1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LivePhysRegs.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 #include <cmath>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "codegen"
42
43 static cl::opt<bool> PrintSlotIndexes(
44 "print-slotindexes",
45 cl::desc("When printing machine IR, annotate instructions and blocks with "
46 "SlotIndexes when available"),
47 cl::init(true), cl::Hidden);
48
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)49 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
50 : BB(B), Number(-1), xParent(&MF) {
51 Insts.Parent = this;
52 if (B)
53 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
54 }
55
56 MachineBasicBlock::~MachineBasicBlock() = default;
57
58 /// Return the MCSymbol for this basic block.
getSymbol() const59 MCSymbol *MachineBasicBlock::getSymbol() const {
60 if (!CachedMCSymbol) {
61 const MachineFunction *MF = getParent();
62 MCContext &Ctx = MF->getContext();
63
64 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
65 // a section (with basic block sections). Otherwise we fall back to use temp
66 // label.
67 if (MF->hasBBSections() && isBeginSection()) {
68 SmallString<5> Suffix;
69 if (SectionID == MBBSectionID::ColdSectionID) {
70 Suffix += ".cold";
71 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
72 Suffix += ".eh";
73 } else {
74 // For symbols that represent basic block sections, we add ".__part." to
75 // allow tools like symbolizers to know that this represents a part of
76 // the original function.
77 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
78 }
79 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
80 } else {
81 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
82 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
83 Twine(MF->getFunctionNumber()) +
84 "_" + Twine(getNumber()));
85 }
86 }
87 return CachedMCSymbol;
88 }
89
getEHCatchretSymbol() const90 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
91 if (!CachedEHCatchretMCSymbol) {
92 const MachineFunction *MF = getParent();
93 SmallString<128> SymbolName;
94 raw_svector_ostream(SymbolName)
95 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
96 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
97 }
98 return CachedEHCatchretMCSymbol;
99 }
100
getEndSymbol() const101 MCSymbol *MachineBasicBlock::getEndSymbol() const {
102 if (!CachedEndMCSymbol) {
103 const MachineFunction *MF = getParent();
104 MCContext &Ctx = MF->getContext();
105 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
106 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
107 Twine(MF->getFunctionNumber()) +
108 "_" + Twine(getNumber()));
109 }
110 return CachedEndMCSymbol;
111 }
112
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)113 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
114 MBB.print(OS);
115 return OS;
116 }
117
printMBBReference(const MachineBasicBlock & MBB)118 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
119 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
120 }
121
122 /// When an MBB is added to an MF, we need to update the parent pointer of the
123 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
124 /// operand list for registers.
125 ///
126 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
127 /// gets the next available unique MBB number. If it is removed from a
128 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)129 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
130 MachineBasicBlock *N) {
131 MachineFunction &MF = *N->getParent();
132 N->Number = MF.addToMBBNumbering(N);
133
134 // Make sure the instructions have their operands in the reginfo lists.
135 MachineRegisterInfo &RegInfo = MF.getRegInfo();
136 for (MachineInstr &MI : N->instrs())
137 MI.addRegOperandsToUseLists(RegInfo);
138 }
139
removeNodeFromList(MachineBasicBlock * N)140 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
141 MachineBasicBlock *N) {
142 N->getParent()->removeFromMBBNumbering(N->Number);
143 N->Number = -1;
144 }
145
146 /// When we add an instruction to a basic block list, we update its parent
147 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)148 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
149 assert(!N->getParent() && "machine instruction already in a basic block");
150 N->setParent(Parent);
151
152 // Add the instruction's register operands to their corresponding
153 // use/def lists.
154 MachineFunction *MF = Parent->getParent();
155 N->addRegOperandsToUseLists(MF->getRegInfo());
156 MF->handleInsertion(*N);
157 }
158
159 /// When we remove an instruction from a basic block list, we update its parent
160 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)161 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
162 assert(N->getParent() && "machine instruction not in a basic block");
163
164 // Remove from the use/def lists.
165 if (MachineFunction *MF = N->getMF()) {
166 MF->handleRemoval(*N);
167 N->removeRegOperandsFromUseLists(MF->getRegInfo());
168 }
169
170 N->setParent(nullptr);
171 }
172
173 /// When moving a range of instructions from one MBB list to another, we need to
174 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)175 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
176 instr_iterator First,
177 instr_iterator Last) {
178 assert(Parent->getParent() == FromList.Parent->getParent() &&
179 "cannot transfer MachineInstrs between MachineFunctions");
180
181 // If it's within the same BB, there's nothing to do.
182 if (this == &FromList)
183 return;
184
185 assert(Parent != FromList.Parent && "Two lists have the same parent?");
186
187 // If splicing between two blocks within the same function, just update the
188 // parent pointers.
189 for (; First != Last; ++First)
190 First->setParent(Parent);
191 }
192
deleteNode(MachineInstr * MI)193 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
194 assert(!MI->getParent() && "MI is still in a block!");
195 Parent->getParent()->deleteMachineInstr(MI);
196 }
197
getFirstNonPHI()198 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
199 instr_iterator I = instr_begin(), E = instr_end();
200 while (I != E && I->isPHI())
201 ++I;
202 assert((I == E || !I->isInsideBundle()) &&
203 "First non-phi MI cannot be inside a bundle!");
204 return I;
205 }
206
207 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)208 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
209 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
210
211 iterator E = end();
212 while (I != E && (I->isPHI() || I->isPosition() ||
213 TII->isBasicBlockPrologue(*I)))
214 ++I;
215 // FIXME: This needs to change if we wish to bundle labels
216 // inside the bundle.
217 assert((I == E || !I->isInsideBundle()) &&
218 "First non-phi / non-label instruction is inside a bundle!");
219 return I;
220 }
221
222 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,bool SkipPseudoOp)223 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
224 bool SkipPseudoOp) {
225 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
226
227 iterator E = end();
228 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
229 (SkipPseudoOp && I->isPseudoProbe()) ||
230 TII->isBasicBlockPrologue(*I)))
231 ++I;
232 // FIXME: This needs to change if we wish to bundle labels / dbg_values
233 // inside the bundle.
234 assert((I == E || !I->isInsideBundle()) &&
235 "First non-phi / non-label / non-debug "
236 "instruction is inside a bundle!");
237 return I;
238 }
239
getFirstTerminator()240 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
241 iterator B = begin(), E = end(), I = E;
242 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
243 ; /*noop */
244 while (I != E && !I->isTerminator())
245 ++I;
246 return I;
247 }
248
getFirstInstrTerminator()249 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
250 instr_iterator B = instr_begin(), E = instr_end(), I = E;
251 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
252 ; /*noop */
253 while (I != E && !I->isTerminator())
254 ++I;
255 return I;
256 }
257
getFirstTerminatorForward()258 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
259 return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
260 }
261
262 MachineBasicBlock::iterator
getFirstNonDebugInstr(bool SkipPseudoOp)263 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
264 // Skip over begin-of-block dbg_value instructions.
265 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
266 }
267
268 MachineBasicBlock::iterator
getLastNonDebugInstr(bool SkipPseudoOp)269 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
270 // Skip over end-of-block dbg_value instructions.
271 instr_iterator B = instr_begin(), I = instr_end();
272 while (I != B) {
273 --I;
274 // Return instruction that starts a bundle.
275 if (I->isDebugInstr() || I->isInsideBundle())
276 continue;
277 if (SkipPseudoOp && I->isPseudoProbe())
278 continue;
279 return I;
280 }
281 // The block is all debug values.
282 return end();
283 }
284
hasEHPadSuccessor() const285 bool MachineBasicBlock::hasEHPadSuccessor() const {
286 for (const MachineBasicBlock *Succ : successors())
287 if (Succ->isEHPad())
288 return true;
289 return false;
290 }
291
isEntryBlock() const292 bool MachineBasicBlock::isEntryBlock() const {
293 return getParent()->begin() == getIterator();
294 }
295
296 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const297 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
298 print(dbgs());
299 }
300 #endif
301
mayHaveInlineAsmBr() const302 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
303 for (const MachineBasicBlock *Succ : successors()) {
304 if (Succ->isInlineAsmBrIndirectTarget())
305 return true;
306 }
307 return false;
308 }
309
isLegalToHoistInto() const310 bool MachineBasicBlock::isLegalToHoistInto() const {
311 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
312 return false;
313 return true;
314 }
315
getName() const316 StringRef MachineBasicBlock::getName() const {
317 if (const BasicBlock *LBB = getBasicBlock())
318 return LBB->getName();
319 else
320 return StringRef("", 0);
321 }
322
323 /// Return a hopefully unique identifier for this block.
getFullName() const324 std::string MachineBasicBlock::getFullName() const {
325 std::string Name;
326 if (getParent())
327 Name = (getParent()->getName() + ":").str();
328 if (getBasicBlock())
329 Name += getBasicBlock()->getName();
330 else
331 Name += ("BB" + Twine(getNumber())).str();
332 return Name;
333 }
334
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const335 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
336 bool IsStandalone) const {
337 const MachineFunction *MF = getParent();
338 if (!MF) {
339 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
340 << " is null\n";
341 return;
342 }
343 const Function &F = MF->getFunction();
344 const Module *M = F.getParent();
345 ModuleSlotTracker MST(M);
346 MST.incorporateFunction(F);
347 print(OS, MST, Indexes, IsStandalone);
348 }
349
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const350 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
351 const SlotIndexes *Indexes,
352 bool IsStandalone) const {
353 const MachineFunction *MF = getParent();
354 if (!MF) {
355 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
356 << " is null\n";
357 return;
358 }
359
360 if (Indexes && PrintSlotIndexes)
361 OS << Indexes->getMBBStartIdx(this) << '\t';
362
363 printName(OS, PrintNameIr | PrintNameAttributes, &MST);
364 OS << ":\n";
365
366 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
367 const MachineRegisterInfo &MRI = MF->getRegInfo();
368 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
369 bool HasLineAttributes = false;
370
371 // Print the preds of this block according to the CFG.
372 if (!pred_empty() && IsStandalone) {
373 if (Indexes) OS << '\t';
374 // Don't indent(2), align with previous line attributes.
375 OS << "; predecessors: ";
376 ListSeparator LS;
377 for (auto *Pred : predecessors())
378 OS << LS << printMBBReference(*Pred);
379 OS << '\n';
380 HasLineAttributes = true;
381 }
382
383 if (!succ_empty()) {
384 if (Indexes) OS << '\t';
385 // Print the successors
386 OS.indent(2) << "successors: ";
387 ListSeparator LS;
388 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
389 OS << LS << printMBBReference(**I);
390 if (!Probs.empty())
391 OS << '('
392 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
393 << ')';
394 }
395 if (!Probs.empty() && IsStandalone) {
396 // Print human readable probabilities as comments.
397 OS << "; ";
398 ListSeparator LS;
399 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
400 const BranchProbability &BP = getSuccProbability(I);
401 OS << LS << printMBBReference(**I) << '('
402 << format("%.2f%%",
403 rint(((double)BP.getNumerator() / BP.getDenominator()) *
404 100.0 * 100.0) /
405 100.0)
406 << ')';
407 }
408 }
409
410 OS << '\n';
411 HasLineAttributes = true;
412 }
413
414 if (!livein_empty() && MRI.tracksLiveness()) {
415 if (Indexes) OS << '\t';
416 OS.indent(2) << "liveins: ";
417
418 ListSeparator LS;
419 for (const auto &LI : liveins()) {
420 OS << LS << printReg(LI.PhysReg, TRI);
421 if (!LI.LaneMask.all())
422 OS << ":0x" << PrintLaneMask(LI.LaneMask);
423 }
424 HasLineAttributes = true;
425 }
426
427 if (HasLineAttributes)
428 OS << '\n';
429
430 bool IsInBundle = false;
431 for (const MachineInstr &MI : instrs()) {
432 if (Indexes && PrintSlotIndexes) {
433 if (Indexes->hasIndex(MI))
434 OS << Indexes->getInstructionIndex(MI);
435 OS << '\t';
436 }
437
438 if (IsInBundle && !MI.isInsideBundle()) {
439 OS.indent(2) << "}\n";
440 IsInBundle = false;
441 }
442
443 OS.indent(IsInBundle ? 4 : 2);
444 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
445 /*AddNewLine=*/false, &TII);
446
447 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
448 OS << " {";
449 IsInBundle = true;
450 }
451 OS << '\n';
452 }
453
454 if (IsInBundle)
455 OS.indent(2) << "}\n";
456
457 if (IrrLoopHeaderWeight && IsStandalone) {
458 if (Indexes) OS << '\t';
459 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
460 << '\n';
461 }
462 }
463
464 /// Print the basic block's name as:
465 ///
466 /// bb.{number}[.{ir-name}] [(attributes...)]
467 ///
468 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
469 /// (which is the default). If the IR block has no name, it is identified
470 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
471 ///
472 /// When the \ref PrintNameAttributes flag is passed, additional attributes
473 /// of the block are printed when set.
474 ///
475 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
476 /// the parts to print.
477 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
478 /// incorporate its own tracker when necessary to
479 /// determine the block's IR name.
printName(raw_ostream & os,unsigned printNameFlags,ModuleSlotTracker * moduleSlotTracker) const480 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
481 ModuleSlotTracker *moduleSlotTracker) const {
482 os << "bb." << getNumber();
483 bool hasAttributes = false;
484
485 auto PrintBBRef = [&](const BasicBlock *bb) {
486 os << "%ir-block.";
487 if (bb->hasName()) {
488 os << bb->getName();
489 } else {
490 int slot = -1;
491
492 if (moduleSlotTracker) {
493 slot = moduleSlotTracker->getLocalSlot(bb);
494 } else if (bb->getParent()) {
495 ModuleSlotTracker tmpTracker(bb->getModule(), false);
496 tmpTracker.incorporateFunction(*bb->getParent());
497 slot = tmpTracker.getLocalSlot(bb);
498 }
499
500 if (slot == -1)
501 os << "<ir-block badref>";
502 else
503 os << slot;
504 }
505 };
506
507 if (printNameFlags & PrintNameIr) {
508 if (const auto *bb = getBasicBlock()) {
509 if (bb->hasName()) {
510 os << '.' << bb->getName();
511 } else {
512 hasAttributes = true;
513 os << " (";
514 PrintBBRef(bb);
515 }
516 }
517 }
518
519 if (printNameFlags & PrintNameAttributes) {
520 if (isMachineBlockAddressTaken()) {
521 os << (hasAttributes ? ", " : " (");
522 os << "machine-block-address-taken";
523 hasAttributes = true;
524 }
525 if (isIRBlockAddressTaken()) {
526 os << (hasAttributes ? ", " : " (");
527 os << "ir-block-address-taken ";
528 PrintBBRef(getAddressTakenIRBlock());
529 hasAttributes = true;
530 }
531 if (isEHPad()) {
532 os << (hasAttributes ? ", " : " (");
533 os << "landing-pad";
534 hasAttributes = true;
535 }
536 if (isInlineAsmBrIndirectTarget()) {
537 os << (hasAttributes ? ", " : " (");
538 os << "inlineasm-br-indirect-target";
539 hasAttributes = true;
540 }
541 if (isEHFuncletEntry()) {
542 os << (hasAttributes ? ", " : " (");
543 os << "ehfunclet-entry";
544 hasAttributes = true;
545 }
546 if (getAlignment() != Align(1)) {
547 os << (hasAttributes ? ", " : " (");
548 os << "align " << getAlignment().value();
549 hasAttributes = true;
550 }
551 if (getSectionID() != MBBSectionID(0)) {
552 os << (hasAttributes ? ", " : " (");
553 os << "bbsections ";
554 switch (getSectionID().Type) {
555 case MBBSectionID::SectionType::Exception:
556 os << "Exception";
557 break;
558 case MBBSectionID::SectionType::Cold:
559 os << "Cold";
560 break;
561 default:
562 os << getSectionID().Number;
563 }
564 hasAttributes = true;
565 }
566 if (getBBID().has_value()) {
567 os << (hasAttributes ? ", " : " (");
568 os << "bb_id " << *getBBID();
569 hasAttributes = true;
570 }
571 }
572
573 if (hasAttributes)
574 os << ')';
575 }
576
printAsOperand(raw_ostream & OS,bool) const577 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
578 bool /*PrintType*/) const {
579 OS << '%';
580 printName(OS, 0);
581 }
582
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)583 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
584 LiveInVector::iterator I = find_if(
585 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
586 if (I == LiveIns.end())
587 return;
588
589 I->LaneMask &= ~LaneMask;
590 if (I->LaneMask.none())
591 LiveIns.erase(I);
592 }
593
594 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)595 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
596 // Get non-const version of iterator.
597 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
598 return LiveIns.erase(LI);
599 }
600
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const601 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
602 livein_iterator I = find_if(
603 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
604 return I != livein_end() && (I->LaneMask & LaneMask).any();
605 }
606
sortUniqueLiveIns()607 void MachineBasicBlock::sortUniqueLiveIns() {
608 llvm::sort(LiveIns,
609 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
610 return LI0.PhysReg < LI1.PhysReg;
611 });
612 // Liveins are sorted by physreg now we can merge their lanemasks.
613 LiveInVector::const_iterator I = LiveIns.begin();
614 LiveInVector::const_iterator J;
615 LiveInVector::iterator Out = LiveIns.begin();
616 for (; I != LiveIns.end(); ++Out, I = J) {
617 MCRegister PhysReg = I->PhysReg;
618 LaneBitmask LaneMask = I->LaneMask;
619 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
620 LaneMask |= J->LaneMask;
621 Out->PhysReg = PhysReg;
622 Out->LaneMask = LaneMask;
623 }
624 LiveIns.erase(Out, LiveIns.end());
625 }
626
627 Register
addLiveIn(MCRegister PhysReg,const TargetRegisterClass * RC)628 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
629 assert(getParent() && "MBB must be inserted in function");
630 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
631 assert(RC && "Register class is required");
632 assert((isEHPad() || this == &getParent()->front()) &&
633 "Only the entry block and landing pads can have physreg live ins");
634
635 bool LiveIn = isLiveIn(PhysReg);
636 iterator I = SkipPHIsAndLabels(begin()), E = end();
637 MachineRegisterInfo &MRI = getParent()->getRegInfo();
638 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
639
640 // Look for an existing copy.
641 if (LiveIn)
642 for (;I != E && I->isCopy(); ++I)
643 if (I->getOperand(1).getReg() == PhysReg) {
644 Register VirtReg = I->getOperand(0).getReg();
645 if (!MRI.constrainRegClass(VirtReg, RC))
646 llvm_unreachable("Incompatible live-in register class.");
647 return VirtReg;
648 }
649
650 // No luck, create a virtual register.
651 Register VirtReg = MRI.createVirtualRegister(RC);
652 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
653 .addReg(PhysReg, RegState::Kill);
654 if (!LiveIn)
655 addLiveIn(PhysReg);
656 return VirtReg;
657 }
658
moveBefore(MachineBasicBlock * NewAfter)659 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
660 getParent()->splice(NewAfter->getIterator(), getIterator());
661 }
662
moveAfter(MachineBasicBlock * NewBefore)663 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
664 getParent()->splice(++NewBefore->getIterator(), getIterator());
665 }
666
updateTerminator(MachineBasicBlock * PreviousLayoutSuccessor)667 void MachineBasicBlock::updateTerminator(
668 MachineBasicBlock *PreviousLayoutSuccessor) {
669 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
670 << "\n");
671
672 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
673 // A block with no successors has no concerns with fall-through edges.
674 if (this->succ_empty())
675 return;
676
677 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
678 SmallVector<MachineOperand, 4> Cond;
679 DebugLoc DL = findBranchDebugLoc();
680 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
681 (void) B;
682 assert(!B && "UpdateTerminators requires analyzable predecessors!");
683 if (Cond.empty()) {
684 if (TBB) {
685 // The block has an unconditional branch. If its successor is now its
686 // layout successor, delete the branch.
687 if (isLayoutSuccessor(TBB))
688 TII->removeBranch(*this);
689 } else {
690 // The block has an unconditional fallthrough, or the end of the block is
691 // unreachable.
692
693 // Unfortunately, whether the end of the block is unreachable is not
694 // immediately obvious; we must fall back to checking the successor list,
695 // and assuming that if the passed in block is in the succesor list and
696 // not an EHPad, it must be the intended target.
697 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
698 PreviousLayoutSuccessor->isEHPad())
699 return;
700
701 // If the unconditional successor block is not the current layout
702 // successor, insert a branch to jump to it.
703 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
704 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
705 }
706 return;
707 }
708
709 if (FBB) {
710 // The block has a non-fallthrough conditional branch. If one of its
711 // successors is its layout successor, rewrite it to a fallthrough
712 // conditional branch.
713 if (isLayoutSuccessor(TBB)) {
714 if (TII->reverseBranchCondition(Cond))
715 return;
716 TII->removeBranch(*this);
717 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
718 } else if (isLayoutSuccessor(FBB)) {
719 TII->removeBranch(*this);
720 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
721 }
722 return;
723 }
724
725 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
726 assert(PreviousLayoutSuccessor);
727 assert(!PreviousLayoutSuccessor->isEHPad());
728 assert(isSuccessor(PreviousLayoutSuccessor));
729
730 if (PreviousLayoutSuccessor == TBB) {
731 // We had a fallthrough to the same basic block as the conditional jump
732 // targets. Remove the conditional jump, leaving an unconditional
733 // fallthrough or an unconditional jump.
734 TII->removeBranch(*this);
735 if (!isLayoutSuccessor(TBB)) {
736 Cond.clear();
737 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
738 }
739 return;
740 }
741
742 // The block has a fallthrough conditional branch.
743 if (isLayoutSuccessor(TBB)) {
744 if (TII->reverseBranchCondition(Cond)) {
745 // We can't reverse the condition, add an unconditional branch.
746 Cond.clear();
747 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
748 return;
749 }
750 TII->removeBranch(*this);
751 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
752 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
753 TII->removeBranch(*this);
754 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
755 }
756 }
757
validateSuccProbs() const758 void MachineBasicBlock::validateSuccProbs() const {
759 #ifndef NDEBUG
760 int64_t Sum = 0;
761 for (auto Prob : Probs)
762 Sum += Prob.getNumerator();
763 // Due to precision issue, we assume that the sum of probabilities is one if
764 // the difference between the sum of their numerators and the denominator is
765 // no greater than the number of successors.
766 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
767 Probs.size() &&
768 "The sum of successors's probabilities exceeds one.");
769 #endif // NDEBUG
770 }
771
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)772 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
773 BranchProbability Prob) {
774 // Probability list is either empty (if successor list isn't empty, this means
775 // disabled optimization) or has the same size as successor list.
776 if (!(Probs.empty() && !Successors.empty()))
777 Probs.push_back(Prob);
778 Successors.push_back(Succ);
779 Succ->addPredecessor(this);
780 }
781
addSuccessorWithoutProb(MachineBasicBlock * Succ)782 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
783 // We need to make sure probability list is either empty or has the same size
784 // of successor list. When this function is called, we can safely delete all
785 // probability in the list.
786 Probs.clear();
787 Successors.push_back(Succ);
788 Succ->addPredecessor(this);
789 }
790
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)791 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
792 MachineBasicBlock *New,
793 bool NormalizeSuccProbs) {
794 succ_iterator OldI = llvm::find(successors(), Old);
795 assert(OldI != succ_end() && "Old is not a successor of this block!");
796 assert(!llvm::is_contained(successors(), New) &&
797 "New is already a successor of this block!");
798
799 // Add a new successor with equal probability as the original one. Note
800 // that we directly copy the probability using the iterator rather than
801 // getting a potentially synthetic probability computed when unknown. This
802 // preserves the probabilities as-is and then we can renormalize them and
803 // query them effectively afterward.
804 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
805 : *getProbabilityIterator(OldI));
806 if (NormalizeSuccProbs)
807 normalizeSuccProbs();
808 }
809
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)810 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
811 bool NormalizeSuccProbs) {
812 succ_iterator I = find(Successors, Succ);
813 removeSuccessor(I, NormalizeSuccProbs);
814 }
815
816 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)817 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
818 assert(I != Successors.end() && "Not a current successor!");
819
820 // If probability list is empty it means we don't use it (disabled
821 // optimization).
822 if (!Probs.empty()) {
823 probability_iterator WI = getProbabilityIterator(I);
824 Probs.erase(WI);
825 if (NormalizeSuccProbs)
826 normalizeSuccProbs();
827 }
828
829 (*I)->removePredecessor(this);
830 return Successors.erase(I);
831 }
832
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)833 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
834 MachineBasicBlock *New) {
835 if (Old == New)
836 return;
837
838 succ_iterator E = succ_end();
839 succ_iterator NewI = E;
840 succ_iterator OldI = E;
841 for (succ_iterator I = succ_begin(); I != E; ++I) {
842 if (*I == Old) {
843 OldI = I;
844 if (NewI != E)
845 break;
846 }
847 if (*I == New) {
848 NewI = I;
849 if (OldI != E)
850 break;
851 }
852 }
853 assert(OldI != E && "Old is not a successor of this block");
854
855 // If New isn't already a successor, let it take Old's place.
856 if (NewI == E) {
857 Old->removePredecessor(this);
858 New->addPredecessor(this);
859 *OldI = New;
860 return;
861 }
862
863 // New is already a successor.
864 // Update its probability instead of adding a duplicate edge.
865 if (!Probs.empty()) {
866 auto ProbIter = getProbabilityIterator(NewI);
867 if (!ProbIter->isUnknown())
868 *ProbIter += *getProbabilityIterator(OldI);
869 }
870 removeSuccessor(OldI);
871 }
872
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)873 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
874 succ_iterator I) {
875 if (!Orig->Probs.empty())
876 addSuccessor(*I, Orig->getSuccProbability(I));
877 else
878 addSuccessorWithoutProb(*I);
879 }
880
addPredecessor(MachineBasicBlock * Pred)881 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
882 Predecessors.push_back(Pred);
883 }
884
removePredecessor(MachineBasicBlock * Pred)885 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
886 pred_iterator I = find(Predecessors, Pred);
887 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
888 Predecessors.erase(I);
889 }
890
transferSuccessors(MachineBasicBlock * FromMBB)891 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
892 if (this == FromMBB)
893 return;
894
895 while (!FromMBB->succ_empty()) {
896 MachineBasicBlock *Succ = *FromMBB->succ_begin();
897
898 // If probability list is empty it means we don't use it (disabled
899 // optimization).
900 if (!FromMBB->Probs.empty()) {
901 auto Prob = *FromMBB->Probs.begin();
902 addSuccessor(Succ, Prob);
903 } else
904 addSuccessorWithoutProb(Succ);
905
906 FromMBB->removeSuccessor(Succ);
907 }
908 }
909
910 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)911 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
912 if (this == FromMBB)
913 return;
914
915 while (!FromMBB->succ_empty()) {
916 MachineBasicBlock *Succ = *FromMBB->succ_begin();
917 if (!FromMBB->Probs.empty()) {
918 auto Prob = *FromMBB->Probs.begin();
919 addSuccessor(Succ, Prob);
920 } else
921 addSuccessorWithoutProb(Succ);
922 FromMBB->removeSuccessor(Succ);
923
924 // Fix up any PHI nodes in the successor.
925 Succ->replacePhiUsesWith(FromMBB, this);
926 }
927 normalizeSuccProbs();
928 }
929
isPredecessor(const MachineBasicBlock * MBB) const930 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
931 return is_contained(predecessors(), MBB);
932 }
933
isSuccessor(const MachineBasicBlock * MBB) const934 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
935 return is_contained(successors(), MBB);
936 }
937
isLayoutSuccessor(const MachineBasicBlock * MBB) const938 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
939 MachineFunction::const_iterator I(this);
940 return std::next(I) == MachineFunction::const_iterator(MBB);
941 }
942
getSingleSuccessor() const943 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
944 return Successors.size() == 1 ? Successors[0] : nullptr;
945 }
946
getFallThrough(bool JumpToFallThrough)947 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
948 MachineFunction::iterator Fallthrough = getIterator();
949 ++Fallthrough;
950 // If FallthroughBlock is off the end of the function, it can't fall through.
951 if (Fallthrough == getParent()->end())
952 return nullptr;
953
954 // If FallthroughBlock isn't a successor, no fallthrough is possible.
955 if (!isSuccessor(&*Fallthrough))
956 return nullptr;
957
958 // Analyze the branches, if any, at the end of the block.
959 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
960 SmallVector<MachineOperand, 4> Cond;
961 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
962 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
963 // If we couldn't analyze the branch, examine the last instruction.
964 // If the block doesn't end in a known control barrier, assume fallthrough
965 // is possible. The isPredicated check is needed because this code can be
966 // called during IfConversion, where an instruction which is normally a
967 // Barrier is predicated and thus no longer an actual control barrier.
968 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
969 ? &*Fallthrough
970 : nullptr;
971 }
972
973 // If there is no branch, control always falls through.
974 if (!TBB) return &*Fallthrough;
975
976 // If there is some explicit branch to the fallthrough block, it can obviously
977 // reach, even though the branch should get folded to fall through implicitly.
978 if (!JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
979 MachineFunction::iterator(FBB) == Fallthrough))
980 return &*Fallthrough;
981
982 // If it's an unconditional branch to some block not the fall through, it
983 // doesn't fall through.
984 if (Cond.empty()) return nullptr;
985
986 // Otherwise, if it is conditional and has no explicit false block, it falls
987 // through.
988 return (FBB == nullptr) ? &*Fallthrough : nullptr;
989 }
990
canFallThrough()991 bool MachineBasicBlock::canFallThrough() {
992 return getFallThrough() != nullptr;
993 }
994
splitAt(MachineInstr & MI,bool UpdateLiveIns,LiveIntervals * LIS)995 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
996 bool UpdateLiveIns,
997 LiveIntervals *LIS) {
998 MachineBasicBlock::iterator SplitPoint(&MI);
999 ++SplitPoint;
1000
1001 if (SplitPoint == end()) {
1002 // Don't bother with a new block.
1003 return this;
1004 }
1005
1006 MachineFunction *MF = getParent();
1007
1008 LivePhysRegs LiveRegs;
1009 if (UpdateLiveIns) {
1010 // Make sure we add any physregs we define in the block as liveins to the
1011 // new block.
1012 MachineBasicBlock::iterator Prev(&MI);
1013 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1014 LiveRegs.addLiveOuts(*this);
1015 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1016 LiveRegs.stepBackward(*I);
1017 }
1018
1019 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1020
1021 MF->insert(++MachineFunction::iterator(this), SplitBB);
1022 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1023
1024 SplitBB->transferSuccessorsAndUpdatePHIs(this);
1025 addSuccessor(SplitBB);
1026
1027 if (UpdateLiveIns)
1028 addLiveIns(*SplitBB, LiveRegs);
1029
1030 if (LIS)
1031 LIS->insertMBBInMaps(SplitBB);
1032
1033 return SplitBB;
1034 }
1035
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P,std::vector<SparseBitVector<>> * LiveInSets)1036 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1037 MachineBasicBlock *Succ, Pass &P,
1038 std::vector<SparseBitVector<>> *LiveInSets) {
1039 if (!canSplitCriticalEdge(Succ))
1040 return nullptr;
1041
1042 MachineFunction *MF = getParent();
1043 MachineBasicBlock *PrevFallthrough = getNextNode();
1044 DebugLoc DL; // FIXME: this is nowhere
1045
1046 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1047 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1048 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1049 << " -- " << printMBBReference(*NMBB) << " -- "
1050 << printMBBReference(*Succ) << '\n');
1051
1052 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1053 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1054 if (LIS)
1055 LIS->insertMBBInMaps(NMBB);
1056 else if (Indexes)
1057 Indexes->insertMBBInMaps(NMBB);
1058
1059 // On some targets like Mips, branches may kill virtual registers. Make sure
1060 // that LiveVariables is properly updated after updateTerminator replaces the
1061 // terminators.
1062 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1063
1064 // Collect a list of virtual registers killed by the terminators.
1065 SmallVector<Register, 4> KilledRegs;
1066 if (LV)
1067 for (MachineInstr &MI :
1068 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1069 for (MachineOperand &MO : MI.operands()) {
1070 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1071 MO.isUndef())
1072 continue;
1073 Register Reg = MO.getReg();
1074 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1075 KilledRegs.push_back(Reg);
1076 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1077 MO.setIsKill(false);
1078 }
1079 }
1080 }
1081
1082 SmallVector<Register, 4> UsedRegs;
1083 if (LIS) {
1084 for (MachineInstr &MI :
1085 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1086 for (const MachineOperand &MO : MI.operands()) {
1087 if (!MO.isReg() || MO.getReg() == 0)
1088 continue;
1089
1090 Register Reg = MO.getReg();
1091 if (!is_contained(UsedRegs, Reg))
1092 UsedRegs.push_back(Reg);
1093 }
1094 }
1095 }
1096
1097 ReplaceUsesOfBlockWith(Succ, NMBB);
1098
1099 // If updateTerminator() removes instructions, we need to remove them from
1100 // SlotIndexes.
1101 SmallVector<MachineInstr*, 4> Terminators;
1102 if (Indexes) {
1103 for (MachineInstr &MI :
1104 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1105 Terminators.push_back(&MI);
1106 }
1107
1108 // Since we replaced all uses of Succ with NMBB, that should also be treated
1109 // as the fallthrough successor
1110 if (Succ == PrevFallthrough)
1111 PrevFallthrough = NMBB;
1112 updateTerminator(PrevFallthrough);
1113
1114 if (Indexes) {
1115 SmallVector<MachineInstr*, 4> NewTerminators;
1116 for (MachineInstr &MI :
1117 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1118 NewTerminators.push_back(&MI);
1119
1120 for (MachineInstr *Terminator : Terminators) {
1121 if (!is_contained(NewTerminators, Terminator))
1122 Indexes->removeMachineInstrFromMaps(*Terminator);
1123 }
1124 }
1125
1126 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1127 NMBB->addSuccessor(Succ);
1128 if (!NMBB->isLayoutSuccessor(Succ)) {
1129 SmallVector<MachineOperand, 4> Cond;
1130 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1131 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1132
1133 if (Indexes) {
1134 for (MachineInstr &MI : NMBB->instrs()) {
1135 // Some instructions may have been moved to NMBB by updateTerminator(),
1136 // so we first remove any instruction that already has an index.
1137 if (Indexes->hasIndex(MI))
1138 Indexes->removeMachineInstrFromMaps(MI);
1139 Indexes->insertMachineInstrInMaps(MI);
1140 }
1141 }
1142 }
1143
1144 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1145 Succ->replacePhiUsesWith(this, NMBB);
1146
1147 // Inherit live-ins from the successor
1148 for (const auto &LI : Succ->liveins())
1149 NMBB->addLiveIn(LI);
1150
1151 // Update LiveVariables.
1152 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1153 if (LV) {
1154 // Restore kills of virtual registers that were killed by the terminators.
1155 while (!KilledRegs.empty()) {
1156 Register Reg = KilledRegs.pop_back_val();
1157 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1158 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1159 continue;
1160 if (Reg.isVirtual())
1161 LV->getVarInfo(Reg).Kills.push_back(&*I);
1162 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1163 break;
1164 }
1165 }
1166 // Update relevant live-through information.
1167 if (LiveInSets != nullptr)
1168 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1169 else
1170 LV->addNewBlock(NMBB, this, Succ);
1171 }
1172
1173 if (LIS) {
1174 // After splitting the edge and updating SlotIndexes, live intervals may be
1175 // in one of two situations, depending on whether this block was the last in
1176 // the function. If the original block was the last in the function, all
1177 // live intervals will end prior to the beginning of the new split block. If
1178 // the original block was not at the end of the function, all live intervals
1179 // will extend to the end of the new split block.
1180
1181 bool isLastMBB =
1182 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1183
1184 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1185 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1186 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1187
1188 // Find the registers used from NMBB in PHIs in Succ.
1189 SmallSet<Register, 8> PHISrcRegs;
1190 for (MachineBasicBlock::instr_iterator
1191 I = Succ->instr_begin(), E = Succ->instr_end();
1192 I != E && I->isPHI(); ++I) {
1193 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1194 if (I->getOperand(ni+1).getMBB() == NMBB) {
1195 MachineOperand &MO = I->getOperand(ni);
1196 Register Reg = MO.getReg();
1197 PHISrcRegs.insert(Reg);
1198 if (MO.isUndef())
1199 continue;
1200
1201 LiveInterval &LI = LIS->getInterval(Reg);
1202 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1203 assert(VNI &&
1204 "PHI sources should be live out of their predecessors.");
1205 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1206 }
1207 }
1208 }
1209
1210 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1211 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1212 Register Reg = Register::index2VirtReg(i);
1213 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1214 continue;
1215
1216 LiveInterval &LI = LIS->getInterval(Reg);
1217 if (!LI.liveAt(PrevIndex))
1218 continue;
1219
1220 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1221 if (isLiveOut && isLastMBB) {
1222 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1223 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1224 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1225 } else if (!isLiveOut && !isLastMBB) {
1226 LI.removeSegment(StartIndex, EndIndex);
1227 }
1228 }
1229
1230 // Update all intervals for registers whose uses may have been modified by
1231 // updateTerminator().
1232 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1233 }
1234
1235 if (MachineDominatorTree *MDT =
1236 P.getAnalysisIfAvailable<MachineDominatorTree>())
1237 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1238
1239 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1240 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1241 // If one or the other blocks were not in a loop, the new block is not
1242 // either, and thus LI doesn't need to be updated.
1243 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1244 if (TIL == DestLoop) {
1245 // Both in the same loop, the NMBB joins loop.
1246 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1247 } else if (TIL->contains(DestLoop)) {
1248 // Edge from an outer loop to an inner loop. Add to the outer loop.
1249 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1250 } else if (DestLoop->contains(TIL)) {
1251 // Edge from an inner loop to an outer loop. Add to the outer loop.
1252 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1253 } else {
1254 // Edge from two loops with no containment relation. Because these
1255 // are natural loops, we know that the destination block must be the
1256 // header of its loop (adding a branch into a loop elsewhere would
1257 // create an irreducible loop).
1258 assert(DestLoop->getHeader() == Succ &&
1259 "Should not create irreducible loops!");
1260 if (MachineLoop *P = DestLoop->getParentLoop())
1261 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1262 }
1263 }
1264 }
1265
1266 return NMBB;
1267 }
1268
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1269 bool MachineBasicBlock::canSplitCriticalEdge(
1270 const MachineBasicBlock *Succ) const {
1271 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1272 // it in this generic function.
1273 if (Succ->isEHPad())
1274 return false;
1275
1276 // Splitting the critical edge to a callbr's indirect block isn't advised.
1277 // Don't do it in this generic function.
1278 if (Succ->isInlineAsmBrIndirectTarget())
1279 return false;
1280
1281 const MachineFunction *MF = getParent();
1282 // Performance might be harmed on HW that implements branching using exec mask
1283 // where both sides of the branches are always executed.
1284 if (MF->getTarget().requiresStructuredCFG())
1285 return false;
1286
1287 // We may need to update this's terminator, but we can't do that if
1288 // analyzeBranch fails. If this uses a jump table, we won't touch it.
1289 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1290 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1291 SmallVector<MachineOperand, 4> Cond;
1292 // AnalyzeBanch should modify this, since we did not allow modification.
1293 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1294 /*AllowModify*/ false))
1295 return false;
1296
1297 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1298 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1299 // case that we can't handle. Since this never happens in properly optimized
1300 // code, just skip those edges.
1301 if (TBB && TBB == FBB) {
1302 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1303 << printMBBReference(*this) << '\n');
1304 return false;
1305 }
1306 return true;
1307 }
1308
1309 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1310 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1311 static void unbundleSingleMI(MachineInstr *MI) {
1312 // Removing the first instruction in a bundle.
1313 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1314 MI->unbundleFromSucc();
1315 // Removing the last instruction in a bundle.
1316 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1317 MI->unbundleFromPred();
1318 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1319 // are already fine.
1320 }
1321
1322 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1323 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1324 unbundleSingleMI(&*I);
1325 return Insts.erase(I);
1326 }
1327
remove_instr(MachineInstr * MI)1328 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1329 unbundleSingleMI(MI);
1330 MI->clearFlag(MachineInstr::BundledPred);
1331 MI->clearFlag(MachineInstr::BundledSucc);
1332 return Insts.remove(MI);
1333 }
1334
1335 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1336 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1337 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1338 "Cannot insert instruction with bundle flags");
1339 // Set the bundle flags when inserting inside a bundle.
1340 if (I != instr_end() && I->isBundledWithPred()) {
1341 MI->setFlag(MachineInstr::BundledPred);
1342 MI->setFlag(MachineInstr::BundledSucc);
1343 }
1344 return Insts.insert(I, MI);
1345 }
1346
1347 /// This method unlinks 'this' from the containing function, and returns it, but
1348 /// does not delete it.
removeFromParent()1349 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1350 assert(getParent() && "Not embedded in a function!");
1351 getParent()->remove(this);
1352 return this;
1353 }
1354
1355 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1356 void MachineBasicBlock::eraseFromParent() {
1357 assert(getParent() && "Not embedded in a function!");
1358 getParent()->erase(this);
1359 }
1360
1361 /// Given a machine basic block that branched to 'Old', change the code and CFG
1362 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1363 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1364 MachineBasicBlock *New) {
1365 assert(Old != New && "Cannot replace self with self!");
1366
1367 MachineBasicBlock::instr_iterator I = instr_end();
1368 while (I != instr_begin()) {
1369 --I;
1370 if (!I->isTerminator()) break;
1371
1372 // Scan the operands of this machine instruction, replacing any uses of Old
1373 // with New.
1374 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1375 if (I->getOperand(i).isMBB() &&
1376 I->getOperand(i).getMBB() == Old)
1377 I->getOperand(i).setMBB(New);
1378 }
1379
1380 // Update the successor information.
1381 replaceSuccessor(Old, New);
1382 }
1383
replacePhiUsesWith(MachineBasicBlock * Old,MachineBasicBlock * New)1384 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1385 MachineBasicBlock *New) {
1386 for (MachineInstr &MI : phis())
1387 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1388 MachineOperand &MO = MI.getOperand(i);
1389 if (MO.getMBB() == Old)
1390 MO.setMBB(New);
1391 }
1392 }
1393
1394 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1395 /// instructions. Return UnknownLoc if there is none.
1396 DebugLoc
findDebugLoc(instr_iterator MBBI)1397 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1398 // Skip debug declarations, we don't want a DebugLoc from them.
1399 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1400 if (MBBI != instr_end())
1401 return MBBI->getDebugLoc();
1402 return {};
1403 }
1404
rfindDebugLoc(reverse_instr_iterator MBBI)1405 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1406 // Skip debug declarations, we don't want a DebugLoc from them.
1407 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1408 if (!MBBI->isDebugInstr())
1409 return MBBI->getDebugLoc();
1410 return {};
1411 }
1412
1413 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1414 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1415 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1416 if (MBBI == instr_begin()) return {};
1417 // Skip debug instructions, we don't want a DebugLoc from them.
1418 MBBI = prev_nodbg(MBBI, instr_begin());
1419 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1420 return {};
1421 }
1422
rfindPrevDebugLoc(reverse_instr_iterator MBBI)1423 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1424 if (MBBI == instr_rend())
1425 return {};
1426 // Skip debug declarations, we don't want a DebugLoc from them.
1427 MBBI = next_nodbg(MBBI, instr_rend());
1428 if (MBBI != instr_rend())
1429 return MBBI->getDebugLoc();
1430 return {};
1431 }
1432
1433 /// Find and return the merged DebugLoc of the branch instructions of the block.
1434 /// Return UnknownLoc if there is none.
1435 DebugLoc
findBranchDebugLoc()1436 MachineBasicBlock::findBranchDebugLoc() {
1437 DebugLoc DL;
1438 auto TI = getFirstTerminator();
1439 while (TI != end() && !TI->isBranch())
1440 ++TI;
1441
1442 if (TI != end()) {
1443 DL = TI->getDebugLoc();
1444 for (++TI ; TI != end() ; ++TI)
1445 if (TI->isBranch())
1446 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1447 }
1448 return DL;
1449 }
1450
1451 /// Return probability of the edge from this block to MBB.
1452 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1453 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1454 if (Probs.empty())
1455 return BranchProbability(1, succ_size());
1456
1457 const auto &Prob = *getProbabilityIterator(Succ);
1458 if (Prob.isUnknown()) {
1459 // For unknown probabilities, collect the sum of all known ones, and evenly
1460 // ditribute the complemental of the sum to each unknown probability.
1461 unsigned KnownProbNum = 0;
1462 auto Sum = BranchProbability::getZero();
1463 for (const auto &P : Probs) {
1464 if (!P.isUnknown()) {
1465 Sum += P;
1466 KnownProbNum++;
1467 }
1468 }
1469 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1470 } else
1471 return Prob;
1472 }
1473
1474 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1475 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1476 BranchProbability Prob) {
1477 assert(!Prob.isUnknown());
1478 if (Probs.empty())
1479 return;
1480 *getProbabilityIterator(I) = Prob;
1481 }
1482
1483 /// Return probability iterator corresonding to the I successor iterator
1484 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1485 MachineBasicBlock::getProbabilityIterator(
1486 MachineBasicBlock::const_succ_iterator I) const {
1487 assert(Probs.size() == Successors.size() && "Async probability list!");
1488 const size_t index = std::distance(Successors.begin(), I);
1489 assert(index < Probs.size() && "Not a current successor!");
1490 return Probs.begin() + index;
1491 }
1492
1493 /// Return probability iterator corresonding to the I successor iterator.
1494 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1495 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1496 assert(Probs.size() == Successors.size() && "Async probability list!");
1497 const size_t index = std::distance(Successors.begin(), I);
1498 assert(index < Probs.size() && "Not a current successor!");
1499 return Probs.begin() + index;
1500 }
1501
1502 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1503 /// as of just before "MI".
1504 ///
1505 /// Search is localised to a neighborhood of
1506 /// Neighborhood instructions before (searching for defs or kills) and N
1507 /// instructions after (searching just for defs) MI.
1508 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,MCRegister Reg,const_iterator Before,unsigned Neighborhood) const1509 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1510 MCRegister Reg, const_iterator Before,
1511 unsigned Neighborhood) const {
1512 unsigned N = Neighborhood;
1513
1514 // Try searching forwards from Before, looking for reads or defs.
1515 const_iterator I(Before);
1516 for (; I != end() && N > 0; ++I) {
1517 if (I->isDebugOrPseudoInstr())
1518 continue;
1519
1520 --N;
1521
1522 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1523
1524 // Register is live when we read it here.
1525 if (Info.Read)
1526 return LQR_Live;
1527 // Register is dead if we can fully overwrite or clobber it here.
1528 if (Info.FullyDefined || Info.Clobbered)
1529 return LQR_Dead;
1530 }
1531
1532 // If we reached the end, it is safe to clobber Reg at the end of a block of
1533 // no successor has it live in.
1534 if (I == end()) {
1535 for (MachineBasicBlock *S : successors()) {
1536 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1537 if (TRI->regsOverlap(LI.PhysReg, Reg))
1538 return LQR_Live;
1539 }
1540 }
1541
1542 return LQR_Dead;
1543 }
1544
1545
1546 N = Neighborhood;
1547
1548 // Start by searching backwards from Before, looking for kills, reads or defs.
1549 I = const_iterator(Before);
1550 // If this is the first insn in the block, don't search backwards.
1551 if (I != begin()) {
1552 do {
1553 --I;
1554
1555 if (I->isDebugOrPseudoInstr())
1556 continue;
1557
1558 --N;
1559
1560 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1561
1562 // Defs happen after uses so they take precedence if both are present.
1563
1564 // Register is dead after a dead def of the full register.
1565 if (Info.DeadDef)
1566 return LQR_Dead;
1567 // Register is (at least partially) live after a def.
1568 if (Info.Defined) {
1569 if (!Info.PartialDeadDef)
1570 return LQR_Live;
1571 // As soon as we saw a partial definition (dead or not),
1572 // we cannot tell if the value is partial live without
1573 // tracking the lanemasks. We are not going to do this,
1574 // so fall back on the remaining of the analysis.
1575 break;
1576 }
1577 // Register is dead after a full kill or clobber and no def.
1578 if (Info.Killed || Info.Clobbered)
1579 return LQR_Dead;
1580 // Register must be live if we read it.
1581 if (Info.Read)
1582 return LQR_Live;
1583
1584 } while (I != begin() && N > 0);
1585 }
1586
1587 // If all the instructions before this in the block are debug instructions,
1588 // skip over them.
1589 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1590 --I;
1591
1592 // Did we get to the start of the block?
1593 if (I == begin()) {
1594 // If so, the register's state is definitely defined by the live-in state.
1595 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1596 if (TRI->regsOverlap(LI.PhysReg, Reg))
1597 return LQR_Live;
1598
1599 return LQR_Dead;
1600 }
1601
1602 // At this point we have no idea of the liveness of the register.
1603 return LQR_Unknown;
1604 }
1605
1606 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1607 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1608 // EH funclet entry does not preserve any registers.
1609 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1610 }
1611
1612 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1613 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1614 // If we see a return block with successors, this must be a funclet return,
1615 // which does not preserve any registers. If there are no successors, we don't
1616 // care what kind of return it is, putting a mask after it is a no-op.
1617 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1618 }
1619
clearLiveIns()1620 void MachineBasicBlock::clearLiveIns() {
1621 LiveIns.clear();
1622 }
1623
livein_begin() const1624 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1625 assert(getParent()->getProperties().hasProperty(
1626 MachineFunctionProperties::Property::TracksLiveness) &&
1627 "Liveness information is accurate");
1628 return LiveIns.begin();
1629 }
1630
liveout_begin() const1631 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1632 const MachineFunction &MF = *getParent();
1633 assert(MF.getProperties().hasProperty(
1634 MachineFunctionProperties::Property::TracksLiveness) &&
1635 "Liveness information is accurate");
1636
1637 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1638 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1639 if (MF.getFunction().hasPersonalityFn()) {
1640 auto PersonalityFn = MF.getFunction().getPersonalityFn();
1641 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1642 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1643 }
1644
1645 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1646 }
1647
sizeWithoutDebugLargerThan(unsigned Limit) const1648 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1649 unsigned Cntr = 0;
1650 auto R = instructionsWithoutDebug(begin(), end());
1651 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1652 if (++Cntr > Limit)
1653 return true;
1654 }
1655 return false;
1656 }
1657
getBBIDOrNumber() const1658 unsigned MachineBasicBlock::getBBIDOrNumber() const {
1659 uint8_t BBAddrMapVersion = getParent()->getContext().getBBAddrMapVersion();
1660 return BBAddrMapVersion < 2 ? getNumber() : *getBBID();
1661 }
1662
1663 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1664 const MBBSectionID
1665 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1666