1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include <cassert>
36 
37 #define DEBUG_TYPE "instcombine"
38 #include "llvm/Transforms/Utils/InstructionWorklist.h"
39 
40 using namespace llvm;
41 using namespace PatternMatch;
42 
43 /// The specific integer value is used in a context where it is known to be
44 /// non-zero.  If this allows us to simplify the computation, do so and return
45 /// the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombinerImpl & IC,Instruction & CxtI)46 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
47                                         Instruction &CxtI) {
48   // If V has multiple uses, then we would have to do more analysis to determine
49   // if this is safe.  For example, the use could be in dynamically unreached
50   // code.
51   if (!V->hasOneUse()) return nullptr;
52 
53   bool MadeChange = false;
54 
55   // ((1 << A) >>u B) --> (1 << (A-B))
56   // Because V cannot be zero, we know that B is less than A.
57   Value *A = nullptr, *B = nullptr, *One = nullptr;
58   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
59       match(One, m_One())) {
60     A = IC.Builder.CreateSub(A, B);
61     return IC.Builder.CreateShl(One, A);
62   }
63 
64   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
65   // inexact.  Similarly for <<.
66   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
67   if (I && I->isLogicalShift() &&
68       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
69     // We know that this is an exact/nuw shift and that the input is a
70     // non-zero context as well.
71     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
72       IC.replaceOperand(*I, 0, V2);
73       MadeChange = true;
74     }
75 
76     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
77       I->setIsExact();
78       MadeChange = true;
79     }
80 
81     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
82       I->setHasNoUnsignedWrap();
83       MadeChange = true;
84     }
85   }
86 
87   // TODO: Lots more we could do here:
88   //    If V is a phi node, we can call this on each of its operands.
89   //    "select cond, X, 0" can simplify to "X".
90 
91   return MadeChange ? V : nullptr;
92 }
93 
94 // TODO: This is a specific form of a much more general pattern.
95 //       We could detect a select with any binop identity constant, or we
96 //       could use SimplifyBinOp to see if either arm of the select reduces.
97 //       But that needs to be done carefully and/or while removing potential
98 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
foldMulSelectToNegate(BinaryOperator & I,InstCombiner::BuilderTy & Builder)99 static Value *foldMulSelectToNegate(BinaryOperator &I,
100                                     InstCombiner::BuilderTy &Builder) {
101   Value *Cond, *OtherOp;
102 
103   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
104   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
105   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
106                         m_Value(OtherOp)))) {
107     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
108     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
109     return Builder.CreateSelect(Cond, OtherOp, Neg);
110   }
111   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
112   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
113   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
114                         m_Value(OtherOp)))) {
115     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
116     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
117     return Builder.CreateSelect(Cond, Neg, OtherOp);
118   }
119 
120   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
121   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
122   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
123                                            m_SpecificFP(-1.0))),
124                          m_Value(OtherOp)))) {
125     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
126     Builder.setFastMathFlags(I.getFastMathFlags());
127     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
128   }
129 
130   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
131   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
132   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
133                                            m_SpecificFP(1.0))),
134                          m_Value(OtherOp)))) {
135     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
136     Builder.setFastMathFlags(I.getFastMathFlags());
137     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
138   }
139 
140   return nullptr;
141 }
142 
143 /// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
144 /// Callers are expected to call this twice to handle commuted patterns.
foldMulShl1(BinaryOperator & Mul,bool CommuteOperands,InstCombiner::BuilderTy & Builder)145 static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
146                           InstCombiner::BuilderTy &Builder) {
147   Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
148   if (CommuteOperands)
149     std::swap(X, Y);
150 
151   const bool HasNSW = Mul.hasNoSignedWrap();
152   const bool HasNUW = Mul.hasNoUnsignedWrap();
153 
154   // X * (1 << Z) --> X << Z
155   Value *Z;
156   if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
157     bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
158     return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
159   }
160 
161   // Similar to above, but an increment of the shifted value becomes an add:
162   // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
163   // This increases uses of X, so it may require a freeze, but that is still
164   // expected to be an improvement because it removes the multiply.
165   BinaryOperator *Shift;
166   if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
167       match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
168     bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
169     Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
170     Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
171     return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
172   }
173 
174   // Similar to above, but a decrement of the shifted value is disguised as
175   // 'not' and becomes a sub:
176   // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
177   // This increases uses of X, so it may require a freeze, but that is still
178   // expected to be an improvement because it removes the multiply.
179   if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
180     Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
181     Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
182     return Builder.CreateSub(Shl, FrX, Mul.getName());
183   }
184 
185   return nullptr;
186 }
187 
188 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
189                        bool AssumeNonZero, bool DoFold);
190 
visitMul(BinaryOperator & I)191 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
192   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
193   if (Value *V =
194           simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
195                           SQ.getWithInstruction(&I)))
196     return replaceInstUsesWith(I, V);
197 
198   if (SimplifyAssociativeOrCommutative(I))
199     return &I;
200 
201   if (Instruction *X = foldVectorBinop(I))
202     return X;
203 
204   if (Instruction *Phi = foldBinopWithPhiOperands(I))
205     return Phi;
206 
207   if (Value *V = foldUsingDistributiveLaws(I))
208     return replaceInstUsesWith(I, V);
209 
210   Type *Ty = I.getType();
211   const unsigned BitWidth = Ty->getScalarSizeInBits();
212   const bool HasNSW = I.hasNoSignedWrap();
213   const bool HasNUW = I.hasNoUnsignedWrap();
214 
215   // X * -1 --> 0 - X
216   if (match(Op1, m_AllOnes())) {
217     return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
218                   : BinaryOperator::CreateNeg(Op0);
219   }
220 
221   // Also allow combining multiply instructions on vectors.
222   {
223     Value *NewOp;
224     Constant *C1, *C2;
225     const APInt *IVal;
226     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
227                         m_Constant(C1))) &&
228         match(C1, m_APInt(IVal))) {
229       // ((X << C2)*C1) == (X * (C1 << C2))
230       Constant *Shl = ConstantExpr::getShl(C1, C2);
231       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
232       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
233       if (HasNUW && Mul->hasNoUnsignedWrap())
234         BO->setHasNoUnsignedWrap();
235       if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
236         BO->setHasNoSignedWrap();
237       return BO;
238     }
239 
240     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
241       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
242       if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
243         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
244 
245         if (HasNUW)
246           Shl->setHasNoUnsignedWrap();
247         if (HasNSW) {
248           const APInt *V;
249           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
250             Shl->setHasNoSignedWrap();
251         }
252 
253         return Shl;
254       }
255     }
256   }
257 
258   if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
259     // Interpret  X * (-1<<C)  as  (-X) * (1<<C)  and try to sink the negation.
260     // The "* (1<<C)" thus becomes a potential shifting opportunity.
261     if (Value *NegOp0 =
262             Negator::Negate(/*IsNegation*/ true, HasNSW, Op0, *this)) {
263       auto *Op1C = cast<Constant>(Op1);
264       return replaceInstUsesWith(
265           I, Builder.CreateMul(NegOp0, ConstantExpr::getNeg(Op1C), "",
266                                /* HasNUW */ false,
267                                HasNSW && Op1C->isNotMinSignedValue()));
268     }
269 
270     // Try to convert multiply of extended operand to narrow negate and shift
271     // for better analysis.
272     // This is valid if the shift amount (trailing zeros in the multiplier
273     // constant) clears more high bits than the bitwidth difference between
274     // source and destination types:
275     // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
276     const APInt *NegPow2C;
277     Value *X;
278     if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
279         match(Op1, m_APIntAllowUndef(NegPow2C))) {
280       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
281       unsigned ShiftAmt = NegPow2C->countr_zero();
282       if (ShiftAmt >= BitWidth - SrcWidth) {
283         Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
284         Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
285         return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
286       }
287     }
288   }
289 
290   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
291     return FoldedMul;
292 
293   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
294     return replaceInstUsesWith(I, FoldedMul);
295 
296   // Simplify mul instructions with a constant RHS.
297   Constant *MulC;
298   if (match(Op1, m_ImmConstant(MulC))) {
299     // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
300     // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
301     Value *X;
302     Constant *C1;
303     if (match(Op0, m_OneUse(m_AddLike(m_Value(X), m_ImmConstant(C1))))) {
304       // C1*MulC simplifies to a tidier constant.
305       Value *NewC = Builder.CreateMul(C1, MulC);
306       auto *BOp0 = cast<BinaryOperator>(Op0);
307       bool Op0NUW =
308           (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
309       Value *NewMul = Builder.CreateMul(X, MulC);
310       auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
311       if (HasNUW && Op0NUW) {
312         // If NewMulBO is constant we also can set BO to nuw.
313         if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
314           NewMulBO->setHasNoUnsignedWrap();
315         BO->setHasNoUnsignedWrap();
316       }
317       return BO;
318     }
319   }
320 
321   // abs(X) * abs(X) -> X * X
322   // nabs(X) * nabs(X) -> X * X
323   if (Op0 == Op1) {
324     Value *X, *Y;
325     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
326     if (SPF == SPF_ABS || SPF == SPF_NABS)
327       return BinaryOperator::CreateMul(X, X);
328 
329     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
330       return BinaryOperator::CreateMul(X, X);
331   }
332 
333   {
334     Value *X, *Y;
335     // abs(X) * abs(Y) -> abs(X * Y)
336     if (I.hasNoSignedWrap() &&
337         match(Op0,
338               m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One()))) &&
339         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(Y), m_One()))))
340       return replaceInstUsesWith(
341           I, Builder.CreateBinaryIntrinsic(Intrinsic::abs,
342                                            Builder.CreateNSWMul(X, Y),
343                                            Builder.getTrue()));
344   }
345 
346   // -X * C --> X * -C
347   Value *X, *Y;
348   Constant *Op1C;
349   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
350     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
351 
352   // -X * -Y --> X * Y
353   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
354     auto *NewMul = BinaryOperator::CreateMul(X, Y);
355     if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
356         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
357       NewMul->setHasNoSignedWrap();
358     return NewMul;
359   }
360 
361   // -X * Y --> -(X * Y)
362   // X * -Y --> -(X * Y)
363   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
364     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
365 
366   // (-X * Y) * -X --> (X * Y) * X
367   // (-X << Y) * -X --> (X << Y) * X
368   if (match(Op1, m_Neg(m_Value(X)))) {
369     if (Value *NegOp0 = Negator::Negate(false, /*IsNSW*/ false, Op0, *this))
370       return BinaryOperator::CreateMul(NegOp0, X);
371   }
372 
373   // (X / Y) *  Y = X - (X % Y)
374   // (X / Y) * -Y = (X % Y) - X
375   {
376     Value *Y = Op1;
377     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
378     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
379                  Div->getOpcode() != Instruction::SDiv)) {
380       Y = Op0;
381       Div = dyn_cast<BinaryOperator>(Op1);
382     }
383     Value *Neg = dyn_castNegVal(Y);
384     if (Div && Div->hasOneUse() &&
385         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
386         (Div->getOpcode() == Instruction::UDiv ||
387          Div->getOpcode() == Instruction::SDiv)) {
388       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
389 
390       // If the division is exact, X % Y is zero, so we end up with X or -X.
391       if (Div->isExact()) {
392         if (DivOp1 == Y)
393           return replaceInstUsesWith(I, X);
394         return BinaryOperator::CreateNeg(X);
395       }
396 
397       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
398                                                           : Instruction::SRem;
399       // X must be frozen because we are increasing its number of uses.
400       Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
401       Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
402       if (DivOp1 == Y)
403         return BinaryOperator::CreateSub(XFreeze, Rem);
404       return BinaryOperator::CreateSub(Rem, XFreeze);
405     }
406   }
407 
408   // Fold the following two scenarios:
409   //   1) i1 mul -> i1 and.
410   //   2) X * Y --> X & Y, iff X, Y can be only {0,1}.
411   // Note: We could use known bits to generalize this and related patterns with
412   // shifts/truncs
413   if (Ty->isIntOrIntVectorTy(1) ||
414       (match(Op0, m_And(m_Value(), m_One())) &&
415        match(Op1, m_And(m_Value(), m_One()))))
416     return BinaryOperator::CreateAnd(Op0, Op1);
417 
418   if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
419     return replaceInstUsesWith(I, R);
420   if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
421     return replaceInstUsesWith(I, R);
422 
423   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
424   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
425   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
426   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
427        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
428       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
429       (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
430     Value *And = Builder.CreateAnd(X, Y, "mulbool");
431     return CastInst::Create(Instruction::ZExt, And, Ty);
432   }
433   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
434   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
435   // Note: -1 * 1 == 1 * -1  == -1
436   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
437        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
438       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
439       (Op0->hasOneUse() || Op1->hasOneUse())) {
440     Value *And = Builder.CreateAnd(X, Y, "mulbool");
441     return CastInst::Create(Instruction::SExt, And, Ty);
442   }
443 
444   // (zext bool X) * Y --> X ? Y : 0
445   // Y * (zext bool X) --> X ? Y : 0
446   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
447     return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
448   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
449     return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
450 
451   Constant *ImmC;
452   if (match(Op1, m_ImmConstant(ImmC))) {
453     // (sext bool X) * C --> X ? -C : 0
454     if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
455       Constant *NegC = ConstantExpr::getNeg(ImmC);
456       return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
457     }
458 
459     // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
460     const APInt *C;
461     if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
462         *C == C->getBitWidth() - 1) {
463       Constant *NegC = ConstantExpr::getNeg(ImmC);
464       Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
465       return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
466     }
467   }
468 
469   // (lshr X, 31) * Y --> (X < 0) ? Y : 0
470   // TODO: We are not checking one-use because the elimination of the multiply
471   //       is better for analysis?
472   const APInt *C;
473   if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
474       *C == C->getBitWidth() - 1) {
475     Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
476     return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
477   }
478 
479   // (and X, 1) * Y --> (trunc X) ? Y : 0
480   if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
481     Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
482     return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
483   }
484 
485   // ((ashr X, 31) | 1) * X --> abs(X)
486   // X * ((ashr X, 31) | 1) --> abs(X)
487   if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
488                                       m_SpecificIntAllowUndef(BitWidth - 1)),
489                                m_One()),
490                           m_Deferred(X)))) {
491     Value *Abs = Builder.CreateBinaryIntrinsic(
492         Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
493     Abs->takeName(&I);
494     return replaceInstUsesWith(I, Abs);
495   }
496 
497   if (Instruction *Ext = narrowMathIfNoOverflow(I))
498     return Ext;
499 
500   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
501     return Res;
502 
503   // (mul Op0 Op1):
504   //    if Log2(Op0) folds away ->
505   //        (shl Op1, Log2(Op0))
506   //    if Log2(Op1) folds away ->
507   //        (shl Op0, Log2(Op1))
508   if (takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
509                /*DoFold*/ false)) {
510     Value *Res = takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
511                           /*DoFold*/ true);
512     BinaryOperator *Shl = BinaryOperator::CreateShl(Op1, Res);
513     // We can only propegate nuw flag.
514     Shl->setHasNoUnsignedWrap(HasNUW);
515     return Shl;
516   }
517   if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
518                /*DoFold*/ false)) {
519     Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
520                           /*DoFold*/ true);
521     BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, Res);
522     // We can only propegate nuw flag.
523     Shl->setHasNoUnsignedWrap(HasNUW);
524     return Shl;
525   }
526 
527   bool Changed = false;
528   if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
529     Changed = true;
530     I.setHasNoSignedWrap(true);
531   }
532 
533   if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) {
534     Changed = true;
535     I.setHasNoUnsignedWrap(true);
536   }
537 
538   return Changed ? &I : nullptr;
539 }
540 
foldFPSignBitOps(BinaryOperator & I)541 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
542   BinaryOperator::BinaryOps Opcode = I.getOpcode();
543   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
544          "Expected fmul or fdiv");
545 
546   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
547   Value *X, *Y;
548 
549   // -X * -Y --> X * Y
550   // -X / -Y --> X / Y
551   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
552     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
553 
554   // fabs(X) * fabs(X) -> X * X
555   // fabs(X) / fabs(X) -> X / X
556   if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
557     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
558 
559   // fabs(X) * fabs(Y) --> fabs(X * Y)
560   // fabs(X) / fabs(Y) --> fabs(X / Y)
561   if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
562       (Op0->hasOneUse() || Op1->hasOneUse())) {
563     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
564     Builder.setFastMathFlags(I.getFastMathFlags());
565     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
566     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
567     Fabs->takeName(&I);
568     return replaceInstUsesWith(I, Fabs);
569   }
570 
571   return nullptr;
572 }
573 
foldFMulReassoc(BinaryOperator & I)574 Instruction *InstCombinerImpl::foldFMulReassoc(BinaryOperator &I) {
575   Value *Op0 = I.getOperand(0);
576   Value *Op1 = I.getOperand(1);
577   Value *X, *Y;
578   Constant *C;
579 
580   // Reassociate constant RHS with another constant to form constant
581   // expression.
582   if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
583     Constant *C1;
584     if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
585       // (C1 / X) * C --> (C * C1) / X
586       Constant *CC1 =
587           ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
588       if (CC1 && CC1->isNormalFP())
589         return BinaryOperator::CreateFDivFMF(CC1, X, &I);
590     }
591     if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
592       // (X / C1) * C --> X * (C / C1)
593       Constant *CDivC1 =
594           ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
595       if (CDivC1 && CDivC1->isNormalFP())
596         return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
597 
598       // If the constant was a denormal, try reassociating differently.
599       // (X / C1) * C --> X / (C1 / C)
600       Constant *C1DivC =
601           ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
602       if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
603         return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
604     }
605 
606     // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
607     // canonicalized to 'fadd X, C'. Distributing the multiply may allow
608     // further folds and (X * C) + C2 is 'fma'.
609     if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
610       // (X + C1) * C --> (X * C) + (C * C1)
611       if (Constant *CC1 =
612               ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
613         Value *XC = Builder.CreateFMulFMF(X, C, &I);
614         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
615       }
616     }
617     if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
618       // (C1 - X) * C --> (C * C1) - (X * C)
619       if (Constant *CC1 =
620               ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
621         Value *XC = Builder.CreateFMulFMF(X, C, &I);
622         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
623       }
624     }
625   }
626 
627   Value *Z;
628   if (match(&I,
629             m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), m_Value(Z)))) {
630     // Sink division: (X / Y) * Z --> (X * Z) / Y
631     Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
632     return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
633   }
634 
635   // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
636   // nnan disallows the possibility of returning a number if both operands are
637   // negative (in that case, we should return NaN).
638   if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
639       match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
640     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
641     Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
642     return replaceInstUsesWith(I, Sqrt);
643   }
644 
645   // The following transforms are done irrespective of the number of uses
646   // for the expression "1.0/sqrt(X)".
647   //  1) 1.0/sqrt(X) * X -> X/sqrt(X)
648   //  2) X * 1.0/sqrt(X) -> X/sqrt(X)
649   // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
650   // has the necessary (reassoc) fast-math-flags.
651   if (I.hasNoSignedZeros() &&
652       match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
653       match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
654     return BinaryOperator::CreateFDivFMF(X, Y, &I);
655   if (I.hasNoSignedZeros() &&
656       match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
657       match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
658     return BinaryOperator::CreateFDivFMF(X, Y, &I);
659 
660   // Like the similar transform in instsimplify, this requires 'nsz' because
661   // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
662   if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) {
663     // Peek through fdiv to find squaring of square root:
664     // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
665     if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
666       Value *XX = Builder.CreateFMulFMF(X, X, &I);
667       return BinaryOperator::CreateFDivFMF(XX, Y, &I);
668     }
669     // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
670     if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
671       Value *XX = Builder.CreateFMulFMF(X, X, &I);
672       return BinaryOperator::CreateFDivFMF(Y, XX, &I);
673     }
674   }
675 
676   // pow(X, Y) * X --> pow(X, Y+1)
677   // X * pow(X, Y) --> pow(X, Y+1)
678   if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
679                                                               m_Value(Y))),
680                          m_Deferred(X)))) {
681     Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
682     Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
683     return replaceInstUsesWith(I, Pow);
684   }
685 
686   if (I.isOnlyUserOfAnyOperand()) {
687     // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
688     if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
689         match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
690       auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
691       auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
692       return replaceInstUsesWith(I, NewPow);
693     }
694     // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
695     if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
696         match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
697       auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
698       auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
699       return replaceInstUsesWith(I, NewPow);
700     }
701 
702     // powi(x, y) * powi(x, z) -> powi(x, y + z)
703     if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
704         match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
705         Y->getType() == Z->getType()) {
706       auto *YZ = Builder.CreateAdd(Y, Z);
707       auto *NewPow = Builder.CreateIntrinsic(
708           Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
709       return replaceInstUsesWith(I, NewPow);
710     }
711 
712     // exp(X) * exp(Y) -> exp(X + Y)
713     if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
714         match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
715       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
716       Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
717       return replaceInstUsesWith(I, Exp);
718     }
719 
720     // exp2(X) * exp2(Y) -> exp2(X + Y)
721     if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
722         match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
723       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
724       Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
725       return replaceInstUsesWith(I, Exp2);
726     }
727   }
728 
729   // (X*Y) * X => (X*X) * Y where Y != X
730   //  The purpose is two-fold:
731   //   1) to form a power expression (of X).
732   //   2) potentially shorten the critical path: After transformation, the
733   //  latency of the instruction Y is amortized by the expression of X*X,
734   //  and therefore Y is in a "less critical" position compared to what it
735   //  was before the transformation.
736   if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) {
737     Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
738     return BinaryOperator::CreateFMulFMF(XX, Y, &I);
739   }
740   if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) {
741     Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
742     return BinaryOperator::CreateFMulFMF(XX, Y, &I);
743   }
744 
745   return nullptr;
746 }
747 
visitFMul(BinaryOperator & I)748 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
749   if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
750                                   I.getFastMathFlags(),
751                                   SQ.getWithInstruction(&I)))
752     return replaceInstUsesWith(I, V);
753 
754   if (SimplifyAssociativeOrCommutative(I))
755     return &I;
756 
757   if (Instruction *X = foldVectorBinop(I))
758     return X;
759 
760   if (Instruction *Phi = foldBinopWithPhiOperands(I))
761     return Phi;
762 
763   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
764     return FoldedMul;
765 
766   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
767     return replaceInstUsesWith(I, FoldedMul);
768 
769   if (Instruction *R = foldFPSignBitOps(I))
770     return R;
771 
772   // X * -1.0 --> -X
773   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
774   if (match(Op1, m_SpecificFP(-1.0)))
775     return UnaryOperator::CreateFNegFMF(Op0, &I);
776 
777   // With no-nans: X * 0.0 --> copysign(0.0, X)
778   if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) {
779     CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
780                                                  {I.getType()}, {Op1, Op0}, &I);
781     return replaceInstUsesWith(I, CopySign);
782   }
783 
784   // -X * C --> X * -C
785   Value *X, *Y;
786   Constant *C;
787   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
788     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
789       return BinaryOperator::CreateFMulFMF(X, NegC, &I);
790 
791   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
792   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
793     return replaceInstUsesWith(I, V);
794 
795   if (I.hasAllowReassoc())
796     if (Instruction *FoldedMul = foldFMulReassoc(I))
797       return FoldedMul;
798 
799   // log2(X * 0.5) * Y = log2(X) * Y - Y
800   if (I.isFast()) {
801     IntrinsicInst *Log2 = nullptr;
802     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
803             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
804       Log2 = cast<IntrinsicInst>(Op0);
805       Y = Op1;
806     }
807     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
808             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
809       Log2 = cast<IntrinsicInst>(Op1);
810       Y = Op0;
811     }
812     if (Log2) {
813       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
814       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
815       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
816     }
817   }
818 
819   // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
820   // Given a phi node with entry value as 0 and it used in fmul operation,
821   // we can replace fmul with 0 safely and eleminate loop operation.
822   PHINode *PN = nullptr;
823   Value *Start = nullptr, *Step = nullptr;
824   if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
825       I.hasNoSignedZeros() && match(Start, m_Zero()))
826     return replaceInstUsesWith(I, Start);
827 
828   // minimum(X, Y) * maximum(X, Y) => X * Y.
829   if (match(&I,
830             m_c_FMul(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
831                      m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
832                                                        m_Deferred(Y))))) {
833     BinaryOperator *Result = BinaryOperator::CreateFMulFMF(X, Y, &I);
834     // We cannot preserve ninf if nnan flag is not set.
835     // If X is NaN and Y is Inf then in original program we had NaN * NaN,
836     // while in optimized version NaN * Inf and this is a poison with ninf flag.
837     if (!Result->hasNoNaNs())
838       Result->setHasNoInfs(false);
839     return Result;
840   }
841 
842   return nullptr;
843 }
844 
845 /// Fold a divide or remainder with a select instruction divisor when one of the
846 /// select operands is zero. In that case, we can use the other select operand
847 /// because div/rem by zero is undefined.
simplifyDivRemOfSelectWithZeroOp(BinaryOperator & I)848 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
849   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
850   if (!SI)
851     return false;
852 
853   int NonNullOperand;
854   if (match(SI->getTrueValue(), m_Zero()))
855     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
856     NonNullOperand = 2;
857   else if (match(SI->getFalseValue(), m_Zero()))
858     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
859     NonNullOperand = 1;
860   else
861     return false;
862 
863   // Change the div/rem to use 'Y' instead of the select.
864   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
865 
866   // Okay, we know we replace the operand of the div/rem with 'Y' with no
867   // problem.  However, the select, or the condition of the select may have
868   // multiple uses.  Based on our knowledge that the operand must be non-zero,
869   // propagate the known value for the select into other uses of it, and
870   // propagate a known value of the condition into its other users.
871 
872   // If the select and condition only have a single use, don't bother with this,
873   // early exit.
874   Value *SelectCond = SI->getCondition();
875   if (SI->use_empty() && SelectCond->hasOneUse())
876     return true;
877 
878   // Scan the current block backward, looking for other uses of SI.
879   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
880   Type *CondTy = SelectCond->getType();
881   while (BBI != BBFront) {
882     --BBI;
883     // If we found an instruction that we can't assume will return, so
884     // information from below it cannot be propagated above it.
885     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
886       break;
887 
888     // Replace uses of the select or its condition with the known values.
889     for (Use &Op : BBI->operands()) {
890       if (Op == SI) {
891         replaceUse(Op, SI->getOperand(NonNullOperand));
892         Worklist.push(&*BBI);
893       } else if (Op == SelectCond) {
894         replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
895                                            : ConstantInt::getFalse(CondTy));
896         Worklist.push(&*BBI);
897       }
898     }
899 
900     // If we past the instruction, quit looking for it.
901     if (&*BBI == SI)
902       SI = nullptr;
903     if (&*BBI == SelectCond)
904       SelectCond = nullptr;
905 
906     // If we ran out of things to eliminate, break out of the loop.
907     if (!SelectCond && !SI)
908       break;
909 
910   }
911   return true;
912 }
913 
914 /// True if the multiply can not be expressed in an int this size.
multiplyOverflows(const APInt & C1,const APInt & C2,APInt & Product,bool IsSigned)915 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
916                               bool IsSigned) {
917   bool Overflow;
918   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
919   return Overflow;
920 }
921 
922 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
isMultiple(const APInt & C1,const APInt & C2,APInt & Quotient,bool IsSigned)923 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
924                        bool IsSigned) {
925   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
926 
927   // Bail if we will divide by zero.
928   if (C2.isZero())
929     return false;
930 
931   // Bail if we would divide INT_MIN by -1.
932   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
933     return false;
934 
935   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
936   if (IsSigned)
937     APInt::sdivrem(C1, C2, Quotient, Remainder);
938   else
939     APInt::udivrem(C1, C2, Quotient, Remainder);
940 
941   return Remainder.isMinValue();
942 }
943 
foldIDivShl(BinaryOperator & I,InstCombiner::BuilderTy & Builder)944 static Value *foldIDivShl(BinaryOperator &I, InstCombiner::BuilderTy &Builder) {
945   assert((I.getOpcode() == Instruction::SDiv ||
946           I.getOpcode() == Instruction::UDiv) &&
947          "Expected integer divide");
948 
949   bool IsSigned = I.getOpcode() == Instruction::SDiv;
950   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
951   Type *Ty = I.getType();
952 
953   Value *X, *Y, *Z;
954 
955   // With appropriate no-wrap constraints, remove a common factor in the
956   // dividend and divisor that is disguised as a left-shifted value.
957   if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
958       match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
959     // Both operands must have the matching no-wrap for this kind of division.
960     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
961     auto *Shl = cast<OverflowingBinaryOperator>(Op1);
962     bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
963     bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
964 
965     // (X * Y) u/ (X << Z) --> Y u>> Z
966     if (!IsSigned && HasNUW)
967       return Builder.CreateLShr(Y, Z, "", I.isExact());
968 
969     // (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
970     if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
971       Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
972       return Builder.CreateSDiv(Y, Shl, "", I.isExact());
973     }
974   }
975 
976   // With appropriate no-wrap constraints, remove a common factor in the
977   // dividend and divisor that is disguised as a left-shift amount.
978   if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
979       match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
980     auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
981     auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
982 
983     // For unsigned div, we need 'nuw' on both shifts or
984     // 'nsw' on both shifts + 'nuw' on the dividend.
985     // (X << Z) / (Y << Z) --> X / Y
986     if (!IsSigned &&
987         ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
988          (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
989           Shl1->hasNoSignedWrap())))
990       return Builder.CreateUDiv(X, Y, "", I.isExact());
991 
992     // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
993     // (X << Z) / (Y << Z) --> X / Y
994     if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
995         Shl1->hasNoUnsignedWrap())
996       return Builder.CreateSDiv(X, Y, "", I.isExact());
997   }
998 
999   // If X << Y and X << Z does not overflow, then:
1000   // (X << Y) / (X << Z) -> (1 << Y) / (1 << Z) -> 1 << Y >> Z
1001   if (match(Op0, m_Shl(m_Value(X), m_Value(Y))) &&
1002       match(Op1, m_Shl(m_Specific(X), m_Value(Z)))) {
1003     auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1004     auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1005 
1006     if (IsSigned ? (Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap())
1007                  : (Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap())) {
1008       Constant *One = ConstantInt::get(X->getType(), 1);
1009       // Only preserve the nsw flag if dividend has nsw
1010       // or divisor has nsw and operator is sdiv.
1011       Value *Dividend = Builder.CreateShl(
1012           One, Y, "shl.dividend",
1013           /*HasNUW*/ true,
1014           /*HasNSW*/
1015           IsSigned ? (Shl0->hasNoUnsignedWrap() || Shl1->hasNoUnsignedWrap())
1016                    : Shl0->hasNoSignedWrap());
1017       return Builder.CreateLShr(Dividend, Z, "", I.isExact());
1018     }
1019   }
1020 
1021   return nullptr;
1022 }
1023 
1024 /// This function implements the transforms common to both integer division
1025 /// instructions (udiv and sdiv). It is called by the visitors to those integer
1026 /// division instructions.
1027 /// Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)1028 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
1029   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1030     return Phi;
1031 
1032   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1033   bool IsSigned = I.getOpcode() == Instruction::SDiv;
1034   Type *Ty = I.getType();
1035 
1036   // The RHS is known non-zero.
1037   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1038     return replaceOperand(I, 1, V);
1039 
1040   // Handle cases involving: [su]div X, (select Cond, Y, Z)
1041   // This does not apply for fdiv.
1042   if (simplifyDivRemOfSelectWithZeroOp(I))
1043     return &I;
1044 
1045   // If the divisor is a select-of-constants, try to constant fold all div ops:
1046   // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
1047   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1048   if (match(Op0, m_ImmConstant()) &&
1049       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1050     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1051                                           /*FoldWithMultiUse*/ true))
1052       return R;
1053   }
1054 
1055   const APInt *C2;
1056   if (match(Op1, m_APInt(C2))) {
1057     Value *X;
1058     const APInt *C1;
1059 
1060     // (X / C1) / C2  -> X / (C1*C2)
1061     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
1062         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
1063       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
1064       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
1065         return BinaryOperator::Create(I.getOpcode(), X,
1066                                       ConstantInt::get(Ty, Product));
1067     }
1068 
1069     APInt Quotient(C2->getBitWidth(), /*val=*/0ULL, IsSigned);
1070     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
1071         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
1072 
1073       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
1074       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
1075         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
1076                                               ConstantInt::get(Ty, Quotient));
1077         NewDiv->setIsExact(I.isExact());
1078         return NewDiv;
1079       }
1080 
1081       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
1082       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
1083         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1084                                            ConstantInt::get(Ty, Quotient));
1085         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1086         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1087         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1088         return Mul;
1089       }
1090     }
1091 
1092     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
1093          C1->ult(C1->getBitWidth() - 1)) ||
1094         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
1095          C1->ult(C1->getBitWidth()))) {
1096       APInt C1Shifted = APInt::getOneBitSet(
1097           C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
1098 
1099       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
1100       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1101         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
1102                                           ConstantInt::get(Ty, Quotient));
1103         BO->setIsExact(I.isExact());
1104         return BO;
1105       }
1106 
1107       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
1108       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1109         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1110                                            ConstantInt::get(Ty, Quotient));
1111         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1112         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1113         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1114         return Mul;
1115       }
1116     }
1117 
1118     // Distribute div over add to eliminate a matching div/mul pair:
1119     // ((X * C2) + C1) / C2 --> X + C1/C2
1120     // We need a multiple of the divisor for a signed add constant, but
1121     // unsigned is fine with any constant pair.
1122     if (IsSigned &&
1123         match(Op0, m_NSWAdd(m_NSWMul(m_Value(X), m_SpecificInt(*C2)),
1124                             m_APInt(C1))) &&
1125         isMultiple(*C1, *C2, Quotient, IsSigned)) {
1126       return BinaryOperator::CreateNSWAdd(X, ConstantInt::get(Ty, Quotient));
1127     }
1128     if (!IsSigned &&
1129         match(Op0, m_NUWAdd(m_NUWMul(m_Value(X), m_SpecificInt(*C2)),
1130                             m_APInt(C1)))) {
1131       return BinaryOperator::CreateNUWAdd(X,
1132                                           ConstantInt::get(Ty, C1->udiv(*C2)));
1133     }
1134 
1135     if (!C2->isZero()) // avoid X udiv 0
1136       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
1137         return FoldedDiv;
1138   }
1139 
1140   if (match(Op0, m_One())) {
1141     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
1142     if (IsSigned) {
1143       // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
1144       // (Op1 + 1) u< 3 ? Op1 : 0
1145       // Op1 must be frozen because we are increasing its number of uses.
1146       Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
1147       Value *Inc = Builder.CreateAdd(F1, Op0);
1148       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
1149       return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
1150     } else {
1151       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
1152       // result is one, otherwise it's zero.
1153       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
1154     }
1155   }
1156 
1157   // See if we can fold away this div instruction.
1158   if (SimplifyDemandedInstructionBits(I))
1159     return &I;
1160 
1161   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
1162   Value *X, *Z;
1163   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
1164     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
1165         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
1166       return BinaryOperator::Create(I.getOpcode(), X, Op1);
1167 
1168   // (X << Y) / X -> 1 << Y
1169   Value *Y;
1170   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
1171     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
1172   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
1173     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
1174 
1175   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
1176   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
1177     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1178     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1179     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1180       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
1181       replaceOperand(I, 1, Y);
1182       return &I;
1183     }
1184   }
1185 
1186   // (X << Z) / (X * Y) -> (1 << Z) / Y
1187   // TODO: Handle sdiv.
1188   if (!IsSigned && Op1->hasOneUse() &&
1189       match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
1190       match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
1191     if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
1192       Instruction *NewDiv = BinaryOperator::CreateUDiv(
1193           Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
1194       NewDiv->setIsExact(I.isExact());
1195       return NewDiv;
1196     }
1197 
1198   if (Value *R = foldIDivShl(I, Builder))
1199     return replaceInstUsesWith(I, R);
1200 
1201   // With the appropriate no-wrap constraint, remove a multiply by the divisor
1202   // after peeking through another divide:
1203   // ((Op1 * X) / Y) / Op1 --> X / Y
1204   if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
1205                          m_Value(Y)))) {
1206     auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
1207     auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
1208     Instruction *NewDiv = nullptr;
1209     if (!IsSigned && Mul->hasNoUnsignedWrap())
1210       NewDiv = BinaryOperator::CreateUDiv(X, Y);
1211     else if (IsSigned && Mul->hasNoSignedWrap())
1212       NewDiv = BinaryOperator::CreateSDiv(X, Y);
1213 
1214     // Exact propagates only if both of the original divides are exact.
1215     if (NewDiv) {
1216       NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
1217       return NewDiv;
1218     }
1219   }
1220 
1221   // (X * Y) / (X * Z) --> Y / Z (and commuted variants)
1222   if (match(Op0, m_Mul(m_Value(X), m_Value(Y)))) {
1223     auto OB0HasNSW = cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap();
1224     auto OB0HasNUW = cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap();
1225 
1226     auto CreateDivOrNull = [&](Value *A, Value *B) -> Instruction * {
1227       auto OB1HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1228       auto OB1HasNUW =
1229           cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1230       const APInt *C1, *C2;
1231       if (IsSigned && OB0HasNSW) {
1232         if (OB1HasNSW && match(B, m_APInt(C1)) && !C1->isAllOnes())
1233           return BinaryOperator::CreateSDiv(A, B);
1234       }
1235       if (!IsSigned && OB0HasNUW) {
1236         if (OB1HasNUW)
1237           return BinaryOperator::CreateUDiv(A, B);
1238         if (match(A, m_APInt(C1)) && match(B, m_APInt(C2)) && C2->ule(*C1))
1239           return BinaryOperator::CreateUDiv(A, B);
1240       }
1241       return nullptr;
1242     };
1243 
1244     if (match(Op1, m_c_Mul(m_Specific(X), m_Value(Z)))) {
1245       if (auto *Val = CreateDivOrNull(Y, Z))
1246         return Val;
1247     }
1248     if (match(Op1, m_c_Mul(m_Specific(Y), m_Value(Z)))) {
1249       if (auto *Val = CreateDivOrNull(X, Z))
1250         return Val;
1251     }
1252   }
1253   return nullptr;
1254 }
1255 
1256 static const unsigned MaxDepth = 6;
1257 
1258 // Take the exact integer log2 of the value. If DoFold is true, create the
1259 // actual instructions, otherwise return a non-null dummy value. Return nullptr
1260 // on failure.
takeLog2(IRBuilderBase & Builder,Value * Op,unsigned Depth,bool AssumeNonZero,bool DoFold)1261 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
1262                        bool AssumeNonZero, bool DoFold) {
1263   auto IfFold = [DoFold](function_ref<Value *()> Fn) {
1264     if (!DoFold)
1265       return reinterpret_cast<Value *>(-1);
1266     return Fn();
1267   };
1268 
1269   // FIXME: assert that Op1 isn't/doesn't contain undef.
1270 
1271   // log2(2^C) -> C
1272   if (match(Op, m_Power2()))
1273     return IfFold([&]() {
1274       Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
1275       if (!C)
1276         llvm_unreachable("Failed to constant fold udiv -> logbase2");
1277       return C;
1278     });
1279 
1280   // The remaining tests are all recursive, so bail out if we hit the limit.
1281   if (Depth++ == MaxDepth)
1282     return nullptr;
1283 
1284   // log2(zext X) -> zext log2(X)
1285   // FIXME: Require one use?
1286   Value *X, *Y;
1287   if (match(Op, m_ZExt(m_Value(X))))
1288     if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1289       return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
1290 
1291   // log2(X << Y) -> log2(X) + Y
1292   // FIXME: Require one use unless X is 1?
1293   if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) {
1294     auto *BO = cast<OverflowingBinaryOperator>(Op);
1295     // nuw will be set if the `shl` is trivially non-zero.
1296     if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1297       if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1298         return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
1299   }
1300 
1301   // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
1302   // FIXME: missed optimization: if one of the hands of select is/contains
1303   //        undef, just directly pick the other one.
1304   // FIXME: can both hands contain undef?
1305   // FIXME: Require one use?
1306   if (SelectInst *SI = dyn_cast<SelectInst>(Op))
1307     if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth,
1308                                AssumeNonZero, DoFold))
1309       if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth,
1310                                  AssumeNonZero, DoFold))
1311         return IfFold([&]() {
1312           return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
1313         });
1314 
1315   // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
1316   // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
1317   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
1318   if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) {
1319     // Use AssumeNonZero as false here. Otherwise we can hit case where
1320     // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
1321     if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth,
1322                                /*AssumeNonZero*/ false, DoFold))
1323       if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth,
1324                                  /*AssumeNonZero*/ false, DoFold))
1325         return IfFold([&]() {
1326           return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX,
1327                                                LogY);
1328         });
1329   }
1330 
1331   return nullptr;
1332 }
1333 
1334 /// If we have zero-extended operands of an unsigned div or rem, we may be able
1335 /// to narrow the operation (sink the zext below the math).
narrowUDivURem(BinaryOperator & I,InstCombinerImpl & IC)1336 static Instruction *narrowUDivURem(BinaryOperator &I,
1337                                    InstCombinerImpl &IC) {
1338   Instruction::BinaryOps Opcode = I.getOpcode();
1339   Value *N = I.getOperand(0);
1340   Value *D = I.getOperand(1);
1341   Type *Ty = I.getType();
1342   Value *X, *Y;
1343   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
1344       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
1345     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
1346     // urem (zext X), (zext Y) --> zext (urem X, Y)
1347     Value *NarrowOp = IC.Builder.CreateBinOp(Opcode, X, Y);
1348     return new ZExtInst(NarrowOp, Ty);
1349   }
1350 
1351   Constant *C;
1352   if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
1353       match(D, m_Constant(C))) {
1354     // If the constant is the same in the smaller type, use the narrow version.
1355     Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1356     if (!TruncC)
1357       return nullptr;
1358 
1359     // udiv (zext X), C --> zext (udiv X, C')
1360     // urem (zext X), C --> zext (urem X, C')
1361     return new ZExtInst(IC.Builder.CreateBinOp(Opcode, X, TruncC), Ty);
1362   }
1363   if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
1364       match(N, m_Constant(C))) {
1365     // If the constant is the same in the smaller type, use the narrow version.
1366     Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1367     if (!TruncC)
1368       return nullptr;
1369 
1370     // udiv C, (zext X) --> zext (udiv C', X)
1371     // urem C, (zext X) --> zext (urem C', X)
1372     return new ZExtInst(IC.Builder.CreateBinOp(Opcode, TruncC, X), Ty);
1373   }
1374 
1375   return nullptr;
1376 }
1377 
visitUDiv(BinaryOperator & I)1378 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1379   if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1380                                   SQ.getWithInstruction(&I)))
1381     return replaceInstUsesWith(I, V);
1382 
1383   if (Instruction *X = foldVectorBinop(I))
1384     return X;
1385 
1386   // Handle the integer div common cases
1387   if (Instruction *Common = commonIDivTransforms(I))
1388     return Common;
1389 
1390   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1391   Value *X;
1392   const APInt *C1, *C2;
1393   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1394     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1395     bool Overflow;
1396     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1397     if (!Overflow) {
1398       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1399       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1400           X, ConstantInt::get(X->getType(), C2ShlC1));
1401       if (IsExact)
1402         BO->setIsExact();
1403       return BO;
1404     }
1405   }
1406 
1407   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1408   // TODO: Could use isKnownNegative() to handle non-constant values.
1409   Type *Ty = I.getType();
1410   if (match(Op1, m_Negative())) {
1411     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1412     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1413   }
1414   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1415   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1416     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1417     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1418   }
1419 
1420   if (Instruction *NarrowDiv = narrowUDivURem(I, *this))
1421     return NarrowDiv;
1422 
1423   Value *A, *B;
1424 
1425   // Look through a right-shift to find the common factor:
1426   // ((Op1 *nuw A) >> B) / Op1 --> A >> B
1427   if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
1428       match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
1429     Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
1430     if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
1431       Lshr->setIsExact();
1432     return Lshr;
1433   }
1434 
1435   // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
1436   if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ true,
1437                /*DoFold*/ false)) {
1438     Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0,
1439                           /*AssumeNonZero*/ true, /*DoFold*/ true);
1440     return replaceInstUsesWith(
1441         I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
1442   }
1443 
1444   return nullptr;
1445 }
1446 
visitSDiv(BinaryOperator & I)1447 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1448   if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1449                                   SQ.getWithInstruction(&I)))
1450     return replaceInstUsesWith(I, V);
1451 
1452   if (Instruction *X = foldVectorBinop(I))
1453     return X;
1454 
1455   // Handle the integer div common cases
1456   if (Instruction *Common = commonIDivTransforms(I))
1457     return Common;
1458 
1459   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1460   Type *Ty = I.getType();
1461   Value *X;
1462   // sdiv Op0, -1 --> -Op0
1463   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1464   if (match(Op1, m_AllOnes()) ||
1465       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1466     return BinaryOperator::CreateNSWNeg(Op0);
1467 
1468   // X / INT_MIN --> X == INT_MIN
1469   if (match(Op1, m_SignMask()))
1470     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1471 
1472   if (I.isExact()) {
1473     // sdiv exact X, 1<<C --> ashr exact X, C   iff  1<<C  is non-negative
1474     if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
1475       Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
1476       return BinaryOperator::CreateExactAShr(Op0, C);
1477     }
1478 
1479     // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
1480     Value *ShAmt;
1481     if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
1482       return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1483 
1484     // sdiv exact X, -1<<C --> -(ashr exact X, C)
1485     if (match(Op1, m_NegatedPower2())) {
1486       Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
1487       Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
1488       Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
1489       return BinaryOperator::CreateNSWNeg(Ashr);
1490     }
1491   }
1492 
1493   const APInt *Op1C;
1494   if (match(Op1, m_APInt(Op1C))) {
1495     // If the dividend is sign-extended and the constant divisor is small enough
1496     // to fit in the source type, shrink the division to the narrower type:
1497     // (sext X) sdiv C --> sext (X sdiv C)
1498     Value *Op0Src;
1499     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1500         Op0Src->getType()->getScalarSizeInBits() >=
1501             Op1C->getSignificantBits()) {
1502 
1503       // In the general case, we need to make sure that the dividend is not the
1504       // minimum signed value because dividing that by -1 is UB. But here, we
1505       // know that the -1 divisor case is already handled above.
1506 
1507       Constant *NarrowDivisor =
1508           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1509       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1510       return new SExtInst(NarrowOp, Ty);
1511     }
1512 
1513     // -X / C --> X / -C (if the negation doesn't overflow).
1514     // TODO: This could be enhanced to handle arbitrary vector constants by
1515     //       checking if all elements are not the min-signed-val.
1516     if (!Op1C->isMinSignedValue() &&
1517         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1518       Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1519       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1520       BO->setIsExact(I.isExact());
1521       return BO;
1522     }
1523   }
1524 
1525   // -X / Y --> -(X / Y)
1526   Value *Y;
1527   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1528     return BinaryOperator::CreateNSWNeg(
1529         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1530 
1531   // abs(X) / X --> X > -1 ? 1 : -1
1532   // X / abs(X) --> X > -1 ? 1 : -1
1533   if (match(&I, m_c_BinOp(
1534                     m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1535                     m_Deferred(X)))) {
1536     Value *Cond = Builder.CreateIsNotNeg(X);
1537     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1538                               ConstantInt::getAllOnesValue(Ty));
1539   }
1540 
1541   KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
1542   if (!I.isExact() &&
1543       (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
1544       KnownDividend.countMinTrailingZeros() >= Op1C->countr_zero()) {
1545     I.setIsExact();
1546     return &I;
1547   }
1548 
1549   if (KnownDividend.isNonNegative()) {
1550     // If both operands are unsigned, turn this into a udiv.
1551     if (isKnownNonNegative(Op1, SQ.getWithInstruction(&I))) {
1552       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1553       BO->setIsExact(I.isExact());
1554       return BO;
1555     }
1556 
1557     if (match(Op1, m_NegatedPower2())) {
1558       // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1559       //                    -> -(X udiv (1 << C)) -> -(X u>> C)
1560       Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
1561           ConstantExpr::getNeg(cast<Constant>(Op1)));
1562       Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
1563       return BinaryOperator::CreateNeg(Shr);
1564     }
1565 
1566     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1567       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1568       // Safe because the only negative value (1 << Y) can take on is
1569       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1570       // the sign bit set.
1571       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1572       BO->setIsExact(I.isExact());
1573       return BO;
1574     }
1575   }
1576 
1577   // -X / X --> X == INT_MIN ? 1 : -1
1578   if (isKnownNegation(Op0, Op1)) {
1579     APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1580     Value *Cond = Builder.CreateICmpEQ(Op0, ConstantInt::get(Ty, MinVal));
1581     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1582                               ConstantInt::getAllOnesValue(Ty));
1583   }
1584   return nullptr;
1585 }
1586 
1587 /// Remove negation and try to convert division into multiplication.
foldFDivConstantDivisor(BinaryOperator & I)1588 Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
1589   Constant *C;
1590   if (!match(I.getOperand(1), m_Constant(C)))
1591     return nullptr;
1592 
1593   // -X / C --> X / -C
1594   Value *X;
1595   const DataLayout &DL = I.getModule()->getDataLayout();
1596   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1597     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1598       return BinaryOperator::CreateFDivFMF(X, NegC, &I);
1599 
1600   // nnan X / +0.0 -> copysign(inf, X)
1601   if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) {
1602     IRBuilder<> B(&I);
1603     // TODO: nnan nsz X / -0.0 -> copysign(inf, X)
1604     CallInst *CopySign = B.CreateIntrinsic(
1605         Intrinsic::copysign, {C->getType()},
1606         {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
1607     CopySign->takeName(&I);
1608     return replaceInstUsesWith(I, CopySign);
1609   }
1610 
1611   // If the constant divisor has an exact inverse, this is always safe. If not,
1612   // then we can still create a reciprocal if fast-math-flags allow it and the
1613   // constant is a regular number (not zero, infinite, or denormal).
1614   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1615     return nullptr;
1616 
1617   // Disallow denormal constants because we don't know what would happen
1618   // on all targets.
1619   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1620   // denorms are flushed?
1621   auto *RecipC = ConstantFoldBinaryOpOperands(
1622       Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
1623   if (!RecipC || !RecipC->isNormalFP())
1624     return nullptr;
1625 
1626   // X / C --> X * (1 / C)
1627   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1628 }
1629 
1630 /// Remove negation and try to reassociate constant math.
foldFDivConstantDividend(BinaryOperator & I)1631 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1632   Constant *C;
1633   if (!match(I.getOperand(0), m_Constant(C)))
1634     return nullptr;
1635 
1636   // C / -X --> -C / X
1637   Value *X;
1638   const DataLayout &DL = I.getModule()->getDataLayout();
1639   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1640     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1641       return BinaryOperator::CreateFDivFMF(NegC, X, &I);
1642 
1643   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1644     return nullptr;
1645 
1646   // Try to reassociate C / X expressions where X includes another constant.
1647   Constant *C2, *NewC = nullptr;
1648   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1649     // C / (X * C2) --> (C / C2) / X
1650     NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
1651   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1652     // C / (X / C2) --> (C * C2) / X
1653     NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
1654   }
1655   // Disallow denormal constants because we don't know what would happen
1656   // on all targets.
1657   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1658   // denorms are flushed?
1659   if (!NewC || !NewC->isNormalFP())
1660     return nullptr;
1661 
1662   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1663 }
1664 
1665 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
foldFDivPowDivisor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1666 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1667                                        InstCombiner::BuilderTy &Builder) {
1668   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1669   auto *II = dyn_cast<IntrinsicInst>(Op1);
1670   if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1671       !I.hasAllowReciprocal())
1672     return nullptr;
1673 
1674   // Z / pow(X, Y) --> Z * pow(X, -Y)
1675   // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1676   // In the general case, this creates an extra instruction, but fmul allows
1677   // for better canonicalization and optimization than fdiv.
1678   Intrinsic::ID IID = II->getIntrinsicID();
1679   SmallVector<Value *> Args;
1680   switch (IID) {
1681   case Intrinsic::pow:
1682     Args.push_back(II->getArgOperand(0));
1683     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1684     break;
1685   case Intrinsic::powi: {
1686     // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1687     // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1688     // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1689     // non-standard results, so this corner case should be acceptable if the
1690     // code rules out INF values.
1691     if (!I.hasNoInfs())
1692       return nullptr;
1693     Args.push_back(II->getArgOperand(0));
1694     Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1695     Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1696     Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1697     return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1698   }
1699   case Intrinsic::exp:
1700   case Intrinsic::exp2:
1701     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1702     break;
1703   default:
1704     return nullptr;
1705   }
1706   Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1707   return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1708 }
1709 
visitFDiv(BinaryOperator & I)1710 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1711   Module *M = I.getModule();
1712 
1713   if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
1714                                   I.getFastMathFlags(),
1715                                   SQ.getWithInstruction(&I)))
1716     return replaceInstUsesWith(I, V);
1717 
1718   if (Instruction *X = foldVectorBinop(I))
1719     return X;
1720 
1721   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1722     return Phi;
1723 
1724   if (Instruction *R = foldFDivConstantDivisor(I))
1725     return R;
1726 
1727   if (Instruction *R = foldFDivConstantDividend(I))
1728     return R;
1729 
1730   if (Instruction *R = foldFPSignBitOps(I))
1731     return R;
1732 
1733   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1734   if (isa<Constant>(Op0))
1735     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1736       if (Instruction *R = FoldOpIntoSelect(I, SI))
1737         return R;
1738 
1739   if (isa<Constant>(Op1))
1740     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1741       if (Instruction *R = FoldOpIntoSelect(I, SI))
1742         return R;
1743 
1744   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1745     Value *X, *Y;
1746     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1747         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1748       // (X / Y) / Z => X / (Y * Z)
1749       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1750       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1751     }
1752     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1753         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1754       // Z / (X / Y) => (Y * Z) / X
1755       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1756       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1757     }
1758     // Z / (1.0 / Y) => (Y * Z)
1759     //
1760     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1761     // m_OneUse check is avoided because even in the case of the multiple uses
1762     // for 1.0/Y, the number of instructions remain the same and a division is
1763     // replaced by a multiplication.
1764     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1765       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1766   }
1767 
1768   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1769     // sin(X) / cos(X) -> tan(X)
1770     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1771     Value *X;
1772     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1773                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1774     bool IsCot =
1775         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1776                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1777 
1778     if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
1779                                        LibFunc_tanf, LibFunc_tanl)) {
1780       IRBuilder<> B(&I);
1781       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1782       B.setFastMathFlags(I.getFastMathFlags());
1783       AttributeList Attrs =
1784           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1785       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1786                                         LibFunc_tanl, B, Attrs);
1787       if (IsCot)
1788         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1789       return replaceInstUsesWith(I, Res);
1790     }
1791   }
1792 
1793   // X / (X * Y) --> 1.0 / Y
1794   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1795   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1796   Value *X, *Y;
1797   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1798       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1799     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1800     replaceOperand(I, 1, Y);
1801     return &I;
1802   }
1803 
1804   // X / fabs(X) -> copysign(1.0, X)
1805   // fabs(X) / X -> copysign(1.0, X)
1806   if (I.hasNoNaNs() && I.hasNoInfs() &&
1807       (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1808        match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1809     Value *V = Builder.CreateBinaryIntrinsic(
1810         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1811     return replaceInstUsesWith(I, V);
1812   }
1813 
1814   if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1815     return Mul;
1816 
1817   // pow(X, Y) / X --> pow(X, Y-1)
1818   if (I.hasAllowReassoc() &&
1819       match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
1820                                                       m_Value(Y))))) {
1821     Value *Y1 =
1822         Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
1823     Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
1824     return replaceInstUsesWith(I, Pow);
1825   }
1826 
1827   // powi(X, Y) / X --> powi(X, Y-1)
1828   // This is legal when (Y - 1) can't wraparound, in which case reassoc and nnan
1829   // are required.
1830   // TODO: Multi-use may be also better off creating Powi(x,y-1)
1831   if (I.hasAllowReassoc() && I.hasNoNaNs() &&
1832       match(Op0, m_OneUse(m_Intrinsic<Intrinsic::powi>(m_Specific(Op1),
1833                                                        m_Value(Y)))) &&
1834       willNotOverflowSignedSub(Y, ConstantInt::get(Y->getType(), 1), I)) {
1835     Constant *NegOne = ConstantInt::getAllOnesValue(Y->getType());
1836     Value *Y1 = Builder.CreateAdd(Y, NegOne);
1837     Type *Types[] = {Op1->getType(), Y1->getType()};
1838     Value *Pow = Builder.CreateIntrinsic(Intrinsic::powi, Types, {Op1, Y1}, &I);
1839     return replaceInstUsesWith(I, Pow);
1840   }
1841 
1842   return nullptr;
1843 }
1844 
1845 // Variety of transform for:
1846 //  (urem/srem (mul X, Y), (mul X, Z))
1847 //  (urem/srem (shl X, Y), (shl X, Z))
1848 //  (urem/srem (shl Y, X), (shl Z, X))
1849 // NB: The shift cases are really just extensions of the mul case. We treat
1850 // shift as Val * (1 << Amt).
simplifyIRemMulShl(BinaryOperator & I,InstCombinerImpl & IC)1851 static Instruction *simplifyIRemMulShl(BinaryOperator &I,
1852                                        InstCombinerImpl &IC) {
1853   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *X = nullptr;
1854   APInt Y, Z;
1855   bool ShiftByX = false;
1856 
1857   // If V is not nullptr, it will be matched using m_Specific.
1858   auto MatchShiftOrMulXC = [](Value *Op, Value *&V, APInt &C) -> bool {
1859     const APInt *Tmp = nullptr;
1860     if ((!V && match(Op, m_Mul(m_Value(V), m_APInt(Tmp)))) ||
1861         (V && match(Op, m_Mul(m_Specific(V), m_APInt(Tmp)))))
1862       C = *Tmp;
1863     else if ((!V && match(Op, m_Shl(m_Value(V), m_APInt(Tmp)))) ||
1864              (V && match(Op, m_Shl(m_Specific(V), m_APInt(Tmp)))))
1865       C = APInt(Tmp->getBitWidth(), 1) << *Tmp;
1866     if (Tmp != nullptr)
1867       return true;
1868 
1869     // Reset `V` so we don't start with specific value on next match attempt.
1870     V = nullptr;
1871     return false;
1872   };
1873 
1874   auto MatchShiftCX = [](Value *Op, APInt &C, Value *&V) -> bool {
1875     const APInt *Tmp = nullptr;
1876     if ((!V && match(Op, m_Shl(m_APInt(Tmp), m_Value(V)))) ||
1877         (V && match(Op, m_Shl(m_APInt(Tmp), m_Specific(V))))) {
1878       C = *Tmp;
1879       return true;
1880     }
1881 
1882     // Reset `V` so we don't start with specific value on next match attempt.
1883     V = nullptr;
1884     return false;
1885   };
1886 
1887   if (MatchShiftOrMulXC(Op0, X, Y) && MatchShiftOrMulXC(Op1, X, Z)) {
1888     // pass
1889   } else if (MatchShiftCX(Op0, Y, X) && MatchShiftCX(Op1, Z, X)) {
1890     ShiftByX = true;
1891   } else {
1892     return nullptr;
1893   }
1894 
1895   bool IsSRem = I.getOpcode() == Instruction::SRem;
1896 
1897   OverflowingBinaryOperator *BO0 = cast<OverflowingBinaryOperator>(Op0);
1898   // TODO: We may be able to deduce more about nsw/nuw of BO0/BO1 based on Y >=
1899   // Z or Z >= Y.
1900   bool BO0HasNSW = BO0->hasNoSignedWrap();
1901   bool BO0HasNUW = BO0->hasNoUnsignedWrap();
1902   bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
1903 
1904   APInt RemYZ = IsSRem ? Y.srem(Z) : Y.urem(Z);
1905   // (rem (mul nuw/nsw X, Y), (mul X, Z))
1906   //      if (rem Y, Z) == 0
1907   //          -> 0
1908   if (RemYZ.isZero() && BO0NoWrap)
1909     return IC.replaceInstUsesWith(I, ConstantInt::getNullValue(I.getType()));
1910 
1911   // Helper function to emit either (RemSimplificationC << X) or
1912   // (RemSimplificationC * X) depending on whether we matched Op0/Op1 as
1913   // (shl V, X) or (mul V, X) respectively.
1914   auto CreateMulOrShift =
1915       [&](const APInt &RemSimplificationC) -> BinaryOperator * {
1916     Value *RemSimplification =
1917         ConstantInt::get(I.getType(), RemSimplificationC);
1918     return ShiftByX ? BinaryOperator::CreateShl(RemSimplification, X)
1919                     : BinaryOperator::CreateMul(X, RemSimplification);
1920   };
1921 
1922   OverflowingBinaryOperator *BO1 = cast<OverflowingBinaryOperator>(Op1);
1923   bool BO1HasNSW = BO1->hasNoSignedWrap();
1924   bool BO1HasNUW = BO1->hasNoUnsignedWrap();
1925   bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
1926   // (rem (mul X, Y), (mul nuw/nsw X, Z))
1927   //      if (rem Y, Z) == Y
1928   //          -> (mul nuw/nsw X, Y)
1929   if (RemYZ == Y && BO1NoWrap) {
1930     BinaryOperator *BO = CreateMulOrShift(Y);
1931     // Copy any overflow flags from Op0.
1932     BO->setHasNoSignedWrap(IsSRem || BO0HasNSW);
1933     BO->setHasNoUnsignedWrap(!IsSRem || BO0HasNUW);
1934     return BO;
1935   }
1936 
1937   // (rem (mul nuw/nsw X, Y), (mul {nsw} X, Z))
1938   //      if Y >= Z
1939   //          -> (mul {nuw} nsw X, (rem Y, Z))
1940   if (Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
1941     BinaryOperator *BO = CreateMulOrShift(RemYZ);
1942     BO->setHasNoSignedWrap();
1943     BO->setHasNoUnsignedWrap(BO0HasNUW);
1944     return BO;
1945   }
1946 
1947   return nullptr;
1948 }
1949 
1950 /// This function implements the transforms common to both integer remainder
1951 /// instructions (urem and srem). It is called by the visitors to those integer
1952 /// remainder instructions.
1953 /// Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1954 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1955   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1956     return Phi;
1957 
1958   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1959 
1960   // The RHS is known non-zero.
1961   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1962     return replaceOperand(I, 1, V);
1963 
1964   // Handle cases involving: rem X, (select Cond, Y, Z)
1965   if (simplifyDivRemOfSelectWithZeroOp(I))
1966     return &I;
1967 
1968   // If the divisor is a select-of-constants, try to constant fold all rem ops:
1969   // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
1970   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1971   if (match(Op0, m_ImmConstant()) &&
1972       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1973     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1974                                           /*FoldWithMultiUse*/ true))
1975       return R;
1976   }
1977 
1978   if (isa<Constant>(Op1)) {
1979     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1980       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1981         if (Instruction *R = FoldOpIntoSelect(I, SI))
1982           return R;
1983       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1984         const APInt *Op1Int;
1985         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1986             (I.getOpcode() == Instruction::URem ||
1987              !Op1Int->isMinSignedValue())) {
1988           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1989           // predecessor blocks, so do this only if we know the srem or urem
1990           // will not fault.
1991           if (Instruction *NV = foldOpIntoPhi(I, PN))
1992             return NV;
1993         }
1994       }
1995 
1996       // See if we can fold away this rem instruction.
1997       if (SimplifyDemandedInstructionBits(I))
1998         return &I;
1999     }
2000   }
2001 
2002   if (Instruction *R = simplifyIRemMulShl(I, *this))
2003     return R;
2004 
2005   return nullptr;
2006 }
2007 
visitURem(BinaryOperator & I)2008 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
2009   if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
2010                                   SQ.getWithInstruction(&I)))
2011     return replaceInstUsesWith(I, V);
2012 
2013   if (Instruction *X = foldVectorBinop(I))
2014     return X;
2015 
2016   if (Instruction *common = commonIRemTransforms(I))
2017     return common;
2018 
2019   if (Instruction *NarrowRem = narrowUDivURem(I, *this))
2020     return NarrowRem;
2021 
2022   // X urem Y -> X and Y-1, where Y is a power of 2,
2023   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2024   Type *Ty = I.getType();
2025   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
2026     // This may increase instruction count, we don't enforce that Y is a
2027     // constant.
2028     Constant *N1 = Constant::getAllOnesValue(Ty);
2029     Value *Add = Builder.CreateAdd(Op1, N1);
2030     return BinaryOperator::CreateAnd(Op0, Add);
2031   }
2032 
2033   // 1 urem X -> zext(X != 1)
2034   if (match(Op0, m_One())) {
2035     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
2036     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
2037   }
2038 
2039   // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
2040   // Op0 must be frozen because we are increasing its number of uses.
2041   if (match(Op1, m_Negative())) {
2042     Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
2043     Value *Cmp = Builder.CreateICmpULT(F0, Op1);
2044     Value *Sub = Builder.CreateSub(F0, Op1);
2045     return SelectInst::Create(Cmp, F0, Sub);
2046   }
2047 
2048   // If the divisor is a sext of a boolean, then the divisor must be max
2049   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
2050   // max unsigned value. In that case, the remainder is 0:
2051   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
2052   Value *X;
2053   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
2054     Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2055     Value *Cmp =
2056         Builder.CreateICmpEQ(FrozenOp0, ConstantInt::getAllOnesValue(Ty));
2057     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2058   }
2059 
2060   // For "(X + 1) % Op1" and if (X u< Op1) => (X + 1) == Op1 ? 0 : X + 1 .
2061   if (match(Op0, m_Add(m_Value(X), m_One()))) {
2062     Value *Val =
2063         simplifyICmpInst(ICmpInst::ICMP_ULT, X, Op1, SQ.getWithInstruction(&I));
2064     if (Val && match(Val, m_One())) {
2065       Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2066       Value *Cmp = Builder.CreateICmpEQ(FrozenOp0, Op1);
2067       return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2068     }
2069   }
2070 
2071   return nullptr;
2072 }
2073 
visitSRem(BinaryOperator & I)2074 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
2075   if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
2076                                   SQ.getWithInstruction(&I)))
2077     return replaceInstUsesWith(I, V);
2078 
2079   if (Instruction *X = foldVectorBinop(I))
2080     return X;
2081 
2082   // Handle the integer rem common cases
2083   if (Instruction *Common = commonIRemTransforms(I))
2084     return Common;
2085 
2086   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2087   {
2088     const APInt *Y;
2089     // X % -Y -> X % Y
2090     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
2091       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
2092   }
2093 
2094   // -X srem Y --> -(X srem Y)
2095   Value *X, *Y;
2096   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
2097     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
2098 
2099   // If the sign bits of both operands are zero (i.e. we can prove they are
2100   // unsigned inputs), turn this into a urem.
2101   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
2102   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
2103       MaskedValueIsZero(Op0, Mask, 0, &I)) {
2104     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2105     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
2106   }
2107 
2108   // If it's a constant vector, flip any negative values positive.
2109   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
2110     Constant *C = cast<Constant>(Op1);
2111     unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
2112 
2113     bool hasNegative = false;
2114     bool hasMissing = false;
2115     for (unsigned i = 0; i != VWidth; ++i) {
2116       Constant *Elt = C->getAggregateElement(i);
2117       if (!Elt) {
2118         hasMissing = true;
2119         break;
2120       }
2121 
2122       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
2123         if (RHS->isNegative())
2124           hasNegative = true;
2125     }
2126 
2127     if (hasNegative && !hasMissing) {
2128       SmallVector<Constant *, 16> Elts(VWidth);
2129       for (unsigned i = 0; i != VWidth; ++i) {
2130         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
2131         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
2132           if (RHS->isNegative())
2133             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
2134         }
2135       }
2136 
2137       Constant *NewRHSV = ConstantVector::get(Elts);
2138       if (NewRHSV != C)  // Don't loop on -MININT
2139         return replaceOperand(I, 1, NewRHSV);
2140     }
2141   }
2142 
2143   return nullptr;
2144 }
2145 
visitFRem(BinaryOperator & I)2146 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
2147   if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
2148                                   I.getFastMathFlags(),
2149                                   SQ.getWithInstruction(&I)))
2150     return replaceInstUsesWith(I, V);
2151 
2152   if (Instruction *X = foldVectorBinop(I))
2153     return X;
2154 
2155   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2156     return Phi;
2157 
2158   return nullptr;
2159 }
2160