xref: /netbsd/sys/arch/x68k/dev/zs.c (revision 1432979b)
1 /*	$NetBSD: zs.c,v 1.48 2022/05/26 14:30:11 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 Minoura Makoto
5  * Copyright (c) 1996 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Gordon W. Ross.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Zilog Z8530 Dual UART driver (machine-dependent part)
35  *
36  * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port;
37  * while channel B is dedicated to the mouse.
38  * Extra Z8530's can be installed for serial ports.  This driver
39  * supports up to 5 chips including the built-in one.
40  */
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.48 2022/05/26 14:30:11 tsutsui Exp $");
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/conf.h>
48 #include <sys/device.h>
49 #include <sys/file.h>
50 #include <sys/ioctl.h>
51 #include <sys/kernel.h>
52 #include <sys/proc.h>
53 #include <sys/tty.h>
54 #include <sys/time.h>
55 #include <sys/syslog.h>
56 #include <sys/cpu.h>
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59 
60 #include <arch/x68k/dev/intiovar.h>
61 #include <machine/z8530var.h>
62 
63 #include <dev/ic/z8530reg.h>
64 
65 #include "ioconf.h"
66 #include "zsc.h"	/* NZSC */
67 #include "opt_zsc.h"
68 #ifndef ZSCN_SPEED
69 #define ZSCN_SPEED 9600
70 #endif
71 #include "zstty.h"
72 
73 
74 extern void Debugger(void);
75 
76 /*
77  * Some warts needed by z8530tty.c -
78  * The default parity REALLY needs to be the same as the PROM uses,
79  * or you can not see messages done with printf during boot-up...
80  */
81 int zs_def_cflag = (CREAD | CS8 | HUPCL);
82 int zscn_def_cflag = (CREAD | CS8 | HUPCL);
83 
84 /*
85  * X68k provides a 5.0 MHz clock to the ZS chips.
86  */
87 #define PCLK	(5 * 1000 * 1000)	/* PCLK pin input clock rate */
88 
89 
90 /* Default physical addresses. */
91 #define ZS_MAXDEV 5
92 static const bus_addr_t zs_physaddr[ZS_MAXDEV] = {
93 	0x00e98000,
94 	0x00eafc00,
95 	0x00eafc10,
96 	0x00eafc20,
97 	0x00eafc30
98 };
99 
100 static uint8_t zs_init_reg[16] = {
101 	0,	/* 0: CMD (reset, etc.) */
102 	0,	/* 1: No interrupts yet. */
103 	0x70,	/* 2: XXX: IVECT */
104 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
105 	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
106 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
107 	0,	/* 6: TXSYNC/SYNCLO */
108 	0,	/* 7: RXSYNC/SYNCHI */
109 	0,	/* 8: alias for data port */
110 	ZSWR9_MASTER_IE,
111 	ZSWR10_NRZ,	/*10: Misc. TX/RX control bits */
112 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
113 	((PCLK/32)/9600)-2,	/*12: BAUDLO (default=9600) */
114 	0,			/*13: BAUDHI (default=9600) */
115 	ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
116 	ZSWR15_BREAK_IE,
117 };
118 
119 static volatile struct zschan *conschan = 0;
120 
121 
122 /****************************************************************
123  * Autoconfig
124  ****************************************************************/
125 
126 /* Definition of the driver for autoconfig. */
127 static int	zs_match(device_t, cfdata_t, void *);
128 static void	zs_attach(device_t, device_t, void *);
129 static int	zs_print(void *, const char *name);
130 
131 CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc),
132     zs_match, zs_attach, NULL, NULL);
133 
134 static int zshard(void *);
135 static int zs_get_speed(struct zs_chanstate *);
136 
137 
138 /*
139  * Is the zs chip present?
140  */
141 static int
zs_match(device_t parent,cfdata_t cf,void * aux)142 zs_match(device_t parent, cfdata_t cf, void *aux)
143 {
144 	struct intio_attach_args *ia = aux;
145 	struct zsdevice *zsaddr = (void *)ia->ia_addr;
146 	int i;
147 
148 	if (strcmp(ia->ia_name, "zsc") != 0)
149 		return 0;
150 
151 	for (i = 0; i < ZS_MAXDEV; i++)
152 		if (zsaddr == (void *)zs_physaddr[i]) /* XXX */
153 			break;
154 	if (i == ZS_MAXDEV) {
155 		/* not a recognized address */
156 		return 0;
157 	}
158 
159 	ia->ia_size = 8;
160 	if (intio_map_allocate_region(parent, ia, INTIO_MAP_TESTONLY))
161 		return 0;
162 
163 	if (badaddr((void *)IIOV(zsaddr)))
164 		return 0;
165 
166 	return (1);
167 }
168 
169 /*
170  * Attach a found zs.
171  */
172 static void
zs_attach(device_t parent,device_t self,void * aux)173 zs_attach(device_t parent, device_t self, void *aux)
174 {
175 	struct zsc_softc *zsc = device_private(self);
176 	struct intio_attach_args *ia = aux;
177 	struct zsc_attach_args zsc_args;
178 	volatile struct zschan *zc;
179 	struct zs_chanstate *cs;
180 	int r __diagused;
181 	int s, channel;
182 
183 	zsc->zsc_dev = self;
184 	aprint_normal("\n");
185 
186 	zsc->zsc_addr = (void *)ia->ia_addr;
187 
188 	ia->ia_size = 8;
189 	r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE);
190 #ifdef DIAGNOSTIC
191 	if (r)
192 		panic("zs: intio IO map corruption");
193 #endif
194 
195 	/*
196 	 * Initialize software state for each channel.
197 	 */
198 	for (channel = 0; channel < 2; channel++) {
199 		device_t child;
200 
201 		zsc_args.channel = channel;
202 		zsc_args.hwflags = 0;
203 		cs = &zsc->zsc_cs_store[channel];
204 		zsc->zsc_cs[channel] = cs;
205 
206 		zs_lock_init(cs);
207 		cs->cs_channel = channel;
208 		cs->cs_private = NULL;
209 		cs->cs_ops = &zsops_null;
210 		cs->cs_brg_clk = PCLK / 16;
211 
212 		if (channel == 0)
213 			zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_a);
214 		else
215 			zc = (volatile void *)IIOV(&zsc->zsc_addr->zs_chan_b);
216 		cs->cs_reg_csr  = &zc->zc_csr;
217 		cs->cs_reg_data = &zc->zc_data;
218 
219 		zs_init_reg[2] = ia->ia_intr;
220 		memcpy(cs->cs_creg, zs_init_reg, 16);
221 		memcpy(cs->cs_preg, zs_init_reg, 16);
222 
223 		if (zc == conschan) {
224 			zsc_args.hwflags |= ZS_HWFLAG_CONSOLE;
225 			cs->cs_defspeed = zs_get_speed(cs);
226 			cs->cs_defcflag = zscn_def_cflag;
227 		} else {
228 			cs->cs_defspeed = 9600;
229 			cs->cs_defcflag = zs_def_cflag;
230 		}
231 
232 		/* Make these correspond to cs_defcflag (-crtscts) */
233 		cs->cs_rr0_dcd = ZSRR0_DCD;
234 		cs->cs_rr0_cts = 0;
235 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
236 		cs->cs_wr5_rts = 0;
237 
238 		/*
239 		 * Clear the master interrupt enable.
240 		 * The INTENA is common to both channels,
241 		 * so just do it on the A channel.
242 		 */
243 		if (channel == 0) {
244 			s = splzs();
245 			zs_write_reg(cs, 9, 0);
246 			splx(s);
247 		}
248 
249 		/*
250 		 * Look for a child driver for this channel.
251 		 * The child attach will setup the hardware.
252 		 */
253 		child = config_found(self, (void *)&zsc_args, zs_print,
254 		    CFARGS_NONE);
255 #if ZSTTY > 0
256 		if (zc == conschan &&
257 		    ((child && strcmp(device_xname(child), "zstty0")) ||
258 		     child == NULL)) /* XXX */
259 			panic("%s: console device mismatch", __func__);
260 #endif
261 		if (child == NULL) {
262 			/* No sub-driver.  Just reset it. */
263 			uint8_t reset = (channel == 0) ?
264 				ZSWR9_A_RESET : ZSWR9_B_RESET;
265 			s = splzs();
266 			zs_write_reg(cs,  9, reset);
267 			splx(s);
268 		}
269 	}
270 
271 	/*
272 	 * Now safe to install interrupt handlers.
273 	 */
274 	if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc))
275 		panic("%s: interrupt vector busy", __func__);
276 	zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL,
277 	    (void (*)(void *))zsc_intr_soft, zsc);
278 	/* XXX; evcnt_attach() ? */
279 
280 	/*
281 	 * Set the master interrupt enable and interrupt vector.
282 	 * (common to both channels, do it on A)
283 	 */
284 	cs = zsc->zsc_cs[0];
285 	s = splzs();
286 	/* interrupt vector */
287 	zs_write_reg(cs, 2, ia->ia_intr);
288 	/* master interrupt control (enable) */
289 	zs_write_reg(cs, 9, zs_init_reg[9]);
290 	splx(s);
291 }
292 
293 static int
zs_print(void * aux,const char * name)294 zs_print(void *aux, const char *name)
295 {
296 	struct zsc_attach_args *args = aux;
297 
298 	if (name != NULL)
299 		aprint_normal("%s: ", name);
300 
301 	if (args->channel != -1)
302 		aprint_normal(" channel %d", args->channel);
303 
304 	return UNCONF;
305 }
306 
307 
308 /*
309  * For x68k-port, we don't use autovectored interrupt.
310  * We do not need to look at all of the zs chips.
311  */
312 static int
zshard(void * arg)313 zshard(void *arg)
314 {
315 	struct zsc_softc *zsc = arg;
316 	int rval;
317 	int s;
318 
319 	/*
320 	 * Actually, zs hardware ipl is 5.
321 	 * Here we disable all interrupts to shorten the zshard
322 	 * handling time.  Otherwise, too many characters are
323 	 * dropped.
324 	 */
325 	s = splhigh();
326 	rval = zsc_intr_hard(zsc);
327 
328 	/* We are at splzs here, so no need to lock. */
329 	if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq)
330 		softint_schedule(zsc->zsc_softintr_cookie);
331 	splx(s);
332 
333 	return (rval);
334 }
335 
336 /*
337  * Compute the current baud rate given a ZS channel.
338  */
339 static int
zs_get_speed(struct zs_chanstate * cs)340 zs_get_speed(struct zs_chanstate *cs)
341 {
342 	int tconst;
343 
344 	tconst = zs_read_reg(cs, 12);
345 	tconst |= zs_read_reg(cs, 13) << 8;
346 	return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
347 }
348 
349 /*
350  * MD functions for setting the baud rate and control modes.
351  */
352 int
zs_set_speed(struct zs_chanstate * cs,int bps)353 zs_set_speed(struct zs_chanstate *cs, int bps	/* bits per second */)
354 {
355 	int tconst, real_bps;
356 
357 	if (bps == 0)
358 		return (0);
359 
360 #ifdef	DIAGNOSTIC
361 	if (cs->cs_brg_clk == 0)
362 		panic("zs_set_speed");
363 #endif
364 
365 	tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
366 	if (tconst < 0)
367 		return (EINVAL);
368 
369 	/* Convert back to make sure we can do it. */
370 	real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
371 
372 #if 0				/* XXX */
373 	/* XXX - Allow some tolerance here? */
374 	if (real_bps != bps)
375 		return (EINVAL);
376 #else
377 	/*
378 	 * Since our PCLK has somewhat strange value,
379 	 * we have to allow tolerance here.
380 	 */
381 	if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst)
382 		return (EINVAL);
383 #endif
384 
385 	cs->cs_preg[12] = tconst;
386 	cs->cs_preg[13] = tconst >> 8;
387 
388 	/* Caller will stuff the pending registers. */
389 	return (0);
390 }
391 
392 int
zs_set_modes(struct zs_chanstate * cs,int cflag)393 zs_set_modes(struct zs_chanstate *cs, int cflag	/* bits per second */)
394 {
395 	int s;
396 
397 	/*
398 	 * Output hardware flow control on the chip is horrendous:
399 	 * if carrier detect drops, the receiver is disabled, and if
400 	 * CTS drops, the transmitter is stopped IN MID CHARACTER!
401 	 * Therefore, NEVER set the HFC bit, and instead use the
402 	 * status interrupt to detect CTS changes.
403 	 */
404 	s = splzs();
405 	cs->cs_rr0_pps = 0;
406 	if ((cflag & (CLOCAL | MDMBUF)) != 0) {
407 		cs->cs_rr0_dcd = 0;
408 		if ((cflag & MDMBUF) == 0)
409 			cs->cs_rr0_pps = ZSRR0_DCD;
410 	} else
411 		cs->cs_rr0_dcd = ZSRR0_DCD;
412 	if ((cflag & CRTSCTS) != 0) {
413 		cs->cs_wr5_dtr = ZSWR5_DTR;
414 		cs->cs_wr5_rts = ZSWR5_RTS;
415 		cs->cs_rr0_cts = ZSRR0_CTS;
416 	} else if ((cflag & MDMBUF) != 0) {
417 		cs->cs_wr5_dtr = 0;
418 		cs->cs_wr5_rts = ZSWR5_DTR;
419 		cs->cs_rr0_cts = ZSRR0_DCD;
420 	} else {
421 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
422 		cs->cs_wr5_rts = 0;
423 		cs->cs_rr0_cts = 0;
424 	}
425 	splx(s);
426 
427 	/* Caller will stuff the pending registers. */
428 	return (0);
429 }
430 
431 
432 /*
433  * Read or write the chip with suitable delays.
434  */
435 
436 uint8_t
zs_read_reg(struct zs_chanstate * cs,uint8_t reg)437 zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
438 {
439 	uint8_t val;
440 
441 	*cs->cs_reg_csr = reg;
442 	ZS_DELAY();
443 	val = *cs->cs_reg_csr;
444 	ZS_DELAY();
445 	return val;
446 }
447 
448 void
zs_write_reg(struct zs_chanstate * cs,uint8_t reg,uint8_t val)449 zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
450 {
451 	*cs->cs_reg_csr = reg;
452 	ZS_DELAY();
453 	*cs->cs_reg_csr = val;
454 	ZS_DELAY();
455 }
456 
457 uint8_t
zs_read_csr(struct zs_chanstate * cs)458 zs_read_csr(struct zs_chanstate *cs)
459 {
460 	uint8_t val;
461 
462 	val = *cs->cs_reg_csr;
463 	ZS_DELAY();
464 	return val;
465 }
466 
467 void
zs_write_csr(struct zs_chanstate * cs,uint8_t val)468 zs_write_csr(struct zs_chanstate *cs, uint8_t val)
469 {
470 	*cs->cs_reg_csr = val;
471 	ZS_DELAY();
472 }
473 
474 uint8_t
zs_read_data(struct zs_chanstate * cs)475 zs_read_data(struct zs_chanstate *cs)
476 {
477 	uint8_t val;
478 
479 	val = *cs->cs_reg_data;
480 	ZS_DELAY();
481 	return val;
482 }
483 
484 void
zs_write_data(struct zs_chanstate * cs,uint8_t val)485 zs_write_data(struct zs_chanstate *cs, uint8_t val)
486 {
487 	*cs->cs_reg_data = val;
488 	ZS_DELAY();
489 }
490 
491 
492 /****************************************************************
493  * Console support functions (x68k specific!)
494  * Note: this code is allowed to know about the layout of
495  * the chip registers, and uses that to keep things simple.
496  * XXX - I think I like the mvme167 code better. -gwr
497  ****************************************************************/
498 
499 /*
500  * Handle user request to enter kernel debugger.
501  */
502 void
zs_abort(struct zs_chanstate * cs)503 zs_abort(struct zs_chanstate *cs)
504 {
505 	int rr0;
506 
507 	/* Wait for end of break to avoid PROM abort. */
508 	/* XXX - Limit the wait? */
509 	do {
510 		rr0 = *cs->cs_reg_csr;
511 		ZS_DELAY();
512 	} while (rr0 & ZSRR0_BREAK);
513 
514 #ifdef DDB
515 	Debugger();
516 #else
517 	printf("BREAK!!\n");
518 #endif
519 }
520 
521 
522 #if NZSTTY > 0
523 
524 #include <dev/cons.h>
525 cons_decl(zs);
526 
527 static int zs_getc(void);
528 static void zs_putc(int);
529 
530 static struct zs_chanstate zscn_cs;
531 
532 /*
533  * Polled input char.
534  */
535 static int
zs_getc(void)536 zs_getc(void)
537 {
538 	int s, c, rr0;
539 
540 	s = splzs();
541 	/* Wait for a character to arrive. */
542 	do {
543 		rr0 = zs_read_csr(&zscn_cs);
544 	} while ((rr0 & ZSRR0_RX_READY) == 0);
545 
546 	c = zs_read_data(&zscn_cs);
547 	splx(s);
548 
549 	/*
550 	 * This is used by the kd driver to read scan codes,
551 	 * so don't translate '\r' ==> '\n' here...
552 	 */
553 	return (c);
554 }
555 
556 /*
557  * Polled output char.
558  */
559 static void
zs_putc(int c)560 zs_putc(int c)
561 {
562 	int s, rr0;
563 
564 	s = splzs();
565 	/* Wait for transmitter to become ready. */
566 	do {
567 		rr0 = zs_read_csr(&zscn_cs);
568 	} while ((rr0 & ZSRR0_TX_READY) == 0);
569 
570 	zs_write_data(&zscn_cs, c);
571 	splx(s);
572 }
573 
574 void
zscninit(struct consdev * cn)575 zscninit(struct consdev *cn)
576 {
577 	volatile struct zschan *cnchan = (volatile void *)IIOV(ZSCN_PHYSADDR);
578 	int s;
579 
580 	memset(&zscn_cs, 0, sizeof(struct zs_chanstate));
581 	zscn_cs.cs_reg_csr = &cnchan->zc_csr;
582 	zscn_cs.cs_reg_data = &cnchan->zc_data;
583 	zscn_cs.cs_channel = 0;
584 	zscn_cs.cs_brg_clk = PCLK / 16;
585 	memcpy(zscn_cs.cs_preg, zs_init_reg, 16);
586 	zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */
587 	zscn_cs.cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
588 	zs_set_speed(&zscn_cs, ZSCN_SPEED);
589 	s = splzs();
590 	zs_write_reg(&zscn_cs, 9, 0);
591 	zs_write_reg(&zscn_cs, 9, ZSWR9_HARD_RESET);
592 	zs_loadchannelregs(&zscn_cs);
593 	splx(s);
594 	conschan = cnchan;
595 }
596 
597 /*
598  * Polled console input putchar.
599  */
600 int
zscngetc(dev_t dev)601 zscngetc(dev_t dev)
602 {
603 	return (zs_getc());
604 }
605 
606 /*
607  * Polled console output putchar.
608  */
609 void
zscnputc(dev_t dev,int c)610 zscnputc(dev_t dev, int c)
611 {
612 	zs_putc(c);
613 }
614 
615 void
zscnprobe(struct consdev * cd)616 zscnprobe(struct consdev *cd)
617 {
618 	int maj;
619 	extern const struct cdevsw zstty_cdevsw;
620 
621 	/* locate the major number */
622 	maj = cdevsw_lookup_major(&zstty_cdevsw);
623 	/* XXX: minor number is 0 */
624 
625 	if (maj == -1)
626 		cd->cn_pri = CN_DEAD;
627 	else {
628 #ifdef ZSCONSOLE
629 		cd->cn_pri = CN_REMOTE;	/* higher than ITE (CN_INTERNAL) */
630 #else
631 		cd->cn_pri = CN_NORMAL;
632 #endif
633 		cd->cn_dev = makedev(maj, 0);
634 	}
635 }
636 
637 void
zscnpollc(dev_t dev,int on)638 zscnpollc(dev_t dev, int on)
639 {
640 }
641 
642 #endif
643