1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 ///    VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 ///    treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 ///    within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 ///    instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 
28 #include "VPlanLoopInfo.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/GraphTraits.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/ilist.h"
40 #include "llvm/ADT/ilist_node.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/Support/InstructionCost.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstddef>
47 #include <map>
48 #include <string>
49 
50 namespace llvm {
51 
52 class BasicBlock;
53 class DominatorTree;
54 class InnerLoopVectorizer;
55 class LoopInfo;
56 class raw_ostream;
57 class RecurrenceDescriptor;
58 class Value;
59 class VPBasicBlock;
60 class VPRegionBlock;
61 class VPlan;
62 class VPlanSlp;
63 
64 /// Returns a calculation for the total number of elements for a given \p VF.
65 /// For fixed width vectors this value is a constant, whereas for scalable
66 /// vectors it is an expression determined at runtime.
67 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF);
68 
69 /// A range of powers-of-2 vectorization factors with fixed start and
70 /// adjustable end. The range includes start and excludes end, e.g.,:
71 /// [1, 9) = {1, 2, 4, 8}
72 struct VFRange {
73   // A power of 2.
74   const ElementCount Start;
75 
76   // Need not be a power of 2. If End <= Start range is empty.
77   ElementCount End;
78 
isEmptyVFRange79   bool isEmpty() const {
80     return End.getKnownMinValue() <= Start.getKnownMinValue();
81   }
82 
VFRangeVFRange83   VFRange(const ElementCount &Start, const ElementCount &End)
84       : Start(Start), End(End) {
85     assert(Start.isScalable() == End.isScalable() &&
86            "Both Start and End should have the same scalable flag");
87     assert(isPowerOf2_32(Start.getKnownMinValue()) &&
88            "Expected Start to be a power of 2");
89   }
90 };
91 
92 using VPlanPtr = std::unique_ptr<VPlan>;
93 
94 /// In what follows, the term "input IR" refers to code that is fed into the
95 /// vectorizer whereas the term "output IR" refers to code that is generated by
96 /// the vectorizer.
97 
98 /// VPLane provides a way to access lanes in both fixed width and scalable
99 /// vectors, where for the latter the lane index sometimes needs calculating
100 /// as a runtime expression.
101 class VPLane {
102 public:
103   /// Kind describes how to interpret Lane.
104   enum class Kind : uint8_t {
105     /// For First, Lane is the index into the first N elements of a
106     /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>.
107     First,
108     /// For ScalableLast, Lane is the offset from the start of the last
109     /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For
110     /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of
111     /// 1 corresponds to `((vscale - 1) * N) + 1`, etc.
112     ScalableLast
113   };
114 
115 private:
116   /// in [0..VF)
117   unsigned Lane;
118 
119   /// Indicates how the Lane should be interpreted, as described above.
120   Kind LaneKind;
121 
122 public:
VPLane(unsigned Lane,Kind LaneKind)123   VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {}
124 
getFirstLane()125   static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); }
126 
getLastLaneForVF(const ElementCount & VF)127   static VPLane getLastLaneForVF(const ElementCount &VF) {
128     unsigned LaneOffset = VF.getKnownMinValue() - 1;
129     Kind LaneKind;
130     if (VF.isScalable())
131       // In this case 'LaneOffset' refers to the offset from the start of the
132       // last subvector with VF.getKnownMinValue() elements.
133       LaneKind = VPLane::Kind::ScalableLast;
134     else
135       LaneKind = VPLane::Kind::First;
136     return VPLane(LaneOffset, LaneKind);
137   }
138 
139   /// Returns a compile-time known value for the lane index and asserts if the
140   /// lane can only be calculated at runtime.
getKnownLane()141   unsigned getKnownLane() const {
142     assert(LaneKind == Kind::First);
143     return Lane;
144   }
145 
146   /// Returns an expression describing the lane index that can be used at
147   /// runtime.
148   Value *getAsRuntimeExpr(IRBuilder<> &Builder, const ElementCount &VF) const;
149 
150   /// Returns the Kind of lane offset.
getKind()151   Kind getKind() const { return LaneKind; }
152 
153   /// Returns true if this is the first lane of the whole vector.
isFirstLane()154   bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; }
155 
156   /// Maps the lane to a cache index based on \p VF.
mapToCacheIndex(const ElementCount & VF)157   unsigned mapToCacheIndex(const ElementCount &VF) const {
158     switch (LaneKind) {
159     case VPLane::Kind::ScalableLast:
160       assert(VF.isScalable() && Lane < VF.getKnownMinValue());
161       return VF.getKnownMinValue() + Lane;
162     default:
163       assert(Lane < VF.getKnownMinValue());
164       return Lane;
165     }
166   }
167 
168   /// Returns the maxmimum number of lanes that we are able to consider
169   /// caching for \p VF.
getNumCachedLanes(const ElementCount & VF)170   static unsigned getNumCachedLanes(const ElementCount &VF) {
171     return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1);
172   }
173 };
174 
175 /// VPIteration represents a single point in the iteration space of the output
176 /// (vectorized and/or unrolled) IR loop.
177 struct VPIteration {
178   /// in [0..UF)
179   unsigned Part;
180 
181   VPLane Lane;
182 
183   VPIteration(unsigned Part, unsigned Lane,
184               VPLane::Kind Kind = VPLane::Kind::First)
PartVPIteration185       : Part(Part), Lane(Lane, Kind) {}
186 
VPIterationVPIteration187   VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {}
188 
isFirstIterationVPIteration189   bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); }
190 };
191 
192 /// VPTransformState holds information passed down when "executing" a VPlan,
193 /// needed for generating the output IR.
194 struct VPTransformState {
VPTransformStateVPTransformState195   VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
196                    DominatorTree *DT, IRBuilder<> &Builder,
197                    InnerLoopVectorizer *ILV, VPlan *Plan)
198       : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), ILV(ILV),
199         Plan(Plan) {}
200 
201   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
202   ElementCount VF;
203   unsigned UF;
204 
205   /// Hold the indices to generate specific scalar instructions. Null indicates
206   /// that all instances are to be generated, using either scalar or vector
207   /// instructions.
208   Optional<VPIteration> Instance;
209 
210   struct DataState {
211     /// A type for vectorized values in the new loop. Each value from the
212     /// original loop, when vectorized, is represented by UF vector values in
213     /// the new unrolled loop, where UF is the unroll factor.
214     typedef SmallVector<Value *, 2> PerPartValuesTy;
215 
216     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
217 
218     using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
219     DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
220   } Data;
221 
222   /// Get the generated Value for a given VPValue and a given Part. Note that
223   /// as some Defs are still created by ILV and managed in its ValueMap, this
224   /// method will delegate the call to ILV in such cases in order to provide
225   /// callers a consistent API.
226   /// \see set.
227   Value *get(VPValue *Def, unsigned Part);
228 
229   /// Get the generated Value for a given VPValue and given Part and Lane.
230   Value *get(VPValue *Def, const VPIteration &Instance);
231 
hasVectorValueVPTransformState232   bool hasVectorValue(VPValue *Def, unsigned Part) {
233     auto I = Data.PerPartOutput.find(Def);
234     return I != Data.PerPartOutput.end() && Part < I->second.size() &&
235            I->second[Part];
236   }
237 
hasAnyVectorValueVPTransformState238   bool hasAnyVectorValue(VPValue *Def) const {
239     return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end();
240   }
241 
hasScalarValueVPTransformState242   bool hasScalarValue(VPValue *Def, VPIteration Instance) {
243     auto I = Data.PerPartScalars.find(Def);
244     if (I == Data.PerPartScalars.end())
245       return false;
246     unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
247     return Instance.Part < I->second.size() &&
248            CacheIdx < I->second[Instance.Part].size() &&
249            I->second[Instance.Part][CacheIdx];
250   }
251 
252   /// Set the generated Value for a given VPValue and a given Part.
setVPTransformState253   void set(VPValue *Def, Value *V, unsigned Part) {
254     if (!Data.PerPartOutput.count(Def)) {
255       DataState::PerPartValuesTy Entry(UF);
256       Data.PerPartOutput[Def] = Entry;
257     }
258     Data.PerPartOutput[Def][Part] = V;
259   }
260   /// Reset an existing vector value for \p Def and a given \p Part.
resetVPTransformState261   void reset(VPValue *Def, Value *V, unsigned Part) {
262     auto Iter = Data.PerPartOutput.find(Def);
263     assert(Iter != Data.PerPartOutput.end() &&
264            "need to overwrite existing value");
265     Iter->second[Part] = V;
266   }
267 
268   /// Set the generated scalar \p V for \p Def and the given \p Instance.
setVPTransformState269   void set(VPValue *Def, Value *V, const VPIteration &Instance) {
270     auto Iter = Data.PerPartScalars.insert({Def, {}});
271     auto &PerPartVec = Iter.first->second;
272     while (PerPartVec.size() <= Instance.Part)
273       PerPartVec.emplace_back();
274     auto &Scalars = PerPartVec[Instance.Part];
275     unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
276     while (Scalars.size() <= CacheIdx)
277       Scalars.push_back(nullptr);
278     assert(!Scalars[CacheIdx] && "should overwrite existing value");
279     Scalars[CacheIdx] = V;
280   }
281 
282   /// Reset an existing scalar value for \p Def and a given \p Instance.
resetVPTransformState283   void reset(VPValue *Def, Value *V, const VPIteration &Instance) {
284     auto Iter = Data.PerPartScalars.find(Def);
285     assert(Iter != Data.PerPartScalars.end() &&
286            "need to overwrite existing value");
287     assert(Instance.Part < Iter->second.size() &&
288            "need to overwrite existing value");
289     unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
290     assert(CacheIdx < Iter->second[Instance.Part].size() &&
291            "need to overwrite existing value");
292     Iter->second[Instance.Part][CacheIdx] = V;
293   }
294 
295   /// Hold state information used when constructing the CFG of the output IR,
296   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
297   struct CFGState {
298     /// The previous VPBasicBlock visited. Initially set to null.
299     VPBasicBlock *PrevVPBB = nullptr;
300 
301     /// The previous IR BasicBlock created or used. Initially set to the new
302     /// header BasicBlock.
303     BasicBlock *PrevBB = nullptr;
304 
305     /// The last IR BasicBlock in the output IR. Set to the new latch
306     /// BasicBlock, used for placing the newly created BasicBlocks.
307     BasicBlock *LastBB = nullptr;
308 
309     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
310     /// of replication, maps the BasicBlock of the last replica created.
311     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
312 
313     /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
314     /// up at the end of vector code generation.
315     SmallVector<VPBasicBlock *, 8> VPBBsToFix;
316 
317     CFGState() = default;
318   } CFG;
319 
320   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
321   LoopInfo *LI;
322 
323   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
324   DominatorTree *DT;
325 
326   /// Hold a reference to the IRBuilder used to generate output IR code.
327   IRBuilder<> &Builder;
328 
329   VPValue2ValueTy VPValue2Value;
330 
331   /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
332   Value *CanonicalIV = nullptr;
333 
334   /// Hold the trip count of the scalar loop.
335   Value *TripCount = nullptr;
336 
337   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
338   InnerLoopVectorizer *ILV;
339 
340   /// Pointer to the VPlan code is generated for.
341   VPlan *Plan;
342 };
343 
344 /// VPUsers instance used by VPBlockBase to manage CondBit and the block
345 /// predicate. Currently VPBlockUsers are used in VPBlockBase for historical
346 /// reasons, but in the future the only VPUsers should either be recipes or
347 /// live-outs.VPBlockBase uses.
348 struct VPBlockUser : public VPUser {
VPBlockUserVPBlockUser349   VPBlockUser() : VPUser({}, VPUserID::Block) {}
350 
getSingleOperandOrNullVPBlockUser351   VPValue *getSingleOperandOrNull() {
352     if (getNumOperands() == 1)
353       return getOperand(0);
354 
355     return nullptr;
356   }
getSingleOperandOrNullVPBlockUser357   const VPValue *getSingleOperandOrNull() const {
358     if (getNumOperands() == 1)
359       return getOperand(0);
360 
361     return nullptr;
362   }
363 
resetSingleOpUserVPBlockUser364   void resetSingleOpUser(VPValue *NewVal) {
365     assert(getNumOperands() <= 1 && "Didn't expect more than one operand!");
366     if (!NewVal) {
367       if (getNumOperands() == 1)
368         removeLastOperand();
369       return;
370     }
371 
372     if (getNumOperands() == 1)
373       setOperand(0, NewVal);
374     else
375       addOperand(NewVal);
376   }
377 };
378 
379 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
380 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
381 class VPBlockBase {
382   friend class VPBlockUtils;
383 
384   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
385 
386   /// An optional name for the block.
387   std::string Name;
388 
389   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
390   /// it is a topmost VPBlockBase.
391   VPRegionBlock *Parent = nullptr;
392 
393   /// List of predecessor blocks.
394   SmallVector<VPBlockBase *, 1> Predecessors;
395 
396   /// List of successor blocks.
397   SmallVector<VPBlockBase *, 1> Successors;
398 
399   /// Successor selector managed by a VPUser. For blocks with zero or one
400   /// successors, there is no operand. Otherwise there is exactly one operand
401   /// which is the branch condition.
402   VPBlockUser CondBitUser;
403 
404   /// If the block is predicated, its predicate is stored as an operand of this
405   /// VPUser to maintain the def-use relations. Otherwise there is no operand
406   /// here.
407   VPBlockUser PredicateUser;
408 
409   /// VPlan containing the block. Can only be set on the entry block of the
410   /// plan.
411   VPlan *Plan = nullptr;
412 
413   /// Add \p Successor as the last successor to this block.
appendSuccessor(VPBlockBase * Successor)414   void appendSuccessor(VPBlockBase *Successor) {
415     assert(Successor && "Cannot add nullptr successor!");
416     Successors.push_back(Successor);
417   }
418 
419   /// Add \p Predecessor as the last predecessor to this block.
appendPredecessor(VPBlockBase * Predecessor)420   void appendPredecessor(VPBlockBase *Predecessor) {
421     assert(Predecessor && "Cannot add nullptr predecessor!");
422     Predecessors.push_back(Predecessor);
423   }
424 
425   /// Remove \p Predecessor from the predecessors of this block.
removePredecessor(VPBlockBase * Predecessor)426   void removePredecessor(VPBlockBase *Predecessor) {
427     auto Pos = find(Predecessors, Predecessor);
428     assert(Pos && "Predecessor does not exist");
429     Predecessors.erase(Pos);
430   }
431 
432   /// Remove \p Successor from the successors of this block.
removeSuccessor(VPBlockBase * Successor)433   void removeSuccessor(VPBlockBase *Successor) {
434     auto Pos = find(Successors, Successor);
435     assert(Pos && "Successor does not exist");
436     Successors.erase(Pos);
437   }
438 
439 protected:
VPBlockBase(const unsigned char SC,const std::string & N)440   VPBlockBase(const unsigned char SC, const std::string &N)
441       : SubclassID(SC), Name(N) {}
442 
443 public:
444   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
445   /// that are actually instantiated. Values of this enumeration are kept in the
446   /// SubclassID field of the VPBlockBase objects. They are used for concrete
447   /// type identification.
448   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
449 
450   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
451 
452   virtual ~VPBlockBase() = default;
453 
getName()454   const std::string &getName() const { return Name; }
455 
setName(const Twine & newName)456   void setName(const Twine &newName) { Name = newName.str(); }
457 
458   /// \return an ID for the concrete type of this object.
459   /// This is used to implement the classof checks. This should not be used
460   /// for any other purpose, as the values may change as LLVM evolves.
getVPBlockID()461   unsigned getVPBlockID() const { return SubclassID; }
462 
getParent()463   VPRegionBlock *getParent() { return Parent; }
getParent()464   const VPRegionBlock *getParent() const { return Parent; }
465 
466   /// \return A pointer to the plan containing the current block.
467   VPlan *getPlan();
468   const VPlan *getPlan() const;
469 
470   /// Sets the pointer of the plan containing the block. The block must be the
471   /// entry block into the VPlan.
472   void setPlan(VPlan *ParentPlan);
473 
setParent(VPRegionBlock * P)474   void setParent(VPRegionBlock *P) { Parent = P; }
475 
476   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
477   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
478   /// VPBlockBase is a VPBasicBlock, it is returned.
479   const VPBasicBlock *getEntryBasicBlock() const;
480   VPBasicBlock *getEntryBasicBlock();
481 
482   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
483   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
484   /// VPBlockBase is a VPBasicBlock, it is returned.
485   const VPBasicBlock *getExitBasicBlock() const;
486   VPBasicBlock *getExitBasicBlock();
487 
getSuccessors()488   const VPBlocksTy &getSuccessors() const { return Successors; }
getSuccessors()489   VPBlocksTy &getSuccessors() { return Successors; }
490 
getPredecessors()491   const VPBlocksTy &getPredecessors() const { return Predecessors; }
getPredecessors()492   VPBlocksTy &getPredecessors() { return Predecessors; }
493 
494   /// \return the successor of this VPBlockBase if it has a single successor.
495   /// Otherwise return a null pointer.
getSingleSuccessor()496   VPBlockBase *getSingleSuccessor() const {
497     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
498   }
499 
500   /// \return the predecessor of this VPBlockBase if it has a single
501   /// predecessor. Otherwise return a null pointer.
getSinglePredecessor()502   VPBlockBase *getSinglePredecessor() const {
503     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
504   }
505 
getNumSuccessors()506   size_t getNumSuccessors() const { return Successors.size(); }
getNumPredecessors()507   size_t getNumPredecessors() const { return Predecessors.size(); }
508 
509   /// An Enclosing Block of a block B is any block containing B, including B
510   /// itself. \return the closest enclosing block starting from "this", which
511   /// has successors. \return the root enclosing block if all enclosing blocks
512   /// have no successors.
513   VPBlockBase *getEnclosingBlockWithSuccessors();
514 
515   /// \return the closest enclosing block starting from "this", which has
516   /// predecessors. \return the root enclosing block if all enclosing blocks
517   /// have no predecessors.
518   VPBlockBase *getEnclosingBlockWithPredecessors();
519 
520   /// \return the successors either attached directly to this VPBlockBase or, if
521   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
522   /// successors of its own, search recursively for the first enclosing
523   /// VPRegionBlock that has successors and return them. If no such
524   /// VPRegionBlock exists, return the (empty) successors of the topmost
525   /// VPBlockBase reached.
getHierarchicalSuccessors()526   const VPBlocksTy &getHierarchicalSuccessors() {
527     return getEnclosingBlockWithSuccessors()->getSuccessors();
528   }
529 
530   /// \return the hierarchical successor of this VPBlockBase if it has a single
531   /// hierarchical successor. Otherwise return a null pointer.
getSingleHierarchicalSuccessor()532   VPBlockBase *getSingleHierarchicalSuccessor() {
533     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
534   }
535 
536   /// \return the predecessors either attached directly to this VPBlockBase or,
537   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
538   /// predecessors of its own, search recursively for the first enclosing
539   /// VPRegionBlock that has predecessors and return them. If no such
540   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
541   /// VPBlockBase reached.
getHierarchicalPredecessors()542   const VPBlocksTy &getHierarchicalPredecessors() {
543     return getEnclosingBlockWithPredecessors()->getPredecessors();
544   }
545 
546   /// \return the hierarchical predecessor of this VPBlockBase if it has a
547   /// single hierarchical predecessor. Otherwise return a null pointer.
getSingleHierarchicalPredecessor()548   VPBlockBase *getSingleHierarchicalPredecessor() {
549     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
550   }
551 
552   /// \return the condition bit selecting the successor.
553   VPValue *getCondBit();
554   /// \return the condition bit selecting the successor.
555   const VPValue *getCondBit() const;
556   /// Set the condition bit selecting the successor.
557   void setCondBit(VPValue *CV);
558 
559   /// \return the block's predicate.
560   VPValue *getPredicate();
561   /// \return the block's predicate.
562   const VPValue *getPredicate() const;
563   /// Set the block's predicate.
564   void setPredicate(VPValue *Pred);
565 
566   /// Set a given VPBlockBase \p Successor as the single successor of this
567   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
568   /// This VPBlockBase must have no successors.
setOneSuccessor(VPBlockBase * Successor)569   void setOneSuccessor(VPBlockBase *Successor) {
570     assert(Successors.empty() && "Setting one successor when others exist.");
571     appendSuccessor(Successor);
572   }
573 
574   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
575   /// successors of this VPBlockBase. \p Condition is set as the successor
576   /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
577   /// IfFalse. This VPBlockBase must have no successors.
setTwoSuccessors(VPBlockBase * IfTrue,VPBlockBase * IfFalse,VPValue * Condition)578   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
579                         VPValue *Condition) {
580     assert(Successors.empty() && "Setting two successors when others exist.");
581     assert(Condition && "Setting two successors without condition!");
582     setCondBit(Condition);
583     appendSuccessor(IfTrue);
584     appendSuccessor(IfFalse);
585   }
586 
587   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
588   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
589   /// as successor of any VPBasicBlock in \p NewPreds.
setPredecessors(ArrayRef<VPBlockBase * > NewPreds)590   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
591     assert(Predecessors.empty() && "Block predecessors already set.");
592     for (auto *Pred : NewPreds)
593       appendPredecessor(Pred);
594   }
595 
596   /// Remove all the predecessor of this block.
clearPredecessors()597   void clearPredecessors() { Predecessors.clear(); }
598 
599   /// Remove all the successors of this block and set to null its condition bit
clearSuccessors()600   void clearSuccessors() {
601     Successors.clear();
602     setCondBit(nullptr);
603   }
604 
605   /// The method which generates the output IR that correspond to this
606   /// VPBlockBase, thereby "executing" the VPlan.
607   virtual void execute(struct VPTransformState *State) = 0;
608 
609   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
610   static void deleteCFG(VPBlockBase *Entry);
611 
612   /// Return true if it is legal to hoist instructions into this block.
isLegalToHoistInto()613   bool isLegalToHoistInto() {
614     // There are currently no constraints that prevent an instruction to be
615     // hoisted into a VPBlockBase.
616     return true;
617   }
618 
619   /// Replace all operands of VPUsers in the block with \p NewValue and also
620   /// replaces all uses of VPValues defined in the block with NewValue.
621   virtual void dropAllReferences(VPValue *NewValue) = 0;
622 
623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
printAsOperand(raw_ostream & OS,bool PrintType)624   void printAsOperand(raw_ostream &OS, bool PrintType) const {
625     OS << getName();
626   }
627 
628   /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines
629   /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using
630   /// consequtive numbers.
631   ///
632   /// Note that the numbering is applied to the whole VPlan, so printing
633   /// individual blocks is consistent with the whole VPlan printing.
634   virtual void print(raw_ostream &O, const Twine &Indent,
635                      VPSlotTracker &SlotTracker) const = 0;
636 
637   /// Print plain-text dump of this VPlan to \p O.
print(raw_ostream & O)638   void print(raw_ostream &O) const {
639     VPSlotTracker SlotTracker(getPlan());
640     print(O, "", SlotTracker);
641   }
642 
643   /// Dump this VPBlockBase to dbgs().
dump()644   LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
645 #endif
646 };
647 
648 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
649 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef
650 /// and is responsible for deleting its defined values. Single-value
651 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from
652 /// VPRecipeBase before VPValue.
653 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
654                      public VPDef,
655                      public VPUser {
656   friend VPBasicBlock;
657   friend class VPBlockUtils;
658 
659   /// Each VPRecipe belongs to a single VPBasicBlock.
660   VPBasicBlock *Parent = nullptr;
661 
662 public:
VPRecipeBase(const unsigned char SC,ArrayRef<VPValue * > Operands)663   VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands)
664       : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {}
665 
666   template <typename IterT>
VPRecipeBase(const unsigned char SC,iterator_range<IterT> Operands)667   VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands)
668       : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {}
669   virtual ~VPRecipeBase() = default;
670 
671   /// \return the VPBasicBlock which this VPRecipe belongs to.
getParent()672   VPBasicBlock *getParent() { return Parent; }
getParent()673   const VPBasicBlock *getParent() const { return Parent; }
674 
675   /// The method which generates the output IR instructions that correspond to
676   /// this VPRecipe, thereby "executing" the VPlan.
677   virtual void execute(struct VPTransformState &State) = 0;
678 
679   /// Insert an unlinked recipe into a basic block immediately before
680   /// the specified recipe.
681   void insertBefore(VPRecipeBase *InsertPos);
682 
683   /// Insert an unlinked Recipe into a basic block immediately after
684   /// the specified Recipe.
685   void insertAfter(VPRecipeBase *InsertPos);
686 
687   /// Unlink this recipe from its current VPBasicBlock and insert it into
688   /// the VPBasicBlock that MovePos lives in, right after MovePos.
689   void moveAfter(VPRecipeBase *MovePos);
690 
691   /// Unlink this recipe and insert into BB before I.
692   ///
693   /// \pre I is a valid iterator into BB.
694   void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
695 
696   /// This method unlinks 'this' from the containing basic block, but does not
697   /// delete it.
698   void removeFromParent();
699 
700   /// This method unlinks 'this' from the containing basic block and deletes it.
701   ///
702   /// \returns an iterator pointing to the element after the erased one
703   iplist<VPRecipeBase>::iterator eraseFromParent();
704 
705   /// Returns the underlying instruction, if the recipe is a VPValue or nullptr
706   /// otherwise.
getUnderlyingInstr()707   Instruction *getUnderlyingInstr() {
708     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue());
709   }
getUnderlyingInstr()710   const Instruction *getUnderlyingInstr() const {
711     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue());
712   }
713 
714   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)715   static inline bool classof(const VPDef *D) {
716     // All VPDefs are also VPRecipeBases.
717     return true;
718   }
719 
classof(const VPUser * U)720   static inline bool classof(const VPUser *U) {
721     return U->getVPUserID() == VPUser::VPUserID::Recipe;
722   }
723 
724   /// Returns true if the recipe may have side-effects.
725   bool mayHaveSideEffects() const;
726 
727   /// Returns true for PHI-like recipes.
isPhi()728   bool isPhi() const {
729     return getVPDefID() == VPWidenIntOrFpInductionSC || getVPDefID() == VPWidenPHISC ||
730       getVPDefID() == VPPredInstPHISC || getVPDefID() == VPWidenCanonicalIVSC;
731   }
732 };
733 
classof(const VPDef * Def)734 inline bool VPUser::classof(const VPDef *Def) {
735   return Def->getVPDefID() == VPRecipeBase::VPInstructionSC ||
736          Def->getVPDefID() == VPRecipeBase::VPWidenSC ||
737          Def->getVPDefID() == VPRecipeBase::VPWidenCallSC ||
738          Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC ||
739          Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
740          Def->getVPDefID() == VPRecipeBase::VPBlendSC ||
741          Def->getVPDefID() == VPRecipeBase::VPInterleaveSC ||
742          Def->getVPDefID() == VPRecipeBase::VPReplicateSC ||
743          Def->getVPDefID() == VPRecipeBase::VPReductionSC ||
744          Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC ||
745          Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
746 }
747 
748 /// This is a concrete Recipe that models a single VPlan-level instruction.
749 /// While as any Recipe it may generate a sequence of IR instructions when
750 /// executed, these instructions would always form a single-def expression as
751 /// the VPInstruction is also a single def-use vertex.
752 class VPInstruction : public VPRecipeBase, public VPValue {
753   friend class VPlanSlp;
754 
755 public:
756   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
757   enum {
758     Not = Instruction::OtherOpsEnd + 1,
759     ICmpULE,
760     SLPLoad,
761     SLPStore,
762     ActiveLaneMask,
763   };
764 
765 private:
766   typedef unsigned char OpcodeTy;
767   OpcodeTy Opcode;
768 
769   /// Utility method serving execute(): generates a single instance of the
770   /// modeled instruction.
771   void generateInstruction(VPTransformState &State, unsigned Part);
772 
773 protected:
setUnderlyingInstr(Instruction * I)774   void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
775 
776 public:
VPInstruction(unsigned Opcode,ArrayRef<VPValue * > Operands)777   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
778       : VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands),
779         VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {}
780 
VPInstruction(unsigned Opcode,ArrayRef<VPInstruction * > Operands)781   VPInstruction(unsigned Opcode, ArrayRef<VPInstruction *> Operands)
782       : VPRecipeBase(VPRecipeBase::VPInstructionSC, {}),
783         VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {
784     for (auto *I : Operands)
785       addOperand(I->getVPSingleValue());
786   }
787 
VPInstruction(unsigned Opcode,std::initializer_list<VPValue * > Operands)788   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
789       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
790 
791   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPValue * V)792   static inline bool classof(const VPValue *V) {
793     return V->getVPValueID() == VPValue::VPVInstructionSC;
794   }
795 
clone()796   VPInstruction *clone() const {
797     SmallVector<VPValue *, 2> Operands(operands());
798     return new VPInstruction(Opcode, Operands);
799   }
800 
801   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * R)802   static inline bool classof(const VPDef *R) {
803     return R->getVPDefID() == VPRecipeBase::VPInstructionSC;
804   }
805 
getOpcode()806   unsigned getOpcode() const { return Opcode; }
807 
808   /// Generate the instruction.
809   /// TODO: We currently execute only per-part unless a specific instance is
810   /// provided.
811   void execute(VPTransformState &State) override;
812 
813 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
814   /// Print the VPInstruction to \p O.
815   void print(raw_ostream &O, const Twine &Indent,
816              VPSlotTracker &SlotTracker) const override;
817 
818   /// Print the VPInstruction to dbgs() (for debugging).
819   LLVM_DUMP_METHOD void dump() const;
820 #endif
821 
822   /// Return true if this instruction may modify memory.
mayWriteToMemory()823   bool mayWriteToMemory() const {
824     // TODO: we can use attributes of the called function to rule out memory
825     //       modifications.
826     return Opcode == Instruction::Store || Opcode == Instruction::Call ||
827            Opcode == Instruction::Invoke || Opcode == SLPStore;
828   }
829 
hasResult()830   bool hasResult() const {
831     // CallInst may or may not have a result, depending on the called function.
832     // Conservatively return calls have results for now.
833     switch (getOpcode()) {
834     case Instruction::Ret:
835     case Instruction::Br:
836     case Instruction::Store:
837     case Instruction::Switch:
838     case Instruction::IndirectBr:
839     case Instruction::Resume:
840     case Instruction::CatchRet:
841     case Instruction::Unreachable:
842     case Instruction::Fence:
843     case Instruction::AtomicRMW:
844       return false;
845     default:
846       return true;
847     }
848   }
849 };
850 
851 /// VPWidenRecipe is a recipe for producing a copy of vector type its
852 /// ingredient. This recipe covers most of the traditional vectorization cases
853 /// where each ingredient transforms into a vectorized version of itself.
854 class VPWidenRecipe : public VPRecipeBase, public VPValue {
855 public:
856   template <typename IterT>
VPWidenRecipe(Instruction & I,iterator_range<IterT> Operands)857   VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
858       : VPRecipeBase(VPRecipeBase::VPWidenSC, Operands),
859         VPValue(VPValue::VPVWidenSC, &I, this) {}
860 
861   ~VPWidenRecipe() override = default;
862 
863   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)864   static inline bool classof(const VPDef *D) {
865     return D->getVPDefID() == VPRecipeBase::VPWidenSC;
866   }
classof(const VPValue * V)867   static inline bool classof(const VPValue *V) {
868     return V->getVPValueID() == VPValue::VPVWidenSC;
869   }
870 
871   /// Produce widened copies of all Ingredients.
872   void execute(VPTransformState &State) override;
873 
874 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
875   /// Print the recipe.
876   void print(raw_ostream &O, const Twine &Indent,
877              VPSlotTracker &SlotTracker) const override;
878 #endif
879 };
880 
881 /// A recipe for widening Call instructions.
882 class VPWidenCallRecipe : public VPRecipeBase, public VPValue {
883 
884 public:
885   template <typename IterT>
VPWidenCallRecipe(CallInst & I,iterator_range<IterT> CallArguments)886   VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments)
887       : VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments),
888         VPValue(VPValue::VPVWidenCallSC, &I, this) {}
889 
890   ~VPWidenCallRecipe() override = default;
891 
892   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)893   static inline bool classof(const VPDef *D) {
894     return D->getVPDefID() == VPRecipeBase::VPWidenCallSC;
895   }
896 
897   /// Produce a widened version of the call instruction.
898   void execute(VPTransformState &State) override;
899 
900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
901   /// Print the recipe.
902   void print(raw_ostream &O, const Twine &Indent,
903              VPSlotTracker &SlotTracker) const override;
904 #endif
905 };
906 
907 /// A recipe for widening select instructions.
908 class VPWidenSelectRecipe : public VPRecipeBase, public VPValue {
909 
910   /// Is the condition of the select loop invariant?
911   bool InvariantCond;
912 
913 public:
914   template <typename IterT>
VPWidenSelectRecipe(SelectInst & I,iterator_range<IterT> Operands,bool InvariantCond)915   VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands,
916                       bool InvariantCond)
917       : VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands),
918         VPValue(VPValue::VPVWidenSelectSC, &I, this),
919         InvariantCond(InvariantCond) {}
920 
921   ~VPWidenSelectRecipe() override = default;
922 
923   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)924   static inline bool classof(const VPDef *D) {
925     return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC;
926   }
927 
928   /// Produce a widened version of the select instruction.
929   void execute(VPTransformState &State) override;
930 
931 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
932   /// Print the recipe.
933   void print(raw_ostream &O, const Twine &Indent,
934              VPSlotTracker &SlotTracker) const override;
935 #endif
936 };
937 
938 /// A recipe for handling GEP instructions.
939 class VPWidenGEPRecipe : public VPRecipeBase, public VPValue {
940   bool IsPtrLoopInvariant;
941   SmallBitVector IsIndexLoopInvariant;
942 
943 public:
944   template <typename IterT>
VPWidenGEPRecipe(GetElementPtrInst * GEP,iterator_range<IterT> Operands)945   VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
946       : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands),
947         VPValue(VPWidenGEPSC, GEP, this),
948         IsIndexLoopInvariant(GEP->getNumIndices(), false) {}
949 
950   template <typename IterT>
VPWidenGEPRecipe(GetElementPtrInst * GEP,iterator_range<IterT> Operands,Loop * OrigLoop)951   VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands,
952                    Loop *OrigLoop)
953       : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands),
954         VPValue(VPValue::VPVWidenGEPSC, GEP, this),
955         IsIndexLoopInvariant(GEP->getNumIndices(), false) {
956     IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
957     for (auto Index : enumerate(GEP->indices()))
958       IsIndexLoopInvariant[Index.index()] =
959           OrigLoop->isLoopInvariant(Index.value().get());
960   }
961   ~VPWidenGEPRecipe() override = default;
962 
963   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)964   static inline bool classof(const VPDef *D) {
965     return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC;
966   }
967 
968   /// Generate the gep nodes.
969   void execute(VPTransformState &State) override;
970 
971 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
972   /// Print the recipe.
973   void print(raw_ostream &O, const Twine &Indent,
974              VPSlotTracker &SlotTracker) const override;
975 #endif
976 };
977 
978 /// A recipe for handling phi nodes of integer and floating-point inductions,
979 /// producing their vector and scalar values.
980 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
981   PHINode *IV;
982 
983 public:
984   VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, Instruction *Cast,
985                                 TruncInst *Trunc = nullptr)
986       : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), IV(IV) {
987     if (Trunc)
988       new VPValue(Trunc, this);
989     else
990       new VPValue(IV, this);
991 
992     if (Cast)
993       new VPValue(Cast, this);
994   }
995   ~VPWidenIntOrFpInductionRecipe() override = default;
996 
997   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)998   static inline bool classof(const VPDef *D) {
999     return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
1000   }
1001 
1002   /// Generate the vectorized and scalarized versions of the phi node as
1003   /// needed by their users.
1004   void execute(VPTransformState &State) override;
1005 
1006 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1007   /// Print the recipe.
1008   void print(raw_ostream &O, const Twine &Indent,
1009              VPSlotTracker &SlotTracker) const override;
1010 #endif
1011 
1012   /// Returns the start value of the induction.
getStartValue()1013   VPValue *getStartValue() { return getOperand(0); }
1014 
1015   /// Returns the cast VPValue, if one is attached, or nullptr otherwise.
getCastValue()1016   VPValue *getCastValue() {
1017     if (getNumDefinedValues() != 2)
1018       return nullptr;
1019     return getVPValue(1);
1020   }
1021 
1022   /// Returns the first defined value as TruncInst, if it is one or nullptr
1023   /// otherwise.
getTruncInst()1024   TruncInst *getTruncInst() {
1025     return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue());
1026   }
getTruncInst()1027   const TruncInst *getTruncInst() const {
1028     return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue());
1029   }
1030 };
1031 
1032 /// A recipe for handling all phi nodes except for integer and FP inductions.
1033 /// For reduction PHIs, RdxDesc must point to the corresponding recurrence
1034 /// descriptor, the start value is the first operand of the recipe and the
1035 /// incoming value from the backedge is the second operand. In the VPlan native
1036 /// path, all incoming VPValues & VPBasicBlock pairs are managed in the recipe
1037 /// directly.
1038 class VPWidenPHIRecipe : public VPRecipeBase, public VPValue {
1039   /// Descriptor for a reduction PHI.
1040   RecurrenceDescriptor *RdxDesc = nullptr;
1041 
1042   /// List of incoming blocks. Only used in the VPlan native path.
1043   SmallVector<VPBasicBlock *, 2> IncomingBlocks;
1044 
1045 public:
1046   /// Create a new VPWidenPHIRecipe for the reduction \p Phi described by \p
1047   /// RdxDesc.
VPWidenPHIRecipe(PHINode * Phi,RecurrenceDescriptor & RdxDesc,VPValue & Start)1048   VPWidenPHIRecipe(PHINode *Phi, RecurrenceDescriptor &RdxDesc, VPValue &Start)
1049       : VPWidenPHIRecipe(Phi) {
1050     this->RdxDesc = &RdxDesc;
1051     addOperand(&Start);
1052   }
1053 
1054   /// Create a VPWidenPHIRecipe for \p Phi
VPWidenPHIRecipe(PHINode * Phi)1055   VPWidenPHIRecipe(PHINode *Phi)
1056       : VPRecipeBase(VPWidenPHISC, {}),
1057         VPValue(VPValue::VPVWidenPHISC, Phi, this) {}
1058   ~VPWidenPHIRecipe() override = default;
1059 
1060   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1061   static inline bool classof(const VPDef *D) {
1062     return D->getVPDefID() == VPRecipeBase::VPWidenPHISC;
1063   }
classof(const VPValue * V)1064   static inline bool classof(const VPValue *V) {
1065     return V->getVPValueID() == VPValue::VPVWidenPHISC;
1066   }
1067 
1068   /// Generate the phi/select nodes.
1069   void execute(VPTransformState &State) override;
1070 
1071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1072   /// Print the recipe.
1073   void print(raw_ostream &O, const Twine &Indent,
1074              VPSlotTracker &SlotTracker) const override;
1075 #endif
1076 
1077   /// Returns the start value of the phi, if it is a reduction.
getStartValue()1078   VPValue *getStartValue() {
1079     return getNumOperands() == 0 ? nullptr : getOperand(0);
1080   }
1081 
1082   /// Returns the incoming value from the loop backedge, if it is a reduction.
getBackedgeValue()1083   VPValue *getBackedgeValue() {
1084     assert(RdxDesc && "second incoming value is only guaranteed to be backedge "
1085                       "value for reductions");
1086     return getOperand(1);
1087   }
1088 
1089   /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi.
addIncoming(VPValue * IncomingV,VPBasicBlock * IncomingBlock)1090   void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) {
1091     addOperand(IncomingV);
1092     IncomingBlocks.push_back(IncomingBlock);
1093   }
1094 
1095   /// Returns the \p I th incoming VPValue.
getIncomingValue(unsigned I)1096   VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
1097 
1098   /// Returns the \p I th incoming VPBasicBlock.
getIncomingBlock(unsigned I)1099   VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; }
1100 
getRecurrenceDescriptor()1101   RecurrenceDescriptor *getRecurrenceDescriptor() { return RdxDesc; }
1102 };
1103 
1104 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
1105 /// instructions.
1106 class VPBlendRecipe : public VPRecipeBase, public VPValue {
1107   PHINode *Phi;
1108 
1109 public:
1110   /// The blend operation is a User of the incoming values and of their
1111   /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
1112   /// might be incoming with a full mask for which there is no VPValue.
VPBlendRecipe(PHINode * Phi,ArrayRef<VPValue * > Operands)1113   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
1114       : VPRecipeBase(VPBlendSC, Operands),
1115         VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) {
1116     assert(Operands.size() > 0 &&
1117            ((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
1118            "Expected either a single incoming value or a positive even number "
1119            "of operands");
1120   }
1121 
1122   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1123   static inline bool classof(const VPDef *D) {
1124     return D->getVPDefID() == VPRecipeBase::VPBlendSC;
1125   }
1126 
1127   /// Return the number of incoming values, taking into account that a single
1128   /// incoming value has no mask.
getNumIncomingValues()1129   unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
1130 
1131   /// Return incoming value number \p Idx.
getIncomingValue(unsigned Idx)1132   VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
1133 
1134   /// Return mask number \p Idx.
getMask(unsigned Idx)1135   VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
1136 
1137   /// Generate the phi/select nodes.
1138   void execute(VPTransformState &State) override;
1139 
1140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1141   /// Print the recipe.
1142   void print(raw_ostream &O, const Twine &Indent,
1143              VPSlotTracker &SlotTracker) const override;
1144 #endif
1145 };
1146 
1147 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
1148 /// or stores into one wide load/store and shuffles. The first operand of a
1149 /// VPInterleave recipe is the address, followed by the stored values, followed
1150 /// by an optional mask.
1151 class VPInterleaveRecipe : public VPRecipeBase {
1152   const InterleaveGroup<Instruction> *IG;
1153 
1154   bool HasMask = false;
1155 
1156 public:
VPInterleaveRecipe(const InterleaveGroup<Instruction> * IG,VPValue * Addr,ArrayRef<VPValue * > StoredValues,VPValue * Mask)1157   VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
1158                      ArrayRef<VPValue *> StoredValues, VPValue *Mask)
1159       : VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) {
1160     for (unsigned i = 0; i < IG->getFactor(); ++i)
1161       if (Instruction *I = IG->getMember(i)) {
1162         if (I->getType()->isVoidTy())
1163           continue;
1164         new VPValue(I, this);
1165       }
1166 
1167     for (auto *SV : StoredValues)
1168       addOperand(SV);
1169     if (Mask) {
1170       HasMask = true;
1171       addOperand(Mask);
1172     }
1173   }
1174   ~VPInterleaveRecipe() override = default;
1175 
1176   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1177   static inline bool classof(const VPDef *D) {
1178     return D->getVPDefID() == VPRecipeBase::VPInterleaveSC;
1179   }
1180 
1181   /// Return the address accessed by this recipe.
getAddr()1182   VPValue *getAddr() const {
1183     return getOperand(0); // Address is the 1st, mandatory operand.
1184   }
1185 
1186   /// Return the mask used by this recipe. Note that a full mask is represented
1187   /// by a nullptr.
getMask()1188   VPValue *getMask() const {
1189     // Mask is optional and therefore the last, currently 2nd operand.
1190     return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
1191   }
1192 
1193   /// Return the VPValues stored by this interleave group. If it is a load
1194   /// interleave group, return an empty ArrayRef.
getStoredValues()1195   ArrayRef<VPValue *> getStoredValues() const {
1196     // The first operand is the address, followed by the stored values, followed
1197     // by an optional mask.
1198     return ArrayRef<VPValue *>(op_begin(), getNumOperands())
1199         .slice(1, getNumOperands() - (HasMask ? 2 : 1));
1200   }
1201 
1202   /// Generate the wide load or store, and shuffles.
1203   void execute(VPTransformState &State) override;
1204 
1205 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1206   /// Print the recipe.
1207   void print(raw_ostream &O, const Twine &Indent,
1208              VPSlotTracker &SlotTracker) const override;
1209 #endif
1210 
getInterleaveGroup()1211   const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
1212 };
1213 
1214 /// A recipe to represent inloop reduction operations, performing a reduction on
1215 /// a vector operand into a scalar value, and adding the result to a chain.
1216 /// The Operands are {ChainOp, VecOp, [Condition]}.
1217 class VPReductionRecipe : public VPRecipeBase, public VPValue {
1218   /// The recurrence decriptor for the reduction in question.
1219   RecurrenceDescriptor *RdxDesc;
1220   /// Pointer to the TTI, needed to create the target reduction
1221   const TargetTransformInfo *TTI;
1222 
1223 public:
VPReductionRecipe(RecurrenceDescriptor * R,Instruction * I,VPValue * ChainOp,VPValue * VecOp,VPValue * CondOp,const TargetTransformInfo * TTI)1224   VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp,
1225                     VPValue *VecOp, VPValue *CondOp,
1226                     const TargetTransformInfo *TTI)
1227       : VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}),
1228         VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) {
1229     if (CondOp)
1230       addOperand(CondOp);
1231   }
1232 
1233   ~VPReductionRecipe() override = default;
1234 
1235   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPValue * V)1236   static inline bool classof(const VPValue *V) {
1237     return V->getVPValueID() == VPValue::VPVReductionSC;
1238   }
1239 
classof(const VPDef * D)1240   static inline bool classof(const VPDef *D) {
1241     return D->getVPDefID() == VPRecipeBase::VPReductionSC;
1242   }
1243 
1244   /// Generate the reduction in the loop
1245   void execute(VPTransformState &State) override;
1246 
1247 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1248   /// Print the recipe.
1249   void print(raw_ostream &O, const Twine &Indent,
1250              VPSlotTracker &SlotTracker) const override;
1251 #endif
1252 
1253   /// The VPValue of the scalar Chain being accumulated.
getChainOp()1254   VPValue *getChainOp() const { return getOperand(0); }
1255   /// The VPValue of the vector value to be reduced.
getVecOp()1256   VPValue *getVecOp() const { return getOperand(1); }
1257   /// The VPValue of the condition for the block.
getCondOp()1258   VPValue *getCondOp() const {
1259     return getNumOperands() > 2 ? getOperand(2) : nullptr;
1260   }
1261 };
1262 
1263 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
1264 /// copies of the original scalar type, one per lane, instead of producing a
1265 /// single copy of widened type for all lanes. If the instruction is known to be
1266 /// uniform only one copy, per lane zero, will be generated.
1267 class VPReplicateRecipe : public VPRecipeBase, public VPValue {
1268   /// Indicator if only a single replica per lane is needed.
1269   bool IsUniform;
1270 
1271   /// Indicator if the replicas are also predicated.
1272   bool IsPredicated;
1273 
1274   /// Indicator if the scalar values should also be packed into a vector.
1275   bool AlsoPack;
1276 
1277 public:
1278   template <typename IterT>
1279   VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
1280                     bool IsUniform, bool IsPredicated = false)
VPRecipeBase(VPReplicateSC,Operands)1281       : VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this),
1282         IsUniform(IsUniform), IsPredicated(IsPredicated) {
1283     // Retain the previous behavior of predicateInstructions(), where an
1284     // insert-element of a predicated instruction got hoisted into the
1285     // predicated basic block iff it was its only user. This is achieved by
1286     // having predicated instructions also pack their values into a vector by
1287     // default unless they have a replicated user which uses their scalar value.
1288     AlsoPack = IsPredicated && !I->use_empty();
1289   }
1290 
1291   ~VPReplicateRecipe() override = default;
1292 
1293   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1294   static inline bool classof(const VPDef *D) {
1295     return D->getVPDefID() == VPRecipeBase::VPReplicateSC;
1296   }
1297 
classof(const VPValue * V)1298   static inline bool classof(const VPValue *V) {
1299     return V->getVPValueID() == VPValue::VPVReplicateSC;
1300   }
1301 
1302   /// Generate replicas of the desired Ingredient. Replicas will be generated
1303   /// for all parts and lanes unless a specific part and lane are specified in
1304   /// the \p State.
1305   void execute(VPTransformState &State) override;
1306 
setAlsoPack(bool Pack)1307   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
1308 
1309 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1310   /// Print the recipe.
1311   void print(raw_ostream &O, const Twine &Indent,
1312              VPSlotTracker &SlotTracker) const override;
1313 #endif
1314 
isUniform()1315   bool isUniform() const { return IsUniform; }
1316 
isPacked()1317   bool isPacked() const { return AlsoPack; }
1318 
isPredicated()1319   bool isPredicated() const { return IsPredicated; }
1320 };
1321 
1322 /// A recipe for generating conditional branches on the bits of a mask.
1323 class VPBranchOnMaskRecipe : public VPRecipeBase {
1324 public:
VPBranchOnMaskRecipe(VPValue * BlockInMask)1325   VPBranchOnMaskRecipe(VPValue *BlockInMask)
1326       : VPRecipeBase(VPBranchOnMaskSC, {}) {
1327     if (BlockInMask) // nullptr means all-one mask.
1328       addOperand(BlockInMask);
1329   }
1330 
1331   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1332   static inline bool classof(const VPDef *D) {
1333     return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC;
1334   }
1335 
1336   /// Generate the extraction of the appropriate bit from the block mask and the
1337   /// conditional branch.
1338   void execute(VPTransformState &State) override;
1339 
1340 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1341   /// Print the recipe.
print(raw_ostream & O,const Twine & Indent,VPSlotTracker & SlotTracker)1342   void print(raw_ostream &O, const Twine &Indent,
1343              VPSlotTracker &SlotTracker) const override {
1344     O << Indent << "BRANCH-ON-MASK ";
1345     if (VPValue *Mask = getMask())
1346       Mask->printAsOperand(O, SlotTracker);
1347     else
1348       O << " All-One";
1349   }
1350 #endif
1351 
1352   /// Return the mask used by this recipe. Note that a full mask is represented
1353   /// by a nullptr.
getMask()1354   VPValue *getMask() const {
1355     assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
1356     // Mask is optional.
1357     return getNumOperands() == 1 ? getOperand(0) : nullptr;
1358   }
1359 };
1360 
1361 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
1362 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
1363 /// order to merge values that are set under such a branch and feed their uses.
1364 /// The phi nodes can be scalar or vector depending on the users of the value.
1365 /// This recipe works in concert with VPBranchOnMaskRecipe.
1366 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue {
1367 public:
1368   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
1369   /// nodes after merging back from a Branch-on-Mask.
VPPredInstPHIRecipe(VPValue * PredV)1370   VPPredInstPHIRecipe(VPValue *PredV)
1371       : VPRecipeBase(VPPredInstPHISC, PredV),
1372         VPValue(VPValue::VPVPredInstPHI, nullptr, this) {}
1373   ~VPPredInstPHIRecipe() override = default;
1374 
1375   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1376   static inline bool classof(const VPDef *D) {
1377     return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC;
1378   }
1379 
1380   /// Generates phi nodes for live-outs as needed to retain SSA form.
1381   void execute(VPTransformState &State) override;
1382 
1383 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1384   /// Print the recipe.
1385   void print(raw_ostream &O, const Twine &Indent,
1386              VPSlotTracker &SlotTracker) const override;
1387 #endif
1388 };
1389 
1390 /// A Recipe for widening load/store operations.
1391 /// The recipe uses the following VPValues:
1392 /// - For load: Address, optional mask
1393 /// - For store: Address, stored value, optional mask
1394 /// TODO: We currently execute only per-part unless a specific instance is
1395 /// provided.
1396 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
1397   Instruction &Ingredient;
1398 
setMask(VPValue * Mask)1399   void setMask(VPValue *Mask) {
1400     if (!Mask)
1401       return;
1402     addOperand(Mask);
1403   }
1404 
isMasked()1405   bool isMasked() const {
1406     return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
1407   }
1408 
1409 public:
VPWidenMemoryInstructionRecipe(LoadInst & Load,VPValue * Addr,VPValue * Mask)1410   VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask)
1411       : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), Ingredient(Load) {
1412     new VPValue(VPValue::VPVMemoryInstructionSC, &Load, this);
1413     setMask(Mask);
1414   }
1415 
VPWidenMemoryInstructionRecipe(StoreInst & Store,VPValue * Addr,VPValue * StoredValue,VPValue * Mask)1416   VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
1417                                  VPValue *StoredValue, VPValue *Mask)
1418       : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}),
1419         Ingredient(Store) {
1420     setMask(Mask);
1421   }
1422 
1423   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1424   static inline bool classof(const VPDef *D) {
1425     return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
1426   }
1427 
1428   /// Return the address accessed by this recipe.
getAddr()1429   VPValue *getAddr() const {
1430     return getOperand(0); // Address is the 1st, mandatory operand.
1431   }
1432 
1433   /// Return the mask used by this recipe. Note that a full mask is represented
1434   /// by a nullptr.
getMask()1435   VPValue *getMask() const {
1436     // Mask is optional and therefore the last operand.
1437     return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
1438   }
1439 
1440   /// Returns true if this recipe is a store.
isStore()1441   bool isStore() const { return isa<StoreInst>(Ingredient); }
1442 
1443   /// Return the address accessed by this recipe.
getStoredValue()1444   VPValue *getStoredValue() const {
1445     assert(isStore() && "Stored value only available for store instructions");
1446     return getOperand(1); // Stored value is the 2nd, mandatory operand.
1447   }
1448 
1449   /// Generate the wide load/store.
1450   void execute(VPTransformState &State) override;
1451 
1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453   /// Print the recipe.
1454   void print(raw_ostream &O, const Twine &Indent,
1455              VPSlotTracker &SlotTracker) const override;
1456 #endif
1457 };
1458 
1459 /// A Recipe for widening the canonical induction variable of the vector loop.
1460 class VPWidenCanonicalIVRecipe : public VPRecipeBase {
1461 public:
VPWidenCanonicalIVRecipe()1462   VPWidenCanonicalIVRecipe() : VPRecipeBase(VPWidenCanonicalIVSC, {}) {
1463     new VPValue(nullptr, this);
1464   }
1465 
1466   ~VPWidenCanonicalIVRecipe() override = default;
1467 
1468   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPDef * D)1469   static inline bool classof(const VPDef *D) {
1470     return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC;
1471   }
1472 
1473   /// Generate a canonical vector induction variable of the vector loop, with
1474   /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
1475   /// step = <VF*UF, VF*UF, ..., VF*UF>.
1476   void execute(VPTransformState &State) override;
1477 
1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1479   /// Print the recipe.
1480   void print(raw_ostream &O, const Twine &Indent,
1481              VPSlotTracker &SlotTracker) const override;
1482 #endif
1483 };
1484 
1485 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
1486 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
1487 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes.
1488 class VPBasicBlock : public VPBlockBase {
1489 public:
1490   using RecipeListTy = iplist<VPRecipeBase>;
1491 
1492 private:
1493   /// The VPRecipes held in the order of output instructions to generate.
1494   RecipeListTy Recipes;
1495 
1496 public:
1497   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
1498       : VPBlockBase(VPBasicBlockSC, Name.str()) {
1499     if (Recipe)
1500       appendRecipe(Recipe);
1501   }
1502 
~VPBasicBlock()1503   ~VPBasicBlock() override {
1504     while (!Recipes.empty())
1505       Recipes.pop_back();
1506   }
1507 
1508   /// Instruction iterators...
1509   using iterator = RecipeListTy::iterator;
1510   using const_iterator = RecipeListTy::const_iterator;
1511   using reverse_iterator = RecipeListTy::reverse_iterator;
1512   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
1513 
1514   //===--------------------------------------------------------------------===//
1515   /// Recipe iterator methods
1516   ///
begin()1517   inline iterator begin() { return Recipes.begin(); }
begin()1518   inline const_iterator begin() const { return Recipes.begin(); }
end()1519   inline iterator end() { return Recipes.end(); }
end()1520   inline const_iterator end() const { return Recipes.end(); }
1521 
rbegin()1522   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
rbegin()1523   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
rend()1524   inline reverse_iterator rend() { return Recipes.rend(); }
rend()1525   inline const_reverse_iterator rend() const { return Recipes.rend(); }
1526 
size()1527   inline size_t size() const { return Recipes.size(); }
empty()1528   inline bool empty() const { return Recipes.empty(); }
front()1529   inline const VPRecipeBase &front() const { return Recipes.front(); }
front()1530   inline VPRecipeBase &front() { return Recipes.front(); }
back()1531   inline const VPRecipeBase &back() const { return Recipes.back(); }
back()1532   inline VPRecipeBase &back() { return Recipes.back(); }
1533 
1534   /// Returns a reference to the list of recipes.
getRecipeList()1535   RecipeListTy &getRecipeList() { return Recipes; }
1536 
1537   /// Returns a pointer to a member of the recipe list.
getSublistAccess(VPRecipeBase *)1538   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1539     return &VPBasicBlock::Recipes;
1540   }
1541 
1542   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPBlockBase * V)1543   static inline bool classof(const VPBlockBase *V) {
1544     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1545   }
1546 
insert(VPRecipeBase * Recipe,iterator InsertPt)1547   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1548     assert(Recipe && "No recipe to append.");
1549     assert(!Recipe->Parent && "Recipe already in VPlan");
1550     Recipe->Parent = this;
1551     Recipes.insert(InsertPt, Recipe);
1552   }
1553 
1554   /// Augment the existing recipes of a VPBasicBlock with an additional
1555   /// \p Recipe as the last recipe.
appendRecipe(VPRecipeBase * Recipe)1556   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1557 
1558   /// The method which generates the output IR instructions that correspond to
1559   /// this VPBasicBlock, thereby "executing" the VPlan.
1560   void execute(struct VPTransformState *State) override;
1561 
1562   /// Return the position of the first non-phi node recipe in the block.
1563   iterator getFirstNonPhi();
1564 
1565   /// Returns an iterator range over the PHI-like recipes in the block.
phis()1566   iterator_range<iterator> phis() {
1567     return make_range(begin(), getFirstNonPhi());
1568   }
1569 
1570   void dropAllReferences(VPValue *NewValue) override;
1571 
1572   /// Split current block at \p SplitAt by inserting a new block between the
1573   /// current block and its successors and moving all recipes starting at
1574   /// SplitAt to the new block. Returns the new block.
1575   VPBasicBlock *splitAt(iterator SplitAt);
1576 
1577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1578   /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p
1579   /// SlotTracker is used to print unnamed VPValue's using consequtive numbers.
1580   ///
1581   /// Note that the numbering is applied to the whole VPlan, so printing
1582   /// individual blocks is consistent with the whole VPlan printing.
1583   void print(raw_ostream &O, const Twine &Indent,
1584              VPSlotTracker &SlotTracker) const override;
1585   using VPBlockBase::print; // Get the print(raw_stream &O) version.
1586 #endif
1587 
1588 private:
1589   /// Create an IR BasicBlock to hold the output instructions generated by this
1590   /// VPBasicBlock, and return it. Update the CFGState accordingly.
1591   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1592 };
1593 
1594 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1595 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1596 /// A VPRegionBlock may indicate that its contents are to be replicated several
1597 /// times. This is designed to support predicated scalarization, in which a
1598 /// scalar if-then code structure needs to be generated VF * UF times. Having
1599 /// this replication indicator helps to keep a single model for multiple
1600 /// candidate VF's. The actual replication takes place only once the desired VF
1601 /// and UF have been determined.
1602 class VPRegionBlock : public VPBlockBase {
1603   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1604   VPBlockBase *Entry;
1605 
1606   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1607   VPBlockBase *Exit;
1608 
1609   /// An indicator whether this region is to generate multiple replicated
1610   /// instances of output IR corresponding to its VPBlockBases.
1611   bool IsReplicator;
1612 
1613 public:
1614   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1615                 const std::string &Name = "", bool IsReplicator = false)
VPBlockBase(VPRegionBlockSC,Name)1616       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1617         IsReplicator(IsReplicator) {
1618     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1619     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1620     Entry->setParent(this);
1621     Exit->setParent(this);
1622   }
1623   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
VPBlockBase(VPRegionBlockSC,Name)1624       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1625         IsReplicator(IsReplicator) {}
1626 
~VPRegionBlock()1627   ~VPRegionBlock() override {
1628     if (Entry) {
1629       VPValue DummyValue;
1630       Entry->dropAllReferences(&DummyValue);
1631       deleteCFG(Entry);
1632     }
1633   }
1634 
1635   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPBlockBase * V)1636   static inline bool classof(const VPBlockBase *V) {
1637     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1638   }
1639 
getEntry()1640   const VPBlockBase *getEntry() const { return Entry; }
getEntry()1641   VPBlockBase *getEntry() { return Entry; }
1642 
1643   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1644   /// EntryBlock must have no predecessors.
setEntry(VPBlockBase * EntryBlock)1645   void setEntry(VPBlockBase *EntryBlock) {
1646     assert(EntryBlock->getPredecessors().empty() &&
1647            "Entry block cannot have predecessors.");
1648     Entry = EntryBlock;
1649     EntryBlock->setParent(this);
1650   }
1651 
1652   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1653   // specific interface of llvm::Function, instead of using
1654   // GraphTraints::getEntryNode. We should add a new template parameter to
1655   // DominatorTreeBase representing the Graph type.
front()1656   VPBlockBase &front() const { return *Entry; }
1657 
getExit()1658   const VPBlockBase *getExit() const { return Exit; }
getExit()1659   VPBlockBase *getExit() { return Exit; }
1660 
1661   /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1662   /// ExitBlock must have no successors.
setExit(VPBlockBase * ExitBlock)1663   void setExit(VPBlockBase *ExitBlock) {
1664     assert(ExitBlock->getSuccessors().empty() &&
1665            "Exit block cannot have successors.");
1666     Exit = ExitBlock;
1667     ExitBlock->setParent(this);
1668   }
1669 
1670   /// An indicator whether this region is to generate multiple replicated
1671   /// instances of output IR corresponding to its VPBlockBases.
isReplicator()1672   bool isReplicator() const { return IsReplicator; }
1673 
1674   /// The method which generates the output IR instructions that correspond to
1675   /// this VPRegionBlock, thereby "executing" the VPlan.
1676   void execute(struct VPTransformState *State) override;
1677 
1678   void dropAllReferences(VPValue *NewValue) override;
1679 
1680 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1681   /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with
1682   /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using
1683   /// consequtive numbers.
1684   ///
1685   /// Note that the numbering is applied to the whole VPlan, so printing
1686   /// individual regions is consistent with the whole VPlan printing.
1687   void print(raw_ostream &O, const Twine &Indent,
1688              VPSlotTracker &SlotTracker) const override;
1689   using VPBlockBase::print; // Get the print(raw_stream &O) version.
1690 #endif
1691 };
1692 
1693 //===----------------------------------------------------------------------===//
1694 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
1695 //===----------------------------------------------------------------------===//
1696 
1697 // The following set of template specializations implement GraphTraits to treat
1698 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1699 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1700 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1701 // successors/predecessors but not to the blocks inside the region.
1702 
1703 template <> struct GraphTraits<VPBlockBase *> {
1704   using NodeRef = VPBlockBase *;
1705   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1706 
1707   static NodeRef getEntryNode(NodeRef N) { return N; }
1708 
1709   static inline ChildIteratorType child_begin(NodeRef N) {
1710     return N->getSuccessors().begin();
1711   }
1712 
1713   static inline ChildIteratorType child_end(NodeRef N) {
1714     return N->getSuccessors().end();
1715   }
1716 };
1717 
1718 template <> struct GraphTraits<const VPBlockBase *> {
1719   using NodeRef = const VPBlockBase *;
1720   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1721 
1722   static NodeRef getEntryNode(NodeRef N) { return N; }
1723 
1724   static inline ChildIteratorType child_begin(NodeRef N) {
1725     return N->getSuccessors().begin();
1726   }
1727 
1728   static inline ChildIteratorType child_end(NodeRef N) {
1729     return N->getSuccessors().end();
1730   }
1731 };
1732 
1733 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1734 // of successors for the inverse traversal.
1735 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1736   using NodeRef = VPBlockBase *;
1737   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1738 
1739   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1740 
1741   static inline ChildIteratorType child_begin(NodeRef N) {
1742     return N->getPredecessors().begin();
1743   }
1744 
1745   static inline ChildIteratorType child_end(NodeRef N) {
1746     return N->getPredecessors().end();
1747   }
1748 };
1749 
1750 // The following set of template specializations implement GraphTraits to
1751 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1752 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1753 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1754 // there won't be automatic recursion into other VPBlockBases that turn to be
1755 // VPRegionBlocks.
1756 
1757 template <>
1758 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1759   using GraphRef = VPRegionBlock *;
1760   using nodes_iterator = df_iterator<NodeRef>;
1761 
1762   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1763 
1764   static nodes_iterator nodes_begin(GraphRef N) {
1765     return nodes_iterator::begin(N->getEntry());
1766   }
1767 
1768   static nodes_iterator nodes_end(GraphRef N) {
1769     // df_iterator::end() returns an empty iterator so the node used doesn't
1770     // matter.
1771     return nodes_iterator::end(N);
1772   }
1773 };
1774 
1775 template <>
1776 struct GraphTraits<const VPRegionBlock *>
1777     : public GraphTraits<const VPBlockBase *> {
1778   using GraphRef = const VPRegionBlock *;
1779   using nodes_iterator = df_iterator<NodeRef>;
1780 
1781   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1782 
1783   static nodes_iterator nodes_begin(GraphRef N) {
1784     return nodes_iterator::begin(N->getEntry());
1785   }
1786 
1787   static nodes_iterator nodes_end(GraphRef N) {
1788     // df_iterator::end() returns an empty iterator so the node used doesn't
1789     // matter.
1790     return nodes_iterator::end(N);
1791   }
1792 };
1793 
1794 template <>
1795 struct GraphTraits<Inverse<VPRegionBlock *>>
1796     : public GraphTraits<Inverse<VPBlockBase *>> {
1797   using GraphRef = VPRegionBlock *;
1798   using nodes_iterator = df_iterator<NodeRef>;
1799 
1800   static NodeRef getEntryNode(Inverse<GraphRef> N) {
1801     return N.Graph->getExit();
1802   }
1803 
1804   static nodes_iterator nodes_begin(GraphRef N) {
1805     return nodes_iterator::begin(N->getExit());
1806   }
1807 
1808   static nodes_iterator nodes_end(GraphRef N) {
1809     // df_iterator::end() returns an empty iterator so the node used doesn't
1810     // matter.
1811     return nodes_iterator::end(N);
1812   }
1813 };
1814 
1815 /// Iterator to traverse all successors of a VPBlockBase node. This includes the
1816 /// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their
1817 /// parent region's successors. This ensures all blocks in a region are visited
1818 /// before any blocks in a successor region when doing a reverse post-order
1819 // traversal of the graph.
1820 template <typename BlockPtrTy>
1821 class VPAllSuccessorsIterator
1822     : public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>,
1823                                   std::forward_iterator_tag, VPBlockBase> {
1824   BlockPtrTy Block;
1825   /// Index of the current successor. For VPBasicBlock nodes, this simply is the
1826   /// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is
1827   /// used for the region's entry block, and SuccessorIdx - 1 are the indices
1828   /// for the successor array.
1829   size_t SuccessorIdx;
1830 
1831   static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) {
1832     while (Current && Current->getNumSuccessors() == 0)
1833       Current = Current->getParent();
1834     return Current;
1835   }
1836 
1837   /// Templated helper to dereference successor \p SuccIdx of \p Block. Used by
1838   /// both the const and non-const operator* implementations.
1839   template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) {
1840     if (auto *R = dyn_cast<VPRegionBlock>(Block)) {
1841       if (SuccIdx == 0)
1842         return R->getEntry();
1843       SuccIdx--;
1844     }
1845 
1846     // For exit blocks, use the next parent region with successors.
1847     return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx];
1848   }
1849 
1850 public:
1851   VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0)
1852       : Block(Block), SuccessorIdx(Idx) {}
1853   VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other)
1854       : Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {}
1855 
1856   VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) {
1857     Block = R.Block;
1858     SuccessorIdx = R.SuccessorIdx;
1859     return *this;
1860   }
1861 
1862   static VPAllSuccessorsIterator end(BlockPtrTy Block) {
1863     BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block);
1864     unsigned NumSuccessors = ParentWithSuccs
1865                                  ? ParentWithSuccs->getNumSuccessors()
1866                                  : Block->getNumSuccessors();
1867 
1868     if (auto *R = dyn_cast<VPRegionBlock>(Block))
1869       return {R, NumSuccessors + 1};
1870     return {Block, NumSuccessors};
1871   }
1872 
1873   bool operator==(const VPAllSuccessorsIterator &R) const {
1874     return Block == R.Block && SuccessorIdx == R.SuccessorIdx;
1875   }
1876 
1877   const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); }
1878 
1879   BlockPtrTy operator*() { return deref(Block, SuccessorIdx); }
1880 
1881   VPAllSuccessorsIterator &operator++() {
1882     SuccessorIdx++;
1883     return *this;
1884   }
1885 
1886   VPAllSuccessorsIterator operator++(int X) {
1887     VPAllSuccessorsIterator Orig = *this;
1888     SuccessorIdx++;
1889     return Orig;
1890   }
1891 };
1892 
1893 /// Helper for GraphTraits specialization that traverses through VPRegionBlocks.
1894 template <typename BlockTy> class VPBlockRecursiveTraversalWrapper {
1895   BlockTy Entry;
1896 
1897 public:
1898   VPBlockRecursiveTraversalWrapper(BlockTy Entry) : Entry(Entry) {}
1899   BlockTy getEntry() { return Entry; }
1900 };
1901 
1902 /// GraphTraits specialization to recursively traverse VPBlockBase nodes,
1903 /// including traversing through VPRegionBlocks.  Exit blocks of a region
1904 /// implicitly have their parent region's successors. This ensures all blocks in
1905 /// a region are visited before any blocks in a successor region when doing a
1906 /// reverse post-order traversal of the graph.
1907 template <>
1908 struct GraphTraits<VPBlockRecursiveTraversalWrapper<VPBlockBase *>> {
1909   using NodeRef = VPBlockBase *;
1910   using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>;
1911 
1912   static NodeRef
1913   getEntryNode(VPBlockRecursiveTraversalWrapper<VPBlockBase *> N) {
1914     return N.getEntry();
1915   }
1916 
1917   static inline ChildIteratorType child_begin(NodeRef N) {
1918     return ChildIteratorType(N);
1919   }
1920 
1921   static inline ChildIteratorType child_end(NodeRef N) {
1922     return ChildIteratorType::end(N);
1923   }
1924 };
1925 
1926 template <>
1927 struct GraphTraits<VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> {
1928   using NodeRef = const VPBlockBase *;
1929   using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>;
1930 
1931   static NodeRef
1932   getEntryNode(VPBlockRecursiveTraversalWrapper<const VPBlockBase *> N) {
1933     return N.getEntry();
1934   }
1935 
1936   static inline ChildIteratorType child_begin(NodeRef N) {
1937     return ChildIteratorType(N);
1938   }
1939 
1940   static inline ChildIteratorType child_end(NodeRef N) {
1941     return ChildIteratorType::end(N);
1942   }
1943 };
1944 
1945 /// VPlan models a candidate for vectorization, encoding various decisions take
1946 /// to produce efficient output IR, including which branches, basic-blocks and
1947 /// output IR instructions to generate, and their cost. VPlan holds a
1948 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1949 /// VPBlock.
1950 class VPlan {
1951   friend class VPlanPrinter;
1952   friend class VPSlotTracker;
1953 
1954   /// Hold the single entry to the Hierarchical CFG of the VPlan.
1955   VPBlockBase *Entry;
1956 
1957   /// Holds the VFs applicable to this VPlan.
1958   SmallSetVector<ElementCount, 2> VFs;
1959 
1960   /// Holds the name of the VPlan, for printing.
1961   std::string Name;
1962 
1963   /// Holds all the external definitions created for this VPlan.
1964   // TODO: Introduce a specific representation for external definitions in
1965   // VPlan. External definitions must be immutable and hold a pointer to its
1966   // underlying IR that will be used to implement its structural comparison
1967   // (operators '==' and '<').
1968   SetVector<VPValue *> VPExternalDefs;
1969 
1970   /// Represents the backedge taken count of the original loop, for folding
1971   /// the tail.
1972   VPValue *BackedgeTakenCount = nullptr;
1973 
1974   /// Holds a mapping between Values and their corresponding VPValue inside
1975   /// VPlan.
1976   Value2VPValueTy Value2VPValue;
1977 
1978   /// Contains all VPValues that been allocated by addVPValue directly and need
1979   /// to be free when the plan's destructor is called.
1980   SmallVector<VPValue *, 16> VPValuesToFree;
1981 
1982   /// Holds the VPLoopInfo analysis for this VPlan.
1983   VPLoopInfo VPLInfo;
1984 
1985 public:
1986   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {
1987     if (Entry)
1988       Entry->setPlan(this);
1989   }
1990 
1991   ~VPlan() {
1992     if (Entry) {
1993       VPValue DummyValue;
1994       for (VPBlockBase *Block : depth_first(Entry))
1995         Block->dropAllReferences(&DummyValue);
1996 
1997       VPBlockBase::deleteCFG(Entry);
1998     }
1999     for (VPValue *VPV : VPValuesToFree)
2000       delete VPV;
2001     if (BackedgeTakenCount)
2002       delete BackedgeTakenCount;
2003     for (VPValue *Def : VPExternalDefs)
2004       delete Def;
2005   }
2006 
2007   /// Generate the IR code for this VPlan.
2008   void execute(struct VPTransformState *State);
2009 
2010   VPBlockBase *getEntry() { return Entry; }
2011   const VPBlockBase *getEntry() const { return Entry; }
2012 
2013   VPBlockBase *setEntry(VPBlockBase *Block) {
2014     Entry = Block;
2015     Block->setPlan(this);
2016     return Entry;
2017   }
2018 
2019   /// The backedge taken count of the original loop.
2020   VPValue *getOrCreateBackedgeTakenCount() {
2021     if (!BackedgeTakenCount)
2022       BackedgeTakenCount = new VPValue();
2023     return BackedgeTakenCount;
2024   }
2025 
2026   void addVF(ElementCount VF) { VFs.insert(VF); }
2027 
2028   bool hasVF(ElementCount VF) { return VFs.count(VF); }
2029 
2030   const std::string &getName() const { return Name; }
2031 
2032   void setName(const Twine &newName) { Name = newName.str(); }
2033 
2034   /// Add \p VPVal to the pool of external definitions if it's not already
2035   /// in the pool.
2036   void addExternalDef(VPValue *VPVal) { VPExternalDefs.insert(VPVal); }
2037 
2038   void addVPValue(Value *V) {
2039     assert(V && "Trying to add a null Value to VPlan");
2040     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
2041     VPValue *VPV = new VPValue(V);
2042     Value2VPValue[V] = VPV;
2043     VPValuesToFree.push_back(VPV);
2044   }
2045 
2046   void addVPValue(Value *V, VPValue *VPV) {
2047     assert(V && "Trying to add a null Value to VPlan");
2048     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
2049     Value2VPValue[V] = VPV;
2050   }
2051 
2052   VPValue *getVPValue(Value *V) {
2053     assert(V && "Trying to get the VPValue of a null Value");
2054     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
2055     return Value2VPValue[V];
2056   }
2057 
2058   VPValue *getOrAddVPValue(Value *V) {
2059     assert(V && "Trying to get or add the VPValue of a null Value");
2060     if (!Value2VPValue.count(V))
2061       addVPValue(V);
2062     return getVPValue(V);
2063   }
2064 
2065   void removeVPValueFor(Value *V) { Value2VPValue.erase(V); }
2066 
2067   /// Return the VPLoopInfo analysis for this VPlan.
2068   VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
2069   const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
2070 
2071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2072   /// Print this VPlan to \p O.
2073   void print(raw_ostream &O) const;
2074 
2075   /// Print this VPlan in DOT format to \p O.
2076   void printDOT(raw_ostream &O) const;
2077 
2078   /// Dump the plan to stderr (for debugging).
2079   LLVM_DUMP_METHOD void dump() const;
2080 #endif
2081 
2082   /// Returns a range mapping the values the range \p Operands to their
2083   /// corresponding VPValues.
2084   iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
2085   mapToVPValues(User::op_range Operands) {
2086     std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
2087       return getOrAddVPValue(Op);
2088     };
2089     return map_range(Operands, Fn);
2090   }
2091 
2092 private:
2093   /// Add to the given dominator tree the header block and every new basic block
2094   /// that was created between it and the latch block, inclusive.
2095   static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
2096                                   BasicBlock *LoopPreHeaderBB,
2097                                   BasicBlock *LoopExitBB);
2098 };
2099 
2100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2101 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
2102 /// indented and follows the dot format.
2103 class VPlanPrinter {
2104   raw_ostream &OS;
2105   const VPlan &Plan;
2106   unsigned Depth = 0;
2107   unsigned TabWidth = 2;
2108   std::string Indent;
2109   unsigned BID = 0;
2110   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
2111 
2112   VPSlotTracker SlotTracker;
2113 
2114   /// Handle indentation.
2115   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
2116 
2117   /// Print a given \p Block of the Plan.
2118   void dumpBlock(const VPBlockBase *Block);
2119 
2120   /// Print the information related to the CFG edges going out of a given
2121   /// \p Block, followed by printing the successor blocks themselves.
2122   void dumpEdges(const VPBlockBase *Block);
2123 
2124   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
2125   /// its successor blocks.
2126   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
2127 
2128   /// Print a given \p Region of the Plan.
2129   void dumpRegion(const VPRegionBlock *Region);
2130 
2131   unsigned getOrCreateBID(const VPBlockBase *Block) {
2132     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
2133   }
2134 
2135   const Twine getOrCreateName(const VPBlockBase *Block);
2136 
2137   const Twine getUID(const VPBlockBase *Block);
2138 
2139   /// Print the information related to a CFG edge between two VPBlockBases.
2140   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
2141                 const Twine &Label);
2142 
2143 public:
2144   VPlanPrinter(raw_ostream &O, const VPlan &P)
2145       : OS(O), Plan(P), SlotTracker(&P) {}
2146 
2147   LLVM_DUMP_METHOD void dump();
2148 };
2149 
2150 struct VPlanIngredient {
2151   const Value *V;
2152 
2153   VPlanIngredient(const Value *V) : V(V) {}
2154 
2155   void print(raw_ostream &O) const;
2156 };
2157 
2158 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
2159   I.print(OS);
2160   return OS;
2161 }
2162 
2163 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
2164   Plan.print(OS);
2165   return OS;
2166 }
2167 #endif
2168 
2169 //===----------------------------------------------------------------------===//
2170 // VPlan Utilities
2171 //===----------------------------------------------------------------------===//
2172 
2173 /// Class that provides utilities for VPBlockBases in VPlan.
2174 class VPBlockUtils {
2175 public:
2176   VPBlockUtils() = delete;
2177 
2178   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
2179   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
2180   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
2181   /// has more than one successor, its conditional bit is propagated to \p
2182   /// NewBlock. \p NewBlock must have neither successors nor predecessors.
2183   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
2184     assert(NewBlock->getSuccessors().empty() &&
2185            "Can't insert new block with successors.");
2186     // TODO: move successors from BlockPtr to NewBlock when this functionality
2187     // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
2188     // already has successors.
2189     BlockPtr->setOneSuccessor(NewBlock);
2190     NewBlock->setPredecessors({BlockPtr});
2191     NewBlock->setParent(BlockPtr->getParent());
2192   }
2193 
2194   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
2195   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
2196   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
2197   /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
2198   /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
2199   /// must have neither successors nor predecessors.
2200   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
2201                                    VPValue *Condition, VPBlockBase *BlockPtr) {
2202     assert(IfTrue->getSuccessors().empty() &&
2203            "Can't insert IfTrue with successors.");
2204     assert(IfFalse->getSuccessors().empty() &&
2205            "Can't insert IfFalse with successors.");
2206     BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
2207     IfTrue->setPredecessors({BlockPtr});
2208     IfFalse->setPredecessors({BlockPtr});
2209     IfTrue->setParent(BlockPtr->getParent());
2210     IfFalse->setParent(BlockPtr->getParent());
2211   }
2212 
2213   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
2214   /// the successors of \p From and \p From to the predecessors of \p To. Both
2215   /// VPBlockBases must have the same parent, which can be null. Both
2216   /// VPBlockBases can be already connected to other VPBlockBases.
2217   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
2218     assert((From->getParent() == To->getParent()) &&
2219            "Can't connect two block with different parents");
2220     assert(From->getNumSuccessors() < 2 &&
2221            "Blocks can't have more than two successors.");
2222     From->appendSuccessor(To);
2223     To->appendPredecessor(From);
2224   }
2225 
2226   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
2227   /// from the successors of \p From and \p From from the predecessors of \p To.
2228   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
2229     assert(To && "Successor to disconnect is null.");
2230     From->removeSuccessor(To);
2231     To->removePredecessor(From);
2232   }
2233 
2234   /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
2235   static bool isBackEdge(const VPBlockBase *FromBlock,
2236                          const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
2237     assert(FromBlock->getParent() == ToBlock->getParent() &&
2238            FromBlock->getParent() && "Must be in same region");
2239     const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
2240     const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
2241     if (!FromLoop || !ToLoop || FromLoop != ToLoop)
2242       return false;
2243 
2244     // A back-edge is a branch from the loop latch to its header.
2245     return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
2246   }
2247 
2248   /// Returns true if \p Block is a loop latch
2249   static bool blockIsLoopLatch(const VPBlockBase *Block,
2250                                const VPLoopInfo *VPLInfo) {
2251     if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
2252       return ParentVPL->isLoopLatch(Block);
2253 
2254     return false;
2255   }
2256 
2257   /// Count and return the number of succesors of \p PredBlock excluding any
2258   /// backedges.
2259   static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
2260                                       VPLoopInfo *VPLI) {
2261     unsigned Count = 0;
2262     for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
2263       if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
2264         Count++;
2265     }
2266     return Count;
2267   }
2268 
2269   /// Return an iterator range over \p Range which only includes \p BlockTy
2270   /// blocks. The accesses are casted to \p BlockTy.
2271   template <typename BlockTy, typename T>
2272   static auto blocksOnly(const T &Range) {
2273     // Create BaseTy with correct const-ness based on BlockTy.
2274     using BaseTy =
2275         typename std::conditional<std::is_const<BlockTy>::value,
2276                                   const VPBlockBase, VPBlockBase>::type;
2277 
2278     // We need to first create an iterator range over (const) BlocktTy & instead
2279     // of (const) BlockTy * for filter_range to work properly.
2280     auto Mapped =
2281         map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; });
2282     auto Filter = make_filter_range(
2283         Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); });
2284     return map_range(Filter, [](BaseTy &Block) -> BlockTy * {
2285       return cast<BlockTy>(&Block);
2286     });
2287   }
2288 };
2289 
2290 class VPInterleavedAccessInfo {
2291   DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
2292       InterleaveGroupMap;
2293 
2294   /// Type for mapping of instruction based interleave groups to VPInstruction
2295   /// interleave groups
2296   using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
2297                              InterleaveGroup<VPInstruction> *>;
2298 
2299   /// Recursively \p Region and populate VPlan based interleave groups based on
2300   /// \p IAI.
2301   void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
2302                    InterleavedAccessInfo &IAI);
2303   /// Recursively traverse \p Block and populate VPlan based interleave groups
2304   /// based on \p IAI.
2305   void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
2306                   InterleavedAccessInfo &IAI);
2307 
2308 public:
2309   VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
2310 
2311   ~VPInterleavedAccessInfo() {
2312     SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
2313     // Avoid releasing a pointer twice.
2314     for (auto &I : InterleaveGroupMap)
2315       DelSet.insert(I.second);
2316     for (auto *Ptr : DelSet)
2317       delete Ptr;
2318   }
2319 
2320   /// Get the interleave group that \p Instr belongs to.
2321   ///
2322   /// \returns nullptr if doesn't have such group.
2323   InterleaveGroup<VPInstruction> *
2324   getInterleaveGroup(VPInstruction *Instr) const {
2325     return InterleaveGroupMap.lookup(Instr);
2326   }
2327 };
2328 
2329 /// Class that maps (parts of) an existing VPlan to trees of combined
2330 /// VPInstructions.
2331 class VPlanSlp {
2332   enum class OpMode { Failed, Load, Opcode };
2333 
2334   /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
2335   /// DenseMap keys.
2336   struct BundleDenseMapInfo {
2337     static SmallVector<VPValue *, 4> getEmptyKey() {
2338       return {reinterpret_cast<VPValue *>(-1)};
2339     }
2340 
2341     static SmallVector<VPValue *, 4> getTombstoneKey() {
2342       return {reinterpret_cast<VPValue *>(-2)};
2343     }
2344 
2345     static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
2346       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2347     }
2348 
2349     static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
2350                         const SmallVector<VPValue *, 4> &RHS) {
2351       return LHS == RHS;
2352     }
2353   };
2354 
2355   /// Mapping of values in the original VPlan to a combined VPInstruction.
2356   DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
2357       BundleToCombined;
2358 
2359   VPInterleavedAccessInfo &IAI;
2360 
2361   /// Basic block to operate on. For now, only instructions in a single BB are
2362   /// considered.
2363   const VPBasicBlock &BB;
2364 
2365   /// Indicates whether we managed to combine all visited instructions or not.
2366   bool CompletelySLP = true;
2367 
2368   /// Width of the widest combined bundle in bits.
2369   unsigned WidestBundleBits = 0;
2370 
2371   using MultiNodeOpTy =
2372       typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
2373 
2374   // Input operand bundles for the current multi node. Each multi node operand
2375   // bundle contains values not matching the multi node's opcode. They will
2376   // be reordered in reorderMultiNodeOps, once we completed building a
2377   // multi node.
2378   SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
2379 
2380   /// Indicates whether we are building a multi node currently.
2381   bool MultiNodeActive = false;
2382 
2383   /// Check if we can vectorize Operands together.
2384   bool areVectorizable(ArrayRef<VPValue *> Operands) const;
2385 
2386   /// Add combined instruction \p New for the bundle \p Operands.
2387   void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
2388 
2389   /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
2390   VPInstruction *markFailed();
2391 
2392   /// Reorder operands in the multi node to maximize sequential memory access
2393   /// and commutative operations.
2394   SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
2395 
2396   /// Choose the best candidate to use for the lane after \p Last. The set of
2397   /// candidates to choose from are values with an opcode matching \p Last's
2398   /// or loads consecutive to \p Last.
2399   std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
2400                                        SmallPtrSetImpl<VPValue *> &Candidates,
2401                                        VPInterleavedAccessInfo &IAI);
2402 
2403 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2404   /// Print bundle \p Values to dbgs().
2405   void dumpBundle(ArrayRef<VPValue *> Values);
2406 #endif
2407 
2408 public:
2409   VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
2410 
2411   ~VPlanSlp() = default;
2412 
2413   /// Tries to build an SLP tree rooted at \p Operands and returns a
2414   /// VPInstruction combining \p Operands, if they can be combined.
2415   VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
2416 
2417   /// Return the width of the widest combined bundle in bits.
2418   unsigned getWidestBundleBits() const { return WidestBundleBits; }
2419 
2420   /// Return true if all visited instruction can be combined.
2421   bool isCompletelySLP() const { return CompletelySLP; }
2422 };
2423 } // end namespace llvm
2424 
2425 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
2426