L1_S_B;
7483 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7484 
7485 	pte_l2_l_cache_mode = L2_B|L2_C;
7486 	pte_l2_l_wc_mode = L2_B;
7487 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7488 
7489 	pte_l2_s_cache_mode = L2_B|L2_C;
7490 	pte_l2_s_wc_mode = L2_B;
7491 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7492 
7493 	pte_l1_s_cache_mode_pt = L1_S_C;
7494 	pte_l2_l_cache_mode_pt = L2_C;
7495 	pte_l2_s_cache_mode_pt = L2_C;
7496 
7497 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7498 	/*
7499 	 * The XScale core has an enhanced mode where writes that
7500 	 * miss the cache cause a cache line to be allocated.  This
7501 	 * is significantly faster than the traditional, write-through
7502 	 * behavior of this case.
7503 	 */
7504 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7505 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7506 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7507 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7508 
7509 #ifdef XSCALE_CACHE_WRITE_THROUGH
7510 	/*
7511 	 * Some versions of the XScale core have various bugs in
7512 	 * their cache units, the work-around for which is to run
7513 	 * the cache in write-through mode.  Unfortunately, this
7514 	 * has a major (negative) impact on performance.  So, we
7515 	 * go ahead and run fast-and-loose, in the hopes that we
7516 	 * don't line up the planets in a way that will trip the
7517 	 * bugs.
7518 	 *
7519 	 * However, we give you the option to be slow-but-correct.
7520 	 */
7521 	write_through = 1;
7522 #elif defined(XSCALE_CACHE_WRITE_BACK)
7523 	/* force write back cache mode */
7524 	write_through = 0;
7525 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7526 	/*
7527 	 * Intel PXA2[15]0 processors are known to have a bug in
7528 	 * write-back cache on revision 4 and earlier (stepping
7529 	 * A[01] and B[012]).  Fixed for C0 and later.
7530 	 */
7531 	{
7532 		uint32_t id, type;
7533 
7534 		id = cpufunc_id();
7535 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7536 
7537 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7538 			if ((id & CPU_ID_REVISION_MASK) < 5) {
7539 				/* write through for stepping A0-1 and B0-2 */
7540 				write_through = 1;
7541 			}
7542 		}
7543 	}
7544 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7545 
7546 	if (write_through) {
7547 		pte_l1_s_cache_mode = L1_S_C;
7548 		pte_l2_l_cache_mode = L2_C;
7549 		pte_l2_s_cache_mode = L2_C;
7550 	}
7551 
7552 #if (ARM_NMMUS > 1)
7553 	xscale_use_minidata = 1;
7554 #endif
7555 
7556 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7557 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7558 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7559 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7560 
7561 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7562 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7563 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7564 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7565 
7566 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7567 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7568 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7569 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7570 
7571 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
7572 	pte_l1_s_proto = L1_S_PROTO_xscale;
7573 	pte_l1_c_proto = L1_C_PROTO_xscale;
7574 	pte_l2_s_proto = L2_S_PROTO_xscale;
7575 
7576 	pmap_copy_page_func = pmap_copy_page_xscale;
7577 	pmap_zero_page_func = pmap_zero_page_xscale;
7578 
7579 	/*
7580 	 * Disable ECC protection of page table access, for now.
7581 	 */
7582 	auxctl = armreg_auxctl_read();
7583 	auxctl &= ~XSCALE_AUXCTL_P;
7584 	armreg_auxctl_write(auxctl);
7585 }
7586 
7587 /*
7588  * xscale_setup_minidata:
7589  *
7590  *	Set up the mini-data cache clean area.  We require the
7591  *	caller to allocate the right amount of physically and
7592  *	virtually contiguous space.
7593  */
7594 void
xscale_setup_minidata(vaddr_t l1pt,vaddr_t va,paddr_t pa)7595 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7596 {
7597 	extern vaddr_t xscale_minidata_clean_addr;
7598 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
7599 	pd_entry_t *pde = (pd_entry_t *) l1pt;
7600 	vsize_t size;
7601 	uint32_t auxctl;
7602 
7603 	xscale_minidata_clean_addr = va;
7604 
7605 	/* Round it to page size. */
7606 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7607 
7608 	for (; size != 0;
7609 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7610 		const size_t l1slot = l1pte_index(va);
7611 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7612 		if (ptep == NULL)
7613 			panic("xscale_setup_minidata: can't find L2 table for "
7614 			    "VA 0x%08lx", va);
7615 
7616 		ptep += l2pte_index(va);
7617 		pt_entry_t opte = *ptep;
7618 		l2pte_set(ptep,
7619 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7620 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7621 	}
7622 
7623 	/*
7624 	 * Configure the mini-data cache for write-back with
7625 	 * read/write-allocate.
7626 	 *
7627 	 * NOTE: In order to reconfigure the mini-data cache, we must
7628 	 * make sure it contains no valid data!  In order to do that,
7629 	 * we must issue a global data cache invalidate command!
7630 	 *
7631 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7632 	 * THIS IS VERY IMPORTANT!
7633 	 */
7634 
7635 	/* Invalidate data and mini-data. */
7636 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7637 	auxctl = armreg_auxctl_read();
7638 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7639 	armreg_auxctl_write(auxctl);
7640 }
7641 
7642 /*
7643  * Change the PTEs for the specified kernel mappings such that they
7644  * will use the mini data cache instead of the main data cache.
7645  */
7646 void
pmap_uarea(vaddr_t va)7647 pmap_uarea(vaddr_t va)
7648 {
7649 	vaddr_t next_bucket, eva;
7650 
7651 #if (ARM_NMMUS > 1)
7652 	if (xscale_use_minidata == 0)
7653 		return;
7654 #endif
7655 
7656 	eva = va + USPACE;
7657 
7658 	while (va < eva) {
7659 		next_bucket = L2_NEXT_BUCKET_VA(va);
7660 		if (next_bucket > eva)
7661 			next_bucket = eva;
7662 
7663 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7664 		KDASSERT(l2b != NULL);
7665 
7666 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7667 		pt_entry_t *ptep = sptep;
7668 
7669 		while (va < next_bucket) {
7670 			const pt_entry_t opte = *ptep;
7671 			if (!l2pte_minidata_p(opte)) {
7672 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
7673 				cpu_tlb_flushD_SE(va);
7674 				l2pte_set(ptep, opte & ~L2_B, opte);
7675 			}
7676 			ptep += PAGE_SIZE / L2_S_SIZE;
7677 			va += PAGE_SIZE;
7678 		}
7679 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7680 	}
7681 	cpu_cpwait();
7682 }
7683 #endif /* ARM_MMU_XSCALE == 1 */
7684 
7685 
7686 #if defined(CPU_ARM11MPCORE)
7687 void
pmap_pte_init_arm11mpcore(void)7688 pmap_pte_init_arm11mpcore(void)
7689 {
7690 
7691 	/* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7692 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7693 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7694 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7695 	/* use extended small page (without APn, with TEX) */
7696 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7697 #else
7698 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7699 #endif
7700 
7701 	/* write-back, write-allocate */
7702 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7703 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7704 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7705 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7706 #else
7707 	/* no TEX. read-allocate */
7708 	pte_l2_s_cache_mode = L2_C | L2_B;
7709 #endif
7710 	/*
7711 	 * write-back, write-allocate for page tables.
7712 	 */
7713 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7714 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7715 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7716 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7717 #else
7718 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
7719 #endif
7720 
7721 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7722 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7723 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7724 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7725 
7726 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7727 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7728 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7729 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7730 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7731 
7732 #else
7733 	/* with AP[0..3] */
7734 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
7735 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
7736 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7737 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7738 #endif
7739 
7740 #ifdef	ARM11MPCORE_COMPAT_MMU
7741 	/* with AP[0..3] */
7742 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
7743 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
7744 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7745 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7746 
7747 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7748 	pte_l1_s_proto = L1_S_PROTO_armv6;
7749 	pte_l1_c_proto = L1_C_PROTO_armv6;
7750 	pte_l2_s_proto = L2_S_PROTO_armv6c;
7751 #else
7752 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7753 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7754 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7755 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7756 
7757 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7758 	pte_l1_s_proto = L1_S_PROTO_armv6;
7759 	pte_l1_c_proto = L1_C_PROTO_armv6;
7760 	pte_l2_s_proto = L2_S_PROTO_armv6n;
7761 #endif
7762 
7763 	pmap_copy_page_func = pmap_copy_page_generic;
7764 	pmap_zero_page_func = pmap_zero_page_generic;
7765 	pmap_needs_pte_sync = 1;
7766 }
7767 #endif	/* CPU_ARM11MPCORE */
7768 
7769 
7770 #if ARM_MMU_V6 == 1
7771 void
pmap_pte_init_armv6(void)7772 pmap_pte_init_armv6(void)
7773 {
7774 	/*
7775 	 * The ARMv6-A MMU is mostly compatible with generic. If the
7776 	 * AP field is zero, that now means "no access" rather than
7777 	 * read-only. The prototypes are a little different because of
7778 	 * the XN bit.
7779 	 */
7780 	pmap_pte_init_generic();
7781 
7782 	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7783 	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7784 	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7785 
7786 #ifdef ARM11_COMPAT_MMU
7787 	/* with AP[0..3] */
7788 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7789 #else
7790 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7791 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7792 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7793 
7794 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7795 	pte_l1_s_proto = L1_S_PROTO_armv6;
7796 	pte_l1_c_proto = L1_C_PROTO_armv6;
7797 	pte_l2_s_proto = L2_S_PROTO_armv6n;
7798 
7799 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7800 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7801 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7802 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7803 
7804 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7805 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7806 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7807 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7808 
7809 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7810 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7811 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7812 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7813 
7814 #endif
7815 }
7816 #endif /* ARM_MMU_V6 */
7817 
7818 #if ARM_MMU_V7 == 1
7819 void
pmap_pte_init_armv7(void)7820 pmap_pte_init_armv7(void)
7821 {
7822 	/*
7823 	 * The ARMv7-A MMU is mostly compatible with generic. If the
7824 	 * AP field is zero, that now means "no access" rather than
7825 	 * read-only. The prototypes are a little different because of
7826 	 * the XN bit.
7827 	 */
7828 	pmap_pte_init_generic();
7829 
7830 	pmap_needs_pte_sync = 1;
7831 
7832 	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7833 	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7834 	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7835 
7836 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7837 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7838 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7839 
7840 	/*
7841 	 * If the core support coherent walk then updates to translation tables
7842 	 * do not require a clean to the point of unification to ensure
7843 	 * visibility by subsequent translation table walks.  That means we can
7844 	 * map everything shareable and cached and the right thing will happen.
7845 	 */
7846         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7847 		pmap_needs_pte_sync = 0;
7848 
7849 		/*
7850 		 * write-back, no write-allocate, shareable for normal pages.
7851 		 */
7852 		pte_l1_s_cache_mode |= L1_S_V6_S;
7853 		pte_l2_l_cache_mode |= L2_XS_S;
7854 		pte_l2_s_cache_mode |= L2_XS_S;
7855 	}
7856 
7857 	/*
7858 	 * Page tables are just all other memory.  We can use write-back since
7859 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7860 	 */
7861 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7862 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7863 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7864 
7865 	/*
7866 	 * Check the Memory Model Features to see if this CPU supports
7867 	 * the TLBIASID coproc op.
7868 	 */
7869 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7870 		arm_has_tlbiasid_p = true;
7871 	} else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7872 		arm_has_tlbiasid_p = true;
7873 	}
7874 
7875 	/*
7876 	 * Check the MPIDR to see if this CPU supports MP extensions.
7877 	 */
7878 #ifdef MULTIPROCESSOR
7879 	arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7880 #else
7881 	arm_has_mpext_p = false;
7882 #endif
7883 
7884 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7885 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7886 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7887 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7888 
7889 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7890 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7891 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7892 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7893 
7894 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7895 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7896 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7897 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7898 
7899 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
7900 	pte_l1_s_proto = L1_S_PROTO_armv7;
7901 	pte_l1_c_proto = L1_C_PROTO_armv7;
7902 	pte_l2_s_proto = L2_S_PROTO_armv7;
7903 
7904 }
7905 #endif /* ARM_MMU_V7 */
7906 
7907 /*
7908  * return the PA of the current L1 table, for use when handling a crash dump
7909  */
7910 uint32_t
pmap_kernel_L1_addr(void)7911 pmap_kernel_L1_addr(void)
7912 {
7913 #ifdef ARM_MMU_EXTENDED
7914 	return pmap_kernel()->pm_l1_pa;
7915 #else
7916 	return pmap_kernel()->pm_l1->l1_physaddr;
7917 #endif
7918 }
7919 
7920 #if defined(DDB)
7921 /*
7922  * A couple of ddb-callable functions for dumping pmaps
7923  */
7924 void pmap_dump(pmap_t);
7925 
7926 static pt_entry_t ncptes[64];
7927 static void pmap_dump_ncpg(pmap_t);
7928 
7929 void
pmap_dump(pmap_t pm)7930 pmap_dump(pmap_t pm)
7931 {
7932 	struct l2_dtable *l2;
7933 	struct l2_bucket *l2b;
7934 	pt_entry_t *ptep, pte;
7935 	vaddr_t l2_va, l2b_va, va;
7936 	int i, j, k, occ, rows = 0;
7937 
7938 	if (pm == pmap_kernel())
7939 		printf("pmap_kernel (%p): ", pm);
7940 	else
7941 		printf("user pmap (%p): ", pm);
7942 
7943 #ifdef ARM_MMU_EXTENDED
7944 	printf("l1 at %p\n", pmap_l1_kva(pm));
7945 #else
7946 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7947 #endif
7948 
7949 	l2_va = 0;
7950 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7951 		l2 = pm->pm_l2[i];
7952 
7953 		if (l2 == NULL || l2->l2_occupancy == 0)
7954 			continue;
7955 
7956 		l2b_va = l2_va;
7957 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7958 			l2b = &l2->l2_bucket[j];
7959 
7960 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7961 				continue;
7962 
7963 			ptep = l2b->l2b_kva;
7964 
7965 			for (k = 0; k < 256 && ptep[k] == 0; k++)
7966 				;
7967 
7968 			k &= ~63;
7969 			occ = l2b->l2b_occupancy;
7970 			va = l2b_va + (k * 4096);
7971 			for (; k < 256; k++, va += 0x1000) {
7972 				char ch = ' ';
7973 				if ((k % 64) == 0) {
7974 					if ((rows % 8) == 0) {
7975 						printf(
7976 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
7977 					}
7978 					printf("%08lx: ", va);
7979 				}
7980 
7981 				ncptes[k & 63] = 0;
7982 				pte = ptep[k];
7983 				if (pte == 0) {
7984 					ch = '.';
7985 				} else {
7986 					occ--;
7987 					switch (pte & 0x4c) {
7988 					case 0x00:
7989 						ch = 'N'; /* No cache No buff */
7990 						break;
7991 					case 0x04:
7992 						ch = 'B'; /* No cache buff */
7993 						break;
7994 					case 0x08:
7995 						ch = 'C'; /* Cache No buff */
7996 						break;
7997 					case 0x0c:
7998 						ch = 'F'; /* Cache Buff */
7999 						break;
8000 					case 0x40:
8001 						ch = 'D';
8002 						break;
8003 					case 0x48:
8004 						ch = 'm'; /* Xscale mini-data */
8005 						break;
8006 					default:
8007 						ch = '?';
8008 						break;
8009 					}
8010 
8011 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
8012 						ch += 0x20;
8013 
8014 					if ((pte & 0xc) == 0)
8015 						ncptes[k & 63] = pte;
8016 				}
8017 
8018 				if ((k % 64) == 63) {
8019 					rows++;
8020 					printf("%c\n", ch);
8021 					pmap_dump_ncpg(pm);
8022 					if (occ == 0)
8023 						break;
8024 				} else
8025 					printf("%c", ch);
8026 			}
8027 		}
8028 	}
8029 }
8030 
8031 static void
pmap_dump_ncpg(pmap_t pm)8032 pmap_dump_ncpg(pmap_t pm)
8033 {
8034 	struct vm_page *pg;
8035 	struct vm_page_md *md;
8036 	struct pv_entry *pv;
8037 	int i;
8038 
8039 	for (i = 0; i < 63; i++) {
8040 		if (ncptes[i] == 0)
8041 			continue;
8042 
8043 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
8044 		if (pg == NULL)
8045 			continue;
8046 		md = VM_PAGE_TO_MD(pg);
8047 
8048 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
8049 		    VM_PAGE_TO_PHYS(pg),
8050 		    md->krw_mappings, md->kro_mappings,
8051 		    md->urw_mappings, md->uro_mappings);
8052 
8053 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
8054 			printf("   %c va 0x%08lx, flags 0x%x\n",
8055 			    (pm == pv->pv_pmap) ? '*' : ' ',
8056 			    pv->pv_va, pv->pv_flags);
8057 		}
8058 	}
8059 }
8060 #endif
8061 
8062 #ifdef PMAP_STEAL_MEMORY
8063 void
pmap_boot_pageadd(pv_addr_t * newpv)8064 pmap_boot_pageadd(pv_addr_t *newpv)
8065 {
8066 	pv_addr_t *pv, *npv;
8067 
8068 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
8069 		if (newpv->pv_pa < pv->pv_va) {
8070 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
8071 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
8072 				newpv->pv_size += pv->pv_size;
8073 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
8074 			}
8075 			pv = NULL;
8076 		} else {
8077 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
8078 			     pv = npv) {
8079 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
8080 				KASSERT(pv->pv_pa < newpv->pv_pa);
8081 				if (newpv->pv_pa > npv->pv_pa)
8082 					continue;
8083 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
8084 					pv->pv_size += newpv->pv_size;
8085 					return;
8086 				}
8087 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
8088 					break;
8089 				newpv->pv_size += npv->pv_size;
8090 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
8091 				SLIST_REMOVE_AFTER(newpv, pv_list);
8092 				return;
8093 			}
8094 		}
8095 	}
8096 
8097 	if (pv) {
8098 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
8099 	} else {
8100 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
8101 	}
8102 }
8103 
8104 void
pmap_boot_pagealloc(psize_t amount,psize_t mask,psize_t match,pv_addr_t * rpv)8105 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
8106 	pv_addr_t *rpv)
8107 {
8108 	pv_addr_t *pv, **pvp;
8109 
8110 	KASSERT(amount & PGOFSET);
8111 	KASSERT((mask & PGOFSET) == 0);
8112 	KASSERT((match & PGOFSET) == 0);
8113 	KASSERT(amount != 0);
8114 
8115 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8116 	     (pv = *pvp) != NULL;
8117 	     pvp = &SLIST_NEXT(pv, pv_list)) {
8118 		pv_addr_t *newpv;
8119 		psize_t off;
8120 		/*
8121 		 * If this entry is too small to satisfy the request...
8122 		 */
8123 		KASSERT(pv->pv_size > 0);
8124 		if (pv->pv_size < amount)
8125 			continue;
8126 
8127 		for (off = 0; off <= mask; off += PAGE_SIZE) {
8128 			if (((pv->pv_pa + off) & mask) == match
8129 			    && off + amount <= pv->pv_size)
8130 				break;
8131 		}
8132 		if (off > mask)
8133 			continue;
8134 
8135 		rpv->pv_va = pv->pv_va + off;
8136 		rpv->pv_pa = pv->pv_pa + off;
8137 		rpv->pv_size = amount;
8138 		pv->pv_size -= amount;
8139 		if (pv->pv_size == 0) {
8140 			KASSERT(off == 0);
8141 			KASSERT((vaddr_t) pv == rpv->pv_va);
8142 			*pvp = SLIST_NEXT(pv, pv_list);
8143 		} else if (off == 0) {
8144 			KASSERT((vaddr_t) pv == rpv->pv_va);
8145 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
8146 			*newpv = *pv;
8147 			newpv->pv_pa += amount;
8148 			newpv->pv_va += amount;
8149 			*pvp = newpv;
8150 		} else if (off < pv->pv_size) {
8151 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
8152 			*newpv = *pv;
8153 			newpv->pv_size -= off;
8154 			newpv->pv_pa += off + amount;
8155 			newpv->pv_va += off + amount;
8156 
8157 			SLIST_NEXT(pv, pv_list) = newpv;
8158 			pv->pv_size = off;
8159 		} else {
8160 			KASSERT((vaddr_t) pv != rpv->pv_va);
8161 		}
8162 		memset((void *)rpv->pv_va, 0, amount);
8163 		return;
8164 	}
8165 
8166 	if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8167 		panic("pmap_boot_pagealloc: couldn't allocate memory");
8168 
8169 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8170 	     (pv = *pvp) != NULL;
8171 	     pvp = &SLIST_NEXT(pv, pv_list)) {
8172 		if (SLIST_NEXT(pv, pv_list) == NULL)
8173 			break;
8174 	}
8175 	KASSERT(mask == 0);
8176 
8177 	for (uvm_physseg_t ups = uvm_physseg_get_first();
8178 	    uvm_physseg_valid_p(ups);
8179 	    ups = uvm_physseg_get_next(ups)) {
8180 
8181 		paddr_t spn = uvm_physseg_get_start(ups);
8182 		paddr_t epn = uvm_physseg_get_end(ups);
8183 		if (spn == atop(pv->pv_pa + pv->pv_size)
8184 		    && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8185 			rpv->pv_va = pv->pv_va;
8186 			rpv->pv_pa = pv->pv_pa;
8187 			rpv->pv_size = amount;
8188 			*pvp = NULL;
8189 			pmap_map_chunk(kernel_l1pt.pv_va,
8190 			     ptoa(spn) + (pv->pv_va - pv->pv_pa),
8191 			     ptoa(spn),
8192 			     amount - pv->pv_size,
8193 			     VM_PROT_READ|VM_PROT_WRITE,
8194 			     PTE_CACHE);
8195 
8196 			uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8197 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
8198 			return;
8199 		}
8200 	}
8201 
8202 	panic("pmap_boot_pagealloc: couldn't allocate memory");
8203 }
8204 
8205 vaddr_t
pmap_steal_memory(vsize_t size,vaddr_t * vstartp,vaddr_t * vendp)8206 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8207 {
8208 	pv_addr_t pv;
8209 
8210 	pmap_boot_pagealloc(size, 0, 0, &pv);
8211 
8212 	return pv.pv_va;
8213 }
8214 #endif /* PMAP_STEAL_MEMORY */
8215 
8216 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8217 {
8218 	sysctl_createv(clog, 0, NULL, NULL,
8219 			CTLFLAG_PERMANENT,
8220 			CTLTYPE_NODE, "machdep", NULL,
8221 			NULL, 0, NULL, 0,
8222 			CTL_MACHDEP, CTL_EOL);
8223 
8224 	sysctl_createv(clog, 0, NULL, NULL,
8225 			CTLFLAG_PERMANENT,
8226 			CTLTYPE_INT, "kmpages",
8227 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8228 			NULL, 0, &pmap_kmpages, 0,
8229 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8230 }
8231 
8232 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8233 struct vm_page *
arm_pmap_alloc_poolpage(int flags)8234 arm_pmap_alloc_poolpage(int flags)
8235 {
8236 	/*
8237 	 * On some systems, only some pages may be "coherent" for dma and we
8238 	 * want to prefer those for pool pages (think mbufs) but fallback to
8239 	 * any page if none is available.
8240 	 */
8241 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8242 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8243 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8244 	}
8245 
8246 	return uvm_pagealloc(NULL, 0, NULL, flags);
8247 }
8248 #endif
8249 
8250 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8251 void
pmap_md_tlb_info_attach(struct pmap_tlb_info * ti,struct cpu_info * ci)8252 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8253 {
8254         /* nothing */
8255 }
8256 
8257 int
pic_ipi_shootdown(void * arg)8258 pic_ipi_shootdown(void *arg)
8259 {
8260 #if PMAP_TLB_NEED_SHOOTDOWN
8261 	pmap_tlb_shootdown_process();
8262 #endif
8263 	return 1;
8264 }
8265 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8266 
8267 
8268 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8269 vaddr_t
pmap_direct_mapped_phys(paddr_t pa,bool * ok_p,vaddr_t va)8270 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8271 {
8272 	bool ok = false;
8273 	if (physical_start <= pa && pa < physical_end) {
8274 #ifdef KERNEL_BASE_VOFFSET
8275 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8276 #else
8277 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8278 #endif
8279 #ifdef ARM_MMU_EXTENDED
8280 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8281 #endif
8282 			va = newva;
8283 			ok = true;
8284 #ifdef ARM_MMU_EXTENDED
8285 		}
8286 #endif
8287 	}
8288 	KASSERT(ok_p);
8289 	*ok_p = ok;
8290 	return va;
8291 }
8292 
8293 vaddr_t
pmap_map_poolpage(paddr_t pa)8294 pmap_map_poolpage(paddr_t pa)
8295 {
8296 	bool ok __diagused;
8297 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8298 	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8299 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8300 	if (arm_cache_prefer_mask != 0) {
8301 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8302 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8303 		pmap_acquire_page_lock(md);
8304 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8305 		pmap_release_page_lock(md);
8306 	}
8307 #endif
8308 	return va;
8309 }
8310 
8311 paddr_t
pmap_unmap_poolpage(vaddr_t va)8312 pmap_unmap_poolpage(vaddr_t va)
8313 {
8314 	KASSERT(va >= KERNEL_BASE);
8315 #ifdef PMAP_CACHE_VIVT
8316 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
8317 #endif
8318 #if defined(KERNEL_BASE_VOFFSET)
8319         return va - KERNEL_BASE_VOFFSET;
8320 #else
8321         return va - KERNEL_BASE + physical_start;
8322 #endif
8323 }
8324 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8325