xref: /linux/fs/namespace.c (revision 8eac5358)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_RWLOCK(mnt_ns_tree_lock);
83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
84 
85 struct mount_kattr {
86 	unsigned int attr_set;
87 	unsigned int attr_clr;
88 	unsigned int propagation;
89 	unsigned int lookup_flags;
90 	bool recurse;
91 	struct user_namespace *mnt_userns;
92 	struct mnt_idmap *mnt_idmap;
93 };
94 
95 /* /sys/fs */
96 struct kobject *fs_kobj __ro_after_init;
97 EXPORT_SYMBOL_GPL(fs_kobj);
98 
99 /*
100  * vfsmount lock may be taken for read to prevent changes to the
101  * vfsmount hash, ie. during mountpoint lookups or walking back
102  * up the tree.
103  *
104  * It should be taken for write in all cases where the vfsmount
105  * tree or hash is modified or when a vfsmount structure is modified.
106  */
107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
108 
mnt_ns_cmp(u64 seq,const struct mnt_namespace * ns)109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
110 {
111 	u64 seq_b = ns->seq;
112 
113 	if (seq < seq_b)
114 		return -1;
115 	if (seq > seq_b)
116 		return 1;
117 	return 0;
118 }
119 
node_to_mnt_ns(const struct rb_node * node)120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 	if (!node)
123 		return NULL;
124 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126 
mnt_ns_less(struct rb_node * a,const struct rb_node * b)127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
128 {
129 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 	u64 seq_a = ns_a->seq;
132 
133 	return mnt_ns_cmp(seq_a, ns_b) < 0;
134 }
135 
mnt_ns_tree_add(struct mnt_namespace * ns)136 static void mnt_ns_tree_add(struct mnt_namespace *ns)
137 {
138 	guard(write_lock)(&mnt_ns_tree_lock);
139 	rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
140 }
141 
mnt_ns_release(struct mnt_namespace * ns)142 static void mnt_ns_release(struct mnt_namespace *ns)
143 {
144 	lockdep_assert_not_held(&mnt_ns_tree_lock);
145 
146 	/* keep alive for {list,stat}mount() */
147 	if (refcount_dec_and_test(&ns->passive)) {
148 		put_user_ns(ns->user_ns);
149 		kfree(ns);
150 	}
151 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
153 
154 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
155 {
156 	/* remove from global mount namespace list */
157 	if (!is_anon_ns(ns)) {
158 		guard(write_lock)(&mnt_ns_tree_lock);
159 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
160 	}
161 
162 	mnt_ns_release(ns);
163 }
164 
165 /*
166  * Returns the mount namespace which either has the specified id, or has the
167  * next smallest id afer the specified one.
168  */
mnt_ns_find_id_at(u64 mnt_ns_id)169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
170 {
171 	struct rb_node *node = mnt_ns_tree.rb_node;
172 	struct mnt_namespace *ret = NULL;
173 
174 	lockdep_assert_held(&mnt_ns_tree_lock);
175 
176 	while (node) {
177 		struct mnt_namespace *n = node_to_mnt_ns(node);
178 
179 		if (mnt_ns_id <= n->seq) {
180 			ret = node_to_mnt_ns(node);
181 			if (mnt_ns_id == n->seq)
182 				break;
183 			node = node->rb_left;
184 		} else {
185 			node = node->rb_right;
186 		}
187 	}
188 	return ret;
189 }
190 
191 /*
192  * Lookup a mount namespace by id and take a passive reference count. Taking a
193  * passive reference means the mount namespace can be emptied if e.g., the last
194  * task holding an active reference exits. To access the mounts of the
195  * namespace the @namespace_sem must first be acquired. If the namespace has
196  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
197  * see that the mount rbtree of the namespace is empty.
198  */
lookup_mnt_ns(u64 mnt_ns_id)199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
200 {
201        struct mnt_namespace *ns;
202 
203        guard(read_lock)(&mnt_ns_tree_lock);
204        ns = mnt_ns_find_id_at(mnt_ns_id);
205        if (!ns || ns->seq != mnt_ns_id)
206                return NULL;
207 
208        refcount_inc(&ns->passive);
209        return ns;
210 }
211 
lock_mount_hash(void)212 static inline void lock_mount_hash(void)
213 {
214 	write_seqlock(&mount_lock);
215 }
216 
unlock_mount_hash(void)217 static inline void unlock_mount_hash(void)
218 {
219 	write_sequnlock(&mount_lock);
220 }
221 
m_hash(struct vfsmount * mnt,struct dentry * dentry)222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
223 {
224 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
225 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
226 	tmp = tmp + (tmp >> m_hash_shift);
227 	return &mount_hashtable[tmp & m_hash_mask];
228 }
229 
mp_hash(struct dentry * dentry)230 static inline struct hlist_head *mp_hash(struct dentry *dentry)
231 {
232 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
233 	tmp = tmp + (tmp >> mp_hash_shift);
234 	return &mountpoint_hashtable[tmp & mp_hash_mask];
235 }
236 
mnt_alloc_id(struct mount * mnt)237 static int mnt_alloc_id(struct mount *mnt)
238 {
239 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
240 
241 	if (res < 0)
242 		return res;
243 	mnt->mnt_id = res;
244 	mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
245 	return 0;
246 }
247 
mnt_free_id(struct mount * mnt)248 static void mnt_free_id(struct mount *mnt)
249 {
250 	ida_free(&mnt_id_ida, mnt->mnt_id);
251 }
252 
253 /*
254  * Allocate a new peer group ID
255  */
mnt_alloc_group_id(struct mount * mnt)256 static int mnt_alloc_group_id(struct mount *mnt)
257 {
258 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
259 
260 	if (res < 0)
261 		return res;
262 	mnt->mnt_group_id = res;
263 	return 0;
264 }
265 
266 /*
267  * Release a peer group ID
268  */
mnt_release_group_id(struct mount * mnt)269 void mnt_release_group_id(struct mount *mnt)
270 {
271 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
272 	mnt->mnt_group_id = 0;
273 }
274 
275 /*
276  * vfsmount lock must be held for read
277  */
mnt_add_count(struct mount * mnt,int n)278 static inline void mnt_add_count(struct mount *mnt, int n)
279 {
280 #ifdef CONFIG_SMP
281 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
282 #else
283 	preempt_disable();
284 	mnt->mnt_count += n;
285 	preempt_enable();
286 #endif
287 }
288 
289 /*
290  * vfsmount lock must be held for write
291  */
mnt_get_count(struct mount * mnt)292 int mnt_get_count(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_count;
305 #endif
306 }
307 
alloc_vfsmnt(const char * name)308 static struct mount *alloc_vfsmnt(const char *name)
309 {
310 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
311 	if (mnt) {
312 		int err;
313 
314 		err = mnt_alloc_id(mnt);
315 		if (err)
316 			goto out_free_cache;
317 
318 		if (name) {
319 			mnt->mnt_devname = kstrdup_const(name,
320 							 GFP_KERNEL_ACCOUNT);
321 			if (!mnt->mnt_devname)
322 				goto out_free_id;
323 		}
324 
325 #ifdef CONFIG_SMP
326 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
327 		if (!mnt->mnt_pcp)
328 			goto out_free_devname;
329 
330 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
331 #else
332 		mnt->mnt_count = 1;
333 		mnt->mnt_writers = 0;
334 #endif
335 
336 		INIT_HLIST_NODE(&mnt->mnt_hash);
337 		INIT_LIST_HEAD(&mnt->mnt_child);
338 		INIT_LIST_HEAD(&mnt->mnt_mounts);
339 		INIT_LIST_HEAD(&mnt->mnt_list);
340 		INIT_LIST_HEAD(&mnt->mnt_expire);
341 		INIT_LIST_HEAD(&mnt->mnt_share);
342 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
343 		INIT_LIST_HEAD(&mnt->mnt_slave);
344 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
345 		INIT_LIST_HEAD(&mnt->mnt_umounting);
346 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
347 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
348 	}
349 	return mnt;
350 
351 #ifdef CONFIG_SMP
352 out_free_devname:
353 	kfree_const(mnt->mnt_devname);
354 #endif
355 out_free_id:
356 	mnt_free_id(mnt);
357 out_free_cache:
358 	kmem_cache_free(mnt_cache, mnt);
359 	return NULL;
360 }
361 
362 /*
363  * Most r/o checks on a fs are for operations that take
364  * discrete amounts of time, like a write() or unlink().
365  * We must keep track of when those operations start
366  * (for permission checks) and when they end, so that
367  * we can determine when writes are able to occur to
368  * a filesystem.
369  */
370 /*
371  * __mnt_is_readonly: check whether a mount is read-only
372  * @mnt: the mount to check for its write status
373  *
374  * This shouldn't be used directly ouside of the VFS.
375  * It does not guarantee that the filesystem will stay
376  * r/w, just that it is right *now*.  This can not and
377  * should not be used in place of IS_RDONLY(inode).
378  * mnt_want/drop_write() will _keep_ the filesystem
379  * r/w.
380  */
__mnt_is_readonly(struct vfsmount * mnt)381 bool __mnt_is_readonly(struct vfsmount *mnt)
382 {
383 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
384 }
385 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
386 
mnt_inc_writers(struct mount * mnt)387 static inline void mnt_inc_writers(struct mount *mnt)
388 {
389 #ifdef CONFIG_SMP
390 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
391 #else
392 	mnt->mnt_writers++;
393 #endif
394 }
395 
mnt_dec_writers(struct mount * mnt)396 static inline void mnt_dec_writers(struct mount *mnt)
397 {
398 #ifdef CONFIG_SMP
399 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
400 #else
401 	mnt->mnt_writers--;
402 #endif
403 }
404 
mnt_get_writers(struct mount * mnt)405 static unsigned int mnt_get_writers(struct mount *mnt)
406 {
407 #ifdef CONFIG_SMP
408 	unsigned int count = 0;
409 	int cpu;
410 
411 	for_each_possible_cpu(cpu) {
412 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
413 	}
414 
415 	return count;
416 #else
417 	return mnt->mnt_writers;
418 #endif
419 }
420 
mnt_is_readonly(struct vfsmount * mnt)421 static int mnt_is_readonly(struct vfsmount *mnt)
422 {
423 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
424 		return 1;
425 	/*
426 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
427 	 * making sure if we don't see s_readonly_remount set yet, we also will
428 	 * not see any superblock / mount flag changes done by remount.
429 	 * It also pairs with the barrier in sb_end_ro_state_change()
430 	 * assuring that if we see s_readonly_remount already cleared, we will
431 	 * see the values of superblock / mount flags updated by remount.
432 	 */
433 	smp_rmb();
434 	return __mnt_is_readonly(mnt);
435 }
436 
437 /*
438  * Most r/o & frozen checks on a fs are for operations that take discrete
439  * amounts of time, like a write() or unlink().  We must keep track of when
440  * those operations start (for permission checks) and when they end, so that we
441  * can determine when writes are able to occur to a filesystem.
442  */
443 /**
444  * mnt_get_write_access - get write access to a mount without freeze protection
445  * @m: the mount on which to take a write
446  *
447  * This tells the low-level filesystem that a write is about to be performed to
448  * it, and makes sure that writes are allowed (mnt it read-write) before
449  * returning success. This operation does not protect against filesystem being
450  * frozen. When the write operation is finished, mnt_put_write_access() must be
451  * called. This is effectively a refcount.
452  */
mnt_get_write_access(struct vfsmount * m)453 int mnt_get_write_access(struct vfsmount *m)
454 {
455 	struct mount *mnt = real_mount(m);
456 	int ret = 0;
457 
458 	preempt_disable();
459 	mnt_inc_writers(mnt);
460 	/*
461 	 * The store to mnt_inc_writers must be visible before we pass
462 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
463 	 * incremented count after it has set MNT_WRITE_HOLD.
464 	 */
465 	smp_mb();
466 	might_lock(&mount_lock.lock);
467 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
468 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
469 			cpu_relax();
470 		} else {
471 			/*
472 			 * This prevents priority inversion, if the task
473 			 * setting MNT_WRITE_HOLD got preempted on a remote
474 			 * CPU, and it prevents life lock if the task setting
475 			 * MNT_WRITE_HOLD has a lower priority and is bound to
476 			 * the same CPU as the task that is spinning here.
477 			 */
478 			preempt_enable();
479 			lock_mount_hash();
480 			unlock_mount_hash();
481 			preempt_disable();
482 		}
483 	}
484 	/*
485 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
486 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
487 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
488 	 * mnt_is_readonly() and bail in case we are racing with remount
489 	 * read-only.
490 	 */
491 	smp_rmb();
492 	if (mnt_is_readonly(m)) {
493 		mnt_dec_writers(mnt);
494 		ret = -EROFS;
495 	}
496 	preempt_enable();
497 
498 	return ret;
499 }
500 EXPORT_SYMBOL_GPL(mnt_get_write_access);
501 
502 /**
503  * mnt_want_write - get write access to a mount
504  * @m: the mount on which to take a write
505  *
506  * This tells the low-level filesystem that a write is about to be performed to
507  * it, and makes sure that writes are allowed (mount is read-write, filesystem
508  * is not frozen) before returning success.  When the write operation is
509  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
510  */
mnt_want_write(struct vfsmount * m)511 int mnt_want_write(struct vfsmount *m)
512 {
513 	int ret;
514 
515 	sb_start_write(m->mnt_sb);
516 	ret = mnt_get_write_access(m);
517 	if (ret)
518 		sb_end_write(m->mnt_sb);
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(mnt_want_write);
522 
523 /**
524  * mnt_get_write_access_file - get write access to a file's mount
525  * @file: the file who's mount on which to take a write
526  *
527  * This is like mnt_get_write_access, but if @file is already open for write it
528  * skips incrementing mnt_writers (since the open file already has a reference)
529  * and instead only does the check for emergency r/o remounts.  This must be
530  * paired with mnt_put_write_access_file.
531  */
mnt_get_write_access_file(struct file * file)532 int mnt_get_write_access_file(struct file *file)
533 {
534 	if (file->f_mode & FMODE_WRITER) {
535 		/*
536 		 * Superblock may have become readonly while there are still
537 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
538 		 */
539 		if (__mnt_is_readonly(file->f_path.mnt))
540 			return -EROFS;
541 		return 0;
542 	}
543 	return mnt_get_write_access(file->f_path.mnt);
544 }
545 
546 /**
547  * mnt_want_write_file - get write access to a file's mount
548  * @file: the file who's mount on which to take a write
549  *
550  * This is like mnt_want_write, but if the file is already open for writing it
551  * skips incrementing mnt_writers (since the open file already has a reference)
552  * and instead only does the freeze protection and the check for emergency r/o
553  * remounts.  This must be paired with mnt_drop_write_file.
554  */
mnt_want_write_file(struct file * file)555 int mnt_want_write_file(struct file *file)
556 {
557 	int ret;
558 
559 	sb_start_write(file_inode(file)->i_sb);
560 	ret = mnt_get_write_access_file(file);
561 	if (ret)
562 		sb_end_write(file_inode(file)->i_sb);
563 	return ret;
564 }
565 EXPORT_SYMBOL_GPL(mnt_want_write_file);
566 
567 /**
568  * mnt_put_write_access - give up write access to a mount
569  * @mnt: the mount on which to give up write access
570  *
571  * Tells the low-level filesystem that we are done
572  * performing writes to it.  Must be matched with
573  * mnt_get_write_access() call above.
574  */
mnt_put_write_access(struct vfsmount * mnt)575 void mnt_put_write_access(struct vfsmount *mnt)
576 {
577 	preempt_disable();
578 	mnt_dec_writers(real_mount(mnt));
579 	preempt_enable();
580 }
581 EXPORT_SYMBOL_GPL(mnt_put_write_access);
582 
583 /**
584  * mnt_drop_write - give up write access to a mount
585  * @mnt: the mount on which to give up write access
586  *
587  * Tells the low-level filesystem that we are done performing writes to it and
588  * also allows filesystem to be frozen again.  Must be matched with
589  * mnt_want_write() call above.
590  */
mnt_drop_write(struct vfsmount * mnt)591 void mnt_drop_write(struct vfsmount *mnt)
592 {
593 	mnt_put_write_access(mnt);
594 	sb_end_write(mnt->mnt_sb);
595 }
596 EXPORT_SYMBOL_GPL(mnt_drop_write);
597 
mnt_put_write_access_file(struct file * file)598 void mnt_put_write_access_file(struct file *file)
599 {
600 	if (!(file->f_mode & FMODE_WRITER))
601 		mnt_put_write_access(file->f_path.mnt);
602 }
603 
mnt_drop_write_file(struct file * file)604 void mnt_drop_write_file(struct file *file)
605 {
606 	mnt_put_write_access_file(file);
607 	sb_end_write(file_inode(file)->i_sb);
608 }
609 EXPORT_SYMBOL(mnt_drop_write_file);
610 
611 /**
612  * mnt_hold_writers - prevent write access to the given mount
613  * @mnt: mnt to prevent write access to
614  *
615  * Prevents write access to @mnt if there are no active writers for @mnt.
616  * This function needs to be called and return successfully before changing
617  * properties of @mnt that need to remain stable for callers with write access
618  * to @mnt.
619  *
620  * After this functions has been called successfully callers must pair it with
621  * a call to mnt_unhold_writers() in order to stop preventing write access to
622  * @mnt.
623  *
624  * Context: This function expects lock_mount_hash() to be held serializing
625  *          setting MNT_WRITE_HOLD.
626  * Return: On success 0 is returned.
627  *	   On error, -EBUSY is returned.
628  */
mnt_hold_writers(struct mount * mnt)629 static inline int mnt_hold_writers(struct mount *mnt)
630 {
631 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
632 	/*
633 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
634 	 * should be visible before we do.
635 	 */
636 	smp_mb();
637 
638 	/*
639 	 * With writers on hold, if this value is zero, then there are
640 	 * definitely no active writers (although held writers may subsequently
641 	 * increment the count, they'll have to wait, and decrement it after
642 	 * seeing MNT_READONLY).
643 	 *
644 	 * It is OK to have counter incremented on one CPU and decremented on
645 	 * another: the sum will add up correctly. The danger would be when we
646 	 * sum up each counter, if we read a counter before it is incremented,
647 	 * but then read another CPU's count which it has been subsequently
648 	 * decremented from -- we would see more decrements than we should.
649 	 * MNT_WRITE_HOLD protects against this scenario, because
650 	 * mnt_want_write first increments count, then smp_mb, then spins on
651 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
652 	 * we're counting up here.
653 	 */
654 	if (mnt_get_writers(mnt) > 0)
655 		return -EBUSY;
656 
657 	return 0;
658 }
659 
660 /**
661  * mnt_unhold_writers - stop preventing write access to the given mount
662  * @mnt: mnt to stop preventing write access to
663  *
664  * Stop preventing write access to @mnt allowing callers to gain write access
665  * to @mnt again.
666  *
667  * This function can only be called after a successful call to
668  * mnt_hold_writers().
669  *
670  * Context: This function expects lock_mount_hash() to be held.
671  */
mnt_unhold_writers(struct mount * mnt)672 static inline void mnt_unhold_writers(struct mount *mnt)
673 {
674 	/*
675 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
676 	 * that become unheld will see MNT_READONLY.
677 	 */
678 	smp_wmb();
679 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
680 }
681 
mnt_make_readonly(struct mount * mnt)682 static int mnt_make_readonly(struct mount *mnt)
683 {
684 	int ret;
685 
686 	ret = mnt_hold_writers(mnt);
687 	if (!ret)
688 		mnt->mnt.mnt_flags |= MNT_READONLY;
689 	mnt_unhold_writers(mnt);
690 	return ret;
691 }
692 
sb_prepare_remount_readonly(struct super_block * sb)693 int sb_prepare_remount_readonly(struct super_block *sb)
694 {
695 	struct mount *mnt;
696 	int err = 0;
697 
698 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
699 	if (atomic_long_read(&sb->s_remove_count))
700 		return -EBUSY;
701 
702 	lock_mount_hash();
703 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
704 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
705 			err = mnt_hold_writers(mnt);
706 			if (err)
707 				break;
708 		}
709 	}
710 	if (!err && atomic_long_read(&sb->s_remove_count))
711 		err = -EBUSY;
712 
713 	if (!err)
714 		sb_start_ro_state_change(sb);
715 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
716 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
717 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
718 	}
719 	unlock_mount_hash();
720 
721 	return err;
722 }
723 
free_vfsmnt(struct mount * mnt)724 static void free_vfsmnt(struct mount *mnt)
725 {
726 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
727 	kfree_const(mnt->mnt_devname);
728 #ifdef CONFIG_SMP
729 	free_percpu(mnt->mnt_pcp);
730 #endif
731 	kmem_cache_free(mnt_cache, mnt);
732 }
733 
delayed_free_vfsmnt(struct rcu_head * head)734 static void delayed_free_vfsmnt(struct rcu_head *head)
735 {
736 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
737 }
738 
739 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)740 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
741 {
742 	struct mount *mnt;
743 	if (read_seqretry(&mount_lock, seq))
744 		return 1;
745 	if (bastard == NULL)
746 		return 0;
747 	mnt = real_mount(bastard);
748 	mnt_add_count(mnt, 1);
749 	smp_mb();			// see mntput_no_expire()
750 	if (likely(!read_seqretry(&mount_lock, seq)))
751 		return 0;
752 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
753 		mnt_add_count(mnt, -1);
754 		return 1;
755 	}
756 	lock_mount_hash();
757 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
758 		mnt_add_count(mnt, -1);
759 		unlock_mount_hash();
760 		return 1;
761 	}
762 	unlock_mount_hash();
763 	/* caller will mntput() */
764 	return -1;
765 }
766 
767 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)768 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
769 {
770 	int res = __legitimize_mnt(bastard, seq);
771 	if (likely(!res))
772 		return true;
773 	if (unlikely(res < 0)) {
774 		rcu_read_unlock();
775 		mntput(bastard);
776 		rcu_read_lock();
777 	}
778 	return false;
779 }
780 
781 /**
782  * __lookup_mnt - find first child mount
783  * @mnt:	parent mount
784  * @dentry:	mountpoint
785  *
786  * If @mnt has a child mount @c mounted @dentry find and return it.
787  *
788  * Note that the child mount @c need not be unique. There are cases
789  * where shadow mounts are created. For example, during mount
790  * propagation when a source mount @mnt whose root got overmounted by a
791  * mount @o after path lookup but before @namespace_sem could be
792  * acquired gets copied and propagated. So @mnt gets copied including
793  * @o. When @mnt is propagated to a destination mount @d that already
794  * has another mount @n mounted at the same mountpoint then the source
795  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
796  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
797  * on @dentry.
798  *
799  * Return: The first child of @mnt mounted @dentry or NULL.
800  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)801 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
802 {
803 	struct hlist_head *head = m_hash(mnt, dentry);
804 	struct mount *p;
805 
806 	hlist_for_each_entry_rcu(p, head, mnt_hash)
807 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
808 			return p;
809 	return NULL;
810 }
811 
812 /*
813  * lookup_mnt - Return the first child mount mounted at path
814  *
815  * "First" means first mounted chronologically.  If you create the
816  * following mounts:
817  *
818  * mount /dev/sda1 /mnt
819  * mount /dev/sda2 /mnt
820  * mount /dev/sda3 /mnt
821  *
822  * Then lookup_mnt() on the base /mnt dentry in the root mount will
823  * return successively the root dentry and vfsmount of /dev/sda1, then
824  * /dev/sda2, then /dev/sda3, then NULL.
825  *
826  * lookup_mnt takes a reference to the found vfsmount.
827  */
lookup_mnt(const struct path * path)828 struct vfsmount *lookup_mnt(const struct path *path)
829 {
830 	struct mount *child_mnt;
831 	struct vfsmount *m;
832 	unsigned seq;
833 
834 	rcu_read_lock();
835 	do {
836 		seq = read_seqbegin(&mount_lock);
837 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
838 		m = child_mnt ? &child_mnt->mnt : NULL;
839 	} while (!legitimize_mnt(m, seq));
840 	rcu_read_unlock();
841 	return m;
842 }
843 
844 /*
845  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
846  *                         current mount namespace.
847  *
848  * The common case is dentries are not mountpoints at all and that
849  * test is handled inline.  For the slow case when we are actually
850  * dealing with a mountpoint of some kind, walk through all of the
851  * mounts in the current mount namespace and test to see if the dentry
852  * is a mountpoint.
853  *
854  * The mount_hashtable is not usable in the context because we
855  * need to identify all mounts that may be in the current mount
856  * namespace not just a mount that happens to have some specified
857  * parent mount.
858  */
__is_local_mountpoint(struct dentry * dentry)859 bool __is_local_mountpoint(struct dentry *dentry)
860 {
861 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
862 	struct mount *mnt, *n;
863 	bool is_covered = false;
864 
865 	down_read(&namespace_sem);
866 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
867 		is_covered = (mnt->mnt_mountpoint == dentry);
868 		if (is_covered)
869 			break;
870 	}
871 	up_read(&namespace_sem);
872 
873 	return is_covered;
874 }
875 
lookup_mountpoint(struct dentry * dentry)876 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
877 {
878 	struct hlist_head *chain = mp_hash(dentry);
879 	struct mountpoint *mp;
880 
881 	hlist_for_each_entry(mp, chain, m_hash) {
882 		if (mp->m_dentry == dentry) {
883 			mp->m_count++;
884 			return mp;
885 		}
886 	}
887 	return NULL;
888 }
889 
get_mountpoint(struct dentry * dentry)890 static struct mountpoint *get_mountpoint(struct dentry *dentry)
891 {
892 	struct mountpoint *mp, *new = NULL;
893 	int ret;
894 
895 	if (d_mountpoint(dentry)) {
896 		/* might be worth a WARN_ON() */
897 		if (d_unlinked(dentry))
898 			return ERR_PTR(-ENOENT);
899 mountpoint:
900 		read_seqlock_excl(&mount_lock);
901 		mp = lookup_mountpoint(dentry);
902 		read_sequnlock_excl(&mount_lock);
903 		if (mp)
904 			goto done;
905 	}
906 
907 	if (!new)
908 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
909 	if (!new)
910 		return ERR_PTR(-ENOMEM);
911 
912 
913 	/* Exactly one processes may set d_mounted */
914 	ret = d_set_mounted(dentry);
915 
916 	/* Someone else set d_mounted? */
917 	if (ret == -EBUSY)
918 		goto mountpoint;
919 
920 	/* The dentry is not available as a mountpoint? */
921 	mp = ERR_PTR(ret);
922 	if (ret)
923 		goto done;
924 
925 	/* Add the new mountpoint to the hash table */
926 	read_seqlock_excl(&mount_lock);
927 	new->m_dentry = dget(dentry);
928 	new->m_count = 1;
929 	hlist_add_head(&new->m_hash, mp_hash(dentry));
930 	INIT_HLIST_HEAD(&new->m_list);
931 	read_sequnlock_excl(&mount_lock);
932 
933 	mp = new;
934 	new = NULL;
935 done:
936 	kfree(new);
937 	return mp;
938 }
939 
940 /*
941  * vfsmount lock must be held.  Additionally, the caller is responsible
942  * for serializing calls for given disposal list.
943  */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)944 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
945 {
946 	if (!--mp->m_count) {
947 		struct dentry *dentry = mp->m_dentry;
948 		BUG_ON(!hlist_empty(&mp->m_list));
949 		spin_lock(&dentry->d_lock);
950 		dentry->d_flags &= ~DCACHE_MOUNTED;
951 		spin_unlock(&dentry->d_lock);
952 		dput_to_list(dentry, list);
953 		hlist_del(&mp->m_hash);
954 		kfree(mp);
955 	}
956 }
957 
958 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)959 static void put_mountpoint(struct mountpoint *mp)
960 {
961 	__put_mountpoint(mp, &ex_mountpoints);
962 }
963 
check_mnt(struct mount * mnt)964 static inline int check_mnt(struct mount *mnt)
965 {
966 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
967 }
968 
969 /*
970  * vfsmount lock must be held for write
971  */
touch_mnt_namespace(struct mnt_namespace * ns)972 static void touch_mnt_namespace(struct mnt_namespace *ns)
973 {
974 	if (ns) {
975 		ns->event = ++event;
976 		wake_up_interruptible(&ns->poll);
977 	}
978 }
979 
980 /*
981  * vfsmount lock must be held for write
982  */
__touch_mnt_namespace(struct mnt_namespace * ns)983 static void __touch_mnt_namespace(struct mnt_namespace *ns)
984 {
985 	if (ns && ns->event != event) {
986 		ns->event = event;
987 		wake_up_interruptible(&ns->poll);
988 	}
989 }
990 
991 /*
992  * vfsmount lock must be held for write
993  */
unhash_mnt(struct mount * mnt)994 static struct mountpoint *unhash_mnt(struct mount *mnt)
995 {
996 	struct mountpoint *mp;
997 	mnt->mnt_parent = mnt;
998 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
999 	list_del_init(&mnt->mnt_child);
1000 	hlist_del_init_rcu(&mnt->mnt_hash);
1001 	hlist_del_init(&mnt->mnt_mp_list);
1002 	mp = mnt->mnt_mp;
1003 	mnt->mnt_mp = NULL;
1004 	return mp;
1005 }
1006 
1007 /*
1008  * vfsmount lock must be held for write
1009  */
umount_mnt(struct mount * mnt)1010 static void umount_mnt(struct mount *mnt)
1011 {
1012 	put_mountpoint(unhash_mnt(mnt));
1013 }
1014 
1015 /*
1016  * vfsmount lock must be held for write
1017  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1018 void mnt_set_mountpoint(struct mount *mnt,
1019 			struct mountpoint *mp,
1020 			struct mount *child_mnt)
1021 {
1022 	mp->m_count++;
1023 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1024 	child_mnt->mnt_mountpoint = mp->m_dentry;
1025 	child_mnt->mnt_parent = mnt;
1026 	child_mnt->mnt_mp = mp;
1027 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029 
1030 /**
1031  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1032  *
1033  * @new_parent: the source mount
1034  * @top_mnt:    the mount beneath which @new_parent is mounted
1035  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1036  *
1037  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1038  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1039  * @new_mp. And mount @new_parent on the old parent and old
1040  * mountpoint of @top_mnt.
1041  *
1042  * Context: This function expects namespace_lock() and lock_mount_hash()
1043  *          to have been acquired in that order.
1044  */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)1045 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1046 				       struct mount *top_mnt,
1047 				       struct mountpoint *new_mp)
1048 {
1049 	struct mount *old_top_parent = top_mnt->mnt_parent;
1050 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1051 
1052 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1053 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1054 }
1055 
1056 
__attach_mnt(struct mount * mnt,struct mount * parent)1057 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1058 {
1059 	hlist_add_head_rcu(&mnt->mnt_hash,
1060 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1061 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1062 }
1063 
1064 /**
1065  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1066  *              list of child mounts
1067  * @parent:  the parent
1068  * @mnt:     the new mount
1069  * @mp:      the new mountpoint
1070  * @beneath: whether to mount @mnt beneath or on top of @parent
1071  *
1072  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1073  * to @parent's child mount list and to @mount_hashtable.
1074  *
1075  * If @beneath is true, remove @mnt from its current parent and
1076  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1077  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1078  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1079  *
1080  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1081  * to the correct parent.
1082  *
1083  * Context: This function expects namespace_lock() and lock_mount_hash()
1084  *          to have been acquired in that order.
1085  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)1086 static void attach_mnt(struct mount *mnt, struct mount *parent,
1087 		       struct mountpoint *mp, bool beneath)
1088 {
1089 	if (beneath)
1090 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1091 	else
1092 		mnt_set_mountpoint(parent, mp, mnt);
1093 	/*
1094 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1095 	 * beneath @parent then @mnt will need to be attached to
1096 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1097 	 * isn't the same mount as @parent.
1098 	 */
1099 	__attach_mnt(mnt, mnt->mnt_parent);
1100 }
1101 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1102 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1103 {
1104 	struct mountpoint *old_mp = mnt->mnt_mp;
1105 	struct mount *old_parent = mnt->mnt_parent;
1106 
1107 	list_del_init(&mnt->mnt_child);
1108 	hlist_del_init(&mnt->mnt_mp_list);
1109 	hlist_del_init_rcu(&mnt->mnt_hash);
1110 
1111 	attach_mnt(mnt, parent, mp, false);
1112 
1113 	put_mountpoint(old_mp);
1114 	mnt_add_count(old_parent, -1);
1115 }
1116 
node_to_mount(struct rb_node * node)1117 static inline struct mount *node_to_mount(struct rb_node *node)
1118 {
1119 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1120 }
1121 
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1122 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1123 {
1124 	struct rb_node **link = &ns->mounts.rb_node;
1125 	struct rb_node *parent = NULL;
1126 
1127 	WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB);
1128 	mnt->mnt_ns = ns;
1129 	while (*link) {
1130 		parent = *link;
1131 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1132 			link = &parent->rb_left;
1133 		else
1134 			link = &parent->rb_right;
1135 	}
1136 	rb_link_node(&mnt->mnt_node, parent, link);
1137 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1138 	mnt->mnt.mnt_flags |= MNT_ONRB;
1139 }
1140 
1141 /*
1142  * vfsmount lock must be held for write
1143  */
commit_tree(struct mount * mnt)1144 static void commit_tree(struct mount *mnt)
1145 {
1146 	struct mount *parent = mnt->mnt_parent;
1147 	struct mount *m;
1148 	LIST_HEAD(head);
1149 	struct mnt_namespace *n = parent->mnt_ns;
1150 
1151 	BUG_ON(parent == mnt);
1152 
1153 	list_add_tail(&head, &mnt->mnt_list);
1154 	while (!list_empty(&head)) {
1155 		m = list_first_entry(&head, typeof(*m), mnt_list);
1156 		list_del(&m->mnt_list);
1157 
1158 		mnt_add_to_ns(n, m);
1159 	}
1160 	n->nr_mounts += n->pending_mounts;
1161 	n->pending_mounts = 0;
1162 
1163 	__attach_mnt(mnt, parent);
1164 	touch_mnt_namespace(n);
1165 }
1166 
next_mnt(struct mount * p,struct mount * root)1167 static struct mount *next_mnt(struct mount *p, struct mount *root)
1168 {
1169 	struct list_head *next = p->mnt_mounts.next;
1170 	if (next == &p->mnt_mounts) {
1171 		while (1) {
1172 			if (p == root)
1173 				return NULL;
1174 			next = p->mnt_child.next;
1175 			if (next != &p->mnt_parent->mnt_mounts)
1176 				break;
1177 			p = p->mnt_parent;
1178 		}
1179 	}
1180 	return list_entry(next, struct mount, mnt_child);
1181 }
1182 
skip_mnt_tree(struct mount * p)1183 static struct mount *skip_mnt_tree(struct mount *p)
1184 {
1185 	struct list_head *prev = p->mnt_mounts.prev;
1186 	while (prev != &p->mnt_mounts) {
1187 		p = list_entry(prev, struct mount, mnt_child);
1188 		prev = p->mnt_mounts.prev;
1189 	}
1190 	return p;
1191 }
1192 
1193 /**
1194  * vfs_create_mount - Create a mount for a configured superblock
1195  * @fc: The configuration context with the superblock attached
1196  *
1197  * Create a mount to an already configured superblock.  If necessary, the
1198  * caller should invoke vfs_get_tree() before calling this.
1199  *
1200  * Note that this does not attach the mount to anything.
1201  */
vfs_create_mount(struct fs_context * fc)1202 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1203 {
1204 	struct mount *mnt;
1205 
1206 	if (!fc->root)
1207 		return ERR_PTR(-EINVAL);
1208 
1209 	mnt = alloc_vfsmnt(fc->source ?: "none");
1210 	if (!mnt)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	if (fc->sb_flags & SB_KERNMOUNT)
1214 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1215 
1216 	atomic_inc(&fc->root->d_sb->s_active);
1217 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1218 	mnt->mnt.mnt_root	= dget(fc->root);
1219 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1220 	mnt->mnt_parent		= mnt;
1221 
1222 	lock_mount_hash();
1223 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1224 	unlock_mount_hash();
1225 	return &mnt->mnt;
1226 }
1227 EXPORT_SYMBOL(vfs_create_mount);
1228 
fc_mount(struct fs_context * fc)1229 struct vfsmount *fc_mount(struct fs_context *fc)
1230 {
1231 	int err = vfs_get_tree(fc);
1232 	if (!err) {
1233 		up_write(&fc->root->d_sb->s_umount);
1234 		return vfs_create_mount(fc);
1235 	}
1236 	return ERR_PTR(err);
1237 }
1238 EXPORT_SYMBOL(fc_mount);
1239 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1241 				int flags, const char *name,
1242 				void *data)
1243 {
1244 	struct fs_context *fc;
1245 	struct vfsmount *mnt;
1246 	int ret = 0;
1247 
1248 	if (!type)
1249 		return ERR_PTR(-EINVAL);
1250 
1251 	fc = fs_context_for_mount(type, flags);
1252 	if (IS_ERR(fc))
1253 		return ERR_CAST(fc);
1254 
1255 	if (name)
1256 		ret = vfs_parse_fs_string(fc, "source",
1257 					  name, strlen(name));
1258 	if (!ret)
1259 		ret = parse_monolithic_mount_data(fc, data);
1260 	if (!ret)
1261 		mnt = fc_mount(fc);
1262 	else
1263 		mnt = ERR_PTR(ret);
1264 
1265 	put_fs_context(fc);
1266 	return mnt;
1267 }
1268 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1269 
1270 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1272 	     const char *name, void *data)
1273 {
1274 	/* Until it is worked out how to pass the user namespace
1275 	 * through from the parent mount to the submount don't support
1276 	 * unprivileged mounts with submounts.
1277 	 */
1278 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1279 		return ERR_PTR(-EPERM);
1280 
1281 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1282 }
1283 EXPORT_SYMBOL_GPL(vfs_submount);
1284 
clone_mnt(struct mount * old,struct dentry * root,int flag)1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1286 					int flag)
1287 {
1288 	struct super_block *sb = old->mnt.mnt_sb;
1289 	struct mount *mnt;
1290 	int err;
1291 
1292 	mnt = alloc_vfsmnt(old->mnt_devname);
1293 	if (!mnt)
1294 		return ERR_PTR(-ENOMEM);
1295 
1296 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1297 		mnt->mnt_group_id = 0; /* not a peer of original */
1298 	else
1299 		mnt->mnt_group_id = old->mnt_group_id;
1300 
1301 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1302 		err = mnt_alloc_group_id(mnt);
1303 		if (err)
1304 			goto out_free;
1305 	}
1306 
1307 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1308 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB);
1309 
1310 	atomic_inc(&sb->s_active);
1311 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1312 
1313 	mnt->mnt.mnt_sb = sb;
1314 	mnt->mnt.mnt_root = dget(root);
1315 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1316 	mnt->mnt_parent = mnt;
1317 	lock_mount_hash();
1318 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1319 	unlock_mount_hash();
1320 
1321 	if ((flag & CL_SLAVE) ||
1322 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1323 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1324 		mnt->mnt_master = old;
1325 		CLEAR_MNT_SHARED(mnt);
1326 	} else if (!(flag & CL_PRIVATE)) {
1327 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1328 			list_add(&mnt->mnt_share, &old->mnt_share);
1329 		if (IS_MNT_SLAVE(old))
1330 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1331 		mnt->mnt_master = old->mnt_master;
1332 	} else {
1333 		CLEAR_MNT_SHARED(mnt);
1334 	}
1335 	if (flag & CL_MAKE_SHARED)
1336 		set_mnt_shared(mnt);
1337 
1338 	/* stick the duplicate mount on the same expiry list
1339 	 * as the original if that was on one */
1340 	if (flag & CL_EXPIRE) {
1341 		if (!list_empty(&old->mnt_expire))
1342 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1343 	}
1344 
1345 	return mnt;
1346 
1347  out_free:
1348 	mnt_free_id(mnt);
1349 	free_vfsmnt(mnt);
1350 	return ERR_PTR(err);
1351 }
1352 
cleanup_mnt(struct mount * mnt)1353 static void cleanup_mnt(struct mount *mnt)
1354 {
1355 	struct hlist_node *p;
1356 	struct mount *m;
1357 	/*
1358 	 * The warning here probably indicates that somebody messed
1359 	 * up a mnt_want/drop_write() pair.  If this happens, the
1360 	 * filesystem was probably unable to make r/w->r/o transitions.
1361 	 * The locking used to deal with mnt_count decrement provides barriers,
1362 	 * so mnt_get_writers() below is safe.
1363 	 */
1364 	WARN_ON(mnt_get_writers(mnt));
1365 	if (unlikely(mnt->mnt_pins.first))
1366 		mnt_pin_kill(mnt);
1367 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1368 		hlist_del(&m->mnt_umount);
1369 		mntput(&m->mnt);
1370 	}
1371 	fsnotify_vfsmount_delete(&mnt->mnt);
1372 	dput(mnt->mnt.mnt_root);
1373 	deactivate_super(mnt->mnt.mnt_sb);
1374 	mnt_free_id(mnt);
1375 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1376 }
1377 
__cleanup_mnt(struct rcu_head * head)1378 static void __cleanup_mnt(struct rcu_head *head)
1379 {
1380 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1381 }
1382 
1383 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1384 static void delayed_mntput(struct work_struct *unused)
1385 {
1386 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1387 	struct mount *m, *t;
1388 
1389 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1390 		cleanup_mnt(m);
1391 }
1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1393 
mntput_no_expire(struct mount * mnt)1394 static void mntput_no_expire(struct mount *mnt)
1395 {
1396 	LIST_HEAD(list);
1397 	int count;
1398 
1399 	rcu_read_lock();
1400 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1401 		/*
1402 		 * Since we don't do lock_mount_hash() here,
1403 		 * ->mnt_ns can change under us.  However, if it's
1404 		 * non-NULL, then there's a reference that won't
1405 		 * be dropped until after an RCU delay done after
1406 		 * turning ->mnt_ns NULL.  So if we observe it
1407 		 * non-NULL under rcu_read_lock(), the reference
1408 		 * we are dropping is not the final one.
1409 		 */
1410 		mnt_add_count(mnt, -1);
1411 		rcu_read_unlock();
1412 		return;
1413 	}
1414 	lock_mount_hash();
1415 	/*
1416 	 * make sure that if __legitimize_mnt() has not seen us grab
1417 	 * mount_lock, we'll see their refcount increment here.
1418 	 */
1419 	smp_mb();
1420 	mnt_add_count(mnt, -1);
1421 	count = mnt_get_count(mnt);
1422 	if (count != 0) {
1423 		WARN_ON(count < 0);
1424 		rcu_read_unlock();
1425 		unlock_mount_hash();
1426 		return;
1427 	}
1428 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1429 		rcu_read_unlock();
1430 		unlock_mount_hash();
1431 		return;
1432 	}
1433 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1434 	rcu_read_unlock();
1435 
1436 	list_del(&mnt->mnt_instance);
1437 
1438 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1439 		struct mount *p, *tmp;
1440 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1441 			__put_mountpoint(unhash_mnt(p), &list);
1442 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1443 		}
1444 	}
1445 	unlock_mount_hash();
1446 	shrink_dentry_list(&list);
1447 
1448 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1449 		struct task_struct *task = current;
1450 		if (likely(!(task->flags & PF_KTHREAD))) {
1451 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1452 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1453 				return;
1454 		}
1455 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1456 			schedule_delayed_work(&delayed_mntput_work, 1);
1457 		return;
1458 	}
1459 	cleanup_mnt(mnt);
1460 }
1461 
mntput(struct vfsmount * mnt)1462 void mntput(struct vfsmount *mnt)
1463 {
1464 	if (mnt) {
1465 		struct mount *m = real_mount(mnt);
1466 		/* avoid cacheline pingpong */
1467 		if (unlikely(m->mnt_expiry_mark))
1468 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1469 		mntput_no_expire(m);
1470 	}
1471 }
1472 EXPORT_SYMBOL(mntput);
1473 
mntget(struct vfsmount * mnt)1474 struct vfsmount *mntget(struct vfsmount *mnt)
1475 {
1476 	if (mnt)
1477 		mnt_add_count(real_mount(mnt), 1);
1478 	return mnt;
1479 }
1480 EXPORT_SYMBOL(mntget);
1481 
1482 /*
1483  * Make a mount point inaccessible to new lookups.
1484  * Because there may still be current users, the caller MUST WAIT
1485  * for an RCU grace period before destroying the mount point.
1486  */
mnt_make_shortterm(struct vfsmount * mnt)1487 void mnt_make_shortterm(struct vfsmount *mnt)
1488 {
1489 	if (mnt)
1490 		real_mount(mnt)->mnt_ns = NULL;
1491 }
1492 
1493 /**
1494  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1495  * @path: path to check
1496  *
1497  *  d_mountpoint() can only be used reliably to establish if a dentry is
1498  *  not mounted in any namespace and that common case is handled inline.
1499  *  d_mountpoint() isn't aware of the possibility there may be multiple
1500  *  mounts using a given dentry in a different namespace. This function
1501  *  checks if the passed in path is a mountpoint rather than the dentry
1502  *  alone.
1503  */
path_is_mountpoint(const struct path * path)1504 bool path_is_mountpoint(const struct path *path)
1505 {
1506 	unsigned seq;
1507 	bool res;
1508 
1509 	if (!d_mountpoint(path->dentry))
1510 		return false;
1511 
1512 	rcu_read_lock();
1513 	do {
1514 		seq = read_seqbegin(&mount_lock);
1515 		res = __path_is_mountpoint(path);
1516 	} while (read_seqretry(&mount_lock, seq));
1517 	rcu_read_unlock();
1518 
1519 	return res;
1520 }
1521 EXPORT_SYMBOL(path_is_mountpoint);
1522 
mnt_clone_internal(const struct path * path)1523 struct vfsmount *mnt_clone_internal(const struct path *path)
1524 {
1525 	struct mount *p;
1526 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1527 	if (IS_ERR(p))
1528 		return ERR_CAST(p);
1529 	p->mnt.mnt_flags |= MNT_INTERNAL;
1530 	return &p->mnt;
1531 }
1532 
1533 /*
1534  * Returns the mount which either has the specified mnt_id, or has the next
1535  * smallest id afer the specified one.
1536  */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1538 {
1539 	struct rb_node *node = ns->mounts.rb_node;
1540 	struct mount *ret = NULL;
1541 
1542 	while (node) {
1543 		struct mount *m = node_to_mount(node);
1544 
1545 		if (mnt_id <= m->mnt_id_unique) {
1546 			ret = node_to_mount(node);
1547 			if (mnt_id == m->mnt_id_unique)
1548 				break;
1549 			node = node->rb_left;
1550 		} else {
1551 			node = node->rb_right;
1552 		}
1553 	}
1554 	return ret;
1555 }
1556 
1557 /*
1558  * Returns the mount which either has the specified mnt_id, or has the next
1559  * greater id before the specified one.
1560  */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1562 {
1563 	struct rb_node *node = ns->mounts.rb_node;
1564 	struct mount *ret = NULL;
1565 
1566 	while (node) {
1567 		struct mount *m = node_to_mount(node);
1568 
1569 		if (mnt_id >= m->mnt_id_unique) {
1570 			ret = node_to_mount(node);
1571 			if (mnt_id == m->mnt_id_unique)
1572 				break;
1573 			node = node->rb_right;
1574 		} else {
1575 			node = node->rb_left;
1576 		}
1577 	}
1578 	return ret;
1579 }
1580 
1581 #ifdef CONFIG_PROC_FS
1582 
1583 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1584 static void *m_start(struct seq_file *m, loff_t *pos)
1585 {
1586 	struct proc_mounts *p = m->private;
1587 
1588 	down_read(&namespace_sem);
1589 
1590 	return mnt_find_id_at(p->ns, *pos);
1591 }
1592 
m_next(struct seq_file * m,void * v,loff_t * pos)1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1594 {
1595 	struct mount *next = NULL, *mnt = v;
1596 	struct rb_node *node = rb_next(&mnt->mnt_node);
1597 
1598 	++*pos;
1599 	if (node) {
1600 		next = node_to_mount(node);
1601 		*pos = next->mnt_id_unique;
1602 	}
1603 	return next;
1604 }
1605 
m_stop(struct seq_file * m,void * v)1606 static void m_stop(struct seq_file *m, void *v)
1607 {
1608 	up_read(&namespace_sem);
1609 }
1610 
m_show(struct seq_file * m,void * v)1611 static int m_show(struct seq_file *m, void *v)
1612 {
1613 	struct proc_mounts *p = m->private;
1614 	struct mount *r = v;
1615 	return p->show(m, &r->mnt);
1616 }
1617 
1618 const struct seq_operations mounts_op = {
1619 	.start	= m_start,
1620 	.next	= m_next,
1621 	.stop	= m_stop,
1622 	.show	= m_show,
1623 };
1624 
1625 #endif  /* CONFIG_PROC_FS */
1626 
1627 /**
1628  * may_umount_tree - check if a mount tree is busy
1629  * @m: root of mount tree
1630  *
1631  * This is called to check if a tree of mounts has any
1632  * open files, pwds, chroots or sub mounts that are
1633  * busy.
1634  */
may_umount_tree(struct vfsmount * m)1635 int may_umount_tree(struct vfsmount *m)
1636 {
1637 	struct mount *mnt = real_mount(m);
1638 	int actual_refs = 0;
1639 	int minimum_refs = 0;
1640 	struct mount *p;
1641 	BUG_ON(!m);
1642 
1643 	/* write lock needed for mnt_get_count */
1644 	lock_mount_hash();
1645 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1646 		actual_refs += mnt_get_count(p);
1647 		minimum_refs += 2;
1648 	}
1649 	unlock_mount_hash();
1650 
1651 	if (actual_refs > minimum_refs)
1652 		return 0;
1653 
1654 	return 1;
1655 }
1656 
1657 EXPORT_SYMBOL(may_umount_tree);
1658 
1659 /**
1660  * may_umount - check if a mount point is busy
1661  * @mnt: root of mount
1662  *
1663  * This is called to check if a mount point has any
1664  * open files, pwds, chroots or sub mounts. If the
1665  * mount has sub mounts this will return busy
1666  * regardless of whether the sub mounts are busy.
1667  *
1668  * Doesn't take quota and stuff into account. IOW, in some cases it will
1669  * give false negatives. The main reason why it's here is that we need
1670  * a non-destructive way to look for easily umountable filesystems.
1671  */
may_umount(struct vfsmount * mnt)1672 int may_umount(struct vfsmount *mnt)
1673 {
1674 	int ret = 1;
1675 	down_read(&namespace_sem);
1676 	lock_mount_hash();
1677 	if (propagate_mount_busy(real_mount(mnt), 2))
1678 		ret = 0;
1679 	unlock_mount_hash();
1680 	up_read(&namespace_sem);
1681 	return ret;
1682 }
1683 
1684 EXPORT_SYMBOL(may_umount);
1685 
namespace_unlock(void)1686 static void namespace_unlock(void)
1687 {
1688 	struct hlist_head head;
1689 	struct hlist_node *p;
1690 	struct mount *m;
1691 	LIST_HEAD(list);
1692 
1693 	hlist_move_list(&unmounted, &head);
1694 	list_splice_init(&ex_mountpoints, &list);
1695 
1696 	up_write(&namespace_sem);
1697 
1698 	shrink_dentry_list(&list);
1699 
1700 	if (likely(hlist_empty(&head)))
1701 		return;
1702 
1703 	synchronize_rcu_expedited();
1704 
1705 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1706 		hlist_del(&m->mnt_umount);
1707 		mntput(&m->mnt);
1708 	}
1709 }
1710 
namespace_lock(void)1711 static inline void namespace_lock(void)
1712 {
1713 	down_write(&namespace_sem);
1714 }
1715 
1716 enum umount_tree_flags {
1717 	UMOUNT_SYNC = 1,
1718 	UMOUNT_PROPAGATE = 2,
1719 	UMOUNT_CONNECTED = 4,
1720 };
1721 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1723 {
1724 	/* Leaving mounts connected is only valid for lazy umounts */
1725 	if (how & UMOUNT_SYNC)
1726 		return true;
1727 
1728 	/* A mount without a parent has nothing to be connected to */
1729 	if (!mnt_has_parent(mnt))
1730 		return true;
1731 
1732 	/* Because the reference counting rules change when mounts are
1733 	 * unmounted and connected, umounted mounts may not be
1734 	 * connected to mounted mounts.
1735 	 */
1736 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1737 		return true;
1738 
1739 	/* Has it been requested that the mount remain connected? */
1740 	if (how & UMOUNT_CONNECTED)
1741 		return false;
1742 
1743 	/* Is the mount locked such that it needs to remain connected? */
1744 	if (IS_MNT_LOCKED(mnt))
1745 		return false;
1746 
1747 	/* By default disconnect the mount */
1748 	return true;
1749 }
1750 
1751 /*
1752  * mount_lock must be held
1753  * namespace_sem must be held for write
1754  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1756 {
1757 	LIST_HEAD(tmp_list);
1758 	struct mount *p;
1759 
1760 	if (how & UMOUNT_PROPAGATE)
1761 		propagate_mount_unlock(mnt);
1762 
1763 	/* Gather the mounts to umount */
1764 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1765 		p->mnt.mnt_flags |= MNT_UMOUNT;
1766 		if (p->mnt.mnt_flags & MNT_ONRB)
1767 			move_from_ns(p, &tmp_list);
1768 		else
1769 			list_move(&p->mnt_list, &tmp_list);
1770 	}
1771 
1772 	/* Hide the mounts from mnt_mounts */
1773 	list_for_each_entry(p, &tmp_list, mnt_list) {
1774 		list_del_init(&p->mnt_child);
1775 	}
1776 
1777 	/* Add propogated mounts to the tmp_list */
1778 	if (how & UMOUNT_PROPAGATE)
1779 		propagate_umount(&tmp_list);
1780 
1781 	while (!list_empty(&tmp_list)) {
1782 		struct mnt_namespace *ns;
1783 		bool disconnect;
1784 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1785 		list_del_init(&p->mnt_expire);
1786 		list_del_init(&p->mnt_list);
1787 		ns = p->mnt_ns;
1788 		if (ns) {
1789 			ns->nr_mounts--;
1790 			__touch_mnt_namespace(ns);
1791 		}
1792 		p->mnt_ns = NULL;
1793 		if (how & UMOUNT_SYNC)
1794 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1795 
1796 		disconnect = disconnect_mount(p, how);
1797 		if (mnt_has_parent(p)) {
1798 			mnt_add_count(p->mnt_parent, -1);
1799 			if (!disconnect) {
1800 				/* Don't forget about p */
1801 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1802 			} else {
1803 				umount_mnt(p);
1804 			}
1805 		}
1806 		change_mnt_propagation(p, MS_PRIVATE);
1807 		if (disconnect)
1808 			hlist_add_head(&p->mnt_umount, &unmounted);
1809 	}
1810 }
1811 
1812 static void shrink_submounts(struct mount *mnt);
1813 
do_umount_root(struct super_block * sb)1814 static int do_umount_root(struct super_block *sb)
1815 {
1816 	int ret = 0;
1817 
1818 	down_write(&sb->s_umount);
1819 	if (!sb_rdonly(sb)) {
1820 		struct fs_context *fc;
1821 
1822 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1823 						SB_RDONLY);
1824 		if (IS_ERR(fc)) {
1825 			ret = PTR_ERR(fc);
1826 		} else {
1827 			ret = parse_monolithic_mount_data(fc, NULL);
1828 			if (!ret)
1829 				ret = reconfigure_super(fc);
1830 			put_fs_context(fc);
1831 		}
1832 	}
1833 	up_write(&sb->s_umount);
1834 	return ret;
1835 }
1836 
do_umount(struct mount * mnt,int flags)1837 static int do_umount(struct mount *mnt, int flags)
1838 {
1839 	struct super_block *sb = mnt->mnt.mnt_sb;
1840 	int retval;
1841 
1842 	retval = security_sb_umount(&mnt->mnt, flags);
1843 	if (retval)
1844 		return retval;
1845 
1846 	/*
1847 	 * Allow userspace to request a mountpoint be expired rather than
1848 	 * unmounting unconditionally. Unmount only happens if:
1849 	 *  (1) the mark is already set (the mark is cleared by mntput())
1850 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1851 	 */
1852 	if (flags & MNT_EXPIRE) {
1853 		if (&mnt->mnt == current->fs->root.mnt ||
1854 		    flags & (MNT_FORCE | MNT_DETACH))
1855 			return -EINVAL;
1856 
1857 		/*
1858 		 * probably don't strictly need the lock here if we examined
1859 		 * all race cases, but it's a slowpath.
1860 		 */
1861 		lock_mount_hash();
1862 		if (mnt_get_count(mnt) != 2) {
1863 			unlock_mount_hash();
1864 			return -EBUSY;
1865 		}
1866 		unlock_mount_hash();
1867 
1868 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1869 			return -EAGAIN;
1870 	}
1871 
1872 	/*
1873 	 * If we may have to abort operations to get out of this
1874 	 * mount, and they will themselves hold resources we must
1875 	 * allow the fs to do things. In the Unix tradition of
1876 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1877 	 * might fail to complete on the first run through as other tasks
1878 	 * must return, and the like. Thats for the mount program to worry
1879 	 * about for the moment.
1880 	 */
1881 
1882 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1883 		sb->s_op->umount_begin(sb);
1884 	}
1885 
1886 	/*
1887 	 * No sense to grab the lock for this test, but test itself looks
1888 	 * somewhat bogus. Suggestions for better replacement?
1889 	 * Ho-hum... In principle, we might treat that as umount + switch
1890 	 * to rootfs. GC would eventually take care of the old vfsmount.
1891 	 * Actually it makes sense, especially if rootfs would contain a
1892 	 * /reboot - static binary that would close all descriptors and
1893 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1894 	 */
1895 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1896 		/*
1897 		 * Special case for "unmounting" root ...
1898 		 * we just try to remount it readonly.
1899 		 */
1900 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1901 			return -EPERM;
1902 		return do_umount_root(sb);
1903 	}
1904 
1905 	namespace_lock();
1906 	lock_mount_hash();
1907 
1908 	/* Recheck MNT_LOCKED with the locks held */
1909 	retval = -EINVAL;
1910 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1911 		goto out;
1912 
1913 	event++;
1914 	if (flags & MNT_DETACH) {
1915 		if (mnt->mnt.mnt_flags & MNT_ONRB ||
1916 		    !list_empty(&mnt->mnt_list))
1917 			umount_tree(mnt, UMOUNT_PROPAGATE);
1918 		retval = 0;
1919 	} else {
1920 		shrink_submounts(mnt);
1921 		retval = -EBUSY;
1922 		if (!propagate_mount_busy(mnt, 2)) {
1923 			if (mnt->mnt.mnt_flags & MNT_ONRB ||
1924 			    !list_empty(&mnt->mnt_list))
1925 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1926 			retval = 0;
1927 		}
1928 	}
1929 out:
1930 	unlock_mount_hash();
1931 	namespace_unlock();
1932 	return retval;
1933 }
1934 
1935 /*
1936  * __detach_mounts - lazily unmount all mounts on the specified dentry
1937  *
1938  * During unlink, rmdir, and d_drop it is possible to loose the path
1939  * to an existing mountpoint, and wind up leaking the mount.
1940  * detach_mounts allows lazily unmounting those mounts instead of
1941  * leaking them.
1942  *
1943  * The caller may hold dentry->d_inode->i_mutex.
1944  */
__detach_mounts(struct dentry * dentry)1945 void __detach_mounts(struct dentry *dentry)
1946 {
1947 	struct mountpoint *mp;
1948 	struct mount *mnt;
1949 
1950 	namespace_lock();
1951 	lock_mount_hash();
1952 	mp = lookup_mountpoint(dentry);
1953 	if (!mp)
1954 		goto out_unlock;
1955 
1956 	event++;
1957 	while (!hlist_empty(&mp->m_list)) {
1958 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1959 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1960 			umount_mnt(mnt);
1961 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1962 		}
1963 		else umount_tree(mnt, UMOUNT_CONNECTED);
1964 	}
1965 	put_mountpoint(mp);
1966 out_unlock:
1967 	unlock_mount_hash();
1968 	namespace_unlock();
1969 }
1970 
1971 /*
1972  * Is the caller allowed to modify his namespace?
1973  */
may_mount(void)1974 bool may_mount(void)
1975 {
1976 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1977 }
1978 
warn_mandlock(void)1979 static void warn_mandlock(void)
1980 {
1981 	pr_warn_once("=======================================================\n"
1982 		     "WARNING: The mand mount option has been deprecated and\n"
1983 		     "         and is ignored by this kernel. Remove the mand\n"
1984 		     "         option from the mount to silence this warning.\n"
1985 		     "=======================================================\n");
1986 }
1987 
can_umount(const struct path * path,int flags)1988 static int can_umount(const struct path *path, int flags)
1989 {
1990 	struct mount *mnt = real_mount(path->mnt);
1991 
1992 	if (!may_mount())
1993 		return -EPERM;
1994 	if (!path_mounted(path))
1995 		return -EINVAL;
1996 	if (!check_mnt(mnt))
1997 		return -EINVAL;
1998 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1999 		return -EINVAL;
2000 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2001 		return -EPERM;
2002 	return 0;
2003 }
2004 
2005 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2006 int path_umount(struct path *path, int flags)
2007 {
2008 	struct mount *mnt = real_mount(path->mnt);
2009 	int ret;
2010 
2011 	ret = can_umount(path, flags);
2012 	if (!ret)
2013 		ret = do_umount(mnt, flags);
2014 
2015 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2016 	dput(path->dentry);
2017 	mntput_no_expire(mnt);
2018 	return ret;
2019 }
2020 
ksys_umount(char __user * name,int flags)2021 static int ksys_umount(char __user *name, int flags)
2022 {
2023 	int lookup_flags = LOOKUP_MOUNTPOINT;
2024 	struct path path;
2025 	int ret;
2026 
2027 	// basic validity checks done first
2028 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2029 		return -EINVAL;
2030 
2031 	if (!(flags & UMOUNT_NOFOLLOW))
2032 		lookup_flags |= LOOKUP_FOLLOW;
2033 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2034 	if (ret)
2035 		return ret;
2036 	return path_umount(&path, flags);
2037 }
2038 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2039 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2040 {
2041 	return ksys_umount(name, flags);
2042 }
2043 
2044 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2045 
2046 /*
2047  *	The 2.0 compatible umount. No flags.
2048  */
SYSCALL_DEFINE1(oldumount,char __user *,name)2049 SYSCALL_DEFINE1(oldumount, char __user *, name)
2050 {
2051 	return ksys_umount(name, 0);
2052 }
2053 
2054 #endif
2055 
is_mnt_ns_file(struct dentry * dentry)2056 static bool is_mnt_ns_file(struct dentry *dentry)
2057 {
2058 	/* Is this a proxy for a mount namespace? */
2059 	return dentry->d_op == &ns_dentry_operations &&
2060 	       dentry->d_fsdata == &mntns_operations;
2061 }
2062 
to_mnt_ns(struct ns_common * ns)2063 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
2064 {
2065 	return container_of(ns, struct mnt_namespace, ns);
2066 }
2067 
from_mnt_ns(struct mnt_namespace * mnt)2068 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2069 {
2070 	return &mnt->ns;
2071 }
2072 
mnt_ns_loop(struct dentry * dentry)2073 static bool mnt_ns_loop(struct dentry *dentry)
2074 {
2075 	/* Could bind mounting the mount namespace inode cause a
2076 	 * mount namespace loop?
2077 	 */
2078 	struct mnt_namespace *mnt_ns;
2079 	if (!is_mnt_ns_file(dentry))
2080 		return false;
2081 
2082 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2083 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2084 }
2085 
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2086 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2087 					int flag)
2088 {
2089 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2090 		*dst_parent, *dst_mnt;
2091 
2092 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2093 		return ERR_PTR(-EINVAL);
2094 
2095 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2096 		return ERR_PTR(-EINVAL);
2097 
2098 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2099 	if (IS_ERR(dst_mnt))
2100 		return dst_mnt;
2101 
2102 	src_parent = src_root;
2103 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2104 
2105 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2106 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2107 			continue;
2108 
2109 		for (src_mnt = src_root_child; src_mnt;
2110 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2111 			if (!(flag & CL_COPY_UNBINDABLE) &&
2112 			    IS_MNT_UNBINDABLE(src_mnt)) {
2113 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2114 					/* Both unbindable and locked. */
2115 					dst_mnt = ERR_PTR(-EPERM);
2116 					goto out;
2117 				} else {
2118 					src_mnt = skip_mnt_tree(src_mnt);
2119 					continue;
2120 				}
2121 			}
2122 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2123 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2124 				src_mnt = skip_mnt_tree(src_mnt);
2125 				continue;
2126 			}
2127 			while (src_parent != src_mnt->mnt_parent) {
2128 				src_parent = src_parent->mnt_parent;
2129 				dst_mnt = dst_mnt->mnt_parent;
2130 			}
2131 
2132 			src_parent = src_mnt;
2133 			dst_parent = dst_mnt;
2134 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2135 			if (IS_ERR(dst_mnt))
2136 				goto out;
2137 			lock_mount_hash();
2138 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2139 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2140 			unlock_mount_hash();
2141 		}
2142 	}
2143 	return res;
2144 
2145 out:
2146 	if (res) {
2147 		lock_mount_hash();
2148 		umount_tree(res, UMOUNT_SYNC);
2149 		unlock_mount_hash();
2150 	}
2151 	return dst_mnt;
2152 }
2153 
2154 /* Caller should check returned pointer for errors */
2155 
collect_mounts(const struct path * path)2156 struct vfsmount *collect_mounts(const struct path *path)
2157 {
2158 	struct mount *tree;
2159 	namespace_lock();
2160 	if (!check_mnt(real_mount(path->mnt)))
2161 		tree = ERR_PTR(-EINVAL);
2162 	else
2163 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2164 				 CL_COPY_ALL | CL_PRIVATE);
2165 	namespace_unlock();
2166 	if (IS_ERR(tree))
2167 		return ERR_CAST(tree);
2168 	return &tree->mnt;
2169 }
2170 
2171 static void free_mnt_ns(struct mnt_namespace *);
2172 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2173 
dissolve_on_fput(struct vfsmount * mnt)2174 void dissolve_on_fput(struct vfsmount *mnt)
2175 {
2176 	struct mnt_namespace *ns;
2177 	namespace_lock();
2178 	lock_mount_hash();
2179 	ns = real_mount(mnt)->mnt_ns;
2180 	if (ns) {
2181 		if (is_anon_ns(ns))
2182 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2183 		else
2184 			ns = NULL;
2185 	}
2186 	unlock_mount_hash();
2187 	namespace_unlock();
2188 	if (ns)
2189 		free_mnt_ns(ns);
2190 }
2191 
drop_collected_mounts(struct vfsmount * mnt)2192 void drop_collected_mounts(struct vfsmount *mnt)
2193 {
2194 	namespace_lock();
2195 	lock_mount_hash();
2196 	umount_tree(real_mount(mnt), 0);
2197 	unlock_mount_hash();
2198 	namespace_unlock();
2199 }
2200 
has_locked_children(struct mount * mnt,struct dentry * dentry)2201 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2202 {
2203 	struct mount *child;
2204 
2205 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2206 		if (!is_subdir(child->mnt_mountpoint, dentry))
2207 			continue;
2208 
2209 		if (child->mnt.mnt_flags & MNT_LOCKED)
2210 			return true;
2211 	}
2212 	return false;
2213 }
2214 
2215 /**
2216  * clone_private_mount - create a private clone of a path
2217  * @path: path to clone
2218  *
2219  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2220  * will not be attached anywhere in the namespace and will be private (i.e.
2221  * changes to the originating mount won't be propagated into this).
2222  *
2223  * Release with mntput().
2224  */
clone_private_mount(const struct path * path)2225 struct vfsmount *clone_private_mount(const struct path *path)
2226 {
2227 	struct mount *old_mnt = real_mount(path->mnt);
2228 	struct mount *new_mnt;
2229 
2230 	down_read(&namespace_sem);
2231 	if (IS_MNT_UNBINDABLE(old_mnt))
2232 		goto invalid;
2233 
2234 	if (!check_mnt(old_mnt))
2235 		goto invalid;
2236 
2237 	if (has_locked_children(old_mnt, path->dentry))
2238 		goto invalid;
2239 
2240 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2241 	up_read(&namespace_sem);
2242 
2243 	if (IS_ERR(new_mnt))
2244 		return ERR_CAST(new_mnt);
2245 
2246 	/* Longterm mount to be removed by kern_unmount*() */
2247 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2248 
2249 	return &new_mnt->mnt;
2250 
2251 invalid:
2252 	up_read(&namespace_sem);
2253 	return ERR_PTR(-EINVAL);
2254 }
2255 EXPORT_SYMBOL_GPL(clone_private_mount);
2256 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2257 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2258 		   struct vfsmount *root)
2259 {
2260 	struct mount *mnt;
2261 	int res = f(root, arg);
2262 	if (res)
2263 		return res;
2264 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2265 		res = f(&mnt->mnt, arg);
2266 		if (res)
2267 			return res;
2268 	}
2269 	return 0;
2270 }
2271 
lock_mnt_tree(struct mount * mnt)2272 static void lock_mnt_tree(struct mount *mnt)
2273 {
2274 	struct mount *p;
2275 
2276 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2277 		int flags = p->mnt.mnt_flags;
2278 		/* Don't allow unprivileged users to change mount flags */
2279 		flags |= MNT_LOCK_ATIME;
2280 
2281 		if (flags & MNT_READONLY)
2282 			flags |= MNT_LOCK_READONLY;
2283 
2284 		if (flags & MNT_NODEV)
2285 			flags |= MNT_LOCK_NODEV;
2286 
2287 		if (flags & MNT_NOSUID)
2288 			flags |= MNT_LOCK_NOSUID;
2289 
2290 		if (flags & MNT_NOEXEC)
2291 			flags |= MNT_LOCK_NOEXEC;
2292 		/* Don't allow unprivileged users to reveal what is under a mount */
2293 		if (list_empty(&p->mnt_expire))
2294 			flags |= MNT_LOCKED;
2295 		p->mnt.mnt_flags = flags;
2296 	}
2297 }
2298 
cleanup_group_ids(struct mount * mnt,struct mount * end)2299 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2300 {
2301 	struct mount *p;
2302 
2303 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2304 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2305 			mnt_release_group_id(p);
2306 	}
2307 }
2308 
invent_group_ids(struct mount * mnt,bool recurse)2309 static int invent_group_ids(struct mount *mnt, bool recurse)
2310 {
2311 	struct mount *p;
2312 
2313 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2314 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2315 			int err = mnt_alloc_group_id(p);
2316 			if (err) {
2317 				cleanup_group_ids(mnt, p);
2318 				return err;
2319 			}
2320 		}
2321 	}
2322 
2323 	return 0;
2324 }
2325 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2326 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2327 {
2328 	unsigned int max = READ_ONCE(sysctl_mount_max);
2329 	unsigned int mounts = 0;
2330 	struct mount *p;
2331 
2332 	if (ns->nr_mounts >= max)
2333 		return -ENOSPC;
2334 	max -= ns->nr_mounts;
2335 	if (ns->pending_mounts >= max)
2336 		return -ENOSPC;
2337 	max -= ns->pending_mounts;
2338 
2339 	for (p = mnt; p; p = next_mnt(p, mnt))
2340 		mounts++;
2341 
2342 	if (mounts > max)
2343 		return -ENOSPC;
2344 
2345 	ns->pending_mounts += mounts;
2346 	return 0;
2347 }
2348 
2349 enum mnt_tree_flags_t {
2350 	MNT_TREE_MOVE = BIT(0),
2351 	MNT_TREE_BENEATH = BIT(1),
2352 };
2353 
2354 /**
2355  * attach_recursive_mnt - attach a source mount tree
2356  * @source_mnt: mount tree to be attached
2357  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2358  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2359  * @flags:      modify how @source_mnt is supposed to be attached
2360  *
2361  *  NOTE: in the table below explains the semantics when a source mount
2362  *  of a given type is attached to a destination mount of a given type.
2363  * ---------------------------------------------------------------------------
2364  * |         BIND MOUNT OPERATION                                            |
2365  * |**************************************************************************
2366  * | source-->| shared        |       private  |       slave    | unbindable |
2367  * | dest     |               |                |                |            |
2368  * |   |      |               |                |                |            |
2369  * |   v      |               |                |                |            |
2370  * |**************************************************************************
2371  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2372  * |          |               |                |                |            |
2373  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2374  * ***************************************************************************
2375  * A bind operation clones the source mount and mounts the clone on the
2376  * destination mount.
2377  *
2378  * (++)  the cloned mount is propagated to all the mounts in the propagation
2379  * 	 tree of the destination mount and the cloned mount is added to
2380  * 	 the peer group of the source mount.
2381  * (+)   the cloned mount is created under the destination mount and is marked
2382  *       as shared. The cloned mount is added to the peer group of the source
2383  *       mount.
2384  * (+++) the mount is propagated to all the mounts in the propagation tree
2385  *       of the destination mount and the cloned mount is made slave
2386  *       of the same master as that of the source mount. The cloned mount
2387  *       is marked as 'shared and slave'.
2388  * (*)   the cloned mount is made a slave of the same master as that of the
2389  * 	 source mount.
2390  *
2391  * ---------------------------------------------------------------------------
2392  * |         		MOVE MOUNT OPERATION                                 |
2393  * |**************************************************************************
2394  * | source-->| shared        |       private  |       slave    | unbindable |
2395  * | dest     |               |                |                |            |
2396  * |   |      |               |                |                |            |
2397  * |   v      |               |                |                |            |
2398  * |**************************************************************************
2399  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2400  * |          |               |                |                |            |
2401  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2402  * ***************************************************************************
2403  *
2404  * (+)  the mount is moved to the destination. And is then propagated to
2405  * 	all the mounts in the propagation tree of the destination mount.
2406  * (+*)  the mount is moved to the destination.
2407  * (+++)  the mount is moved to the destination and is then propagated to
2408  * 	all the mounts belonging to the destination mount's propagation tree.
2409  * 	the mount is marked as 'shared and slave'.
2410  * (*)	the mount continues to be a slave at the new location.
2411  *
2412  * if the source mount is a tree, the operations explained above is
2413  * applied to each mount in the tree.
2414  * Must be called without spinlocks held, since this function can sleep
2415  * in allocations.
2416  *
2417  * Context: The function expects namespace_lock() to be held.
2418  * Return: If @source_mnt was successfully attached 0 is returned.
2419  *         Otherwise a negative error code is returned.
2420  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2421 static int attach_recursive_mnt(struct mount *source_mnt,
2422 				struct mount *top_mnt,
2423 				struct mountpoint *dest_mp,
2424 				enum mnt_tree_flags_t flags)
2425 {
2426 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2427 	HLIST_HEAD(tree_list);
2428 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2429 	struct mountpoint *smp;
2430 	struct mount *child, *dest_mnt, *p;
2431 	struct hlist_node *n;
2432 	int err = 0;
2433 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2434 
2435 	/*
2436 	 * Preallocate a mountpoint in case the new mounts need to be
2437 	 * mounted beneath mounts on the same mountpoint.
2438 	 */
2439 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2440 	if (IS_ERR(smp))
2441 		return PTR_ERR(smp);
2442 
2443 	/* Is there space to add these mounts to the mount namespace? */
2444 	if (!moving) {
2445 		err = count_mounts(ns, source_mnt);
2446 		if (err)
2447 			goto out;
2448 	}
2449 
2450 	if (beneath)
2451 		dest_mnt = top_mnt->mnt_parent;
2452 	else
2453 		dest_mnt = top_mnt;
2454 
2455 	if (IS_MNT_SHARED(dest_mnt)) {
2456 		err = invent_group_ids(source_mnt, true);
2457 		if (err)
2458 			goto out;
2459 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2460 	}
2461 	lock_mount_hash();
2462 	if (err)
2463 		goto out_cleanup_ids;
2464 
2465 	if (IS_MNT_SHARED(dest_mnt)) {
2466 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2467 			set_mnt_shared(p);
2468 	}
2469 
2470 	if (moving) {
2471 		if (beneath)
2472 			dest_mp = smp;
2473 		unhash_mnt(source_mnt);
2474 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2475 		touch_mnt_namespace(source_mnt->mnt_ns);
2476 	} else {
2477 		if (source_mnt->mnt_ns) {
2478 			LIST_HEAD(head);
2479 
2480 			/* move from anon - the caller will destroy */
2481 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2482 				move_from_ns(p, &head);
2483 			list_del_init(&head);
2484 		}
2485 		if (beneath)
2486 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2487 		else
2488 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2489 		commit_tree(source_mnt);
2490 	}
2491 
2492 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2493 		struct mount *q;
2494 		hlist_del_init(&child->mnt_hash);
2495 		q = __lookup_mnt(&child->mnt_parent->mnt,
2496 				 child->mnt_mountpoint);
2497 		if (q)
2498 			mnt_change_mountpoint(child, smp, q);
2499 		/* Notice when we are propagating across user namespaces */
2500 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2501 			lock_mnt_tree(child);
2502 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2503 		commit_tree(child);
2504 	}
2505 	put_mountpoint(smp);
2506 	unlock_mount_hash();
2507 
2508 	return 0;
2509 
2510  out_cleanup_ids:
2511 	while (!hlist_empty(&tree_list)) {
2512 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2513 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2514 		umount_tree(child, UMOUNT_SYNC);
2515 	}
2516 	unlock_mount_hash();
2517 	cleanup_group_ids(source_mnt, NULL);
2518  out:
2519 	ns->pending_mounts = 0;
2520 
2521 	read_seqlock_excl(&mount_lock);
2522 	put_mountpoint(smp);
2523 	read_sequnlock_excl(&mount_lock);
2524 
2525 	return err;
2526 }
2527 
2528 /**
2529  * do_lock_mount - lock mount and mountpoint
2530  * @path:    target path
2531  * @beneath: whether the intention is to mount beneath @path
2532  *
2533  * Follow the mount stack on @path until the top mount @mnt is found. If
2534  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2535  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2536  * until nothing is stacked on top of it anymore.
2537  *
2538  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2539  * against concurrent removal of the new mountpoint from another mount
2540  * namespace.
2541  *
2542  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2543  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2544  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2545  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2546  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2547  * on top of it for @beneath.
2548  *
2549  * In addition, @beneath needs to make sure that @mnt hasn't been
2550  * unmounted or moved from its current mountpoint in between dropping
2551  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2552  * being unmounted would be detected later by e.g., calling
2553  * check_mnt(mnt) in the function it's called from. For the @beneath
2554  * case however, it's useful to detect it directly in do_lock_mount().
2555  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2556  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2557  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2558  *
2559  * Return: Either the target mountpoint on the top mount or the top
2560  *         mount's mountpoint.
2561  */
do_lock_mount(struct path * path,bool beneath)2562 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2563 {
2564 	struct vfsmount *mnt = path->mnt;
2565 	struct dentry *dentry;
2566 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2567 
2568 	for (;;) {
2569 		struct mount *m;
2570 
2571 		if (beneath) {
2572 			m = real_mount(mnt);
2573 			read_seqlock_excl(&mount_lock);
2574 			dentry = dget(m->mnt_mountpoint);
2575 			read_sequnlock_excl(&mount_lock);
2576 		} else {
2577 			dentry = path->dentry;
2578 		}
2579 
2580 		inode_lock(dentry->d_inode);
2581 		if (unlikely(cant_mount(dentry))) {
2582 			inode_unlock(dentry->d_inode);
2583 			goto out;
2584 		}
2585 
2586 		namespace_lock();
2587 
2588 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2589 			namespace_unlock();
2590 			inode_unlock(dentry->d_inode);
2591 			goto out;
2592 		}
2593 
2594 		mnt = lookup_mnt(path);
2595 		if (likely(!mnt))
2596 			break;
2597 
2598 		namespace_unlock();
2599 		inode_unlock(dentry->d_inode);
2600 		if (beneath)
2601 			dput(dentry);
2602 		path_put(path);
2603 		path->mnt = mnt;
2604 		path->dentry = dget(mnt->mnt_root);
2605 	}
2606 
2607 	mp = get_mountpoint(dentry);
2608 	if (IS_ERR(mp)) {
2609 		namespace_unlock();
2610 		inode_unlock(dentry->d_inode);
2611 	}
2612 
2613 out:
2614 	if (beneath)
2615 		dput(dentry);
2616 
2617 	return mp;
2618 }
2619 
lock_mount(struct path * path)2620 static inline struct mountpoint *lock_mount(struct path *path)
2621 {
2622 	return do_lock_mount(path, false);
2623 }
2624 
unlock_mount(struct mountpoint * where)2625 static void unlock_mount(struct mountpoint *where)
2626 {
2627 	struct dentry *dentry = where->m_dentry;
2628 
2629 	read_seqlock_excl(&mount_lock);
2630 	put_mountpoint(where);
2631 	read_sequnlock_excl(&mount_lock);
2632 
2633 	namespace_unlock();
2634 	inode_unlock(dentry->d_inode);
2635 }
2636 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2637 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2638 {
2639 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2640 		return -EINVAL;
2641 
2642 	if (d_is_dir(mp->m_dentry) !=
2643 	      d_is_dir(mnt->mnt.mnt_root))
2644 		return -ENOTDIR;
2645 
2646 	return attach_recursive_mnt(mnt, p, mp, 0);
2647 }
2648 
2649 /*
2650  * Sanity check the flags to change_mnt_propagation.
2651  */
2652 
flags_to_propagation_type(int ms_flags)2653 static int flags_to_propagation_type(int ms_flags)
2654 {
2655 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2656 
2657 	/* Fail if any non-propagation flags are set */
2658 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2659 		return 0;
2660 	/* Only one propagation flag should be set */
2661 	if (!is_power_of_2(type))
2662 		return 0;
2663 	return type;
2664 }
2665 
2666 /*
2667  * recursively change the type of the mountpoint.
2668  */
do_change_type(struct path * path,int ms_flags)2669 static int do_change_type(struct path *path, int ms_flags)
2670 {
2671 	struct mount *m;
2672 	struct mount *mnt = real_mount(path->mnt);
2673 	int recurse = ms_flags & MS_REC;
2674 	int type;
2675 	int err = 0;
2676 
2677 	if (!path_mounted(path))
2678 		return -EINVAL;
2679 
2680 	type = flags_to_propagation_type(ms_flags);
2681 	if (!type)
2682 		return -EINVAL;
2683 
2684 	namespace_lock();
2685 	if (type == MS_SHARED) {
2686 		err = invent_group_ids(mnt, recurse);
2687 		if (err)
2688 			goto out_unlock;
2689 	}
2690 
2691 	lock_mount_hash();
2692 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2693 		change_mnt_propagation(m, type);
2694 	unlock_mount_hash();
2695 
2696  out_unlock:
2697 	namespace_unlock();
2698 	return err;
2699 }
2700 
__do_loopback(struct path * old_path,int recurse)2701 static struct mount *__do_loopback(struct path *old_path, int recurse)
2702 {
2703 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2704 
2705 	if (IS_MNT_UNBINDABLE(old))
2706 		return mnt;
2707 
2708 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2709 		return mnt;
2710 
2711 	if (!recurse && has_locked_children(old, old_path->dentry))
2712 		return mnt;
2713 
2714 	if (recurse)
2715 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2716 	else
2717 		mnt = clone_mnt(old, old_path->dentry, 0);
2718 
2719 	if (!IS_ERR(mnt))
2720 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2721 
2722 	return mnt;
2723 }
2724 
2725 /*
2726  * do loopback mount.
2727  */
do_loopback(struct path * path,const char * old_name,int recurse)2728 static int do_loopback(struct path *path, const char *old_name,
2729 				int recurse)
2730 {
2731 	struct path old_path;
2732 	struct mount *mnt = NULL, *parent;
2733 	struct mountpoint *mp;
2734 	int err;
2735 	if (!old_name || !*old_name)
2736 		return -EINVAL;
2737 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2738 	if (err)
2739 		return err;
2740 
2741 	err = -EINVAL;
2742 	if (mnt_ns_loop(old_path.dentry))
2743 		goto out;
2744 
2745 	mp = lock_mount(path);
2746 	if (IS_ERR(mp)) {
2747 		err = PTR_ERR(mp);
2748 		goto out;
2749 	}
2750 
2751 	parent = real_mount(path->mnt);
2752 	if (!check_mnt(parent))
2753 		goto out2;
2754 
2755 	mnt = __do_loopback(&old_path, recurse);
2756 	if (IS_ERR(mnt)) {
2757 		err = PTR_ERR(mnt);
2758 		goto out2;
2759 	}
2760 
2761 	err = graft_tree(mnt, parent, mp);
2762 	if (err) {
2763 		lock_mount_hash();
2764 		umount_tree(mnt, UMOUNT_SYNC);
2765 		unlock_mount_hash();
2766 	}
2767 out2:
2768 	unlock_mount(mp);
2769 out:
2770 	path_put(&old_path);
2771 	return err;
2772 }
2773 
open_detached_copy(struct path * path,bool recursive)2774 static struct file *open_detached_copy(struct path *path, bool recursive)
2775 {
2776 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2777 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2778 	struct mount *mnt, *p;
2779 	struct file *file;
2780 
2781 	if (IS_ERR(ns))
2782 		return ERR_CAST(ns);
2783 
2784 	namespace_lock();
2785 	mnt = __do_loopback(path, recursive);
2786 	if (IS_ERR(mnt)) {
2787 		namespace_unlock();
2788 		free_mnt_ns(ns);
2789 		return ERR_CAST(mnt);
2790 	}
2791 
2792 	lock_mount_hash();
2793 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2794 		mnt_add_to_ns(ns, p);
2795 		ns->nr_mounts++;
2796 	}
2797 	ns->root = mnt;
2798 	mntget(&mnt->mnt);
2799 	unlock_mount_hash();
2800 	namespace_unlock();
2801 
2802 	mntput(path->mnt);
2803 	path->mnt = &mnt->mnt;
2804 	file = dentry_open(path, O_PATH, current_cred());
2805 	if (IS_ERR(file))
2806 		dissolve_on_fput(path->mnt);
2807 	else
2808 		file->f_mode |= FMODE_NEED_UNMOUNT;
2809 	return file;
2810 }
2811 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2812 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2813 {
2814 	struct file *file;
2815 	struct path path;
2816 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2817 	bool detached = flags & OPEN_TREE_CLONE;
2818 	int error;
2819 	int fd;
2820 
2821 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2822 
2823 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2824 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2825 		      OPEN_TREE_CLOEXEC))
2826 		return -EINVAL;
2827 
2828 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2829 		return -EINVAL;
2830 
2831 	if (flags & AT_NO_AUTOMOUNT)
2832 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2833 	if (flags & AT_SYMLINK_NOFOLLOW)
2834 		lookup_flags &= ~LOOKUP_FOLLOW;
2835 	if (flags & AT_EMPTY_PATH)
2836 		lookup_flags |= LOOKUP_EMPTY;
2837 
2838 	if (detached && !may_mount())
2839 		return -EPERM;
2840 
2841 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2842 	if (fd < 0)
2843 		return fd;
2844 
2845 	error = user_path_at(dfd, filename, lookup_flags, &path);
2846 	if (unlikely(error)) {
2847 		file = ERR_PTR(error);
2848 	} else {
2849 		if (detached)
2850 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2851 		else
2852 			file = dentry_open(&path, O_PATH, current_cred());
2853 		path_put(&path);
2854 	}
2855 	if (IS_ERR(file)) {
2856 		put_unused_fd(fd);
2857 		return PTR_ERR(file);
2858 	}
2859 	fd_install(fd, file);
2860 	return fd;
2861 }
2862 
2863 /*
2864  * Don't allow locked mount flags to be cleared.
2865  *
2866  * No locks need to be held here while testing the various MNT_LOCK
2867  * flags because those flags can never be cleared once they are set.
2868  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2869 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2870 {
2871 	unsigned int fl = mnt->mnt.mnt_flags;
2872 
2873 	if ((fl & MNT_LOCK_READONLY) &&
2874 	    !(mnt_flags & MNT_READONLY))
2875 		return false;
2876 
2877 	if ((fl & MNT_LOCK_NODEV) &&
2878 	    !(mnt_flags & MNT_NODEV))
2879 		return false;
2880 
2881 	if ((fl & MNT_LOCK_NOSUID) &&
2882 	    !(mnt_flags & MNT_NOSUID))
2883 		return false;
2884 
2885 	if ((fl & MNT_LOCK_NOEXEC) &&
2886 	    !(mnt_flags & MNT_NOEXEC))
2887 		return false;
2888 
2889 	if ((fl & MNT_LOCK_ATIME) &&
2890 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2891 		return false;
2892 
2893 	return true;
2894 }
2895 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2896 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2897 {
2898 	bool readonly_request = (mnt_flags & MNT_READONLY);
2899 
2900 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2901 		return 0;
2902 
2903 	if (readonly_request)
2904 		return mnt_make_readonly(mnt);
2905 
2906 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2907 	return 0;
2908 }
2909 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2910 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2911 {
2912 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2913 	mnt->mnt.mnt_flags = mnt_flags;
2914 	touch_mnt_namespace(mnt->mnt_ns);
2915 }
2916 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2917 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2918 {
2919 	struct super_block *sb = mnt->mnt_sb;
2920 
2921 	if (!__mnt_is_readonly(mnt) &&
2922 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2923 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2924 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2925 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2926 
2927 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2928 			sb->s_type->name,
2929 			is_mounted(mnt) ? "remounted" : "mounted",
2930 			mntpath, &sb->s_time_max,
2931 			(unsigned long long)sb->s_time_max);
2932 
2933 		free_page((unsigned long)buf);
2934 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2935 	}
2936 }
2937 
2938 /*
2939  * Handle reconfiguration of the mountpoint only without alteration of the
2940  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2941  * to mount(2).
2942  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2943 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2944 {
2945 	struct super_block *sb = path->mnt->mnt_sb;
2946 	struct mount *mnt = real_mount(path->mnt);
2947 	int ret;
2948 
2949 	if (!check_mnt(mnt))
2950 		return -EINVAL;
2951 
2952 	if (!path_mounted(path))
2953 		return -EINVAL;
2954 
2955 	if (!can_change_locked_flags(mnt, mnt_flags))
2956 		return -EPERM;
2957 
2958 	/*
2959 	 * We're only checking whether the superblock is read-only not
2960 	 * changing it, so only take down_read(&sb->s_umount).
2961 	 */
2962 	down_read(&sb->s_umount);
2963 	lock_mount_hash();
2964 	ret = change_mount_ro_state(mnt, mnt_flags);
2965 	if (ret == 0)
2966 		set_mount_attributes(mnt, mnt_flags);
2967 	unlock_mount_hash();
2968 	up_read(&sb->s_umount);
2969 
2970 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2971 
2972 	return ret;
2973 }
2974 
2975 /*
2976  * change filesystem flags. dir should be a physical root of filesystem.
2977  * If you've mounted a non-root directory somewhere and want to do remount
2978  * on it - tough luck.
2979  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2980 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2981 		      int mnt_flags, void *data)
2982 {
2983 	int err;
2984 	struct super_block *sb = path->mnt->mnt_sb;
2985 	struct mount *mnt = real_mount(path->mnt);
2986 	struct fs_context *fc;
2987 
2988 	if (!check_mnt(mnt))
2989 		return -EINVAL;
2990 
2991 	if (!path_mounted(path))
2992 		return -EINVAL;
2993 
2994 	if (!can_change_locked_flags(mnt, mnt_flags))
2995 		return -EPERM;
2996 
2997 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2998 	if (IS_ERR(fc))
2999 		return PTR_ERR(fc);
3000 
3001 	/*
3002 	 * Indicate to the filesystem that the remount request is coming
3003 	 * from the legacy mount system call.
3004 	 */
3005 	fc->oldapi = true;
3006 
3007 	err = parse_monolithic_mount_data(fc, data);
3008 	if (!err) {
3009 		down_write(&sb->s_umount);
3010 		err = -EPERM;
3011 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3012 			err = reconfigure_super(fc);
3013 			if (!err) {
3014 				lock_mount_hash();
3015 				set_mount_attributes(mnt, mnt_flags);
3016 				unlock_mount_hash();
3017 			}
3018 		}
3019 		up_write(&sb->s_umount);
3020 	}
3021 
3022 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3023 
3024 	put_fs_context(fc);
3025 	return err;
3026 }
3027 
tree_contains_unbindable(struct mount * mnt)3028 static inline int tree_contains_unbindable(struct mount *mnt)
3029 {
3030 	struct mount *p;
3031 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3032 		if (IS_MNT_UNBINDABLE(p))
3033 			return 1;
3034 	}
3035 	return 0;
3036 }
3037 
3038 /*
3039  * Check that there aren't references to earlier/same mount namespaces in the
3040  * specified subtree.  Such references can act as pins for mount namespaces
3041  * that aren't checked by the mount-cycle checking code, thereby allowing
3042  * cycles to be made.
3043  */
check_for_nsfs_mounts(struct mount * subtree)3044 static bool check_for_nsfs_mounts(struct mount *subtree)
3045 {
3046 	struct mount *p;
3047 	bool ret = false;
3048 
3049 	lock_mount_hash();
3050 	for (p = subtree; p; p = next_mnt(p, subtree))
3051 		if (mnt_ns_loop(p->mnt.mnt_root))
3052 			goto out;
3053 
3054 	ret = true;
3055 out:
3056 	unlock_mount_hash();
3057 	return ret;
3058 }
3059 
do_set_group(struct path * from_path,struct path * to_path)3060 static int do_set_group(struct path *from_path, struct path *to_path)
3061 {
3062 	struct mount *from, *to;
3063 	int err;
3064 
3065 	from = real_mount(from_path->mnt);
3066 	to = real_mount(to_path->mnt);
3067 
3068 	namespace_lock();
3069 
3070 	err = -EINVAL;
3071 	/* To and From must be mounted */
3072 	if (!is_mounted(&from->mnt))
3073 		goto out;
3074 	if (!is_mounted(&to->mnt))
3075 		goto out;
3076 
3077 	err = -EPERM;
3078 	/* We should be allowed to modify mount namespaces of both mounts */
3079 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3080 		goto out;
3081 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3082 		goto out;
3083 
3084 	err = -EINVAL;
3085 	/* To and From paths should be mount roots */
3086 	if (!path_mounted(from_path))
3087 		goto out;
3088 	if (!path_mounted(to_path))
3089 		goto out;
3090 
3091 	/* Setting sharing groups is only allowed across same superblock */
3092 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3093 		goto out;
3094 
3095 	/* From mount root should be wider than To mount root */
3096 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3097 		goto out;
3098 
3099 	/* From mount should not have locked children in place of To's root */
3100 	if (has_locked_children(from, to->mnt.mnt_root))
3101 		goto out;
3102 
3103 	/* Setting sharing groups is only allowed on private mounts */
3104 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3105 		goto out;
3106 
3107 	/* From should not be private */
3108 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3109 		goto out;
3110 
3111 	if (IS_MNT_SLAVE(from)) {
3112 		struct mount *m = from->mnt_master;
3113 
3114 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3115 		to->mnt_master = m;
3116 	}
3117 
3118 	if (IS_MNT_SHARED(from)) {
3119 		to->mnt_group_id = from->mnt_group_id;
3120 		list_add(&to->mnt_share, &from->mnt_share);
3121 		lock_mount_hash();
3122 		set_mnt_shared(to);
3123 		unlock_mount_hash();
3124 	}
3125 
3126 	err = 0;
3127 out:
3128 	namespace_unlock();
3129 	return err;
3130 }
3131 
3132 /**
3133  * path_overmounted - check if path is overmounted
3134  * @path: path to check
3135  *
3136  * Check if path is overmounted, i.e., if there's a mount on top of
3137  * @path->mnt with @path->dentry as mountpoint.
3138  *
3139  * Context: This function expects namespace_lock() to be held.
3140  * Return: If path is overmounted true is returned, false if not.
3141  */
path_overmounted(const struct path * path)3142 static inline bool path_overmounted(const struct path *path)
3143 {
3144 	rcu_read_lock();
3145 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3146 		rcu_read_unlock();
3147 		return true;
3148 	}
3149 	rcu_read_unlock();
3150 	return false;
3151 }
3152 
3153 /**
3154  * can_move_mount_beneath - check that we can mount beneath the top mount
3155  * @from: mount to mount beneath
3156  * @to:   mount under which to mount
3157  * @mp:   mountpoint of @to
3158  *
3159  * - Make sure that @to->dentry is actually the root of a mount under
3160  *   which we can mount another mount.
3161  * - Make sure that nothing can be mounted beneath the caller's current
3162  *   root or the rootfs of the namespace.
3163  * - Make sure that the caller can unmount the topmost mount ensuring
3164  *   that the caller could reveal the underlying mountpoint.
3165  * - Ensure that nothing has been mounted on top of @from before we
3166  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3167  * - Prevent mounting beneath a mount if the propagation relationship
3168  *   between the source mount, parent mount, and top mount would lead to
3169  *   nonsensical mount trees.
3170  *
3171  * Context: This function expects namespace_lock() to be held.
3172  * Return: On success 0, and on error a negative error code is returned.
3173  */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3174 static int can_move_mount_beneath(const struct path *from,
3175 				  const struct path *to,
3176 				  const struct mountpoint *mp)
3177 {
3178 	struct mount *mnt_from = real_mount(from->mnt),
3179 		     *mnt_to = real_mount(to->mnt),
3180 		     *parent_mnt_to = mnt_to->mnt_parent;
3181 
3182 	if (!mnt_has_parent(mnt_to))
3183 		return -EINVAL;
3184 
3185 	if (!path_mounted(to))
3186 		return -EINVAL;
3187 
3188 	if (IS_MNT_LOCKED(mnt_to))
3189 		return -EINVAL;
3190 
3191 	/* Avoid creating shadow mounts during mount propagation. */
3192 	if (path_overmounted(from))
3193 		return -EINVAL;
3194 
3195 	/*
3196 	 * Mounting beneath the rootfs only makes sense when the
3197 	 * semantics of pivot_root(".", ".") are used.
3198 	 */
3199 	if (&mnt_to->mnt == current->fs->root.mnt)
3200 		return -EINVAL;
3201 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3202 		return -EINVAL;
3203 
3204 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3205 		if (p == mnt_to)
3206 			return -EINVAL;
3207 
3208 	/*
3209 	 * If the parent mount propagates to the child mount this would
3210 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3211 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3212 	 * defeats the whole purpose of mounting beneath another mount.
3213 	 */
3214 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3215 		return -EINVAL;
3216 
3217 	/*
3218 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3219 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3220 	 * Afterwards @mnt_from would be mounted on top of
3221 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3222 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3223 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3224 	 * remounted on top of @c. Afterwards, @mnt_from would be
3225 	 * covered by a copy @c of @mnt_from and @c would be covered by
3226 	 * @mnt_from itself. This defeats the whole purpose of mounting
3227 	 * @mnt_from beneath @mnt_to.
3228 	 */
3229 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3230 		return -EINVAL;
3231 
3232 	return 0;
3233 }
3234 
do_move_mount(struct path * old_path,struct path * new_path,bool beneath)3235 static int do_move_mount(struct path *old_path, struct path *new_path,
3236 			 bool beneath)
3237 {
3238 	struct mnt_namespace *ns;
3239 	struct mount *p;
3240 	struct mount *old;
3241 	struct mount *parent;
3242 	struct mountpoint *mp, *old_mp;
3243 	int err;
3244 	bool attached;
3245 	enum mnt_tree_flags_t flags = 0;
3246 
3247 	mp = do_lock_mount(new_path, beneath);
3248 	if (IS_ERR(mp))
3249 		return PTR_ERR(mp);
3250 
3251 	old = real_mount(old_path->mnt);
3252 	p = real_mount(new_path->mnt);
3253 	parent = old->mnt_parent;
3254 	attached = mnt_has_parent(old);
3255 	if (attached)
3256 		flags |= MNT_TREE_MOVE;
3257 	old_mp = old->mnt_mp;
3258 	ns = old->mnt_ns;
3259 
3260 	err = -EINVAL;
3261 	/* The mountpoint must be in our namespace. */
3262 	if (!check_mnt(p))
3263 		goto out;
3264 
3265 	/* The thing moved must be mounted... */
3266 	if (!is_mounted(&old->mnt))
3267 		goto out;
3268 
3269 	/* ... and either ours or the root of anon namespace */
3270 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3271 		goto out;
3272 
3273 	if (old->mnt.mnt_flags & MNT_LOCKED)
3274 		goto out;
3275 
3276 	if (!path_mounted(old_path))
3277 		goto out;
3278 
3279 	if (d_is_dir(new_path->dentry) !=
3280 	    d_is_dir(old_path->dentry))
3281 		goto out;
3282 	/*
3283 	 * Don't move a mount residing in a shared parent.
3284 	 */
3285 	if (attached && IS_MNT_SHARED(parent))
3286 		goto out;
3287 
3288 	if (beneath) {
3289 		err = can_move_mount_beneath(old_path, new_path, mp);
3290 		if (err)
3291 			goto out;
3292 
3293 		err = -EINVAL;
3294 		p = p->mnt_parent;
3295 		flags |= MNT_TREE_BENEATH;
3296 	}
3297 
3298 	/*
3299 	 * Don't move a mount tree containing unbindable mounts to a destination
3300 	 * mount which is shared.
3301 	 */
3302 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3303 		goto out;
3304 	err = -ELOOP;
3305 	if (!check_for_nsfs_mounts(old))
3306 		goto out;
3307 	for (; mnt_has_parent(p); p = p->mnt_parent)
3308 		if (p == old)
3309 			goto out;
3310 
3311 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3312 	if (err)
3313 		goto out;
3314 
3315 	/* if the mount is moved, it should no longer be expire
3316 	 * automatically */
3317 	list_del_init(&old->mnt_expire);
3318 	if (attached)
3319 		put_mountpoint(old_mp);
3320 out:
3321 	unlock_mount(mp);
3322 	if (!err) {
3323 		if (attached)
3324 			mntput_no_expire(parent);
3325 		else
3326 			free_mnt_ns(ns);
3327 	}
3328 	return err;
3329 }
3330 
do_move_mount_old(struct path * path,const char * old_name)3331 static int do_move_mount_old(struct path *path, const char *old_name)
3332 {
3333 	struct path old_path;
3334 	int err;
3335 
3336 	if (!old_name || !*old_name)
3337 		return -EINVAL;
3338 
3339 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3340 	if (err)
3341 		return err;
3342 
3343 	err = do_move_mount(&old_path, path, false);
3344 	path_put(&old_path);
3345 	return err;
3346 }
3347 
3348 /*
3349  * add a mount into a namespace's mount tree
3350  */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3351 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3352 			const struct path *path, int mnt_flags)
3353 {
3354 	struct mount *parent = real_mount(path->mnt);
3355 
3356 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3357 
3358 	if (unlikely(!check_mnt(parent))) {
3359 		/* that's acceptable only for automounts done in private ns */
3360 		if (!(mnt_flags & MNT_SHRINKABLE))
3361 			return -EINVAL;
3362 		/* ... and for those we'd better have mountpoint still alive */
3363 		if (!parent->mnt_ns)
3364 			return -EINVAL;
3365 	}
3366 
3367 	/* Refuse the same filesystem on the same mount point */
3368 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3369 		return -EBUSY;
3370 
3371 	if (d_is_symlink(newmnt->mnt.mnt_root))
3372 		return -EINVAL;
3373 
3374 	newmnt->mnt.mnt_flags = mnt_flags;
3375 	return graft_tree(newmnt, parent, mp);
3376 }
3377 
3378 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3379 
3380 /*
3381  * Create a new mount using a superblock configuration and request it
3382  * be added to the namespace tree.
3383  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3384 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3385 			   unsigned int mnt_flags)
3386 {
3387 	struct vfsmount *mnt;
3388 	struct mountpoint *mp;
3389 	struct super_block *sb = fc->root->d_sb;
3390 	int error;
3391 
3392 	error = security_sb_kern_mount(sb);
3393 	if (!error && mount_too_revealing(sb, &mnt_flags))
3394 		error = -EPERM;
3395 
3396 	if (unlikely(error)) {
3397 		fc_drop_locked(fc);
3398 		return error;
3399 	}
3400 
3401 	up_write(&sb->s_umount);
3402 
3403 	mnt = vfs_create_mount(fc);
3404 	if (IS_ERR(mnt))
3405 		return PTR_ERR(mnt);
3406 
3407 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3408 
3409 	mp = lock_mount(mountpoint);
3410 	if (IS_ERR(mp)) {
3411 		mntput(mnt);
3412 		return PTR_ERR(mp);
3413 	}
3414 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3415 	unlock_mount(mp);
3416 	if (error < 0)
3417 		mntput(mnt);
3418 	return error;
3419 }
3420 
3421 /*
3422  * create a new mount for userspace and request it to be added into the
3423  * namespace's tree
3424  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3425 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3426 			int mnt_flags, const char *name, void *data)
3427 {
3428 	struct file_system_type *type;
3429 	struct fs_context *fc;
3430 	const char *subtype = NULL;
3431 	int err = 0;
3432 
3433 	if (!fstype)
3434 		return -EINVAL;
3435 
3436 	type = get_fs_type(fstype);
3437 	if (!type)
3438 		return -ENODEV;
3439 
3440 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3441 		subtype = strchr(fstype, '.');
3442 		if (subtype) {
3443 			subtype++;
3444 			if (!*subtype) {
3445 				put_filesystem(type);
3446 				return -EINVAL;
3447 			}
3448 		}
3449 	}
3450 
3451 	fc = fs_context_for_mount(type, sb_flags);
3452 	put_filesystem(type);
3453 	if (IS_ERR(fc))
3454 		return PTR_ERR(fc);
3455 
3456 	/*
3457 	 * Indicate to the filesystem that the mount request is coming
3458 	 * from the legacy mount system call.
3459 	 */
3460 	fc->oldapi = true;
3461 
3462 	if (subtype)
3463 		err = vfs_parse_fs_string(fc, "subtype",
3464 					  subtype, strlen(subtype));
3465 	if (!err && name)
3466 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3467 	if (!err)
3468 		err = parse_monolithic_mount_data(fc, data);
3469 	if (!err && !mount_capable(fc))
3470 		err = -EPERM;
3471 	if (!err)
3472 		err = vfs_get_tree(fc);
3473 	if (!err)
3474 		err = do_new_mount_fc(fc, path, mnt_flags);
3475 
3476 	put_fs_context(fc);
3477 	return err;
3478 }
3479 
finish_automount(struct vfsmount * m,const struct path * path)3480 int finish_automount(struct vfsmount *m, const struct path *path)
3481 {
3482 	struct dentry *dentry = path->dentry;
3483 	struct mountpoint *mp;
3484 	struct mount *mnt;
3485 	int err;
3486 
3487 	if (!m)
3488 		return 0;
3489 	if (IS_ERR(m))
3490 		return PTR_ERR(m);
3491 
3492 	mnt = real_mount(m);
3493 	/* The new mount record should have at least 2 refs to prevent it being
3494 	 * expired before we get a chance to add it
3495 	 */
3496 	BUG_ON(mnt_get_count(mnt) < 2);
3497 
3498 	if (m->mnt_sb == path->mnt->mnt_sb &&
3499 	    m->mnt_root == dentry) {
3500 		err = -ELOOP;
3501 		goto discard;
3502 	}
3503 
3504 	/*
3505 	 * we don't want to use lock_mount() - in this case finding something
3506 	 * that overmounts our mountpoint to be means "quitely drop what we've
3507 	 * got", not "try to mount it on top".
3508 	 */
3509 	inode_lock(dentry->d_inode);
3510 	namespace_lock();
3511 	if (unlikely(cant_mount(dentry))) {
3512 		err = -ENOENT;
3513 		goto discard_locked;
3514 	}
3515 	if (path_overmounted(path)) {
3516 		err = 0;
3517 		goto discard_locked;
3518 	}
3519 	mp = get_mountpoint(dentry);
3520 	if (IS_ERR(mp)) {
3521 		err = PTR_ERR(mp);
3522 		goto discard_locked;
3523 	}
3524 
3525 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3526 	unlock_mount(mp);
3527 	if (unlikely(err))
3528 		goto discard;
3529 	mntput(m);
3530 	return 0;
3531 
3532 discard_locked:
3533 	namespace_unlock();
3534 	inode_unlock(dentry->d_inode);
3535 discard:
3536 	/* remove m from any expiration list it may be on */
3537 	if (!list_empty(&mnt->mnt_expire)) {
3538 		namespace_lock();
3539 		list_del_init(&mnt->mnt_expire);
3540 		namespace_unlock();
3541 	}
3542 	mntput(m);
3543 	mntput(m);
3544 	return err;
3545 }
3546 
3547 /**
3548  * mnt_set_expiry - Put a mount on an expiration list
3549  * @mnt: The mount to list.
3550  * @expiry_list: The list to add the mount to.
3551  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3552 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3553 {
3554 	namespace_lock();
3555 
3556 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3557 
3558 	namespace_unlock();
3559 }
3560 EXPORT_SYMBOL(mnt_set_expiry);
3561 
3562 /*
3563  * process a list of expirable mountpoints with the intent of discarding any
3564  * mountpoints that aren't in use and haven't been touched since last we came
3565  * here
3566  */
mark_mounts_for_expiry(struct list_head * mounts)3567 void mark_mounts_for_expiry(struct list_head *mounts)
3568 {
3569 	struct mount *mnt, *next;
3570 	LIST_HEAD(graveyard);
3571 
3572 	if (list_empty(mounts))
3573 		return;
3574 
3575 	namespace_lock();
3576 	lock_mount_hash();
3577 
3578 	/* extract from the expiration list every vfsmount that matches the
3579 	 * following criteria:
3580 	 * - only referenced by its parent vfsmount
3581 	 * - still marked for expiry (marked on the last call here; marks are
3582 	 *   cleared by mntput())
3583 	 */
3584 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3585 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3586 			propagate_mount_busy(mnt, 1))
3587 			continue;
3588 		list_move(&mnt->mnt_expire, &graveyard);
3589 	}
3590 	while (!list_empty(&graveyard)) {
3591 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3592 		touch_mnt_namespace(mnt->mnt_ns);
3593 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3594 	}
3595 	unlock_mount_hash();
3596 	namespace_unlock();
3597 }
3598 
3599 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3600 
3601 /*
3602  * Ripoff of 'select_parent()'
3603  *
3604  * search the list of submounts for a given mountpoint, and move any
3605  * shrinkable submounts to the 'graveyard' list.
3606  */
select_submounts(struct mount * parent,struct list_head * graveyard)3607 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3608 {
3609 	struct mount *this_parent = parent;
3610 	struct list_head *next;
3611 	int found = 0;
3612 
3613 repeat:
3614 	next = this_parent->mnt_mounts.next;
3615 resume:
3616 	while (next != &this_parent->mnt_mounts) {
3617 		struct list_head *tmp = next;
3618 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3619 
3620 		next = tmp->next;
3621 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3622 			continue;
3623 		/*
3624 		 * Descend a level if the d_mounts list is non-empty.
3625 		 */
3626 		if (!list_empty(&mnt->mnt_mounts)) {
3627 			this_parent = mnt;
3628 			goto repeat;
3629 		}
3630 
3631 		if (!propagate_mount_busy(mnt, 1)) {
3632 			list_move_tail(&mnt->mnt_expire, graveyard);
3633 			found++;
3634 		}
3635 	}
3636 	/*
3637 	 * All done at this level ... ascend and resume the search
3638 	 */
3639 	if (this_parent != parent) {
3640 		next = this_parent->mnt_child.next;
3641 		this_parent = this_parent->mnt_parent;
3642 		goto resume;
3643 	}
3644 	return found;
3645 }
3646 
3647 /*
3648  * process a list of expirable mountpoints with the intent of discarding any
3649  * submounts of a specific parent mountpoint
3650  *
3651  * mount_lock must be held for write
3652  */
shrink_submounts(struct mount * mnt)3653 static void shrink_submounts(struct mount *mnt)
3654 {
3655 	LIST_HEAD(graveyard);
3656 	struct mount *m;
3657 
3658 	/* extract submounts of 'mountpoint' from the expiration list */
3659 	while (select_submounts(mnt, &graveyard)) {
3660 		while (!list_empty(&graveyard)) {
3661 			m = list_first_entry(&graveyard, struct mount,
3662 						mnt_expire);
3663 			touch_mnt_namespace(m->mnt_ns);
3664 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3665 		}
3666 	}
3667 }
3668 
copy_mount_options(const void __user * data)3669 static void *copy_mount_options(const void __user * data)
3670 {
3671 	char *copy;
3672 	unsigned left, offset;
3673 
3674 	if (!data)
3675 		return NULL;
3676 
3677 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3678 	if (!copy)
3679 		return ERR_PTR(-ENOMEM);
3680 
3681 	left = copy_from_user(copy, data, PAGE_SIZE);
3682 
3683 	/*
3684 	 * Not all architectures have an exact copy_from_user(). Resort to
3685 	 * byte at a time.
3686 	 */
3687 	offset = PAGE_SIZE - left;
3688 	while (left) {
3689 		char c;
3690 		if (get_user(c, (const char __user *)data + offset))
3691 			break;
3692 		copy[offset] = c;
3693 		left--;
3694 		offset++;
3695 	}
3696 
3697 	if (left == PAGE_SIZE) {
3698 		kfree(copy);
3699 		return ERR_PTR(-EFAULT);
3700 	}
3701 
3702 	return copy;
3703 }
3704 
copy_mount_string(const void __user * data)3705 static char *copy_mount_string(const void __user *data)
3706 {
3707 	return data ? strndup_user(data, PATH_MAX) : NULL;
3708 }
3709 
3710 /*
3711  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3712  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3713  *
3714  * data is a (void *) that can point to any structure up to
3715  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3716  * information (or be NULL).
3717  *
3718  * Pre-0.97 versions of mount() didn't have a flags word.
3719  * When the flags word was introduced its top half was required
3720  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3721  * Therefore, if this magic number is present, it carries no information
3722  * and must be discarded.
3723  */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3724 int path_mount(const char *dev_name, struct path *path,
3725 		const char *type_page, unsigned long flags, void *data_page)
3726 {
3727 	unsigned int mnt_flags = 0, sb_flags;
3728 	int ret;
3729 
3730 	/* Discard magic */
3731 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3732 		flags &= ~MS_MGC_MSK;
3733 
3734 	/* Basic sanity checks */
3735 	if (data_page)
3736 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3737 
3738 	if (flags & MS_NOUSER)
3739 		return -EINVAL;
3740 
3741 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3742 	if (ret)
3743 		return ret;
3744 	if (!may_mount())
3745 		return -EPERM;
3746 	if (flags & SB_MANDLOCK)
3747 		warn_mandlock();
3748 
3749 	/* Default to relatime unless overriden */
3750 	if (!(flags & MS_NOATIME))
3751 		mnt_flags |= MNT_RELATIME;
3752 
3753 	/* Separate the per-mountpoint flags */
3754 	if (flags & MS_NOSUID)
3755 		mnt_flags |= MNT_NOSUID;
3756 	if (flags & MS_NODEV)
3757 		mnt_flags |= MNT_NODEV;
3758 	if (flags & MS_NOEXEC)
3759 		mnt_flags |= MNT_NOEXEC;
3760 	if (flags & MS_NOATIME)
3761 		mnt_flags |= MNT_NOATIME;
3762 	if (flags & MS_NODIRATIME)
3763 		mnt_flags |= MNT_NODIRATIME;
3764 	if (flags & MS_STRICTATIME)
3765 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3766 	if (flags & MS_RDONLY)
3767 		mnt_flags |= MNT_READONLY;
3768 	if (flags & MS_NOSYMFOLLOW)
3769 		mnt_flags |= MNT_NOSYMFOLLOW;
3770 
3771 	/* The default atime for remount is preservation */
3772 	if ((flags & MS_REMOUNT) &&
3773 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3774 		       MS_STRICTATIME)) == 0)) {
3775 		mnt_flags &= ~MNT_ATIME_MASK;
3776 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3777 	}
3778 
3779 	sb_flags = flags & (SB_RDONLY |
3780 			    SB_SYNCHRONOUS |
3781 			    SB_MANDLOCK |
3782 			    SB_DIRSYNC |
3783 			    SB_SILENT |
3784 			    SB_POSIXACL |
3785 			    SB_LAZYTIME |
3786 			    SB_I_VERSION);
3787 
3788 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3789 		return do_reconfigure_mnt(path, mnt_flags);
3790 	if (flags & MS_REMOUNT)
3791 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3792 	if (flags & MS_BIND)
3793 		return do_loopback(path, dev_name, flags & MS_REC);
3794 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3795 		return do_change_type(path, flags);
3796 	if (flags & MS_MOVE)
3797 		return do_move_mount_old(path, dev_name);
3798 
3799 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3800 			    data_page);
3801 }
3802 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3803 long do_mount(const char *dev_name, const char __user *dir_name,
3804 		const char *type_page, unsigned long flags, void *data_page)
3805 {
3806 	struct path path;
3807 	int ret;
3808 
3809 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3810 	if (ret)
3811 		return ret;
3812 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3813 	path_put(&path);
3814 	return ret;
3815 }
3816 
inc_mnt_namespaces(struct user_namespace * ns)3817 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3818 {
3819 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3820 }
3821 
dec_mnt_namespaces(struct ucounts * ucounts)3822 static void dec_mnt_namespaces(struct ucounts *ucounts)
3823 {
3824 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3825 }
3826 
free_mnt_ns(struct mnt_namespace * ns)3827 static void free_mnt_ns(struct mnt_namespace *ns)
3828 {
3829 	if (!is_anon_ns(ns))
3830 		ns_free_inum(&ns->ns);
3831 	dec_mnt_namespaces(ns->ucounts);
3832 	mnt_ns_tree_remove(ns);
3833 }
3834 
3835 /*
3836  * Assign a sequence number so we can detect when we attempt to bind
3837  * mount a reference to an older mount namespace into the current
3838  * mount namespace, preventing reference counting loops.  A 64bit
3839  * number incrementing at 10Ghz will take 12,427 years to wrap which
3840  * is effectively never, so we can ignore the possibility.
3841  */
3842 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3843 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3844 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3845 {
3846 	struct mnt_namespace *new_ns;
3847 	struct ucounts *ucounts;
3848 	int ret;
3849 
3850 	ucounts = inc_mnt_namespaces(user_ns);
3851 	if (!ucounts)
3852 		return ERR_PTR(-ENOSPC);
3853 
3854 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3855 	if (!new_ns) {
3856 		dec_mnt_namespaces(ucounts);
3857 		return ERR_PTR(-ENOMEM);
3858 	}
3859 	if (!anon) {
3860 		ret = ns_alloc_inum(&new_ns->ns);
3861 		if (ret) {
3862 			kfree(new_ns);
3863 			dec_mnt_namespaces(ucounts);
3864 			return ERR_PTR(ret);
3865 		}
3866 	}
3867 	new_ns->ns.ops = &mntns_operations;
3868 	if (!anon)
3869 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3870 	refcount_set(&new_ns->ns.count, 1);
3871 	refcount_set(&new_ns->passive, 1);
3872 	new_ns->mounts = RB_ROOT;
3873 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3874 	init_waitqueue_head(&new_ns->poll);
3875 	new_ns->user_ns = get_user_ns(user_ns);
3876 	new_ns->ucounts = ucounts;
3877 	return new_ns;
3878 }
3879 
3880 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3881 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3882 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3883 {
3884 	struct mnt_namespace *new_ns;
3885 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3886 	struct mount *p, *q;
3887 	struct mount *old;
3888 	struct mount *new;
3889 	int copy_flags;
3890 
3891 	BUG_ON(!ns);
3892 
3893 	if (likely(!(flags & CLONE_NEWNS))) {
3894 		get_mnt_ns(ns);
3895 		return ns;
3896 	}
3897 
3898 	old = ns->root;
3899 
3900 	new_ns = alloc_mnt_ns(user_ns, false);
3901 	if (IS_ERR(new_ns))
3902 		return new_ns;
3903 
3904 	namespace_lock();
3905 	/* First pass: copy the tree topology */
3906 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3907 	if (user_ns != ns->user_ns)
3908 		copy_flags |= CL_SHARED_TO_SLAVE;
3909 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3910 	if (IS_ERR(new)) {
3911 		namespace_unlock();
3912 		free_mnt_ns(new_ns);
3913 		return ERR_CAST(new);
3914 	}
3915 	if (user_ns != ns->user_ns) {
3916 		lock_mount_hash();
3917 		lock_mnt_tree(new);
3918 		unlock_mount_hash();
3919 	}
3920 	new_ns->root = new;
3921 
3922 	/*
3923 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3924 	 * as belonging to new namespace.  We have already acquired a private
3925 	 * fs_struct, so tsk->fs->lock is not needed.
3926 	 */
3927 	p = old;
3928 	q = new;
3929 	while (p) {
3930 		mnt_add_to_ns(new_ns, q);
3931 		new_ns->nr_mounts++;
3932 		if (new_fs) {
3933 			if (&p->mnt == new_fs->root.mnt) {
3934 				new_fs->root.mnt = mntget(&q->mnt);
3935 				rootmnt = &p->mnt;
3936 			}
3937 			if (&p->mnt == new_fs->pwd.mnt) {
3938 				new_fs->pwd.mnt = mntget(&q->mnt);
3939 				pwdmnt = &p->mnt;
3940 			}
3941 		}
3942 		p = next_mnt(p, old);
3943 		q = next_mnt(q, new);
3944 		if (!q)
3945 			break;
3946 		// an mntns binding we'd skipped?
3947 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3948 			p = next_mnt(skip_mnt_tree(p), old);
3949 	}
3950 	mnt_ns_tree_add(new_ns);
3951 	namespace_unlock();
3952 
3953 	if (rootmnt)
3954 		mntput(rootmnt);
3955 	if (pwdmnt)
3956 		mntput(pwdmnt);
3957 
3958 	return new_ns;
3959 }
3960 
mount_subtree(struct vfsmount * m,const char * name)3961 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3962 {
3963 	struct mount *mnt = real_mount(m);
3964 	struct mnt_namespace *ns;
3965 	struct super_block *s;
3966 	struct path path;
3967 	int err;
3968 
3969 	ns = alloc_mnt_ns(&init_user_ns, true);
3970 	if (IS_ERR(ns)) {
3971 		mntput(m);
3972 		return ERR_CAST(ns);
3973 	}
3974 	ns->root = mnt;
3975 	ns->nr_mounts++;
3976 	mnt_add_to_ns(ns, mnt);
3977 
3978 	err = vfs_path_lookup(m->mnt_root, m,
3979 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3980 
3981 	put_mnt_ns(ns);
3982 
3983 	if (err)
3984 		return ERR_PTR(err);
3985 
3986 	/* trade a vfsmount reference for active sb one */
3987 	s = path.mnt->mnt_sb;
3988 	atomic_inc(&s->s_active);
3989 	mntput(path.mnt);
3990 	/* lock the sucker */
3991 	down_write(&s->s_umount);
3992 	/* ... and return the root of (sub)tree on it */
3993 	return path.dentry;
3994 }
3995 EXPORT_SYMBOL(mount_subtree);
3996 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3997 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3998 		char __user *, type, unsigned long, flags, void __user *, data)
3999 {
4000 	int ret;
4001 	char *kernel_type;
4002 	char *kernel_dev;
4003 	void *options;
4004 
4005 	kernel_type = copy_mount_string(type);
4006 	ret = PTR_ERR(kernel_type);
4007 	if (IS_ERR(kernel_type))
4008 		goto out_type;
4009 
4010 	kernel_dev = copy_mount_string(dev_name);
4011 	ret = PTR_ERR(kernel_dev);
4012 	if (IS_ERR(kernel_dev))
4013 		goto out_dev;
4014 
4015 	options = copy_mount_options(data);
4016 	ret = PTR_ERR(options);
4017 	if (IS_ERR(options))
4018 		goto out_data;
4019 
4020 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4021 
4022 	kfree(options);
4023 out_data:
4024 	kfree(kernel_dev);
4025 out_dev:
4026 	kfree(kernel_type);
4027 out_type:
4028 	return ret;
4029 }
4030 
4031 #define FSMOUNT_VALID_FLAGS                                                    \
4032 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4033 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4034 	 MOUNT_ATTR_NOSYMFOLLOW)
4035 
4036 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4037 
4038 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4039 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4040 
attr_flags_to_mnt_flags(u64 attr_flags)4041 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4042 {
4043 	unsigned int mnt_flags = 0;
4044 
4045 	if (attr_flags & MOUNT_ATTR_RDONLY)
4046 		mnt_flags |= MNT_READONLY;
4047 	if (attr_flags & MOUNT_ATTR_NOSUID)
4048 		mnt_flags |= MNT_NOSUID;
4049 	if (attr_flags & MOUNT_ATTR_NODEV)
4050 		mnt_flags |= MNT_NODEV;
4051 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4052 		mnt_flags |= MNT_NOEXEC;
4053 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4054 		mnt_flags |= MNT_NODIRATIME;
4055 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4056 		mnt_flags |= MNT_NOSYMFOLLOW;
4057 
4058 	return mnt_flags;
4059 }
4060 
4061 /*
4062  * Create a kernel mount representation for a new, prepared superblock
4063  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4064  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4065 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4066 		unsigned int, attr_flags)
4067 {
4068 	struct mnt_namespace *ns;
4069 	struct fs_context *fc;
4070 	struct file *file;
4071 	struct path newmount;
4072 	struct mount *mnt;
4073 	struct fd f;
4074 	unsigned int mnt_flags = 0;
4075 	long ret;
4076 
4077 	if (!may_mount())
4078 		return -EPERM;
4079 
4080 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4081 		return -EINVAL;
4082 
4083 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4084 		return -EINVAL;
4085 
4086 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4087 
4088 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4089 	case MOUNT_ATTR_STRICTATIME:
4090 		break;
4091 	case MOUNT_ATTR_NOATIME:
4092 		mnt_flags |= MNT_NOATIME;
4093 		break;
4094 	case MOUNT_ATTR_RELATIME:
4095 		mnt_flags |= MNT_RELATIME;
4096 		break;
4097 	default:
4098 		return -EINVAL;
4099 	}
4100 
4101 	f = fdget(fs_fd);
4102 	if (!f.file)
4103 		return -EBADF;
4104 
4105 	ret = -EINVAL;
4106 	if (f.file->f_op != &fscontext_fops)
4107 		goto err_fsfd;
4108 
4109 	fc = f.file->private_data;
4110 
4111 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4112 	if (ret < 0)
4113 		goto err_fsfd;
4114 
4115 	/* There must be a valid superblock or we can't mount it */
4116 	ret = -EINVAL;
4117 	if (!fc->root)
4118 		goto err_unlock;
4119 
4120 	ret = -EPERM;
4121 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4122 		pr_warn("VFS: Mount too revealing\n");
4123 		goto err_unlock;
4124 	}
4125 
4126 	ret = -EBUSY;
4127 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4128 		goto err_unlock;
4129 
4130 	if (fc->sb_flags & SB_MANDLOCK)
4131 		warn_mandlock();
4132 
4133 	newmount.mnt = vfs_create_mount(fc);
4134 	if (IS_ERR(newmount.mnt)) {
4135 		ret = PTR_ERR(newmount.mnt);
4136 		goto err_unlock;
4137 	}
4138 	newmount.dentry = dget(fc->root);
4139 	newmount.mnt->mnt_flags = mnt_flags;
4140 
4141 	/* We've done the mount bit - now move the file context into more or
4142 	 * less the same state as if we'd done an fspick().  We don't want to
4143 	 * do any memory allocation or anything like that at this point as we
4144 	 * don't want to have to handle any errors incurred.
4145 	 */
4146 	vfs_clean_context(fc);
4147 
4148 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4149 	if (IS_ERR(ns)) {
4150 		ret = PTR_ERR(ns);
4151 		goto err_path;
4152 	}
4153 	mnt = real_mount(newmount.mnt);
4154 	ns->root = mnt;
4155 	ns->nr_mounts = 1;
4156 	mnt_add_to_ns(ns, mnt);
4157 	mntget(newmount.mnt);
4158 
4159 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4160 	 * it, not just simply put it.
4161 	 */
4162 	file = dentry_open(&newmount, O_PATH, fc->cred);
4163 	if (IS_ERR(file)) {
4164 		dissolve_on_fput(newmount.mnt);
4165 		ret = PTR_ERR(file);
4166 		goto err_path;
4167 	}
4168 	file->f_mode |= FMODE_NEED_UNMOUNT;
4169 
4170 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4171 	if (ret >= 0)
4172 		fd_install(ret, file);
4173 	else
4174 		fput(file);
4175 
4176 err_path:
4177 	path_put(&newmount);
4178 err_unlock:
4179 	mutex_unlock(&fc->uapi_mutex);
4180 err_fsfd:
4181 	fdput(f);
4182 	return ret;
4183 }
4184 
4185 /*
4186  * Move a mount from one place to another.  In combination with
4187  * fsopen()/fsmount() this is used to install a new mount and in combination
4188  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4189  * a mount subtree.
4190  *
4191  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4192  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4193 SYSCALL_DEFINE5(move_mount,
4194 		int, from_dfd, const char __user *, from_pathname,
4195 		int, to_dfd, const char __user *, to_pathname,
4196 		unsigned int, flags)
4197 {
4198 	struct path from_path, to_path;
4199 	unsigned int lflags;
4200 	int ret = 0;
4201 
4202 	if (!may_mount())
4203 		return -EPERM;
4204 
4205 	if (flags & ~MOVE_MOUNT__MASK)
4206 		return -EINVAL;
4207 
4208 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4209 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4210 		return -EINVAL;
4211 
4212 	/* If someone gives a pathname, they aren't permitted to move
4213 	 * from an fd that requires unmount as we can't get at the flag
4214 	 * to clear it afterwards.
4215 	 */
4216 	lflags = 0;
4217 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4218 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4219 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4220 
4221 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4222 	if (ret < 0)
4223 		return ret;
4224 
4225 	lflags = 0;
4226 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4227 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4228 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4229 
4230 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4231 	if (ret < 0)
4232 		goto out_from;
4233 
4234 	ret = security_move_mount(&from_path, &to_path);
4235 	if (ret < 0)
4236 		goto out_to;
4237 
4238 	if (flags & MOVE_MOUNT_SET_GROUP)
4239 		ret = do_set_group(&from_path, &to_path);
4240 	else
4241 		ret = do_move_mount(&from_path, &to_path,
4242 				    (flags & MOVE_MOUNT_BENEATH));
4243 
4244 out_to:
4245 	path_put(&to_path);
4246 out_from:
4247 	path_put(&from_path);
4248 	return ret;
4249 }
4250 
4251 /*
4252  * Return true if path is reachable from root
4253  *
4254  * namespace_sem or mount_lock is held
4255  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4256 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4257 			 const struct path *root)
4258 {
4259 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4260 		dentry = mnt->mnt_mountpoint;
4261 		mnt = mnt->mnt_parent;
4262 	}
4263 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4264 }
4265 
path_is_under(const struct path * path1,const struct path * path2)4266 bool path_is_under(const struct path *path1, const struct path *path2)
4267 {
4268 	bool res;
4269 	read_seqlock_excl(&mount_lock);
4270 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4271 	read_sequnlock_excl(&mount_lock);
4272 	return res;
4273 }
4274 EXPORT_SYMBOL(path_is_under);
4275 
4276 /*
4277  * pivot_root Semantics:
4278  * Moves the root file system of the current process to the directory put_old,
4279  * makes new_root as the new root file system of the current process, and sets
4280  * root/cwd of all processes which had them on the current root to new_root.
4281  *
4282  * Restrictions:
4283  * The new_root and put_old must be directories, and  must not be on the
4284  * same file  system as the current process root. The put_old  must  be
4285  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4286  * pointed to by put_old must yield the same directory as new_root. No other
4287  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4288  *
4289  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4290  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4291  * in this situation.
4292  *
4293  * Notes:
4294  *  - we don't move root/cwd if they are not at the root (reason: if something
4295  *    cared enough to change them, it's probably wrong to force them elsewhere)
4296  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4297  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4298  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4299  *    first.
4300  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4301 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4302 		const char __user *, put_old)
4303 {
4304 	struct path new, old, root;
4305 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4306 	struct mountpoint *old_mp, *root_mp;
4307 	int error;
4308 
4309 	if (!may_mount())
4310 		return -EPERM;
4311 
4312 	error = user_path_at(AT_FDCWD, new_root,
4313 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4314 	if (error)
4315 		goto out0;
4316 
4317 	error = user_path_at(AT_FDCWD, put_old,
4318 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4319 	if (error)
4320 		goto out1;
4321 
4322 	error = security_sb_pivotroot(&old, &new);
4323 	if (error)
4324 		goto out2;
4325 
4326 	get_fs_root(current->fs, &root);
4327 	old_mp = lock_mount(&old);
4328 	error = PTR_ERR(old_mp);
4329 	if (IS_ERR(old_mp))
4330 		goto out3;
4331 
4332 	error = -EINVAL;
4333 	new_mnt = real_mount(new.mnt);
4334 	root_mnt = real_mount(root.mnt);
4335 	old_mnt = real_mount(old.mnt);
4336 	ex_parent = new_mnt->mnt_parent;
4337 	root_parent = root_mnt->mnt_parent;
4338 	if (IS_MNT_SHARED(old_mnt) ||
4339 		IS_MNT_SHARED(ex_parent) ||
4340 		IS_MNT_SHARED(root_parent))
4341 		goto out4;
4342 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4343 		goto out4;
4344 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4345 		goto out4;
4346 	error = -ENOENT;
4347 	if (d_unlinked(new.dentry))
4348 		goto out4;
4349 	error = -EBUSY;
4350 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4351 		goto out4; /* loop, on the same file system  */
4352 	error = -EINVAL;
4353 	if (!path_mounted(&root))
4354 		goto out4; /* not a mountpoint */
4355 	if (!mnt_has_parent(root_mnt))
4356 		goto out4; /* not attached */
4357 	if (!path_mounted(&new))
4358 		goto out4; /* not a mountpoint */
4359 	if (!mnt_has_parent(new_mnt))
4360 		goto out4; /* not attached */
4361 	/* make sure we can reach put_old from new_root */
4362 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4363 		goto out4;
4364 	/* make certain new is below the root */
4365 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4366 		goto out4;
4367 	lock_mount_hash();
4368 	umount_mnt(new_mnt);
4369 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4370 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4371 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4372 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4373 	}
4374 	/* mount old root on put_old */
4375 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4376 	/* mount new_root on / */
4377 	attach_mnt(new_mnt, root_parent, root_mp, false);
4378 	mnt_add_count(root_parent, -1);
4379 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4380 	/* A moved mount should not expire automatically */
4381 	list_del_init(&new_mnt->mnt_expire);
4382 	put_mountpoint(root_mp);
4383 	unlock_mount_hash();
4384 	chroot_fs_refs(&root, &new);
4385 	error = 0;
4386 out4:
4387 	unlock_mount(old_mp);
4388 	if (!error)
4389 		mntput_no_expire(ex_parent);
4390 out3:
4391 	path_put(&root);
4392 out2:
4393 	path_put(&old);
4394 out1:
4395 	path_put(&new);
4396 out0:
4397 	return error;
4398 }
4399 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4400 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4401 {
4402 	unsigned int flags = mnt->mnt.mnt_flags;
4403 
4404 	/*  flags to clear */
4405 	flags &= ~kattr->attr_clr;
4406 	/* flags to raise */
4407 	flags |= kattr->attr_set;
4408 
4409 	return flags;
4410 }
4411 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4412 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4413 {
4414 	struct vfsmount *m = &mnt->mnt;
4415 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4416 
4417 	if (!kattr->mnt_idmap)
4418 		return 0;
4419 
4420 	/*
4421 	 * Creating an idmapped mount with the filesystem wide idmapping
4422 	 * doesn't make sense so block that. We don't allow mushy semantics.
4423 	 */
4424 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4425 		return -EINVAL;
4426 
4427 	/*
4428 	 * Once a mount has been idmapped we don't allow it to change its
4429 	 * mapping. It makes things simpler and callers can just create
4430 	 * another bind-mount they can idmap if they want to.
4431 	 */
4432 	if (is_idmapped_mnt(m))
4433 		return -EPERM;
4434 
4435 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4436 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4437 		return -EINVAL;
4438 
4439 	/* We're not controlling the superblock. */
4440 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4441 		return -EPERM;
4442 
4443 	/* Mount has already been visible in the filesystem hierarchy. */
4444 	if (!is_anon_ns(mnt->mnt_ns))
4445 		return -EINVAL;
4446 
4447 	return 0;
4448 }
4449 
4450 /**
4451  * mnt_allow_writers() - check whether the attribute change allows writers
4452  * @kattr: the new mount attributes
4453  * @mnt: the mount to which @kattr will be applied
4454  *
4455  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4456  *
4457  * Return: true if writers need to be held, false if not
4458  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4459 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4460 				     const struct mount *mnt)
4461 {
4462 	return (!(kattr->attr_set & MNT_READONLY) ||
4463 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4464 	       !kattr->mnt_idmap;
4465 }
4466 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4467 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4468 {
4469 	struct mount *m;
4470 	int err;
4471 
4472 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4473 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4474 			err = -EPERM;
4475 			break;
4476 		}
4477 
4478 		err = can_idmap_mount(kattr, m);
4479 		if (err)
4480 			break;
4481 
4482 		if (!mnt_allow_writers(kattr, m)) {
4483 			err = mnt_hold_writers(m);
4484 			if (err)
4485 				break;
4486 		}
4487 
4488 		if (!kattr->recurse)
4489 			return 0;
4490 	}
4491 
4492 	if (err) {
4493 		struct mount *p;
4494 
4495 		/*
4496 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4497 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4498 		 * mounts and needs to take care to include the first mount.
4499 		 */
4500 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4501 			/* If we had to hold writers unblock them. */
4502 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4503 				mnt_unhold_writers(p);
4504 
4505 			/*
4506 			 * We're done once the first mount we changed got
4507 			 * MNT_WRITE_HOLD unset.
4508 			 */
4509 			if (p == m)
4510 				break;
4511 		}
4512 	}
4513 	return err;
4514 }
4515 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4516 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4517 {
4518 	if (!kattr->mnt_idmap)
4519 		return;
4520 
4521 	/*
4522 	 * Pairs with smp_load_acquire() in mnt_idmap().
4523 	 *
4524 	 * Since we only allow a mount to change the idmapping once and
4525 	 * verified this in can_idmap_mount() we know that the mount has
4526 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4527 	 * references.
4528 	 */
4529 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4530 }
4531 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4532 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4533 {
4534 	struct mount *m;
4535 
4536 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4537 		unsigned int flags;
4538 
4539 		do_idmap_mount(kattr, m);
4540 		flags = recalc_flags(kattr, m);
4541 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4542 
4543 		/* If we had to hold writers unblock them. */
4544 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4545 			mnt_unhold_writers(m);
4546 
4547 		if (kattr->propagation)
4548 			change_mnt_propagation(m, kattr->propagation);
4549 		if (!kattr->recurse)
4550 			break;
4551 	}
4552 	touch_mnt_namespace(mnt->mnt_ns);
4553 }
4554 
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4555 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4556 {
4557 	struct mount *mnt = real_mount(path->mnt);
4558 	int err = 0;
4559 
4560 	if (!path_mounted(path))
4561 		return -EINVAL;
4562 
4563 	if (kattr->mnt_userns) {
4564 		struct mnt_idmap *mnt_idmap;
4565 
4566 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4567 		if (IS_ERR(mnt_idmap))
4568 			return PTR_ERR(mnt_idmap);
4569 		kattr->mnt_idmap = mnt_idmap;
4570 	}
4571 
4572 	if (kattr->propagation) {
4573 		/*
4574 		 * Only take namespace_lock() if we're actually changing
4575 		 * propagation.
4576 		 */
4577 		namespace_lock();
4578 		if (kattr->propagation == MS_SHARED) {
4579 			err = invent_group_ids(mnt, kattr->recurse);
4580 			if (err) {
4581 				namespace_unlock();
4582 				return err;
4583 			}
4584 		}
4585 	}
4586 
4587 	err = -EINVAL;
4588 	lock_mount_hash();
4589 
4590 	/* Ensure that this isn't anything purely vfs internal. */
4591 	if (!is_mounted(&mnt->mnt))
4592 		goto out;
4593 
4594 	/*
4595 	 * If this is an attached mount make sure it's located in the callers
4596 	 * mount namespace. If it's not don't let the caller interact with it.
4597 	 *
4598 	 * If this mount doesn't have a parent it's most often simply a
4599 	 * detached mount with an anonymous mount namespace. IOW, something
4600 	 * that's simply not attached yet. But there are apparently also users
4601 	 * that do change mount properties on the rootfs itself. That obviously
4602 	 * neither has a parent nor is it a detached mount so we cannot
4603 	 * unconditionally check for detached mounts.
4604 	 */
4605 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4606 		goto out;
4607 
4608 	/*
4609 	 * First, we get the mount tree in a shape where we can change mount
4610 	 * properties without failure. If we succeeded to do so we commit all
4611 	 * changes and if we failed we clean up.
4612 	 */
4613 	err = mount_setattr_prepare(kattr, mnt);
4614 	if (!err)
4615 		mount_setattr_commit(kattr, mnt);
4616 
4617 out:
4618 	unlock_mount_hash();
4619 
4620 	if (kattr->propagation) {
4621 		if (err)
4622 			cleanup_group_ids(mnt, NULL);
4623 		namespace_unlock();
4624 	}
4625 
4626 	return err;
4627 }
4628 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4629 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4630 				struct mount_kattr *kattr, unsigned int flags)
4631 {
4632 	int err = 0;
4633 	struct ns_common *ns;
4634 	struct user_namespace *mnt_userns;
4635 	struct fd f;
4636 
4637 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4638 		return 0;
4639 
4640 	/*
4641 	 * We currently do not support clearing an idmapped mount. If this ever
4642 	 * is a use-case we can revisit this but for now let's keep it simple
4643 	 * and not allow it.
4644 	 */
4645 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4646 		return -EINVAL;
4647 
4648 	if (attr->userns_fd > INT_MAX)
4649 		return -EINVAL;
4650 
4651 	f = fdget(attr->userns_fd);
4652 	if (!f.file)
4653 		return -EBADF;
4654 
4655 	if (!proc_ns_file(f.file)) {
4656 		err = -EINVAL;
4657 		goto out_fput;
4658 	}
4659 
4660 	ns = get_proc_ns(file_inode(f.file));
4661 	if (ns->ops->type != CLONE_NEWUSER) {
4662 		err = -EINVAL;
4663 		goto out_fput;
4664 	}
4665 
4666 	/*
4667 	 * The initial idmapping cannot be used to create an idmapped
4668 	 * mount. We use the initial idmapping as an indicator of a mount
4669 	 * that is not idmapped. It can simply be passed into helpers that
4670 	 * are aware of idmapped mounts as a convenient shortcut. A user
4671 	 * can just create a dedicated identity mapping to achieve the same
4672 	 * result.
4673 	 */
4674 	mnt_userns = container_of(ns, struct user_namespace, ns);
4675 	if (mnt_userns == &init_user_ns) {
4676 		err = -EPERM;
4677 		goto out_fput;
4678 	}
4679 
4680 	/* We're not controlling the target namespace. */
4681 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4682 		err = -EPERM;
4683 		goto out_fput;
4684 	}
4685 
4686 	kattr->mnt_userns = get_user_ns(mnt_userns);
4687 
4688 out_fput:
4689 	fdput(f);
4690 	return err;
4691 }
4692 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4693 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4694 			     struct mount_kattr *kattr, unsigned int flags)
4695 {
4696 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4697 
4698 	if (flags & AT_NO_AUTOMOUNT)
4699 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4700 	if (flags & AT_SYMLINK_NOFOLLOW)
4701 		lookup_flags &= ~LOOKUP_FOLLOW;
4702 	if (flags & AT_EMPTY_PATH)
4703 		lookup_flags |= LOOKUP_EMPTY;
4704 
4705 	*kattr = (struct mount_kattr) {
4706 		.lookup_flags	= lookup_flags,
4707 		.recurse	= !!(flags & AT_RECURSIVE),
4708 	};
4709 
4710 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4711 		return -EINVAL;
4712 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4713 		return -EINVAL;
4714 	kattr->propagation = attr->propagation;
4715 
4716 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4717 		return -EINVAL;
4718 
4719 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4720 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4721 
4722 	/*
4723 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4724 	 * users wanting to transition to a different atime setting cannot
4725 	 * simply specify the atime setting in @attr_set, but must also
4726 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4727 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4728 	 * @attr_clr and that @attr_set can't have any atime bits set if
4729 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4730 	 */
4731 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4732 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4733 			return -EINVAL;
4734 
4735 		/*
4736 		 * Clear all previous time settings as they are mutually
4737 		 * exclusive.
4738 		 */
4739 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4740 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4741 		case MOUNT_ATTR_RELATIME:
4742 			kattr->attr_set |= MNT_RELATIME;
4743 			break;
4744 		case MOUNT_ATTR_NOATIME:
4745 			kattr->attr_set |= MNT_NOATIME;
4746 			break;
4747 		case MOUNT_ATTR_STRICTATIME:
4748 			break;
4749 		default:
4750 			return -EINVAL;
4751 		}
4752 	} else {
4753 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4754 			return -EINVAL;
4755 	}
4756 
4757 	return build_mount_idmapped(attr, usize, kattr, flags);
4758 }
4759 
finish_mount_kattr(struct mount_kattr * kattr)4760 static void finish_mount_kattr(struct mount_kattr *kattr)
4761 {
4762 	put_user_ns(kattr->mnt_userns);
4763 	kattr->mnt_userns = NULL;
4764 
4765 	if (kattr->mnt_idmap)
4766 		mnt_idmap_put(kattr->mnt_idmap);
4767 }
4768 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4769 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4770 		unsigned int, flags, struct mount_attr __user *, uattr,
4771 		size_t, usize)
4772 {
4773 	int err;
4774 	struct path target;
4775 	struct mount_attr attr;
4776 	struct mount_kattr kattr;
4777 
4778 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4779 
4780 	if (flags & ~(AT_EMPTY_PATH |
4781 		      AT_RECURSIVE |
4782 		      AT_SYMLINK_NOFOLLOW |
4783 		      AT_NO_AUTOMOUNT))
4784 		return -EINVAL;
4785 
4786 	if (unlikely(usize > PAGE_SIZE))
4787 		return -E2BIG;
4788 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4789 		return -EINVAL;
4790 
4791 	if (!may_mount())
4792 		return -EPERM;
4793 
4794 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4795 	if (err)
4796 		return err;
4797 
4798 	/* Don't bother walking through the mounts if this is a nop. */
4799 	if (attr.attr_set == 0 &&
4800 	    attr.attr_clr == 0 &&
4801 	    attr.propagation == 0)
4802 		return 0;
4803 
4804 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4805 	if (err)
4806 		return err;
4807 
4808 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4809 	if (!err) {
4810 		err = do_mount_setattr(&target, &kattr);
4811 		path_put(&target);
4812 	}
4813 	finish_mount_kattr(&kattr);
4814 	return err;
4815 }
4816 
show_path(struct seq_file * m,struct dentry * root)4817 int show_path(struct seq_file *m, struct dentry *root)
4818 {
4819 	if (root->d_sb->s_op->show_path)
4820 		return root->d_sb->s_op->show_path(m, root);
4821 
4822 	seq_dentry(m, root, " \t\n\\");
4823 	return 0;
4824 }
4825 
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)4826 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4827 {
4828 	struct mount *mnt = mnt_find_id_at(ns, id);
4829 
4830 	if (!mnt || mnt->mnt_id_unique != id)
4831 		return NULL;
4832 
4833 	return &mnt->mnt;
4834 }
4835 
4836 struct kstatmount {
4837 	struct statmount __user *buf;
4838 	size_t bufsize;
4839 	struct vfsmount *mnt;
4840 	u64 mask;
4841 	struct path root;
4842 	struct statmount sm;
4843 	struct seq_file seq;
4844 };
4845 
mnt_to_attr_flags(struct vfsmount * mnt)4846 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4847 {
4848 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4849 	u64 attr_flags = 0;
4850 
4851 	if (mnt_flags & MNT_READONLY)
4852 		attr_flags |= MOUNT_ATTR_RDONLY;
4853 	if (mnt_flags & MNT_NOSUID)
4854 		attr_flags |= MOUNT_ATTR_NOSUID;
4855 	if (mnt_flags & MNT_NODEV)
4856 		attr_flags |= MOUNT_ATTR_NODEV;
4857 	if (mnt_flags & MNT_NOEXEC)
4858 		attr_flags |= MOUNT_ATTR_NOEXEC;
4859 	if (mnt_flags & MNT_NODIRATIME)
4860 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4861 	if (mnt_flags & MNT_NOSYMFOLLOW)
4862 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4863 
4864 	if (mnt_flags & MNT_NOATIME)
4865 		attr_flags |= MOUNT_ATTR_NOATIME;
4866 	else if (mnt_flags & MNT_RELATIME)
4867 		attr_flags |= MOUNT_ATTR_RELATIME;
4868 	else
4869 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4870 
4871 	if (is_idmapped_mnt(mnt))
4872 		attr_flags |= MOUNT_ATTR_IDMAP;
4873 
4874 	return attr_flags;
4875 }
4876 
mnt_to_propagation_flags(struct mount * m)4877 static u64 mnt_to_propagation_flags(struct mount *m)
4878 {
4879 	u64 propagation = 0;
4880 
4881 	if (IS_MNT_SHARED(m))
4882 		propagation |= MS_SHARED;
4883 	if (IS_MNT_SLAVE(m))
4884 		propagation |= MS_SLAVE;
4885 	if (IS_MNT_UNBINDABLE(m))
4886 		propagation |= MS_UNBINDABLE;
4887 	if (!propagation)
4888 		propagation |= MS_PRIVATE;
4889 
4890 	return propagation;
4891 }
4892 
statmount_sb_basic(struct kstatmount * s)4893 static void statmount_sb_basic(struct kstatmount *s)
4894 {
4895 	struct super_block *sb = s->mnt->mnt_sb;
4896 
4897 	s->sm.mask |= STATMOUNT_SB_BASIC;
4898 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4899 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4900 	s->sm.sb_magic = sb->s_magic;
4901 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4902 }
4903 
statmount_mnt_basic(struct kstatmount * s)4904 static void statmount_mnt_basic(struct kstatmount *s)
4905 {
4906 	struct mount *m = real_mount(s->mnt);
4907 
4908 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4909 	s->sm.mnt_id = m->mnt_id_unique;
4910 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4911 	s->sm.mnt_id_old = m->mnt_id;
4912 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4913 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4914 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4915 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4916 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4917 }
4918 
statmount_propagate_from(struct kstatmount * s)4919 static void statmount_propagate_from(struct kstatmount *s)
4920 {
4921 	struct mount *m = real_mount(s->mnt);
4922 
4923 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4924 	if (IS_MNT_SLAVE(m))
4925 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
4926 }
4927 
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)4928 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4929 {
4930 	int ret;
4931 	size_t start = seq->count;
4932 
4933 	ret = show_path(seq, s->mnt->mnt_root);
4934 	if (ret)
4935 		return ret;
4936 
4937 	if (unlikely(seq_has_overflowed(seq)))
4938 		return -EAGAIN;
4939 
4940 	/*
4941          * Unescape the result. It would be better if supplied string was not
4942          * escaped in the first place, but that's a pretty invasive change.
4943          */
4944 	seq->buf[seq->count] = '\0';
4945 	seq->count = start;
4946 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4947 	return 0;
4948 }
4949 
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)4950 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4951 {
4952 	struct vfsmount *mnt = s->mnt;
4953 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4954 	int err;
4955 
4956 	err = seq_path_root(seq, &mnt_path, &s->root, "");
4957 	return err == SEQ_SKIP ? 0 : err;
4958 }
4959 
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)4960 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4961 {
4962 	struct super_block *sb = s->mnt->mnt_sb;
4963 
4964 	seq_puts(seq, sb->s_type->name);
4965 	return 0;
4966 }
4967 
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)4968 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
4969 {
4970 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
4971 	s->sm.mnt_ns_id = ns->seq;
4972 }
4973 
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)4974 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
4975 {
4976 	struct vfsmount *mnt = s->mnt;
4977 	struct super_block *sb = mnt->mnt_sb;
4978 	int err;
4979 
4980 	if (sb->s_op->show_options) {
4981 		size_t start = seq->count;
4982 
4983 		err = sb->s_op->show_options(seq, mnt->mnt_root);
4984 		if (err)
4985 			return err;
4986 
4987 		if (unlikely(seq_has_overflowed(seq)))
4988 			return -EAGAIN;
4989 
4990 		if (seq->count == start)
4991 			return 0;
4992 
4993 		/* skip leading comma */
4994 		memmove(seq->buf + start, seq->buf + start + 1,
4995 			seq->count - start - 1);
4996 		seq->count--;
4997 	}
4998 
4999 	return 0;
5000 }
5001 
statmount_string(struct kstatmount * s,u64 flag)5002 static int statmount_string(struct kstatmount *s, u64 flag)
5003 {
5004 	int ret;
5005 	size_t kbufsize;
5006 	struct seq_file *seq = &s->seq;
5007 	struct statmount *sm = &s->sm;
5008 
5009 	switch (flag) {
5010 	case STATMOUNT_FS_TYPE:
5011 		sm->fs_type = seq->count;
5012 		ret = statmount_fs_type(s, seq);
5013 		break;
5014 	case STATMOUNT_MNT_ROOT:
5015 		sm->mnt_root = seq->count;
5016 		ret = statmount_mnt_root(s, seq);
5017 		break;
5018 	case STATMOUNT_MNT_POINT:
5019 		sm->mnt_point = seq->count;
5020 		ret = statmount_mnt_point(s, seq);
5021 		break;
5022 	case STATMOUNT_MNT_OPTS:
5023 		sm->mnt_opts = seq->count;
5024 		ret = statmount_mnt_opts(s, seq);
5025 		break;
5026 	default:
5027 		WARN_ON_ONCE(true);
5028 		return -EINVAL;
5029 	}
5030 
5031 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5032 		return -EOVERFLOW;
5033 	if (kbufsize >= s->bufsize)
5034 		return -EOVERFLOW;
5035 
5036 	/* signal a retry */
5037 	if (unlikely(seq_has_overflowed(seq)))
5038 		return -EAGAIN;
5039 
5040 	if (ret)
5041 		return ret;
5042 
5043 	seq->buf[seq->count++] = '\0';
5044 	sm->mask |= flag;
5045 	return 0;
5046 }
5047 
copy_statmount_to_user(struct kstatmount * s)5048 static int copy_statmount_to_user(struct kstatmount *s)
5049 {
5050 	struct statmount *sm = &s->sm;
5051 	struct seq_file *seq = &s->seq;
5052 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5053 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5054 
5055 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5056 		return -EFAULT;
5057 
5058 	/* Return the number of bytes copied to the buffer */
5059 	sm->size = copysize + seq->count;
5060 	if (copy_to_user(s->buf, sm, copysize))
5061 		return -EFAULT;
5062 
5063 	return 0;
5064 }
5065 
listmnt_next(struct mount * curr,bool reverse)5066 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5067 {
5068 	struct rb_node *node;
5069 
5070 	if (reverse)
5071 		node = rb_prev(&curr->mnt_node);
5072 	else
5073 		node = rb_next(&curr->mnt_node);
5074 
5075 	return node_to_mount(node);
5076 }
5077 
grab_requested_root(struct mnt_namespace * ns,struct path * root)5078 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5079 {
5080 	struct mount *first, *child;
5081 
5082 	rwsem_assert_held(&namespace_sem);
5083 
5084 	/* We're looking at our own ns, just use get_fs_root. */
5085 	if (ns == current->nsproxy->mnt_ns) {
5086 		get_fs_root(current->fs, root);
5087 		return 0;
5088 	}
5089 
5090 	/*
5091 	 * We have to find the first mount in our ns and use that, however it
5092 	 * may not exist, so handle that properly.
5093 	 */
5094 	if (RB_EMPTY_ROOT(&ns->mounts))
5095 		return -ENOENT;
5096 
5097 	first = child = ns->root;
5098 	for (;;) {
5099 		child = listmnt_next(child, false);
5100 		if (!child)
5101 			return -ENOENT;
5102 		if (child->mnt_parent == first)
5103 			break;
5104 	}
5105 
5106 	root->mnt = mntget(&child->mnt);
5107 	root->dentry = dget(root->mnt->mnt_root);
5108 	return 0;
5109 }
5110 
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5111 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5112 			struct mnt_namespace *ns)
5113 {
5114 	struct path root __free(path_put) = {};
5115 	struct mount *m;
5116 	int err;
5117 
5118 	/* Has the namespace already been emptied? */
5119 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5120 		return -ENOENT;
5121 
5122 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5123 	if (!s->mnt)
5124 		return -ENOENT;
5125 
5126 	err = grab_requested_root(ns, &root);
5127 	if (err)
5128 		return err;
5129 
5130 	/*
5131 	 * Don't trigger audit denials. We just want to determine what
5132 	 * mounts to show users.
5133 	 */
5134 	m = real_mount(s->mnt);
5135 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5136 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5137 		return -EPERM;
5138 
5139 	err = security_sb_statfs(s->mnt->mnt_root);
5140 	if (err)
5141 		return err;
5142 
5143 	s->root = root;
5144 	if (s->mask & STATMOUNT_SB_BASIC)
5145 		statmount_sb_basic(s);
5146 
5147 	if (s->mask & STATMOUNT_MNT_BASIC)
5148 		statmount_mnt_basic(s);
5149 
5150 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5151 		statmount_propagate_from(s);
5152 
5153 	if (s->mask & STATMOUNT_FS_TYPE)
5154 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5155 
5156 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5157 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5158 
5159 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5160 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5161 
5162 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5163 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5164 
5165 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5166 		statmount_mnt_ns_id(s, ns);
5167 
5168 	if (err)
5169 		return err;
5170 
5171 	return 0;
5172 }
5173 
retry_statmount(const long ret,size_t * seq_size)5174 static inline bool retry_statmount(const long ret, size_t *seq_size)
5175 {
5176 	if (likely(ret != -EAGAIN))
5177 		return false;
5178 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5179 		return false;
5180 	if (unlikely(*seq_size > MAX_RW_COUNT))
5181 		return false;
5182 	return true;
5183 }
5184 
5185 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5186 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS)
5187 
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5188 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5189 			      struct statmount __user *buf, size_t bufsize,
5190 			      size_t seq_size)
5191 {
5192 	if (!access_ok(buf, bufsize))
5193 		return -EFAULT;
5194 
5195 	memset(ks, 0, sizeof(*ks));
5196 	ks->mask = kreq->param;
5197 	ks->buf = buf;
5198 	ks->bufsize = bufsize;
5199 
5200 	if (ks->mask & STATMOUNT_STRING_REQ) {
5201 		if (bufsize == sizeof(ks->sm))
5202 			return -EOVERFLOW;
5203 
5204 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5205 		if (!ks->seq.buf)
5206 			return -ENOMEM;
5207 
5208 		ks->seq.size = seq_size;
5209 	}
5210 
5211 	return 0;
5212 }
5213 
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5214 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5215 			   struct mnt_id_req *kreq)
5216 {
5217 	int ret;
5218 	size_t usize;
5219 
5220 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5221 
5222 	ret = get_user(usize, &req->size);
5223 	if (ret)
5224 		return -EFAULT;
5225 	if (unlikely(usize > PAGE_SIZE))
5226 		return -E2BIG;
5227 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5228 		return -EINVAL;
5229 	memset(kreq, 0, sizeof(*kreq));
5230 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5231 	if (ret)
5232 		return ret;
5233 	if (kreq->spare != 0)
5234 		return -EINVAL;
5235 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5236 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5237 		return -EINVAL;
5238 	return 0;
5239 }
5240 
5241 /*
5242  * If the user requested a specific mount namespace id, look that up and return
5243  * that, or if not simply grab a passive reference on our mount namespace and
5244  * return that.
5245  */
grab_requested_mnt_ns(u64 mnt_ns_id)5246 static struct mnt_namespace *grab_requested_mnt_ns(u64 mnt_ns_id)
5247 {
5248 	if (mnt_ns_id)
5249 		return lookup_mnt_ns(mnt_ns_id);
5250 	refcount_inc(&current->nsproxy->mnt_ns->passive);
5251 	return current->nsproxy->mnt_ns;
5252 }
5253 
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5254 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5255 		struct statmount __user *, buf, size_t, bufsize,
5256 		unsigned int, flags)
5257 {
5258 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5259 	struct kstatmount *ks __free(kfree) = NULL;
5260 	struct mnt_id_req kreq;
5261 	/* We currently support retrieval of 3 strings. */
5262 	size_t seq_size = 3 * PATH_MAX;
5263 	int ret;
5264 
5265 	if (flags)
5266 		return -EINVAL;
5267 
5268 	ret = copy_mnt_id_req(req, &kreq);
5269 	if (ret)
5270 		return ret;
5271 
5272 	ns = grab_requested_mnt_ns(kreq.mnt_ns_id);
5273 	if (!ns)
5274 		return -ENOENT;
5275 
5276 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5277 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5278 		return -ENOENT;
5279 
5280 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5281 	if (!ks)
5282 		return -ENOMEM;
5283 
5284 retry:
5285 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5286 	if (ret)
5287 		return ret;
5288 
5289 	scoped_guard(rwsem_read, &namespace_sem)
5290 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5291 
5292 	if (!ret)
5293 		ret = copy_statmount_to_user(ks);
5294 	kvfree(ks->seq.buf);
5295 	if (retry_statmount(ret, &seq_size))
5296 		goto retry;
5297 	return ret;
5298 }
5299 
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)5300 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5301 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5302 			    bool reverse)
5303 {
5304 	struct path root __free(path_put) = {};
5305 	struct path orig;
5306 	struct mount *r, *first;
5307 	ssize_t ret;
5308 
5309 	rwsem_assert_held(&namespace_sem);
5310 
5311 	ret = grab_requested_root(ns, &root);
5312 	if (ret)
5313 		return ret;
5314 
5315 	if (mnt_parent_id == LSMT_ROOT) {
5316 		orig = root;
5317 	} else {
5318 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5319 		if (!orig.mnt)
5320 			return -ENOENT;
5321 		orig.dentry = orig.mnt->mnt_root;
5322 	}
5323 
5324 	/*
5325 	 * Don't trigger audit denials. We just want to determine what
5326 	 * mounts to show users.
5327 	 */
5328 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5329 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5330 		return -EPERM;
5331 
5332 	ret = security_sb_statfs(orig.dentry);
5333 	if (ret)
5334 		return ret;
5335 
5336 	if (!last_mnt_id) {
5337 		if (reverse)
5338 			first = node_to_mount(rb_last(&ns->mounts));
5339 		else
5340 			first = node_to_mount(rb_first(&ns->mounts));
5341 	} else {
5342 		if (reverse)
5343 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5344 		else
5345 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5346 	}
5347 
5348 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5349 		if (r->mnt_id_unique == mnt_parent_id)
5350 			continue;
5351 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5352 			continue;
5353 		*mnt_ids = r->mnt_id_unique;
5354 		mnt_ids++;
5355 		nr_mnt_ids--;
5356 		ret++;
5357 	}
5358 	return ret;
5359 }
5360 
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5361 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5362 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5363 {
5364 	u64 *kmnt_ids __free(kvfree) = NULL;
5365 	const size_t maxcount = 1000000;
5366 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5367 	struct mnt_id_req kreq;
5368 	u64 last_mnt_id;
5369 	ssize_t ret;
5370 
5371 	if (flags & ~LISTMOUNT_REVERSE)
5372 		return -EINVAL;
5373 
5374 	/*
5375 	 * If the mount namespace really has more than 1 million mounts the
5376 	 * caller must iterate over the mount namespace (and reconsider their
5377 	 * system design...).
5378 	 */
5379 	if (unlikely(nr_mnt_ids > maxcount))
5380 		return -EOVERFLOW;
5381 
5382 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5383 		return -EFAULT;
5384 
5385 	ret = copy_mnt_id_req(req, &kreq);
5386 	if (ret)
5387 		return ret;
5388 
5389 	last_mnt_id = kreq.param;
5390 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5391 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5392 		return -EINVAL;
5393 
5394 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5395 				  GFP_KERNEL_ACCOUNT);
5396 	if (!kmnt_ids)
5397 		return -ENOMEM;
5398 
5399 	ns = grab_requested_mnt_ns(kreq.mnt_ns_id);
5400 	if (!ns)
5401 		return -ENOENT;
5402 
5403 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5404 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5405 		return -ENOENT;
5406 
5407 	scoped_guard(rwsem_read, &namespace_sem)
5408 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5409 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5410 	if (ret <= 0)
5411 		return ret;
5412 
5413 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5414 		return -EFAULT;
5415 
5416 	return ret;
5417 }
5418 
init_mount_tree(void)5419 static void __init init_mount_tree(void)
5420 {
5421 	struct vfsmount *mnt;
5422 	struct mount *m;
5423 	struct mnt_namespace *ns;
5424 	struct path root;
5425 
5426 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5427 	if (IS_ERR(mnt))
5428 		panic("Can't create rootfs");
5429 
5430 	ns = alloc_mnt_ns(&init_user_ns, false);
5431 	if (IS_ERR(ns))
5432 		panic("Can't allocate initial namespace");
5433 	m = real_mount(mnt);
5434 	ns->root = m;
5435 	ns->nr_mounts = 1;
5436 	mnt_add_to_ns(ns, m);
5437 	init_task.nsproxy->mnt_ns = ns;
5438 	get_mnt_ns(ns);
5439 
5440 	root.mnt = mnt;
5441 	root.dentry = mnt->mnt_root;
5442 	mnt->mnt_flags |= MNT_LOCKED;
5443 
5444 	set_fs_pwd(current->fs, &root);
5445 	set_fs_root(current->fs, &root);
5446 
5447 	mnt_ns_tree_add(ns);
5448 }
5449 
mnt_init(void)5450 void __init mnt_init(void)
5451 {
5452 	int err;
5453 
5454 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5455 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5456 
5457 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5458 				sizeof(struct hlist_head),
5459 				mhash_entries, 19,
5460 				HASH_ZERO,
5461 				&m_hash_shift, &m_hash_mask, 0, 0);
5462 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5463 				sizeof(struct hlist_head),
5464 				mphash_entries, 19,
5465 				HASH_ZERO,
5466 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5467 
5468 	if (!mount_hashtable || !mountpoint_hashtable)
5469 		panic("Failed to allocate mount hash table\n");
5470 
5471 	kernfs_init();
5472 
5473 	err = sysfs_init();
5474 	if (err)
5475 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5476 			__func__, err);
5477 	fs_kobj = kobject_create_and_add("fs", NULL);
5478 	if (!fs_kobj)
5479 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5480 	shmem_init();
5481 	init_rootfs();
5482 	init_mount_tree();
5483 }
5484 
put_mnt_ns(struct mnt_namespace * ns)5485 void put_mnt_ns(struct mnt_namespace *ns)
5486 {
5487 	if (!refcount_dec_and_test(&ns->ns.count))
5488 		return;
5489 	drop_collected_mounts(&ns->root->mnt);
5490 	free_mnt_ns(ns);
5491 }
5492 
kern_mount(struct file_system_type * type)5493 struct vfsmount *kern_mount(struct file_system_type *type)
5494 {
5495 	struct vfsmount *mnt;
5496 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5497 	if (!IS_ERR(mnt)) {
5498 		/*
5499 		 * it is a longterm mount, don't release mnt until
5500 		 * we unmount before file sys is unregistered
5501 		*/
5502 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5503 	}
5504 	return mnt;
5505 }
5506 EXPORT_SYMBOL_GPL(kern_mount);
5507 
kern_unmount(struct vfsmount * mnt)5508 void kern_unmount(struct vfsmount *mnt)
5509 {
5510 	/* release long term mount so mount point can be released */
5511 	if (!IS_ERR(mnt)) {
5512 		mnt_make_shortterm(mnt);
5513 		synchronize_rcu();	/* yecchhh... */
5514 		mntput(mnt);
5515 	}
5516 }
5517 EXPORT_SYMBOL(kern_unmount);
5518 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)5519 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5520 {
5521 	unsigned int i;
5522 
5523 	for (i = 0; i < num; i++)
5524 		mnt_make_shortterm(mnt[i]);
5525 	synchronize_rcu_expedited();
5526 	for (i = 0; i < num; i++)
5527 		mntput(mnt[i]);
5528 }
5529 EXPORT_SYMBOL(kern_unmount_array);
5530 
our_mnt(struct vfsmount * mnt)5531 bool our_mnt(struct vfsmount *mnt)
5532 {
5533 	return check_mnt(real_mount(mnt));
5534 }
5535 
current_chrooted(void)5536 bool current_chrooted(void)
5537 {
5538 	/* Does the current process have a non-standard root */
5539 	struct path ns_root;
5540 	struct path fs_root;
5541 	bool chrooted;
5542 
5543 	/* Find the namespace root */
5544 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5545 	ns_root.dentry = ns_root.mnt->mnt_root;
5546 	path_get(&ns_root);
5547 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5548 		;
5549 
5550 	get_fs_root(current->fs, &fs_root);
5551 
5552 	chrooted = !path_equal(&fs_root, &ns_root);
5553 
5554 	path_put(&fs_root);
5555 	path_put(&ns_root);
5556 
5557 	return chrooted;
5558 }
5559 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)5560 static bool mnt_already_visible(struct mnt_namespace *ns,
5561 				const struct super_block *sb,
5562 				int *new_mnt_flags)
5563 {
5564 	int new_flags = *new_mnt_flags;
5565 	struct mount *mnt, *n;
5566 	bool visible = false;
5567 
5568 	down_read(&namespace_sem);
5569 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5570 		struct mount *child;
5571 		int mnt_flags;
5572 
5573 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5574 			continue;
5575 
5576 		/* This mount is not fully visible if it's root directory
5577 		 * is not the root directory of the filesystem.
5578 		 */
5579 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5580 			continue;
5581 
5582 		/* A local view of the mount flags */
5583 		mnt_flags = mnt->mnt.mnt_flags;
5584 
5585 		/* Don't miss readonly hidden in the superblock flags */
5586 		if (sb_rdonly(mnt->mnt.mnt_sb))
5587 			mnt_flags |= MNT_LOCK_READONLY;
5588 
5589 		/* Verify the mount flags are equal to or more permissive
5590 		 * than the proposed new mount.
5591 		 */
5592 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5593 		    !(new_flags & MNT_READONLY))
5594 			continue;
5595 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5596 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5597 			continue;
5598 
5599 		/* This mount is not fully visible if there are any
5600 		 * locked child mounts that cover anything except for
5601 		 * empty directories.
5602 		 */
5603 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5604 			struct inode *inode = child->mnt_mountpoint->d_inode;
5605 			/* Only worry about locked mounts */
5606 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5607 				continue;
5608 			/* Is the directory permanetly empty? */
5609 			if (!is_empty_dir_inode(inode))
5610 				goto next;
5611 		}
5612 		/* Preserve the locked attributes */
5613 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5614 					       MNT_LOCK_ATIME);
5615 		visible = true;
5616 		goto found;
5617 	next:	;
5618 	}
5619 found:
5620 	up_read(&namespace_sem);
5621 	return visible;
5622 }
5623 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)5624 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5625 {
5626 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5627 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5628 	unsigned long s_iflags;
5629 
5630 	if (ns->user_ns == &init_user_ns)
5631 		return false;
5632 
5633 	/* Can this filesystem be too revealing? */
5634 	s_iflags = sb->s_iflags;
5635 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5636 		return false;
5637 
5638 	if ((s_iflags & required_iflags) != required_iflags) {
5639 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5640 			  required_iflags);
5641 		return true;
5642 	}
5643 
5644 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5645 }
5646 
mnt_may_suid(struct vfsmount * mnt)5647 bool mnt_may_suid(struct vfsmount *mnt)
5648 {
5649 	/*
5650 	 * Foreign mounts (accessed via fchdir or through /proc
5651 	 * symlinks) are always treated as if they are nosuid.  This
5652 	 * prevents namespaces from trusting potentially unsafe
5653 	 * suid/sgid bits, file caps, or security labels that originate
5654 	 * in other namespaces.
5655 	 */
5656 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5657 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5658 }
5659 
mntns_get(struct task_struct * task)5660 static struct ns_common *mntns_get(struct task_struct *task)
5661 {
5662 	struct ns_common *ns = NULL;
5663 	struct nsproxy *nsproxy;
5664 
5665 	task_lock(task);
5666 	nsproxy = task->nsproxy;
5667 	if (nsproxy) {
5668 		ns = &nsproxy->mnt_ns->ns;
5669 		get_mnt_ns(to_mnt_ns(ns));
5670 	}
5671 	task_unlock(task);
5672 
5673 	return ns;
5674 }
5675 
mntns_put(struct ns_common * ns)5676 static void mntns_put(struct ns_common *ns)
5677 {
5678 	put_mnt_ns(to_mnt_ns(ns));
5679 }
5680 
mntns_install(struct nsset * nsset,struct ns_common * ns)5681 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5682 {
5683 	struct nsproxy *nsproxy = nsset->nsproxy;
5684 	struct fs_struct *fs = nsset->fs;
5685 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5686 	struct user_namespace *user_ns = nsset->cred->user_ns;
5687 	struct path root;
5688 	int err;
5689 
5690 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5691 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5692 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5693 		return -EPERM;
5694 
5695 	if (is_anon_ns(mnt_ns))
5696 		return -EINVAL;
5697 
5698 	if (fs->users != 1)
5699 		return -EINVAL;
5700 
5701 	get_mnt_ns(mnt_ns);
5702 	old_mnt_ns = nsproxy->mnt_ns;
5703 	nsproxy->mnt_ns = mnt_ns;
5704 
5705 	/* Find the root */
5706 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5707 				"/", LOOKUP_DOWN, &root);
5708 	if (err) {
5709 		/* revert to old namespace */
5710 		nsproxy->mnt_ns = old_mnt_ns;
5711 		put_mnt_ns(mnt_ns);
5712 		return err;
5713 	}
5714 
5715 	put_mnt_ns(old_mnt_ns);
5716 
5717 	/* Update the pwd and root */
5718 	set_fs_pwd(fs, &root);
5719 	set_fs_root(fs, &root);
5720 
5721 	path_put(&root);
5722 	return 0;
5723 }
5724 
mntns_owner(struct ns_common * ns)5725 static struct user_namespace *mntns_owner(struct ns_common *ns)
5726 {
5727 	return to_mnt_ns(ns)->user_ns;
5728 }
5729 
5730 const struct proc_ns_operations mntns_operations = {
5731 	.name		= "mnt",
5732 	.type		= CLONE_NEWNS,
5733 	.get		= mntns_get,
5734 	.put		= mntns_put,
5735 	.install	= mntns_install,
5736 	.owner		= mntns_owner,
5737 };
5738 
5739 #ifdef CONFIG_SYSCTL
5740 static struct ctl_table fs_namespace_sysctls[] = {
5741 	{
5742 		.procname	= "mount-max",
5743 		.data		= &sysctl_mount_max,
5744 		.maxlen		= sizeof(unsigned int),
5745 		.mode		= 0644,
5746 		.proc_handler	= proc_dointvec_minmax,
5747 		.extra1		= SYSCTL_ONE,
5748 	},
5749 };
5750 
init_fs_namespace_sysctls(void)5751 static int __init init_fs_namespace_sysctls(void)
5752 {
5753 	register_sysctl_init("fs", fs_namespace_sysctls);
5754 	return 0;
5755 }
5756 fs_initcall(init_fs_namespace_sysctls);
5757 
5758 #endif /* CONFIG_SYSCTL */
5759