1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 #include <ctype.h>
30 
31 // The machine topology
32 kmp_topology_t *__kmp_topology = nullptr;
33 // KMP_HW_SUBSET environment variable
34 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35 
36 // Store the real or imagined machine hierarchy here
37 static hierarchy_info machine_hierarchy;
38 
__kmp_cleanup_hierarchy()39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40 
41 #if KMP_AFFINITY_SUPPORTED
42 // Helper class to see if place lists further restrict the fullMask
43 class kmp_full_mask_modifier_t {
44   kmp_affin_mask_t *mask;
45 
46 public:
kmp_full_mask_modifier_t()47   kmp_full_mask_modifier_t() {
48     KMP_CPU_ALLOC(mask);
49     KMP_CPU_ZERO(mask);
50   }
~kmp_full_mask_modifier_t()51   ~kmp_full_mask_modifier_t() {
52     KMP_CPU_FREE(mask);
53     mask = nullptr;
54   }
include(const kmp_affin_mask_t * other)55   void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); }
56   // If the new full mask is different from the current full mask,
57   // then switch them. Returns true if full mask was affected, false otherwise.
restrict_to_mask()58   bool restrict_to_mask() {
59     // See if the new mask further restricts or changes the full mask
60     if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask))
61       return false;
62     return __kmp_topology->restrict_to_mask(mask);
63   }
64 };
65 
66 static inline const char *
__kmp_get_affinity_env_var(const kmp_affinity_t & affinity,bool for_binding=false)67 __kmp_get_affinity_env_var(const kmp_affinity_t &affinity,
68                            bool for_binding = false) {
69   if (affinity.flags.omp_places) {
70     if (for_binding)
71       return "OMP_PROC_BIND";
72     return "OMP_PLACES";
73   }
74   return affinity.env_var;
75 }
76 #endif // KMP_AFFINITY_SUPPORTED
77 
__kmp_get_hierarchy(kmp_uint32 nproc,kmp_bstate_t * thr_bar)78 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
79   kmp_uint32 depth;
80   // The test below is true if affinity is available, but set to "none". Need to
81   // init on first use of hierarchical barrier.
82   if (TCR_1(machine_hierarchy.uninitialized))
83     machine_hierarchy.init(nproc);
84 
85   // Adjust the hierarchy in case num threads exceeds original
86   if (nproc > machine_hierarchy.base_num_threads)
87     machine_hierarchy.resize(nproc);
88 
89   depth = machine_hierarchy.depth;
90   KMP_DEBUG_ASSERT(depth > 0);
91 
92   thr_bar->depth = depth;
93   __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
94                      &(thr_bar->base_leaf_kids));
95   thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
96 }
97 
98 static int nCoresPerPkg, nPackages;
99 static int __kmp_nThreadsPerCore;
100 #ifndef KMP_DFLT_NTH_CORES
101 static int __kmp_ncores;
102 #endif
103 
__kmp_hw_get_catalog_string(kmp_hw_t type,bool plural)104 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
105   switch (type) {
106   case KMP_HW_SOCKET:
107     return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
108   case KMP_HW_DIE:
109     return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
110   case KMP_HW_MODULE:
111     return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
112   case KMP_HW_TILE:
113     return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
114   case KMP_HW_NUMA:
115     return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
116   case KMP_HW_L3:
117     return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
118   case KMP_HW_L2:
119     return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
120   case KMP_HW_L1:
121     return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
122   case KMP_HW_LLC:
123     return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
124   case KMP_HW_CORE:
125     return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
126   case KMP_HW_THREAD:
127     return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
128   case KMP_HW_PROC_GROUP:
129     return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
130   case KMP_HW_UNKNOWN:
131   case KMP_HW_LAST:
132     return KMP_I18N_STR(Unknown);
133   }
134   KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
135   KMP_BUILTIN_UNREACHABLE;
136 }
137 
__kmp_hw_get_keyword(kmp_hw_t type,bool plural)138 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
139   switch (type) {
140   case KMP_HW_SOCKET:
141     return ((plural) ? "sockets" : "socket");
142   case KMP_HW_DIE:
143     return ((plural) ? "dice" : "die");
144   case KMP_HW_MODULE:
145     return ((plural) ? "modules" : "module");
146   case KMP_HW_TILE:
147     return ((plural) ? "tiles" : "tile");
148   case KMP_HW_NUMA:
149     return ((plural) ? "numa_domains" : "numa_domain");
150   case KMP_HW_L3:
151     return ((plural) ? "l3_caches" : "l3_cache");
152   case KMP_HW_L2:
153     return ((plural) ? "l2_caches" : "l2_cache");
154   case KMP_HW_L1:
155     return ((plural) ? "l1_caches" : "l1_cache");
156   case KMP_HW_LLC:
157     return ((plural) ? "ll_caches" : "ll_cache");
158   case KMP_HW_CORE:
159     return ((plural) ? "cores" : "core");
160   case KMP_HW_THREAD:
161     return ((plural) ? "threads" : "thread");
162   case KMP_HW_PROC_GROUP:
163     return ((plural) ? "proc_groups" : "proc_group");
164   case KMP_HW_UNKNOWN:
165   case KMP_HW_LAST:
166     return ((plural) ? "unknowns" : "unknown");
167   }
168   KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
169   KMP_BUILTIN_UNREACHABLE;
170 }
171 
__kmp_hw_get_core_type_string(kmp_hw_core_type_t type)172 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
173   switch (type) {
174   case KMP_HW_CORE_TYPE_UNKNOWN:
175   case KMP_HW_MAX_NUM_CORE_TYPES:
176     return "unknown";
177 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
178   case KMP_HW_CORE_TYPE_ATOM:
179     return "Intel Atom(R) processor";
180   case KMP_HW_CORE_TYPE_CORE:
181     return "Intel(R) Core(TM) processor";
182 #endif
183   }
184   KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration");
185   KMP_BUILTIN_UNREACHABLE;
186 }
187 
188 #if KMP_AFFINITY_SUPPORTED
189 // If affinity is supported, check the affinity
190 // verbose and warning flags before printing warning
191 #define KMP_AFF_WARNING(s, ...)                                                \
192   if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) {    \
193     KMP_WARNING(__VA_ARGS__);                                                  \
194   }
195 #else
196 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
197 #endif
198 
199 ////////////////////////////////////////////////////////////////////////////////
200 // kmp_hw_thread_t methods
compare_ids(const void * a,const void * b)201 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
202   const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
203   const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
204   int depth = __kmp_topology->get_depth();
205   for (int level = 0; level < depth; ++level) {
206     if (ahwthread->ids[level] < bhwthread->ids[level])
207       return -1;
208     else if (ahwthread->ids[level] > bhwthread->ids[level])
209       return 1;
210   }
211   if (ahwthread->os_id < bhwthread->os_id)
212     return -1;
213   else if (ahwthread->os_id > bhwthread->os_id)
214     return 1;
215   return 0;
216 }
217 
218 #if KMP_AFFINITY_SUPPORTED
compare_compact(const void * a,const void * b)219 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
220   int i;
221   const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
222   const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
223   int depth = __kmp_topology->get_depth();
224   int compact = __kmp_topology->compact;
225   KMP_DEBUG_ASSERT(compact >= 0);
226   KMP_DEBUG_ASSERT(compact <= depth);
227   for (i = 0; i < compact; i++) {
228     int j = depth - i - 1;
229     if (aa->sub_ids[j] < bb->sub_ids[j])
230       return -1;
231     if (aa->sub_ids[j] > bb->sub_ids[j])
232       return 1;
233   }
234   for (; i < depth; i++) {
235     int j = i - compact;
236     if (aa->sub_ids[j] < bb->sub_ids[j])
237       return -1;
238     if (aa->sub_ids[j] > bb->sub_ids[j])
239       return 1;
240   }
241   return 0;
242 }
243 #endif
244 
print() const245 void kmp_hw_thread_t::print() const {
246   int depth = __kmp_topology->get_depth();
247   printf("%4d ", os_id);
248   for (int i = 0; i < depth; ++i) {
249     printf("%4d ", ids[i]);
250   }
251   if (attrs) {
252     if (attrs.is_core_type_valid())
253       printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
254     if (attrs.is_core_eff_valid())
255       printf(" (eff=%d)", attrs.get_core_eff());
256   }
257   if (leader)
258     printf(" (leader)");
259   printf("\n");
260 }
261 
262 ////////////////////////////////////////////////////////////////////////////////
263 // kmp_topology_t methods
264 
265 // Add a layer to the topology based on the ids. Assume the topology
266 // is perfectly nested (i.e., so no object has more than one parent)
_insert_layer(kmp_hw_t type,const int * ids)267 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
268   // Figure out where the layer should go by comparing the ids of the current
269   // layers with the new ids
270   int target_layer;
271   int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
272   int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
273 
274   // Start from the highest layer and work down to find target layer
275   // If new layer is equal to another layer then put the new layer above
276   for (target_layer = 0; target_layer < depth; ++target_layer) {
277     bool layers_equal = true;
278     bool strictly_above_target_layer = false;
279     for (int i = 0; i < num_hw_threads; ++i) {
280       int id = hw_threads[i].ids[target_layer];
281       int new_id = ids[i];
282       if (id != previous_id && new_id == previous_new_id) {
283         // Found the layer we are strictly above
284         strictly_above_target_layer = true;
285         layers_equal = false;
286         break;
287       } else if (id == previous_id && new_id != previous_new_id) {
288         // Found a layer we are below. Move to next layer and check.
289         layers_equal = false;
290         break;
291       }
292       previous_id = id;
293       previous_new_id = new_id;
294     }
295     if (strictly_above_target_layer || layers_equal)
296       break;
297   }
298 
299   // Found the layer we are above. Now move everything to accommodate the new
300   // layer. And put the new ids and type into the topology.
301   for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
302     types[j] = types[i];
303   types[target_layer] = type;
304   for (int k = 0; k < num_hw_threads; ++k) {
305     for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
306       hw_threads[k].ids[j] = hw_threads[k].ids[i];
307     hw_threads[k].ids[target_layer] = ids[k];
308   }
309   equivalent[type] = type;
310   depth++;
311 }
312 
313 #if KMP_GROUP_AFFINITY
314 // Insert the Windows Processor Group structure into the topology
_insert_windows_proc_groups()315 void kmp_topology_t::_insert_windows_proc_groups() {
316   // Do not insert the processor group structure for a single group
317   if (__kmp_num_proc_groups == 1)
318     return;
319   kmp_affin_mask_t *mask;
320   int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
321   KMP_CPU_ALLOC(mask);
322   for (int i = 0; i < num_hw_threads; ++i) {
323     KMP_CPU_ZERO(mask);
324     KMP_CPU_SET(hw_threads[i].os_id, mask);
325     ids[i] = __kmp_get_proc_group(mask);
326   }
327   KMP_CPU_FREE(mask);
328   _insert_layer(KMP_HW_PROC_GROUP, ids);
329   __kmp_free(ids);
330 }
331 #endif
332 
333 // Remove layers that don't add information to the topology.
334 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
_remove_radix1_layers()335 void kmp_topology_t::_remove_radix1_layers() {
336   int preference[KMP_HW_LAST];
337   int top_index1, top_index2;
338   // Set up preference associative array
339   preference[KMP_HW_SOCKET] = 110;
340   preference[KMP_HW_PROC_GROUP] = 100;
341   preference[KMP_HW_CORE] = 95;
342   preference[KMP_HW_THREAD] = 90;
343   preference[KMP_HW_NUMA] = 85;
344   preference[KMP_HW_DIE] = 80;
345   preference[KMP_HW_TILE] = 75;
346   preference[KMP_HW_MODULE] = 73;
347   preference[KMP_HW_L3] = 70;
348   preference[KMP_HW_L2] = 65;
349   preference[KMP_HW_L1] = 60;
350   preference[KMP_HW_LLC] = 5;
351   top_index1 = 0;
352   top_index2 = 1;
353   while (top_index1 < depth - 1 && top_index2 < depth) {
354     kmp_hw_t type1 = types[top_index1];
355     kmp_hw_t type2 = types[top_index2];
356     KMP_ASSERT_VALID_HW_TYPE(type1);
357     KMP_ASSERT_VALID_HW_TYPE(type2);
358     // Do not allow the three main topology levels (sockets, cores, threads) to
359     // be compacted down
360     if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
361          type1 == KMP_HW_SOCKET) &&
362         (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
363          type2 == KMP_HW_SOCKET)) {
364       top_index1 = top_index2++;
365       continue;
366     }
367     bool radix1 = true;
368     bool all_same = true;
369     int id1 = hw_threads[0].ids[top_index1];
370     int id2 = hw_threads[0].ids[top_index2];
371     int pref1 = preference[type1];
372     int pref2 = preference[type2];
373     for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
374       if (hw_threads[hwidx].ids[top_index1] == id1 &&
375           hw_threads[hwidx].ids[top_index2] != id2) {
376         radix1 = false;
377         break;
378       }
379       if (hw_threads[hwidx].ids[top_index2] != id2)
380         all_same = false;
381       id1 = hw_threads[hwidx].ids[top_index1];
382       id2 = hw_threads[hwidx].ids[top_index2];
383     }
384     if (radix1) {
385       // Select the layer to remove based on preference
386       kmp_hw_t remove_type, keep_type;
387       int remove_layer, remove_layer_ids;
388       if (pref1 > pref2) {
389         remove_type = type2;
390         remove_layer = remove_layer_ids = top_index2;
391         keep_type = type1;
392       } else {
393         remove_type = type1;
394         remove_layer = remove_layer_ids = top_index1;
395         keep_type = type2;
396       }
397       // If all the indexes for the second (deeper) layer are the same.
398       // e.g., all are zero, then make sure to keep the first layer's ids
399       if (all_same)
400         remove_layer_ids = top_index2;
401       // Remove radix one type by setting the equivalence, removing the id from
402       // the hw threads and removing the layer from types and depth
403       set_equivalent_type(remove_type, keep_type);
404       for (int idx = 0; idx < num_hw_threads; ++idx) {
405         kmp_hw_thread_t &hw_thread = hw_threads[idx];
406         for (int d = remove_layer_ids; d < depth - 1; ++d)
407           hw_thread.ids[d] = hw_thread.ids[d + 1];
408       }
409       for (int idx = remove_layer; idx < depth - 1; ++idx)
410         types[idx] = types[idx + 1];
411       depth--;
412     } else {
413       top_index1 = top_index2++;
414     }
415   }
416   KMP_ASSERT(depth > 0);
417 }
418 
_set_last_level_cache()419 void kmp_topology_t::_set_last_level_cache() {
420   if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
421     set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
422   else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
423     set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
424 #if KMP_MIC_SUPPORTED
425   else if (__kmp_mic_type == mic3) {
426     if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
427       set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
428     else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
429       set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
430     // L2/Tile wasn't detected so just say L1
431     else
432       set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
433   }
434 #endif
435   else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
436     set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
437   // Fallback is to set last level cache to socket or core
438   if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
439     if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
440       set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
441     else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
442       set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
443   }
444   KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
445 }
446 
447 // Gather the count of each topology layer and the ratio
_gather_enumeration_information()448 void kmp_topology_t::_gather_enumeration_information() {
449   int previous_id[KMP_HW_LAST];
450   int max[KMP_HW_LAST];
451 
452   for (int i = 0; i < depth; ++i) {
453     previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
454     max[i] = 0;
455     count[i] = 0;
456     ratio[i] = 0;
457   }
458   int core_level = get_level(KMP_HW_CORE);
459   for (int i = 0; i < num_hw_threads; ++i) {
460     kmp_hw_thread_t &hw_thread = hw_threads[i];
461     for (int layer = 0; layer < depth; ++layer) {
462       int id = hw_thread.ids[layer];
463       if (id != previous_id[layer]) {
464         // Add an additional increment to each count
465         for (int l = layer; l < depth; ++l)
466           count[l]++;
467         // Keep track of topology layer ratio statistics
468         max[layer]++;
469         for (int l = layer + 1; l < depth; ++l) {
470           if (max[l] > ratio[l])
471             ratio[l] = max[l];
472           max[l] = 1;
473         }
474         // Figure out the number of different core types
475         // and efficiencies for hybrid CPUs
476         if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
477           if (hw_thread.attrs.is_core_eff_valid() &&
478               hw_thread.attrs.core_eff >= num_core_efficiencies) {
479             // Because efficiencies can range from 0 to max efficiency - 1,
480             // the number of efficiencies is max efficiency + 1
481             num_core_efficiencies = hw_thread.attrs.core_eff + 1;
482           }
483           if (hw_thread.attrs.is_core_type_valid()) {
484             bool found = false;
485             for (int j = 0; j < num_core_types; ++j) {
486               if (hw_thread.attrs.get_core_type() == core_types[j]) {
487                 found = true;
488                 break;
489               }
490             }
491             if (!found) {
492               KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
493               core_types[num_core_types++] = hw_thread.attrs.get_core_type();
494             }
495           }
496         }
497         break;
498       }
499     }
500     for (int layer = 0; layer < depth; ++layer) {
501       previous_id[layer] = hw_thread.ids[layer];
502     }
503   }
504   for (int layer = 0; layer < depth; ++layer) {
505     if (max[layer] > ratio[layer])
506       ratio[layer] = max[layer];
507   }
508 }
509 
_get_ncores_with_attr(const kmp_hw_attr_t & attr,int above_level,bool find_all) const510 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
511                                           int above_level,
512                                           bool find_all) const {
513   int current, current_max;
514   int previous_id[KMP_HW_LAST];
515   for (int i = 0; i < depth; ++i)
516     previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
517   int core_level = get_level(KMP_HW_CORE);
518   if (find_all)
519     above_level = -1;
520   KMP_ASSERT(above_level < core_level);
521   current_max = 0;
522   current = 0;
523   for (int i = 0; i < num_hw_threads; ++i) {
524     kmp_hw_thread_t &hw_thread = hw_threads[i];
525     if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
526       if (current > current_max)
527         current_max = current;
528       current = hw_thread.attrs.contains(attr);
529     } else {
530       for (int level = above_level + 1; level <= core_level; ++level) {
531         if (hw_thread.ids[level] != previous_id[level]) {
532           if (hw_thread.attrs.contains(attr))
533             current++;
534           break;
535         }
536       }
537     }
538     for (int level = 0; level < depth; ++level)
539       previous_id[level] = hw_thread.ids[level];
540   }
541   if (current > current_max)
542     current_max = current;
543   return current_max;
544 }
545 
546 // Find out if the topology is uniform
_discover_uniformity()547 void kmp_topology_t::_discover_uniformity() {
548   int num = 1;
549   for (int level = 0; level < depth; ++level)
550     num *= ratio[level];
551   flags.uniform = (num == count[depth - 1]);
552 }
553 
554 // Set all the sub_ids for each hardware thread
_set_sub_ids()555 void kmp_topology_t::_set_sub_ids() {
556   int previous_id[KMP_HW_LAST];
557   int sub_id[KMP_HW_LAST];
558 
559   for (int i = 0; i < depth; ++i) {
560     previous_id[i] = -1;
561     sub_id[i] = -1;
562   }
563   for (int i = 0; i < num_hw_threads; ++i) {
564     kmp_hw_thread_t &hw_thread = hw_threads[i];
565     // Setup the sub_id
566     for (int j = 0; j < depth; ++j) {
567       if (hw_thread.ids[j] != previous_id[j]) {
568         sub_id[j]++;
569         for (int k = j + 1; k < depth; ++k) {
570           sub_id[k] = 0;
571         }
572         break;
573       }
574     }
575     // Set previous_id
576     for (int j = 0; j < depth; ++j) {
577       previous_id[j] = hw_thread.ids[j];
578     }
579     // Set the sub_ids field
580     for (int j = 0; j < depth; ++j) {
581       hw_thread.sub_ids[j] = sub_id[j];
582     }
583   }
584 }
585 
_set_globals()586 void kmp_topology_t::_set_globals() {
587   // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
588   int core_level, thread_level, package_level;
589   package_level = get_level(KMP_HW_SOCKET);
590 #if KMP_GROUP_AFFINITY
591   if (package_level == -1)
592     package_level = get_level(KMP_HW_PROC_GROUP);
593 #endif
594   core_level = get_level(KMP_HW_CORE);
595   thread_level = get_level(KMP_HW_THREAD);
596 
597   KMP_ASSERT(core_level != -1);
598   KMP_ASSERT(thread_level != -1);
599 
600   __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
601   if (package_level != -1) {
602     nCoresPerPkg = calculate_ratio(core_level, package_level);
603     nPackages = get_count(package_level);
604   } else {
605     // assume one socket
606     nCoresPerPkg = get_count(core_level);
607     nPackages = 1;
608   }
609 #ifndef KMP_DFLT_NTH_CORES
610   __kmp_ncores = get_count(core_level);
611 #endif
612 }
613 
allocate(int nproc,int ndepth,const kmp_hw_t * types)614 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
615                                          const kmp_hw_t *types) {
616   kmp_topology_t *retval;
617   // Allocate all data in one large allocation
618   size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
619                 sizeof(int) * (size_t)KMP_HW_LAST * 3;
620   char *bytes = (char *)__kmp_allocate(size);
621   retval = (kmp_topology_t *)bytes;
622   if (nproc > 0) {
623     retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
624   } else {
625     retval->hw_threads = nullptr;
626   }
627   retval->num_hw_threads = nproc;
628   retval->depth = ndepth;
629   int *arr =
630       (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
631   retval->types = (kmp_hw_t *)arr;
632   retval->ratio = arr + (size_t)KMP_HW_LAST;
633   retval->count = arr + 2 * (size_t)KMP_HW_LAST;
634   retval->num_core_efficiencies = 0;
635   retval->num_core_types = 0;
636   retval->compact = 0;
637   for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
638     retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
639   KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
640   for (int i = 0; i < ndepth; ++i) {
641     retval->types[i] = types[i];
642     retval->equivalent[types[i]] = types[i];
643   }
644   return retval;
645 }
646 
deallocate(kmp_topology_t * topology)647 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
648   if (topology)
649     __kmp_free(topology);
650 }
651 
check_ids() const652 bool kmp_topology_t::check_ids() const {
653   // Assume ids have been sorted
654   if (num_hw_threads == 0)
655     return true;
656   for (int i = 1; i < num_hw_threads; ++i) {
657     kmp_hw_thread_t &current_thread = hw_threads[i];
658     kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
659     bool unique = false;
660     for (int j = 0; j < depth; ++j) {
661       if (previous_thread.ids[j] != current_thread.ids[j]) {
662         unique = true;
663         break;
664       }
665     }
666     if (unique)
667       continue;
668     return false;
669   }
670   return true;
671 }
672 
dump() const673 void kmp_topology_t::dump() const {
674   printf("***********************\n");
675   printf("*** __kmp_topology: ***\n");
676   printf("***********************\n");
677   printf("* depth: %d\n", depth);
678 
679   printf("* types: ");
680   for (int i = 0; i < depth; ++i)
681     printf("%15s ", __kmp_hw_get_keyword(types[i]));
682   printf("\n");
683 
684   printf("* ratio: ");
685   for (int i = 0; i < depth; ++i) {
686     printf("%15d ", ratio[i]);
687   }
688   printf("\n");
689 
690   printf("* count: ");
691   for (int i = 0; i < depth; ++i) {
692     printf("%15d ", count[i]);
693   }
694   printf("\n");
695 
696   printf("* num_core_eff: %d\n", num_core_efficiencies);
697   printf("* num_core_types: %d\n", num_core_types);
698   printf("* core_types: ");
699   for (int i = 0; i < num_core_types; ++i)
700     printf("%3d ", core_types[i]);
701   printf("\n");
702 
703   printf("* equivalent map:\n");
704   KMP_FOREACH_HW_TYPE(i) {
705     const char *key = __kmp_hw_get_keyword(i);
706     const char *value = __kmp_hw_get_keyword(equivalent[i]);
707     printf("%-15s -> %-15s\n", key, value);
708   }
709 
710   printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
711 
712   printf("* num_hw_threads: %d\n", num_hw_threads);
713   printf("* hw_threads:\n");
714   for (int i = 0; i < num_hw_threads; ++i) {
715     hw_threads[i].print();
716   }
717   printf("***********************\n");
718 }
719 
print(const char * env_var) const720 void kmp_topology_t::print(const char *env_var) const {
721   kmp_str_buf_t buf;
722   int print_types_depth;
723   __kmp_str_buf_init(&buf);
724   kmp_hw_t print_types[KMP_HW_LAST + 2];
725 
726   // Num Available Threads
727   if (num_hw_threads) {
728     KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
729   } else {
730     KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
731   }
732 
733   // Uniform or not
734   if (is_uniform()) {
735     KMP_INFORM(Uniform, env_var);
736   } else {
737     KMP_INFORM(NonUniform, env_var);
738   }
739 
740   // Equivalent types
741   KMP_FOREACH_HW_TYPE(type) {
742     kmp_hw_t eq_type = equivalent[type];
743     if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
744       KMP_INFORM(AffEqualTopologyTypes, env_var,
745                  __kmp_hw_get_catalog_string(type),
746                  __kmp_hw_get_catalog_string(eq_type));
747     }
748   }
749 
750   // Quick topology
751   KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
752   // Create a print types array that always guarantees printing
753   // the core and thread level
754   print_types_depth = 0;
755   for (int level = 0; level < depth; ++level)
756     print_types[print_types_depth++] = types[level];
757   if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
758     // Force in the core level for quick topology
759     if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
760       // Force core before thread e.g., 1 socket X 2 threads/socket
761       // becomes 1 socket X 1 core/socket X 2 threads/socket
762       print_types[print_types_depth - 1] = KMP_HW_CORE;
763       print_types[print_types_depth++] = KMP_HW_THREAD;
764     } else {
765       print_types[print_types_depth++] = KMP_HW_CORE;
766     }
767   }
768   // Always put threads at very end of quick topology
769   if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
770     print_types[print_types_depth++] = KMP_HW_THREAD;
771 
772   __kmp_str_buf_clear(&buf);
773   kmp_hw_t numerator_type;
774   kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
775   int core_level = get_level(KMP_HW_CORE);
776   int ncores = get_count(core_level);
777 
778   for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
779     int c;
780     bool plural;
781     numerator_type = print_types[plevel];
782     KMP_ASSERT_VALID_HW_TYPE(numerator_type);
783     if (equivalent[numerator_type] != numerator_type)
784       c = 1;
785     else
786       c = get_ratio(level++);
787     plural = (c > 1);
788     if (plevel == 0) {
789       __kmp_str_buf_print(&buf, "%d %s", c,
790                           __kmp_hw_get_catalog_string(numerator_type, plural));
791     } else {
792       __kmp_str_buf_print(&buf, " x %d %s/%s", c,
793                           __kmp_hw_get_catalog_string(numerator_type, plural),
794                           __kmp_hw_get_catalog_string(denominator_type));
795     }
796     denominator_type = numerator_type;
797   }
798   KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
799 
800   // Hybrid topology information
801   if (__kmp_is_hybrid_cpu()) {
802     for (int i = 0; i < num_core_types; ++i) {
803       kmp_hw_core_type_t core_type = core_types[i];
804       kmp_hw_attr_t attr;
805       attr.clear();
806       attr.set_core_type(core_type);
807       int ncores = get_ncores_with_attr(attr);
808       if (ncores > 0) {
809         KMP_INFORM(TopologyHybrid, env_var, ncores,
810                    __kmp_hw_get_core_type_string(core_type));
811         KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
812         for (int eff = 0; eff < num_core_efficiencies; ++eff) {
813           attr.set_core_eff(eff);
814           int ncores_with_eff = get_ncores_with_attr(attr);
815           if (ncores_with_eff > 0) {
816             KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
817           }
818         }
819       }
820     }
821   }
822 
823   if (num_hw_threads <= 0) {
824     __kmp_str_buf_free(&buf);
825     return;
826   }
827 
828   // Full OS proc to hardware thread map
829   KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
830   for (int i = 0; i < num_hw_threads; i++) {
831     __kmp_str_buf_clear(&buf);
832     for (int level = 0; level < depth; ++level) {
833       kmp_hw_t type = types[level];
834       __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
835       __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
836     }
837     if (__kmp_is_hybrid_cpu())
838       __kmp_str_buf_print(
839           &buf, "(%s)",
840           __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
841     KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
842   }
843 
844   __kmp_str_buf_free(&buf);
845 }
846 
847 #if KMP_AFFINITY_SUPPORTED
set_granularity(kmp_affinity_t & affinity) const848 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
849   const char *env_var = __kmp_get_affinity_env_var(affinity);
850   // If requested hybrid CPU attributes for granularity (either OMP_PLACES or
851   // KMP_AFFINITY), but none exist, then reset granularity and have below method
852   // select a granularity and warn user.
853   if (!__kmp_is_hybrid_cpu()) {
854     if (affinity.core_attr_gran.valid) {
855       // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores
856       // instead
857       KMP_AFF_WARNING(
858           affinity, AffIgnoringNonHybrid, env_var,
859           __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
860       affinity.gran = KMP_HW_CORE;
861       affinity.gran_levels = -1;
862       affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
863       affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
864     } else if (affinity.flags.core_types_gran ||
865                affinity.flags.core_effs_gran) {
866       // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead
867       if (affinity.flags.omp_places) {
868         KMP_AFF_WARNING(
869             affinity, AffIgnoringNonHybrid, env_var,
870             __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
871       } else {
872         // KMP_AFFINITY=granularity=core_type|core_eff,...
873         KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
874                         "Intel(R) Hybrid Technology core attribute",
875                         __kmp_hw_get_catalog_string(KMP_HW_CORE));
876       }
877       affinity.gran = KMP_HW_CORE;
878       affinity.gran_levels = -1;
879       affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
880       affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
881     }
882   }
883   // Set the number of affinity granularity levels
884   if (affinity.gran_levels < 0) {
885     kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
886     // Check if user's granularity request is valid
887     if (gran_type == KMP_HW_UNKNOWN) {
888       // First try core, then thread, then package
889       kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
890       for (auto g : gran_types) {
891         if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
892           gran_type = g;
893           break;
894         }
895       }
896       KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
897       // Warn user what granularity setting will be used instead
898       KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
899                       __kmp_hw_get_catalog_string(affinity.gran),
900                       __kmp_hw_get_catalog_string(gran_type));
901       affinity.gran = gran_type;
902     }
903 #if KMP_GROUP_AFFINITY
904     // If more than one processor group exists, and the level of
905     // granularity specified by the user is too coarse, then the
906     // granularity must be adjusted "down" to processor group affinity
907     // because threads can only exist within one processor group.
908     // For example, if a user sets granularity=socket and there are two
909     // processor groups that cover a socket, then the runtime must
910     // restrict the granularity down to the processor group level.
911     if (__kmp_num_proc_groups > 1) {
912       int gran_depth = get_level(gran_type);
913       int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
914       if (gran_depth >= 0 && proc_group_depth >= 0 &&
915           gran_depth < proc_group_depth) {
916         KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
917                         __kmp_hw_get_catalog_string(affinity.gran));
918         affinity.gran = gran_type = KMP_HW_PROC_GROUP;
919       }
920     }
921 #endif
922     affinity.gran_levels = 0;
923     for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
924       affinity.gran_levels++;
925   }
926 }
927 #endif
928 
canonicalize()929 void kmp_topology_t::canonicalize() {
930 #if KMP_GROUP_AFFINITY
931   _insert_windows_proc_groups();
932 #endif
933   _remove_radix1_layers();
934   _gather_enumeration_information();
935   _discover_uniformity();
936   _set_sub_ids();
937   _set_globals();
938   _set_last_level_cache();
939 
940 #if KMP_MIC_SUPPORTED
941   // Manually Add L2 = Tile equivalence
942   if (__kmp_mic_type == mic3) {
943     if (get_level(KMP_HW_L2) != -1)
944       set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
945     else if (get_level(KMP_HW_TILE) != -1)
946       set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
947   }
948 #endif
949 
950   // Perform post canonicalization checking
951   KMP_ASSERT(depth > 0);
952   for (int level = 0; level < depth; ++level) {
953     // All counts, ratios, and types must be valid
954     KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
955     KMP_ASSERT_VALID_HW_TYPE(types[level]);
956     // Detected types must point to themselves
957     KMP_ASSERT(equivalent[types[level]] == types[level]);
958   }
959 }
960 
961 // Canonicalize an explicit packages X cores/pkg X threads/core topology
canonicalize(int npackages,int ncores_per_pkg,int nthreads_per_core,int ncores)962 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
963                                   int nthreads_per_core, int ncores) {
964   int ndepth = 3;
965   depth = ndepth;
966   KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
967   for (int level = 0; level < depth; ++level) {
968     count[level] = 0;
969     ratio[level] = 0;
970   }
971   count[0] = npackages;
972   count[1] = ncores;
973   count[2] = __kmp_xproc;
974   ratio[0] = npackages;
975   ratio[1] = ncores_per_pkg;
976   ratio[2] = nthreads_per_core;
977   equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
978   equivalent[KMP_HW_CORE] = KMP_HW_CORE;
979   equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
980   types[0] = KMP_HW_SOCKET;
981   types[1] = KMP_HW_CORE;
982   types[2] = KMP_HW_THREAD;
983   //__kmp_avail_proc = __kmp_xproc;
984   _discover_uniformity();
985 }
986 
987 // Represents running sub IDs for a single core attribute where
988 // attribute values have SIZE possibilities.
989 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
990   int last_level; // last level in topology to consider for sub_ids
991   int sub_id[SIZE]; // The sub ID for a given attribute value
992   int prev_sub_id[KMP_HW_LAST];
993   IndexFunc indexer;
994 
995 public:
kmp_sub_ids_tkmp_sub_ids_t996   kmp_sub_ids_t(int last_level) : last_level(last_level) {
997     KMP_ASSERT(last_level < KMP_HW_LAST);
998     for (size_t i = 0; i < SIZE; ++i)
999       sub_id[i] = -1;
1000     for (size_t i = 0; i < KMP_HW_LAST; ++i)
1001       prev_sub_id[i] = -1;
1002   }
updatekmp_sub_ids_t1003   void update(const kmp_hw_thread_t &hw_thread) {
1004     int idx = indexer(hw_thread);
1005     KMP_ASSERT(idx < (int)SIZE);
1006     for (int level = 0; level <= last_level; ++level) {
1007       if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
1008         if (level < last_level)
1009           sub_id[idx] = -1;
1010         sub_id[idx]++;
1011         break;
1012       }
1013     }
1014     for (int level = 0; level <= last_level; ++level)
1015       prev_sub_id[level] = hw_thread.sub_ids[level];
1016   }
get_sub_idkmp_sub_ids_t1017   int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
1018     return sub_id[indexer(hw_thread)];
1019   }
1020 };
1021 
1022 #if KMP_AFFINITY_SUPPORTED
1023 static kmp_str_buf_t *
__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t & attr,kmp_str_buf_t * buf,bool plural)1024 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
1025                                  bool plural) {
1026   __kmp_str_buf_init(buf);
1027   if (attr.is_core_type_valid())
1028     __kmp_str_buf_print(buf, "%s %s",
1029                         __kmp_hw_get_core_type_string(attr.get_core_type()),
1030                         __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
1031   else
1032     __kmp_str_buf_print(buf, "%s eff=%d",
1033                         __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
1034                         attr.get_core_eff());
1035   return buf;
1036 }
1037 
restrict_to_mask(const kmp_affin_mask_t * mask)1038 bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) {
1039   // Apply the filter
1040   bool affected;
1041   int new_index = 0;
1042   for (int i = 0; i < num_hw_threads; ++i) {
1043     int os_id = hw_threads[i].os_id;
1044     if (KMP_CPU_ISSET(os_id, mask)) {
1045       if (i != new_index)
1046         hw_threads[new_index] = hw_threads[i];
1047       new_index++;
1048     } else {
1049       KMP_CPU_CLR(os_id, __kmp_affin_fullMask);
1050       __kmp_avail_proc--;
1051     }
1052   }
1053 
1054   KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1055   affected = (num_hw_threads != new_index);
1056   num_hw_threads = new_index;
1057 
1058   // Post hardware subset canonicalization
1059   if (affected) {
1060     _gather_enumeration_information();
1061     _discover_uniformity();
1062     _set_globals();
1063     _set_last_level_cache();
1064 #if KMP_OS_WINDOWS
1065     // Copy filtered full mask if topology has single processor group
1066     if (__kmp_num_proc_groups <= 1)
1067 #endif
1068       __kmp_affin_origMask->copy(__kmp_affin_fullMask);
1069   }
1070   return affected;
1071 }
1072 
1073 // Apply the KMP_HW_SUBSET envirable to the topology
1074 // Returns true if KMP_HW_SUBSET filtered any processors
1075 // otherwise, returns false
filter_hw_subset()1076 bool kmp_topology_t::filter_hw_subset() {
1077   // If KMP_HW_SUBSET wasn't requested, then do nothing.
1078   if (!__kmp_hw_subset)
1079     return false;
1080 
1081   // First, sort the KMP_HW_SUBSET items by the machine topology
1082   __kmp_hw_subset->sort();
1083 
1084   // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
1085   bool using_core_types = false;
1086   bool using_core_effs = false;
1087   int hw_subset_depth = __kmp_hw_subset->get_depth();
1088   kmp_hw_t specified[KMP_HW_LAST];
1089   int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
1090   KMP_ASSERT(hw_subset_depth > 0);
1091   KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
1092   int core_level = get_level(KMP_HW_CORE);
1093   for (int i = 0; i < hw_subset_depth; ++i) {
1094     int max_count;
1095     const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
1096     int num = item.num[0];
1097     int offset = item.offset[0];
1098     kmp_hw_t type = item.type;
1099     kmp_hw_t equivalent_type = equivalent[type];
1100     int level = get_level(type);
1101     topology_levels[i] = level;
1102 
1103     // Check to see if current layer is in detected machine topology
1104     if (equivalent_type != KMP_HW_UNKNOWN) {
1105       __kmp_hw_subset->at(i).type = equivalent_type;
1106     } else {
1107       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
1108                       __kmp_hw_get_catalog_string(type));
1109       return false;
1110     }
1111 
1112     // Check to see if current layer has already been
1113     // specified either directly or through an equivalent type
1114     if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
1115       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
1116                       __kmp_hw_get_catalog_string(type),
1117                       __kmp_hw_get_catalog_string(specified[equivalent_type]));
1118       return false;
1119     }
1120     specified[equivalent_type] = type;
1121 
1122     // Check to see if each layer's num & offset parameters are valid
1123     max_count = get_ratio(level);
1124     if (max_count < 0 ||
1125         (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1126       bool plural = (num > 1);
1127       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1128                       __kmp_hw_get_catalog_string(type, plural));
1129       return false;
1130     }
1131 
1132     // Check to see if core attributes are consistent
1133     if (core_level == level) {
1134       // Determine which core attributes are specified
1135       for (int j = 0; j < item.num_attrs; ++j) {
1136         if (item.attr[j].is_core_type_valid())
1137           using_core_types = true;
1138         if (item.attr[j].is_core_eff_valid())
1139           using_core_effs = true;
1140       }
1141 
1142       // Check if using a single core attribute on non-hybrid arch.
1143       // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1144       //
1145       // Check if using multiple core attributes on non-hyrbid arch.
1146       // Ignore all of KMP_HW_SUBSET if this is the case.
1147       if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1148         if (item.num_attrs == 1) {
1149           if (using_core_effs) {
1150             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1151                             "efficiency");
1152           } else {
1153             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1154                             "core_type");
1155           }
1156           using_core_effs = false;
1157           using_core_types = false;
1158         } else {
1159           KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1160           return false;
1161         }
1162       }
1163 
1164       // Check if using both core types and core efficiencies together
1165       if (using_core_types && using_core_effs) {
1166         KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1167                         "efficiency");
1168         return false;
1169       }
1170 
1171       // Check that core efficiency values are valid
1172       if (using_core_effs) {
1173         for (int j = 0; j < item.num_attrs; ++j) {
1174           if (item.attr[j].is_core_eff_valid()) {
1175             int core_eff = item.attr[j].get_core_eff();
1176             if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1177               kmp_str_buf_t buf;
1178               __kmp_str_buf_init(&buf);
1179               __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1180               __kmp_msg(kmp_ms_warning,
1181                         KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1182                         KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1183                         __kmp_msg_null);
1184               __kmp_str_buf_free(&buf);
1185               return false;
1186             }
1187           }
1188         }
1189       }
1190 
1191       // Check that the number of requested cores with attributes is valid
1192       if (using_core_types || using_core_effs) {
1193         for (int j = 0; j < item.num_attrs; ++j) {
1194           int num = item.num[j];
1195           int offset = item.offset[j];
1196           int level_above = core_level - 1;
1197           if (level_above >= 0) {
1198             max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1199             if (max_count <= 0 ||
1200                 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1201               kmp_str_buf_t buf;
1202               __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1203               KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1204               __kmp_str_buf_free(&buf);
1205               return false;
1206             }
1207           }
1208         }
1209       }
1210 
1211       if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1212         for (int j = 0; j < item.num_attrs; ++j) {
1213           // Ambiguous use of specific core attribute + generic core
1214           // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1215           if (!item.attr[j]) {
1216             kmp_hw_attr_t other_attr;
1217             for (int k = 0; k < item.num_attrs; ++k) {
1218               if (item.attr[k] != item.attr[j]) {
1219                 other_attr = item.attr[k];
1220                 break;
1221               }
1222             }
1223             kmp_str_buf_t buf;
1224             __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1225             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1226                             __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1227             __kmp_str_buf_free(&buf);
1228             return false;
1229           }
1230           // Allow specifying a specific core type or core eff exactly once
1231           for (int k = 0; k < j; ++k) {
1232             if (!item.attr[j] || !item.attr[k])
1233               continue;
1234             if (item.attr[k] == item.attr[j]) {
1235               kmp_str_buf_t buf;
1236               __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1237                                                item.num[j] > 0);
1238               KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1239               __kmp_str_buf_free(&buf);
1240               return false;
1241             }
1242           }
1243         }
1244       }
1245     }
1246   }
1247 
1248   struct core_type_indexer {
1249     int operator()(const kmp_hw_thread_t &t) const {
1250       switch (t.attrs.get_core_type()) {
1251       case KMP_HW_CORE_TYPE_UNKNOWN:
1252       case KMP_HW_MAX_NUM_CORE_TYPES:
1253         return 0;
1254 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1255       case KMP_HW_CORE_TYPE_ATOM:
1256         return 1;
1257       case KMP_HW_CORE_TYPE_CORE:
1258         return 2;
1259 #endif
1260       }
1261       KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration");
1262       KMP_BUILTIN_UNREACHABLE;
1263     }
1264   };
1265   struct core_eff_indexer {
1266     int operator()(const kmp_hw_thread_t &t) const {
1267       return t.attrs.get_core_eff();
1268     }
1269   };
1270 
1271   kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
1272       core_level);
1273   kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids(
1274       core_level);
1275 
1276   // Determine which hardware threads should be filtered.
1277   int num_filtered = 0;
1278   kmp_affin_mask_t *filtered_mask;
1279   KMP_CPU_ALLOC(filtered_mask);
1280   KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask);
1281   for (int i = 0; i < num_hw_threads; ++i) {
1282     kmp_hw_thread_t &hw_thread = hw_threads[i];
1283     // Update type_sub_id
1284     if (using_core_types)
1285       core_type_sub_ids.update(hw_thread);
1286     if (using_core_effs)
1287       core_eff_sub_ids.update(hw_thread);
1288 
1289     // Check to see if this hardware thread should be filtered
1290     bool should_be_filtered = false;
1291     for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1292          ++hw_subset_index) {
1293       const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1294       int level = topology_levels[hw_subset_index];
1295       if (level == -1)
1296         continue;
1297       if ((using_core_effs || using_core_types) && level == core_level) {
1298         // Look for the core attribute in KMP_HW_SUBSET which corresponds
1299         // to this hardware thread's core attribute. Use this num,offset plus
1300         // the running sub_id for the particular core attribute of this hardware
1301         // thread to determine if the hardware thread should be filtered or not.
1302         int attr_idx;
1303         kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1304         int core_eff = hw_thread.attrs.get_core_eff();
1305         for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1306           if (using_core_types &&
1307               hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1308             break;
1309           if (using_core_effs &&
1310               hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1311             break;
1312         }
1313         // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1314         if (attr_idx == hw_subset_item.num_attrs) {
1315           should_be_filtered = true;
1316           break;
1317         }
1318         int sub_id;
1319         int num = hw_subset_item.num[attr_idx];
1320         int offset = hw_subset_item.offset[attr_idx];
1321         if (using_core_types)
1322           sub_id = core_type_sub_ids.get_sub_id(hw_thread);
1323         else
1324           sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
1325         if (sub_id < offset ||
1326             (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1327           should_be_filtered = true;
1328           break;
1329         }
1330       } else {
1331         int num = hw_subset_item.num[0];
1332         int offset = hw_subset_item.offset[0];
1333         if (hw_thread.sub_ids[level] < offset ||
1334             (num != kmp_hw_subset_t::USE_ALL &&
1335              hw_thread.sub_ids[level] >= offset + num)) {
1336           should_be_filtered = true;
1337           break;
1338         }
1339       }
1340     }
1341     // Collect filtering information
1342     if (should_be_filtered) {
1343       KMP_CPU_CLR(hw_thread.os_id, filtered_mask);
1344       num_filtered++;
1345     }
1346   }
1347 
1348   // One last check that we shouldn't allow filtering entire machine
1349   if (num_filtered == num_hw_threads) {
1350     KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1351     return false;
1352   }
1353 
1354   // Apply the filter
1355   restrict_to_mask(filtered_mask);
1356   return true;
1357 }
1358 
is_close(int hwt1,int hwt2,const kmp_affinity_t & stgs) const1359 bool kmp_topology_t::is_close(int hwt1, int hwt2,
1360                               const kmp_affinity_t &stgs) const {
1361   int hw_level = stgs.gran_levels;
1362   if (hw_level >= depth)
1363     return true;
1364   bool retval = true;
1365   const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1366   const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1367   if (stgs.flags.core_types_gran)
1368     return t1.attrs.get_core_type() == t2.attrs.get_core_type();
1369   if (stgs.flags.core_effs_gran)
1370     return t1.attrs.get_core_eff() == t2.attrs.get_core_eff();
1371   for (int i = 0; i < (depth - hw_level); ++i) {
1372     if (t1.ids[i] != t2.ids[i])
1373       return false;
1374   }
1375   return retval;
1376 }
1377 
1378 ////////////////////////////////////////////////////////////////////////////////
1379 
1380 bool KMPAffinity::picked_api = false;
1381 
operator new(size_t n)1382 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
operator new[](size_t n)1383 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
operator delete(void * p)1384 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
operator delete[](void * p)1385 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
operator new(size_t n)1386 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
operator delete(void * p)1387 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1388 
pick_api()1389 void KMPAffinity::pick_api() {
1390   KMPAffinity *affinity_dispatch;
1391   if (picked_api)
1392     return;
1393 #if KMP_USE_HWLOC
1394   // Only use Hwloc if affinity isn't explicitly disabled and
1395   // user requests Hwloc topology method
1396   if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1397       __kmp_affinity.type != affinity_disabled) {
1398     affinity_dispatch = new KMPHwlocAffinity();
1399   } else
1400 #endif
1401   {
1402     affinity_dispatch = new KMPNativeAffinity();
1403   }
1404   __kmp_affinity_dispatch = affinity_dispatch;
1405   picked_api = true;
1406 }
1407 
destroy_api()1408 void KMPAffinity::destroy_api() {
1409   if (__kmp_affinity_dispatch != NULL) {
1410     delete __kmp_affinity_dispatch;
1411     __kmp_affinity_dispatch = NULL;
1412     picked_api = false;
1413   }
1414 }
1415 
1416 #define KMP_ADVANCE_SCAN(scan)                                                 \
1417   while (*scan != '\0') {                                                      \
1418     scan++;                                                                    \
1419   }
1420 
1421 // Print the affinity mask to the character array in a pretty format.
1422 // The format is a comma separated list of non-negative integers or integer
1423 // ranges: e.g., 1,2,3-5,7,9-15
1424 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_print_mask(char * buf,int buf_len,kmp_affin_mask_t * mask)1425 char *__kmp_affinity_print_mask(char *buf, int buf_len,
1426                                 kmp_affin_mask_t *mask) {
1427   int start = 0, finish = 0, previous = 0;
1428   bool first_range;
1429   KMP_ASSERT(buf);
1430   KMP_ASSERT(buf_len >= 40);
1431   KMP_ASSERT(mask);
1432   char *scan = buf;
1433   char *end = buf + buf_len - 1;
1434 
1435   // Check for empty set.
1436   if (mask->begin() == mask->end()) {
1437     KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1438     KMP_ADVANCE_SCAN(scan);
1439     KMP_ASSERT(scan <= end);
1440     return buf;
1441   }
1442 
1443   first_range = true;
1444   start = mask->begin();
1445   while (1) {
1446     // Find next range
1447     // [start, previous] is inclusive range of contiguous bits in mask
1448     for (finish = mask->next(start), previous = start;
1449          finish == previous + 1 && finish != mask->end();
1450          finish = mask->next(finish)) {
1451       previous = finish;
1452     }
1453 
1454     // The first range does not need a comma printed before it, but the rest
1455     // of the ranges do need a comma beforehand
1456     if (!first_range) {
1457       KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1458       KMP_ADVANCE_SCAN(scan);
1459     } else {
1460       first_range = false;
1461     }
1462     // Range with three or more contiguous bits in the affinity mask
1463     if (previous - start > 1) {
1464       KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1465     } else {
1466       // Range with one or two contiguous bits in the affinity mask
1467       KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1468       KMP_ADVANCE_SCAN(scan);
1469       if (previous - start > 0) {
1470         KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1471       }
1472     }
1473     KMP_ADVANCE_SCAN(scan);
1474     // Start over with new start point
1475     start = finish;
1476     if (start == mask->end())
1477       break;
1478     // Check for overflow
1479     if (end - scan < 2)
1480       break;
1481   }
1482 
1483   // Check for overflow
1484   KMP_ASSERT(scan <= end);
1485   return buf;
1486 }
1487 #undef KMP_ADVANCE_SCAN
1488 
1489 // Print the affinity mask to the string buffer object in a pretty format
1490 // The format is a comma separated list of non-negative integers or integer
1491 // ranges: e.g., 1,2,3-5,7,9-15
1492 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_str_buf_mask(kmp_str_buf_t * buf,kmp_affin_mask_t * mask)1493 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1494                                            kmp_affin_mask_t *mask) {
1495   int start = 0, finish = 0, previous = 0;
1496   bool first_range;
1497   KMP_ASSERT(buf);
1498   KMP_ASSERT(mask);
1499 
1500   __kmp_str_buf_clear(buf);
1501 
1502   // Check for empty set.
1503   if (mask->begin() == mask->end()) {
1504     __kmp_str_buf_print(buf, "%s", "{<empty>}");
1505     return buf;
1506   }
1507 
1508   first_range = true;
1509   start = mask->begin();
1510   while (1) {
1511     // Find next range
1512     // [start, previous] is inclusive range of contiguous bits in mask
1513     for (finish = mask->next(start), previous = start;
1514          finish == previous + 1 && finish != mask->end();
1515          finish = mask->next(finish)) {
1516       previous = finish;
1517     }
1518 
1519     // The first range does not need a comma printed before it, but the rest
1520     // of the ranges do need a comma beforehand
1521     if (!first_range) {
1522       __kmp_str_buf_print(buf, "%s", ",");
1523     } else {
1524       first_range = false;
1525     }
1526     // Range with three or more contiguous bits in the affinity mask
1527     if (previous - start > 1) {
1528       __kmp_str_buf_print(buf, "%u-%u", start, previous);
1529     } else {
1530       // Range with one or two contiguous bits in the affinity mask
1531       __kmp_str_buf_print(buf, "%u", start);
1532       if (previous - start > 0) {
1533         __kmp_str_buf_print(buf, ",%u", previous);
1534       }
1535     }
1536     // Start over with new start point
1537     start = finish;
1538     if (start == mask->end())
1539       break;
1540   }
1541   return buf;
1542 }
1543 
1544 // Return (possibly empty) affinity mask representing the offline CPUs
1545 // Caller must free the mask
__kmp_affinity_get_offline_cpus()1546 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1547   kmp_affin_mask_t *offline;
1548   KMP_CPU_ALLOC(offline);
1549   KMP_CPU_ZERO(offline);
1550 #if KMP_OS_LINUX
1551   int n, begin_cpu, end_cpu;
1552   kmp_safe_raii_file_t offline_file;
1553   auto skip_ws = [](FILE *f) {
1554     int c;
1555     do {
1556       c = fgetc(f);
1557     } while (isspace(c));
1558     if (c != EOF)
1559       ungetc(c, f);
1560   };
1561   // File contains CSV of integer ranges representing the offline CPUs
1562   // e.g., 1,2,4-7,9,11-15
1563   int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1564   if (status != 0)
1565     return offline;
1566   while (!feof(offline_file)) {
1567     skip_ws(offline_file);
1568     n = fscanf(offline_file, "%d", &begin_cpu);
1569     if (n != 1)
1570       break;
1571     skip_ws(offline_file);
1572     int c = fgetc(offline_file);
1573     if (c == EOF || c == ',') {
1574       // Just single CPU
1575       end_cpu = begin_cpu;
1576     } else if (c == '-') {
1577       // Range of CPUs
1578       skip_ws(offline_file);
1579       n = fscanf(offline_file, "%d", &end_cpu);
1580       if (n != 1)
1581         break;
1582       skip_ws(offline_file);
1583       c = fgetc(offline_file); // skip ','
1584     } else {
1585       // Syntax problem
1586       break;
1587     }
1588     // Ensure a valid range of CPUs
1589     if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1590         end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1591       continue;
1592     }
1593     // Insert [begin_cpu, end_cpu] into offline mask
1594     for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1595       KMP_CPU_SET(cpu, offline);
1596     }
1597   }
1598 #endif
1599   return offline;
1600 }
1601 
1602 // Return the number of available procs
__kmp_affinity_entire_machine_mask(kmp_affin_mask_t * mask)1603 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1604   int avail_proc = 0;
1605   KMP_CPU_ZERO(mask);
1606 
1607 #if KMP_GROUP_AFFINITY
1608 
1609   if (__kmp_num_proc_groups > 1) {
1610     int group;
1611     KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1612     for (group = 0; group < __kmp_num_proc_groups; group++) {
1613       int i;
1614       int num = __kmp_GetActiveProcessorCount(group);
1615       for (i = 0; i < num; i++) {
1616         KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1617         avail_proc++;
1618       }
1619     }
1620   } else
1621 
1622 #endif /* KMP_GROUP_AFFINITY */
1623 
1624   {
1625     int proc;
1626     kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1627     for (proc = 0; proc < __kmp_xproc; proc++) {
1628       // Skip offline CPUs
1629       if (KMP_CPU_ISSET(proc, offline_cpus))
1630         continue;
1631       KMP_CPU_SET(proc, mask);
1632       avail_proc++;
1633     }
1634     KMP_CPU_FREE(offline_cpus);
1635   }
1636 
1637   return avail_proc;
1638 }
1639 
1640 // All of the __kmp_affinity_create_*_map() routines should allocate the
1641 // internal topology object and set the layer ids for it.  Each routine
1642 // returns a boolean on whether it was successful at doing so.
1643 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1644 // Original mask is a subset of full mask in multiple processor groups topology
1645 kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1646 
1647 #if KMP_USE_HWLOC
__kmp_hwloc_is_cache_type(hwloc_obj_t obj)1648 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1649 #if HWLOC_API_VERSION >= 0x00020000
1650   return hwloc_obj_type_is_cache(obj->type);
1651 #else
1652   return obj->type == HWLOC_OBJ_CACHE;
1653 #endif
1654 }
1655 
1656 // Returns KMP_HW_* type derived from HWLOC_* type
__kmp_hwloc_type_2_topology_type(hwloc_obj_t obj)1657 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1658 
1659   if (__kmp_hwloc_is_cache_type(obj)) {
1660     if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1661       return KMP_HW_UNKNOWN;
1662     switch (obj->attr->cache.depth) {
1663     case 1:
1664       return KMP_HW_L1;
1665     case 2:
1666 #if KMP_MIC_SUPPORTED
1667       if (__kmp_mic_type == mic3) {
1668         return KMP_HW_TILE;
1669       }
1670 #endif
1671       return KMP_HW_L2;
1672     case 3:
1673       return KMP_HW_L3;
1674     }
1675     return KMP_HW_UNKNOWN;
1676   }
1677 
1678   switch (obj->type) {
1679   case HWLOC_OBJ_PACKAGE:
1680     return KMP_HW_SOCKET;
1681   case HWLOC_OBJ_NUMANODE:
1682     return KMP_HW_NUMA;
1683   case HWLOC_OBJ_CORE:
1684     return KMP_HW_CORE;
1685   case HWLOC_OBJ_PU:
1686     return KMP_HW_THREAD;
1687   case HWLOC_OBJ_GROUP:
1688 #if HWLOC_API_VERSION >= 0x00020000
1689     if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1690       return KMP_HW_DIE;
1691     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1692       return KMP_HW_TILE;
1693     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1694       return KMP_HW_MODULE;
1695     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1696       return KMP_HW_PROC_GROUP;
1697 #endif
1698     return KMP_HW_UNKNOWN;
1699 #if HWLOC_API_VERSION >= 0x00020100
1700   case HWLOC_OBJ_DIE:
1701     return KMP_HW_DIE;
1702 #endif
1703   }
1704   return KMP_HW_UNKNOWN;
1705 }
1706 
1707 // Returns the number of objects of type 'type' below 'obj' within the topology
1708 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1709 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1710 // object.
__kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,hwloc_obj_type_t type)1711 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1712                                            hwloc_obj_type_t type) {
1713   int retval = 0;
1714   hwloc_obj_t first;
1715   for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1716                                            obj->logical_index, type, 0);
1717        first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1718                                                        obj->type, first) == obj;
1719        first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1720                                           first)) {
1721     ++retval;
1722   }
1723   return retval;
1724 }
1725 
1726 // This gets the sub_id for a lower object under a higher object in the
1727 // topology tree
__kmp_hwloc_get_sub_id(hwloc_topology_t t,hwloc_obj_t higher,hwloc_obj_t lower)1728 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1729                                   hwloc_obj_t lower) {
1730   hwloc_obj_t obj;
1731   hwloc_obj_type_t ltype = lower->type;
1732   int lindex = lower->logical_index - 1;
1733   int sub_id = 0;
1734   // Get the previous lower object
1735   obj = hwloc_get_obj_by_type(t, ltype, lindex);
1736   while (obj && lindex >= 0 &&
1737          hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1738     if (obj->userdata) {
1739       sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1740       break;
1741     }
1742     sub_id++;
1743     lindex--;
1744     obj = hwloc_get_obj_by_type(t, ltype, lindex);
1745   }
1746   // store sub_id + 1 so that 0 is differed from NULL
1747   lower->userdata = RCAST(void *, sub_id + 1);
1748   return sub_id;
1749 }
1750 
__kmp_affinity_create_hwloc_map(kmp_i18n_id_t * const msg_id)1751 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1752   kmp_hw_t type;
1753   int hw_thread_index, sub_id;
1754   int depth;
1755   hwloc_obj_t pu, obj, root, prev;
1756   kmp_hw_t types[KMP_HW_LAST];
1757   hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1758 
1759   hwloc_topology_t tp = __kmp_hwloc_topology;
1760   *msg_id = kmp_i18n_null;
1761   if (__kmp_affinity.flags.verbose) {
1762     KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1763   }
1764 
1765   if (!KMP_AFFINITY_CAPABLE()) {
1766     // Hack to try and infer the machine topology using only the data
1767     // available from hwloc on the current thread, and __kmp_xproc.
1768     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1769     // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1770     hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1771     if (o != NULL)
1772       nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1773     else
1774       nCoresPerPkg = 1; // no PACKAGE found
1775     o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1776     if (o != NULL)
1777       __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1778     else
1779       __kmp_nThreadsPerCore = 1; // no CORE found
1780     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1781     if (nCoresPerPkg == 0)
1782       nCoresPerPkg = 1; // to prevent possible division by 0
1783     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1784     return true;
1785   }
1786 
1787 #if HWLOC_API_VERSION >= 0x00020400
1788   // Handle multiple types of cores if they exist on the system
1789   int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1790 
1791   typedef struct kmp_hwloc_cpukinds_info_t {
1792     int efficiency;
1793     kmp_hw_core_type_t core_type;
1794     hwloc_bitmap_t mask;
1795   } kmp_hwloc_cpukinds_info_t;
1796   kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1797 
1798   if (nr_cpu_kinds > 0) {
1799     unsigned nr_infos;
1800     struct hwloc_info_s *infos;
1801     cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1802         sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1803     for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1804       cpukinds[idx].efficiency = -1;
1805       cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1806       cpukinds[idx].mask = hwloc_bitmap_alloc();
1807       if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1808                                   &cpukinds[idx].efficiency, &nr_infos, &infos,
1809                                   0) == 0) {
1810         for (unsigned i = 0; i < nr_infos; ++i) {
1811           if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1812 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1813             if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1814               cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1815               break;
1816             } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1817               cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1818               break;
1819             }
1820 #endif
1821           }
1822         }
1823       }
1824     }
1825   }
1826 #endif
1827 
1828   root = hwloc_get_root_obj(tp);
1829 
1830   // Figure out the depth and types in the topology
1831   depth = 0;
1832   pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1833   KMP_ASSERT(pu);
1834   obj = pu;
1835   types[depth] = KMP_HW_THREAD;
1836   hwloc_types[depth] = obj->type;
1837   depth++;
1838   while (obj != root && obj != NULL) {
1839     obj = obj->parent;
1840 #if HWLOC_API_VERSION >= 0x00020000
1841     if (obj->memory_arity) {
1842       hwloc_obj_t memory;
1843       for (memory = obj->memory_first_child; memory;
1844            memory = hwloc_get_next_child(tp, obj, memory)) {
1845         if (memory->type == HWLOC_OBJ_NUMANODE)
1846           break;
1847       }
1848       if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1849         types[depth] = KMP_HW_NUMA;
1850         hwloc_types[depth] = memory->type;
1851         depth++;
1852       }
1853     }
1854 #endif
1855     type = __kmp_hwloc_type_2_topology_type(obj);
1856     if (type != KMP_HW_UNKNOWN) {
1857       types[depth] = type;
1858       hwloc_types[depth] = obj->type;
1859       depth++;
1860     }
1861   }
1862   KMP_ASSERT(depth > 0);
1863 
1864   // Get the order for the types correct
1865   for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1866     hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1867     kmp_hw_t temp = types[i];
1868     types[i] = types[j];
1869     types[j] = temp;
1870     hwloc_types[i] = hwloc_types[j];
1871     hwloc_types[j] = hwloc_temp;
1872   }
1873 
1874   // Allocate the data structure to be returned.
1875   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1876 
1877   hw_thread_index = 0;
1878   pu = NULL;
1879   while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1880     int index = depth - 1;
1881     bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1882     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1883     if (included) {
1884       hw_thread.clear();
1885       hw_thread.ids[index] = pu->logical_index;
1886       hw_thread.os_id = pu->os_index;
1887       // If multiple core types, then set that attribute for the hardware thread
1888 #if HWLOC_API_VERSION >= 0x00020400
1889       if (cpukinds) {
1890         int cpukind_index = -1;
1891         for (int i = 0; i < nr_cpu_kinds; ++i) {
1892           if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1893             cpukind_index = i;
1894             break;
1895           }
1896         }
1897         if (cpukind_index >= 0) {
1898           hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1899           hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1900         }
1901       }
1902 #endif
1903       index--;
1904     }
1905     obj = pu;
1906     prev = obj;
1907     while (obj != root && obj != NULL) {
1908       obj = obj->parent;
1909 #if HWLOC_API_VERSION >= 0x00020000
1910       // NUMA Nodes are handled differently since they are not within the
1911       // parent/child structure anymore.  They are separate children
1912       // of obj (memory_first_child points to first memory child)
1913       if (obj->memory_arity) {
1914         hwloc_obj_t memory;
1915         for (memory = obj->memory_first_child; memory;
1916              memory = hwloc_get_next_child(tp, obj, memory)) {
1917           if (memory->type == HWLOC_OBJ_NUMANODE)
1918             break;
1919         }
1920         if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1921           sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1922           if (included) {
1923             hw_thread.ids[index] = memory->logical_index;
1924             hw_thread.ids[index + 1] = sub_id;
1925             index--;
1926           }
1927           prev = memory;
1928         }
1929         prev = obj;
1930       }
1931 #endif
1932       type = __kmp_hwloc_type_2_topology_type(obj);
1933       if (type != KMP_HW_UNKNOWN) {
1934         sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1935         if (included) {
1936           hw_thread.ids[index] = obj->logical_index;
1937           hw_thread.ids[index + 1] = sub_id;
1938           index--;
1939         }
1940         prev = obj;
1941       }
1942     }
1943     if (included)
1944       hw_thread_index++;
1945   }
1946 
1947 #if HWLOC_API_VERSION >= 0x00020400
1948   // Free the core types information
1949   if (cpukinds) {
1950     for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1951       hwloc_bitmap_free(cpukinds[idx].mask);
1952     __kmp_free(cpukinds);
1953   }
1954 #endif
1955   __kmp_topology->sort_ids();
1956   return true;
1957 }
1958 #endif // KMP_USE_HWLOC
1959 
1960 // If we don't know how to retrieve the machine's processor topology, or
1961 // encounter an error in doing so, this routine is called to form a "flat"
1962 // mapping of os thread id's <-> processor id's.
__kmp_affinity_create_flat_map(kmp_i18n_id_t * const msg_id)1963 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1964   *msg_id = kmp_i18n_null;
1965   int depth = 3;
1966   kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1967 
1968   if (__kmp_affinity.flags.verbose) {
1969     KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1970   }
1971 
1972   // Even if __kmp_affinity.type == affinity_none, this routine might still
1973   // be called to set __kmp_ncores, as well as
1974   // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1975   if (!KMP_AFFINITY_CAPABLE()) {
1976     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1977     __kmp_ncores = nPackages = __kmp_xproc;
1978     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1979     return true;
1980   }
1981 
1982   // When affinity is off, this routine will still be called to set
1983   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1984   // Make sure all these vars are set correctly, and return now if affinity is
1985   // not enabled.
1986   __kmp_ncores = nPackages = __kmp_avail_proc;
1987   __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1988 
1989   // Construct the data structure to be returned.
1990   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1991   int avail_ct = 0;
1992   int i;
1993   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1994     // Skip this proc if it is not included in the machine model.
1995     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1996       continue;
1997     }
1998     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1999     hw_thread.clear();
2000     hw_thread.os_id = i;
2001     hw_thread.ids[0] = i;
2002     hw_thread.ids[1] = 0;
2003     hw_thread.ids[2] = 0;
2004     avail_ct++;
2005   }
2006   if (__kmp_affinity.flags.verbose) {
2007     KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
2008   }
2009   return true;
2010 }
2011 
2012 #if KMP_GROUP_AFFINITY
2013 // If multiple Windows* OS processor groups exist, we can create a 2-level
2014 // topology map with the groups at level 0 and the individual procs at level 1.
2015 // This facilitates letting the threads float among all procs in a group,
2016 // if granularity=group (the default when there are multiple groups).
__kmp_affinity_create_proc_group_map(kmp_i18n_id_t * const msg_id)2017 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
2018   *msg_id = kmp_i18n_null;
2019   int depth = 3;
2020   kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
2021   const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
2022 
2023   if (__kmp_affinity.flags.verbose) {
2024     KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
2025   }
2026 
2027   // If we aren't affinity capable, then use flat topology
2028   if (!KMP_AFFINITY_CAPABLE()) {
2029     KMP_ASSERT(__kmp_affinity.type == affinity_none);
2030     nPackages = __kmp_num_proc_groups;
2031     __kmp_nThreadsPerCore = 1;
2032     __kmp_ncores = __kmp_xproc;
2033     nCoresPerPkg = nPackages / __kmp_ncores;
2034     return true;
2035   }
2036 
2037   // Construct the data structure to be returned.
2038   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2039   int avail_ct = 0;
2040   int i;
2041   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2042     // Skip this proc if it is not included in the machine model.
2043     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2044       continue;
2045     }
2046     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
2047     hw_thread.clear();
2048     hw_thread.os_id = i;
2049     hw_thread.ids[0] = i / BITS_PER_GROUP;
2050     hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
2051   }
2052   return true;
2053 }
2054 #endif /* KMP_GROUP_AFFINITY */
2055 
2056 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2057 
2058 template <kmp_uint32 LSB, kmp_uint32 MSB>
__kmp_extract_bits(kmp_uint32 v)2059 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
2060   const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
2061   const kmp_uint32 SHIFT_RIGHT = LSB;
2062   kmp_uint32 retval = v;
2063   retval <<= SHIFT_LEFT;
2064   retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
2065   return retval;
2066 }
2067 
__kmp_cpuid_mask_width(int count)2068 static int __kmp_cpuid_mask_width(int count) {
2069   int r = 0;
2070 
2071   while ((1 << r) < count)
2072     ++r;
2073   return r;
2074 }
2075 
2076 class apicThreadInfo {
2077 public:
2078   unsigned osId; // param to __kmp_affinity_bind_thread
2079   unsigned apicId; // from cpuid after binding
2080   unsigned maxCoresPerPkg; //      ""
2081   unsigned maxThreadsPerPkg; //      ""
2082   unsigned pkgId; // inferred from above values
2083   unsigned coreId; //      ""
2084   unsigned threadId; //      ""
2085 };
2086 
__kmp_affinity_cmp_apicThreadInfo_phys_id(const void * a,const void * b)2087 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
2088                                                      const void *b) {
2089   const apicThreadInfo *aa = (const apicThreadInfo *)a;
2090   const apicThreadInfo *bb = (const apicThreadInfo *)b;
2091   if (aa->pkgId < bb->pkgId)
2092     return -1;
2093   if (aa->pkgId > bb->pkgId)
2094     return 1;
2095   if (aa->coreId < bb->coreId)
2096     return -1;
2097   if (aa->coreId > bb->coreId)
2098     return 1;
2099   if (aa->threadId < bb->threadId)
2100     return -1;
2101   if (aa->threadId > bb->threadId)
2102     return 1;
2103   return 0;
2104 }
2105 
2106 class kmp_cache_info_t {
2107 public:
2108   struct info_t {
2109     unsigned level, mask;
2110   };
kmp_cache_info_t()2111   kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
get_depth() const2112   size_t get_depth() const { return depth; }
operator [](size_t index)2113   info_t &operator[](size_t index) { return table[index]; }
operator [](size_t index) const2114   const info_t &operator[](size_t index) const { return table[index]; }
2115 
get_topology_type(unsigned level)2116   static kmp_hw_t get_topology_type(unsigned level) {
2117     KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2118     switch (level) {
2119     case 1:
2120       return KMP_HW_L1;
2121     case 2:
2122       return KMP_HW_L2;
2123     case 3:
2124       return KMP_HW_L3;
2125     }
2126     return KMP_HW_UNKNOWN;
2127   }
2128 
2129 private:
2130   static const int MAX_CACHE_LEVEL = 3;
2131 
2132   size_t depth;
2133   info_t table[MAX_CACHE_LEVEL];
2134 
get_leaf4_levels()2135   void get_leaf4_levels() {
2136     unsigned level = 0;
2137     while (depth < MAX_CACHE_LEVEL) {
2138       unsigned cache_type, max_threads_sharing;
2139       unsigned cache_level, cache_mask_width;
2140       kmp_cpuid buf2;
2141       __kmp_x86_cpuid(4, level, &buf2);
2142       cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2143       if (!cache_type)
2144         break;
2145       // Skip instruction caches
2146       if (cache_type == 2) {
2147         level++;
2148         continue;
2149       }
2150       max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2151       cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2152       cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2153       table[depth].level = cache_level;
2154       table[depth].mask = ((-1) << cache_mask_width);
2155       depth++;
2156       level++;
2157     }
2158   }
2159 };
2160 
2161 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2162 // an algorithm which cycles through the available os threads, setting
2163 // the current thread's affinity mask to that thread, and then retrieves
2164 // the Apic Id for each thread context using the cpuid instruction.
__kmp_affinity_create_apicid_map(kmp_i18n_id_t * const msg_id)2165 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2166   kmp_cpuid buf;
2167   *msg_id = kmp_i18n_null;
2168 
2169   if (__kmp_affinity.flags.verbose) {
2170     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2171   }
2172 
2173   // Check if cpuid leaf 4 is supported.
2174   __kmp_x86_cpuid(0, 0, &buf);
2175   if (buf.eax < 4) {
2176     *msg_id = kmp_i18n_str_NoLeaf4Support;
2177     return false;
2178   }
2179 
2180   // The algorithm used starts by setting the affinity to each available thread
2181   // and retrieving info from the cpuid instruction, so if we are not capable of
2182   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2183   // need to do something else - use the defaults that we calculated from
2184   // issuing cpuid without binding to each proc.
2185   if (!KMP_AFFINITY_CAPABLE()) {
2186     // Hack to try and infer the machine topology using only the data
2187     // available from cpuid on the current thread, and __kmp_xproc.
2188     KMP_ASSERT(__kmp_affinity.type == affinity_none);
2189 
2190     // Get an upper bound on the number of threads per package using cpuid(1).
2191     // On some OS/chps combinations where HT is supported by the chip but is
2192     // disabled, this value will be 2 on a single core chip. Usually, it will be
2193     // 2 if HT is enabled and 1 if HT is disabled.
2194     __kmp_x86_cpuid(1, 0, &buf);
2195     int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2196     if (maxThreadsPerPkg == 0) {
2197       maxThreadsPerPkg = 1;
2198     }
2199 
2200     // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2201     // value.
2202     //
2203     // The author of cpu_count.cpp treated this only an upper bound on the
2204     // number of cores, but I haven't seen any cases where it was greater than
2205     // the actual number of cores, so we will treat it as exact in this block of
2206     // code.
2207     //
2208     // First, we need to check if cpuid(4) is supported on this chip. To see if
2209     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2210     // greater.
2211     __kmp_x86_cpuid(0, 0, &buf);
2212     if (buf.eax >= 4) {
2213       __kmp_x86_cpuid(4, 0, &buf);
2214       nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2215     } else {
2216       nCoresPerPkg = 1;
2217     }
2218 
2219     // There is no way to reliably tell if HT is enabled without issuing the
2220     // cpuid instruction from every thread, can correlating the cpuid info, so
2221     // if the machine is not affinity capable, we assume that HT is off. We have
2222     // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2223     // does not support HT.
2224     //
2225     // - Older OSes are usually found on machines with older chips, which do not
2226     //   support HT.
2227     // - The performance penalty for mistakenly identifying a machine as HT when
2228     //   it isn't (which results in blocktime being incorrectly set to 0) is
2229     //   greater than the penalty when for mistakenly identifying a machine as
2230     //   being 1 thread/core when it is really HT enabled (which results in
2231     //   blocktime being incorrectly set to a positive value).
2232     __kmp_ncores = __kmp_xproc;
2233     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2234     __kmp_nThreadsPerCore = 1;
2235     return true;
2236   }
2237 
2238   // From here on, we can assume that it is safe to call
2239   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2240   // __kmp_affinity.type = affinity_none.
2241 
2242   // Save the affinity mask for the current thread.
2243   kmp_affinity_raii_t previous_affinity;
2244 
2245   // Run through each of the available contexts, binding the current thread
2246   // to it, and obtaining the pertinent information using the cpuid instr.
2247   //
2248   // The relevant information is:
2249   // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2250   //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2251   // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2252   //     of this field determines the width of the core# + thread# fields in the
2253   //     Apic Id. It is also an upper bound on the number of threads per
2254   //     package, but it has been verified that situations happen were it is not
2255   //     exact. In particular, on certain OS/chip combinations where Intel(R)
2256   //     Hyper-Threading Technology is supported by the chip but has been
2257   //     disabled, the value of this field will be 2 (for a single core chip).
2258   //     On other OS/chip combinations supporting Intel(R) Hyper-Threading
2259   //     Technology, the value of this field will be 1 when Intel(R)
2260   //     Hyper-Threading Technology is disabled and 2 when it is enabled.
2261   // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value
2262   //     of this field (+1) determines the width of the core# field in the Apic
2263   //     Id. The comments in "cpucount.cpp" say that this value is an upper
2264   //     bound, but the IA-32 architecture manual says that it is exactly the
2265   //     number of cores per package, and I haven't seen any case where it
2266   //     wasn't.
2267   //
2268   // From this information, deduce the package Id, core Id, and thread Id,
2269   // and set the corresponding fields in the apicThreadInfo struct.
2270   unsigned i;
2271   apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2272       __kmp_avail_proc * sizeof(apicThreadInfo));
2273   unsigned nApics = 0;
2274   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2275     // Skip this proc if it is not included in the machine model.
2276     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2277       continue;
2278     }
2279     KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2280 
2281     __kmp_affinity_dispatch->bind_thread(i);
2282     threadInfo[nApics].osId = i;
2283 
2284     // The apic id and max threads per pkg come from cpuid(1).
2285     __kmp_x86_cpuid(1, 0, &buf);
2286     if (((buf.edx >> 9) & 1) == 0) {
2287       __kmp_free(threadInfo);
2288       *msg_id = kmp_i18n_str_ApicNotPresent;
2289       return false;
2290     }
2291     threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2292     threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2293     if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2294       threadInfo[nApics].maxThreadsPerPkg = 1;
2295     }
2296 
2297     // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2298     // value.
2299     //
2300     // First, we need to check if cpuid(4) is supported on this chip. To see if
2301     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2302     // or greater.
2303     __kmp_x86_cpuid(0, 0, &buf);
2304     if (buf.eax >= 4) {
2305       __kmp_x86_cpuid(4, 0, &buf);
2306       threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2307     } else {
2308       threadInfo[nApics].maxCoresPerPkg = 1;
2309     }
2310 
2311     // Infer the pkgId / coreId / threadId using only the info obtained locally.
2312     int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2313     threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2314 
2315     int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2316     int widthT = widthCT - widthC;
2317     if (widthT < 0) {
2318       // I've never seen this one happen, but I suppose it could, if the cpuid
2319       // instruction on a chip was really screwed up. Make sure to restore the
2320       // affinity mask before the tail call.
2321       __kmp_free(threadInfo);
2322       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2323       return false;
2324     }
2325 
2326     int maskC = (1 << widthC) - 1;
2327     threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2328 
2329     int maskT = (1 << widthT) - 1;
2330     threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2331 
2332     nApics++;
2333   }
2334 
2335   // We've collected all the info we need.
2336   // Restore the old affinity mask for this thread.
2337   previous_affinity.restore();
2338 
2339   // Sort the threadInfo table by physical Id.
2340   qsort(threadInfo, nApics, sizeof(*threadInfo),
2341         __kmp_affinity_cmp_apicThreadInfo_phys_id);
2342 
2343   // The table is now sorted by pkgId / coreId / threadId, but we really don't
2344   // know the radix of any of the fields. pkgId's may be sparsely assigned among
2345   // the chips on a system. Although coreId's are usually assigned
2346   // [0 .. coresPerPkg-1] and threadId's are usually assigned
2347   // [0..threadsPerCore-1], we don't want to make any such assumptions.
2348   //
2349   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2350   // total # packages) are at this point - we want to determine that now. We
2351   // only have an upper bound on the first two figures.
2352   //
2353   // We also perform a consistency check at this point: the values returned by
2354   // the cpuid instruction for any thread bound to a given package had better
2355   // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2356   nPackages = 1;
2357   nCoresPerPkg = 1;
2358   __kmp_nThreadsPerCore = 1;
2359   unsigned nCores = 1;
2360 
2361   unsigned pkgCt = 1; // to determine radii
2362   unsigned lastPkgId = threadInfo[0].pkgId;
2363   unsigned coreCt = 1;
2364   unsigned lastCoreId = threadInfo[0].coreId;
2365   unsigned threadCt = 1;
2366   unsigned lastThreadId = threadInfo[0].threadId;
2367 
2368   // intra-pkg consist checks
2369   unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2370   unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2371 
2372   for (i = 1; i < nApics; i++) {
2373     if (threadInfo[i].pkgId != lastPkgId) {
2374       nCores++;
2375       pkgCt++;
2376       lastPkgId = threadInfo[i].pkgId;
2377       if ((int)coreCt > nCoresPerPkg)
2378         nCoresPerPkg = coreCt;
2379       coreCt = 1;
2380       lastCoreId = threadInfo[i].coreId;
2381       if ((int)threadCt > __kmp_nThreadsPerCore)
2382         __kmp_nThreadsPerCore = threadCt;
2383       threadCt = 1;
2384       lastThreadId = threadInfo[i].threadId;
2385 
2386       // This is a different package, so go on to the next iteration without
2387       // doing any consistency checks. Reset the consistency check vars, though.
2388       prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2389       prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2390       continue;
2391     }
2392 
2393     if (threadInfo[i].coreId != lastCoreId) {
2394       nCores++;
2395       coreCt++;
2396       lastCoreId = threadInfo[i].coreId;
2397       if ((int)threadCt > __kmp_nThreadsPerCore)
2398         __kmp_nThreadsPerCore = threadCt;
2399       threadCt = 1;
2400       lastThreadId = threadInfo[i].threadId;
2401     } else if (threadInfo[i].threadId != lastThreadId) {
2402       threadCt++;
2403       lastThreadId = threadInfo[i].threadId;
2404     } else {
2405       __kmp_free(threadInfo);
2406       *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2407       return false;
2408     }
2409 
2410     // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2411     // fields agree between all the threads bounds to a given package.
2412     if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2413         (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2414       __kmp_free(threadInfo);
2415       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2416       return false;
2417     }
2418   }
2419   // When affinity is off, this routine will still be called to set
2420   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2421   // Make sure all these vars are set correctly
2422   nPackages = pkgCt;
2423   if ((int)coreCt > nCoresPerPkg)
2424     nCoresPerPkg = coreCt;
2425   if ((int)threadCt > __kmp_nThreadsPerCore)
2426     __kmp_nThreadsPerCore = threadCt;
2427   __kmp_ncores = nCores;
2428   KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2429 
2430   // Now that we've determined the number of packages, the number of cores per
2431   // package, and the number of threads per core, we can construct the data
2432   // structure that is to be returned.
2433   int idx = 0;
2434   int pkgLevel = 0;
2435   int coreLevel = 1;
2436   int threadLevel = 2;
2437   //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2438   int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2439   kmp_hw_t types[3];
2440   if (pkgLevel >= 0)
2441     types[idx++] = KMP_HW_SOCKET;
2442   if (coreLevel >= 0)
2443     types[idx++] = KMP_HW_CORE;
2444   if (threadLevel >= 0)
2445     types[idx++] = KMP_HW_THREAD;
2446 
2447   KMP_ASSERT(depth > 0);
2448   __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2449 
2450   for (i = 0; i < nApics; ++i) {
2451     idx = 0;
2452     unsigned os = threadInfo[i].osId;
2453     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2454     hw_thread.clear();
2455 
2456     if (pkgLevel >= 0) {
2457       hw_thread.ids[idx++] = threadInfo[i].pkgId;
2458     }
2459     if (coreLevel >= 0) {
2460       hw_thread.ids[idx++] = threadInfo[i].coreId;
2461     }
2462     if (threadLevel >= 0) {
2463       hw_thread.ids[idx++] = threadInfo[i].threadId;
2464     }
2465     hw_thread.os_id = os;
2466   }
2467 
2468   __kmp_free(threadInfo);
2469   __kmp_topology->sort_ids();
2470   if (!__kmp_topology->check_ids()) {
2471     kmp_topology_t::deallocate(__kmp_topology);
2472     __kmp_topology = nullptr;
2473     *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2474     return false;
2475   }
2476   return true;
2477 }
2478 
2479 // Hybrid cpu detection using CPUID.1A
2480 // Thread should be pinned to processor already
__kmp_get_hybrid_info(kmp_hw_core_type_t * type,int * efficiency,unsigned * native_model_id)2481 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2482                                   unsigned *native_model_id) {
2483   kmp_cpuid buf;
2484   __kmp_x86_cpuid(0x1a, 0, &buf);
2485   *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2486   switch (*type) {
2487   case KMP_HW_CORE_TYPE_ATOM:
2488     *efficiency = 0;
2489     break;
2490   case KMP_HW_CORE_TYPE_CORE:
2491     *efficiency = 1;
2492     break;
2493   default:
2494     *efficiency = 0;
2495   }
2496   *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2497 }
2498 
2499 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
2500 // architectures support a newer interface for specifying the x2APIC Ids,
2501 // based on CPUID.B or CPUID.1F
2502 /*
2503  * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2504     Bits            Bits            Bits           Bits
2505     31-16           15-8            7-4            4-0
2506 ---+-----------+--------------+-------------+-----------------+
2507 EAX| reserved  |   reserved   |   reserved  |  Bits to Shift  |
2508 ---+-----------|--------------+-------------+-----------------|
2509 EBX| reserved  | Num logical processors at level (16 bits)    |
2510 ---+-----------|--------------+-------------------------------|
2511 ECX| reserved  |   Level Type |      Level Number (8 bits)    |
2512 ---+-----------+--------------+-------------------------------|
2513 EDX|                    X2APIC ID (32 bits)                   |
2514 ---+----------------------------------------------------------+
2515 */
2516 
2517 enum {
2518   INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2519   INTEL_LEVEL_TYPE_SMT = 1,
2520   INTEL_LEVEL_TYPE_CORE = 2,
2521   INTEL_LEVEL_TYPE_MODULE = 3,
2522   INTEL_LEVEL_TYPE_TILE = 4,
2523   INTEL_LEVEL_TYPE_DIE = 5,
2524   INTEL_LEVEL_TYPE_LAST = 6,
2525 };
2526 
2527 struct cpuid_level_info_t {
2528   unsigned level_type, mask, mask_width, nitems, cache_mask;
2529 };
2530 
__kmp_intel_type_2_topology_type(int intel_type)2531 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2532   switch (intel_type) {
2533   case INTEL_LEVEL_TYPE_INVALID:
2534     return KMP_HW_SOCKET;
2535   case INTEL_LEVEL_TYPE_SMT:
2536     return KMP_HW_THREAD;
2537   case INTEL_LEVEL_TYPE_CORE:
2538     return KMP_HW_CORE;
2539   case INTEL_LEVEL_TYPE_TILE:
2540     return KMP_HW_TILE;
2541   case INTEL_LEVEL_TYPE_MODULE:
2542     return KMP_HW_MODULE;
2543   case INTEL_LEVEL_TYPE_DIE:
2544     return KMP_HW_DIE;
2545   }
2546   return KMP_HW_UNKNOWN;
2547 }
2548 
2549 // This function takes the topology leaf, a levels array to store the levels
2550 // detected and a bitmap of the known levels.
2551 // Returns the number of levels in the topology
2552 static unsigned
__kmp_x2apicid_get_levels(int leaf,cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],kmp_uint64 known_levels)2553 __kmp_x2apicid_get_levels(int leaf,
2554                           cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2555                           kmp_uint64 known_levels) {
2556   unsigned level, levels_index;
2557   unsigned level_type, mask_width, nitems;
2558   kmp_cpuid buf;
2559 
2560   // New algorithm has known topology layers act as highest unknown topology
2561   // layers when unknown topology layers exist.
2562   // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2563   // are unknown topology layers, Then SMT will take the characteristics of
2564   // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2565   // This eliminates unknown portions of the topology while still keeping the
2566   // correct structure.
2567   level = levels_index = 0;
2568   do {
2569     __kmp_x86_cpuid(leaf, level, &buf);
2570     level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2571     mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2572     nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2573     if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2574       return 0;
2575 
2576     if (known_levels & (1ull << level_type)) {
2577       // Add a new level to the topology
2578       KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2579       levels[levels_index].level_type = level_type;
2580       levels[levels_index].mask_width = mask_width;
2581       levels[levels_index].nitems = nitems;
2582       levels_index++;
2583     } else {
2584       // If it is an unknown level, then logically move the previous layer up
2585       if (levels_index > 0) {
2586         levels[levels_index - 1].mask_width = mask_width;
2587         levels[levels_index - 1].nitems = nitems;
2588       }
2589     }
2590     level++;
2591   } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2592 
2593   // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
2594   if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
2595     return 0;
2596 
2597   // Set the masks to & with apicid
2598   for (unsigned i = 0; i < levels_index; ++i) {
2599     if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2600       levels[i].mask = ~((-1) << levels[i].mask_width);
2601       levels[i].cache_mask = (-1) << levels[i].mask_width;
2602       for (unsigned j = 0; j < i; ++j)
2603         levels[i].mask ^= levels[j].mask;
2604     } else {
2605       KMP_DEBUG_ASSERT(i > 0);
2606       levels[i].mask = (-1) << levels[i - 1].mask_width;
2607       levels[i].cache_mask = 0;
2608     }
2609   }
2610   return levels_index;
2611 }
2612 
__kmp_affinity_create_x2apicid_map(kmp_i18n_id_t * const msg_id)2613 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2614 
2615   cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2616   kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2617   unsigned levels_index;
2618   kmp_cpuid buf;
2619   kmp_uint64 known_levels;
2620   int topology_leaf, highest_leaf, apic_id;
2621   int num_leaves;
2622   static int leaves[] = {0, 0};
2623 
2624   kmp_i18n_id_t leaf_message_id;
2625 
2626   KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2627 
2628   *msg_id = kmp_i18n_null;
2629   if (__kmp_affinity.flags.verbose) {
2630     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2631   }
2632 
2633   // Figure out the known topology levels
2634   known_levels = 0ull;
2635   for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2636     if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2637       known_levels |= (1ull << i);
2638     }
2639   }
2640 
2641   // Get the highest cpuid leaf supported
2642   __kmp_x86_cpuid(0, 0, &buf);
2643   highest_leaf = buf.eax;
2644 
2645   // If a specific topology method was requested, only allow that specific leaf
2646   // otherwise, try both leaves 31 and 11 in that order
2647   num_leaves = 0;
2648   if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2649     num_leaves = 1;
2650     leaves[0] = 11;
2651     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2652   } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2653     num_leaves = 1;
2654     leaves[0] = 31;
2655     leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2656   } else {
2657     num_leaves = 2;
2658     leaves[0] = 31;
2659     leaves[1] = 11;
2660     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2661   }
2662 
2663   // Check to see if cpuid leaf 31 or 11 is supported.
2664   __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2665   topology_leaf = -1;
2666   for (int i = 0; i < num_leaves; ++i) {
2667     int leaf = leaves[i];
2668     if (highest_leaf < leaf)
2669       continue;
2670     __kmp_x86_cpuid(leaf, 0, &buf);
2671     if (buf.ebx == 0)
2672       continue;
2673     topology_leaf = leaf;
2674     levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2675     if (levels_index == 0)
2676       continue;
2677     break;
2678   }
2679   if (topology_leaf == -1 || levels_index == 0) {
2680     *msg_id = leaf_message_id;
2681     return false;
2682   }
2683   KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2684 
2685   // The algorithm used starts by setting the affinity to each available thread
2686   // and retrieving info from the cpuid instruction, so if we are not capable of
2687   // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2688   // we need to do something else - use the defaults that we calculated from
2689   // issuing cpuid without binding to each proc.
2690   if (!KMP_AFFINITY_CAPABLE()) {
2691     // Hack to try and infer the machine topology using only the data
2692     // available from cpuid on the current thread, and __kmp_xproc.
2693     KMP_ASSERT(__kmp_affinity.type == affinity_none);
2694     for (unsigned i = 0; i < levels_index; ++i) {
2695       if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2696         __kmp_nThreadsPerCore = levels[i].nitems;
2697       } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2698         nCoresPerPkg = levels[i].nitems;
2699       }
2700     }
2701     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2702     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2703     return true;
2704   }
2705 
2706   // Allocate the data structure to be returned.
2707   int depth = levels_index;
2708   for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2709     types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2710   __kmp_topology =
2711       kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2712 
2713   // Insert equivalent cache types if they exist
2714   kmp_cache_info_t cache_info;
2715   for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2716     const kmp_cache_info_t::info_t &info = cache_info[i];
2717     unsigned cache_mask = info.mask;
2718     unsigned cache_level = info.level;
2719     for (unsigned j = 0; j < levels_index; ++j) {
2720       unsigned hw_cache_mask = levels[j].cache_mask;
2721       kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2722       if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2723         kmp_hw_t type =
2724             __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2725         __kmp_topology->set_equivalent_type(cache_type, type);
2726       }
2727     }
2728   }
2729 
2730   // From here on, we can assume that it is safe to call
2731   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2732   // __kmp_affinity.type = affinity_none.
2733 
2734   // Save the affinity mask for the current thread.
2735   kmp_affinity_raii_t previous_affinity;
2736 
2737   // Run through each of the available contexts, binding the current thread
2738   // to it, and obtaining the pertinent information using the cpuid instr.
2739   unsigned int proc;
2740   int hw_thread_index = 0;
2741   KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2742     cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2743     unsigned my_levels_index;
2744 
2745     // Skip this proc if it is not included in the machine model.
2746     if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2747       continue;
2748     }
2749     KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2750 
2751     __kmp_affinity_dispatch->bind_thread(proc);
2752 
2753     // New algorithm
2754     __kmp_x86_cpuid(topology_leaf, 0, &buf);
2755     apic_id = buf.edx;
2756     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2757     my_levels_index =
2758         __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2759     if (my_levels_index == 0 || my_levels_index != levels_index) {
2760       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2761       return false;
2762     }
2763     hw_thread.clear();
2764     hw_thread.os_id = proc;
2765     // Put in topology information
2766     for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2767       hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2768       if (j > 0) {
2769         hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2770       }
2771     }
2772     // Hybrid information
2773     if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2774       kmp_hw_core_type_t type;
2775       unsigned native_model_id;
2776       int efficiency;
2777       __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2778       hw_thread.attrs.set_core_type(type);
2779       hw_thread.attrs.set_core_eff(efficiency);
2780     }
2781     hw_thread_index++;
2782   }
2783   KMP_ASSERT(hw_thread_index > 0);
2784   __kmp_topology->sort_ids();
2785   if (!__kmp_topology->check_ids()) {
2786     kmp_topology_t::deallocate(__kmp_topology);
2787     __kmp_topology = nullptr;
2788     *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2789     return false;
2790   }
2791   return true;
2792 }
2793 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2794 
2795 #define osIdIndex 0
2796 #define threadIdIndex 1
2797 #define coreIdIndex 2
2798 #define pkgIdIndex 3
2799 #define nodeIdIndex 4
2800 
2801 typedef unsigned *ProcCpuInfo;
2802 static unsigned maxIndex = pkgIdIndex;
2803 
__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void * a,const void * b)2804 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2805                                                   const void *b) {
2806   unsigned i;
2807   const unsigned *aa = *(unsigned *const *)a;
2808   const unsigned *bb = *(unsigned *const *)b;
2809   for (i = maxIndex;; i--) {
2810     if (aa[i] < bb[i])
2811       return -1;
2812     if (aa[i] > bb[i])
2813       return 1;
2814     if (i == osIdIndex)
2815       break;
2816   }
2817   return 0;
2818 }
2819 
2820 #if KMP_USE_HIER_SCHED
2821 // Set the array sizes for the hierarchy layers
__kmp_dispatch_set_hierarchy_values()2822 static void __kmp_dispatch_set_hierarchy_values() {
2823   // Set the maximum number of L1's to number of cores
2824   // Set the maximum number of L2's to either number of cores / 2 for
2825   // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2826   // Or the number of cores for Intel(R) Xeon(R) processors
2827   // Set the maximum number of NUMA nodes and L3's to number of packages
2828   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2829       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2830   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2831 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2832     KMP_MIC_SUPPORTED
2833   if (__kmp_mic_type >= mic3)
2834     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2835   else
2836 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2837     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2838   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2839   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2840   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2841   // Set the number of threads per unit
2842   // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2843   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2844   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2845       __kmp_nThreadsPerCore;
2846 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2847     KMP_MIC_SUPPORTED
2848   if (__kmp_mic_type >= mic3)
2849     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2850         2 * __kmp_nThreadsPerCore;
2851   else
2852 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2853     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2854         __kmp_nThreadsPerCore;
2855   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2856       nCoresPerPkg * __kmp_nThreadsPerCore;
2857   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2858       nCoresPerPkg * __kmp_nThreadsPerCore;
2859   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2860       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2861 }
2862 
2863 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2864 // i.e., this thread's L1 or this thread's L2, etc.
__kmp_dispatch_get_index(int tid,kmp_hier_layer_e type)2865 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2866   int index = type + 1;
2867   int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2868   KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2869   if (type == kmp_hier_layer_e::LAYER_THREAD)
2870     return tid;
2871   else if (type == kmp_hier_layer_e::LAYER_LOOP)
2872     return 0;
2873   KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2874   if (tid >= num_hw_threads)
2875     tid = tid % num_hw_threads;
2876   return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2877 }
2878 
2879 // Return the number of t1's per t2
__kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1,kmp_hier_layer_e t2)2880 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2881   int i1 = t1 + 1;
2882   int i2 = t2 + 1;
2883   KMP_DEBUG_ASSERT(i1 <= i2);
2884   KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2885   KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2886   KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2887   // (nthreads/t2) / (nthreads/t1) = t1 / t2
2888   return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2889 }
2890 #endif // KMP_USE_HIER_SCHED
2891 
__kmp_cpuinfo_get_filename()2892 static inline const char *__kmp_cpuinfo_get_filename() {
2893   const char *filename;
2894   if (__kmp_cpuinfo_file != nullptr)
2895     filename = __kmp_cpuinfo_file;
2896   else
2897     filename = "/proc/cpuinfo";
2898   return filename;
2899 }
2900 
__kmp_cpuinfo_get_envvar()2901 static inline const char *__kmp_cpuinfo_get_envvar() {
2902   const char *envvar = nullptr;
2903   if (__kmp_cpuinfo_file != nullptr)
2904     envvar = "KMP_CPUINFO_FILE";
2905   return envvar;
2906 }
2907 
2908 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2909 // affinity map. On AIX, the map is obtained through system SRAD (Scheduler
2910 // Resource Allocation Domain).
__kmp_affinity_create_cpuinfo_map(int * line,kmp_i18n_id_t * const msg_id)2911 static bool __kmp_affinity_create_cpuinfo_map(int *line,
2912                                               kmp_i18n_id_t *const msg_id) {
2913   *msg_id = kmp_i18n_null;
2914 
2915 #if KMP_OS_AIX
2916   unsigned num_records = __kmp_xproc;
2917 #else
2918   const char *filename = __kmp_cpuinfo_get_filename();
2919   const char *envvar = __kmp_cpuinfo_get_envvar();
2920 
2921   if (__kmp_affinity.flags.verbose) {
2922     KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2923   }
2924 
2925   kmp_safe_raii_file_t f(filename, "r", envvar);
2926 
2927   // Scan of the file, and count the number of "processor" (osId) fields,
2928   // and find the highest value of <n> for a node_<n> field.
2929   char buf[256];
2930   unsigned num_records = 0;
2931   while (!feof(f)) {
2932     buf[sizeof(buf) - 1] = 1;
2933     if (!fgets(buf, sizeof(buf), f)) {
2934       // Read errors presumably because of EOF
2935       break;
2936     }
2937 
2938     char s1[] = "processor";
2939     if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2940       num_records++;
2941       continue;
2942     }
2943 
2944     // FIXME - this will match "node_<n> <garbage>"
2945     unsigned level;
2946     if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2947       // validate the input fisrt:
2948       if (level > (unsigned)__kmp_xproc) { // level is too big
2949         level = __kmp_xproc;
2950       }
2951       if (nodeIdIndex + level >= maxIndex) {
2952         maxIndex = nodeIdIndex + level;
2953       }
2954       continue;
2955     }
2956   }
2957 
2958   // Check for empty file / no valid processor records, or too many. The number
2959   // of records can't exceed the number of valid bits in the affinity mask.
2960   if (num_records == 0) {
2961     *msg_id = kmp_i18n_str_NoProcRecords;
2962     return false;
2963   }
2964   if (num_records > (unsigned)__kmp_xproc) {
2965     *msg_id = kmp_i18n_str_TooManyProcRecords;
2966     return false;
2967   }
2968 
2969   // Set the file pointer back to the beginning, so that we can scan the file
2970   // again, this time performing a full parse of the data. Allocate a vector of
2971   // ProcCpuInfo object, where we will place the data. Adding an extra element
2972   // at the end allows us to remove a lot of extra checks for termination
2973   // conditions.
2974   if (fseek(f, 0, SEEK_SET) != 0) {
2975     *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2976     return false;
2977   }
2978 #endif // KMP_OS_AIX
2979 
2980   // Allocate the array of records to store the proc info in.  The dummy
2981   // element at the end makes the logic in filling them out easier to code.
2982   unsigned **threadInfo =
2983       (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2984   unsigned i;
2985   for (i = 0; i <= num_records; i++) {
2986     threadInfo[i] =
2987         (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2988   }
2989 
2990 #define CLEANUP_THREAD_INFO                                                    \
2991   for (i = 0; i <= num_records; i++) {                                         \
2992     __kmp_free(threadInfo[i]);                                                 \
2993   }                                                                            \
2994   __kmp_free(threadInfo);
2995 
2996   // A value of UINT_MAX means that we didn't find the field
2997   unsigned __index;
2998 
2999 #define INIT_PROC_INFO(p)                                                      \
3000   for (__index = 0; __index <= maxIndex; __index++) {                          \
3001     (p)[__index] = UINT_MAX;                                                   \
3002   }
3003 
3004   for (i = 0; i <= num_records; i++) {
3005     INIT_PROC_INFO(threadInfo[i]);
3006   }
3007 
3008 #if KMP_OS_AIX
3009   int smt_threads;
3010   lpar_info_format1_t cpuinfo;
3011   unsigned num_avail = __kmp_xproc;
3012 
3013   if (__kmp_affinity.flags.verbose)
3014     KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology");
3015 
3016   // Get the number of SMT threads per core.
3017   int retval =
3018       lpar_get_info(LPAR_INFO_FORMAT1, &cpuinfo, sizeof(lpar_info_format1_t));
3019   if (!retval)
3020     smt_threads = cpuinfo.smt_threads;
3021   else {
3022     CLEANUP_THREAD_INFO;
3023     *msg_id = kmp_i18n_str_UnknownTopology;
3024     return false;
3025   }
3026 
3027   // Allocate a resource set containing available system resourses.
3028   rsethandle_t sys_rset = rs_alloc(RS_SYSTEM);
3029   if (sys_rset == NULL) {
3030     CLEANUP_THREAD_INFO;
3031     *msg_id = kmp_i18n_str_UnknownTopology;
3032     return false;
3033   }
3034   // Allocate a resource set for the SRAD info.
3035   rsethandle_t srad = rs_alloc(RS_EMPTY);
3036   if (srad == NULL) {
3037     rs_free(sys_rset);
3038     CLEANUP_THREAD_INFO;
3039     *msg_id = kmp_i18n_str_UnknownTopology;
3040     return false;
3041   }
3042 
3043   // Get the SRAD system detail level.
3044   int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0);
3045   if (sradsdl < 0) {
3046     rs_free(sys_rset);
3047     rs_free(srad);
3048     CLEANUP_THREAD_INFO;
3049     *msg_id = kmp_i18n_str_UnknownTopology;
3050     return false;
3051   }
3052   // Get the number of RADs at that SRAD SDL.
3053   int num_rads = rs_numrads(sys_rset, sradsdl, 0);
3054   if (num_rads < 0) {
3055     rs_free(sys_rset);
3056     rs_free(srad);
3057     CLEANUP_THREAD_INFO;
3058     *msg_id = kmp_i18n_str_UnknownTopology;
3059     return false;
3060   }
3061 
3062   // Get the maximum number of procs that may be contained in a resource set.
3063   int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0);
3064   if (max_procs < 0) {
3065     rs_free(sys_rset);
3066     rs_free(srad);
3067     CLEANUP_THREAD_INFO;
3068     *msg_id = kmp_i18n_str_UnknownTopology;
3069     return false;
3070   }
3071 
3072   int cur_rad = 0;
3073   int num_set = 0;
3074   for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS;
3075        ++srad_idx) {
3076     // Check if the SRAD is available in the RSET.
3077     if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0)
3078       continue;
3079 
3080     for (int cpu = 0; cpu < max_procs; cpu++) {
3081       // Set the info for the cpu if it is in the SRAD.
3082       if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) {
3083         threadInfo[cpu][osIdIndex] = cpu;
3084         threadInfo[cpu][pkgIdIndex] = cur_rad;
3085         threadInfo[cpu][coreIdIndex] = cpu / smt_threads;
3086         ++num_set;
3087         if (num_set >= num_avail) {
3088           // Done if all available CPUs have been set.
3089           break;
3090         }
3091       }
3092     }
3093     ++cur_rad;
3094   }
3095   rs_free(sys_rset);
3096   rs_free(srad);
3097 
3098   // The topology is already sorted.
3099 
3100 #else // !KMP_OS_AIX
3101   unsigned num_avail = 0;
3102   *line = 0;
3103 #if KMP_ARCH_S390X
3104   bool reading_s390x_sys_info = true;
3105 #endif
3106   while (!feof(f)) {
3107     // Create an inner scoping level, so that all the goto targets at the end of
3108     // the loop appear in an outer scoping level. This avoids warnings about
3109     // jumping past an initialization to a target in the same block.
3110     {
3111       buf[sizeof(buf) - 1] = 1;
3112       bool long_line = false;
3113       if (!fgets(buf, sizeof(buf), f)) {
3114         // Read errors presumably because of EOF
3115         // If there is valid data in threadInfo[num_avail], then fake
3116         // a blank line in ensure that the last address gets parsed.
3117         bool valid = false;
3118         for (i = 0; i <= maxIndex; i++) {
3119           if (threadInfo[num_avail][i] != UINT_MAX) {
3120             valid = true;
3121           }
3122         }
3123         if (!valid) {
3124           break;
3125         }
3126         buf[0] = 0;
3127       } else if (!buf[sizeof(buf) - 1]) {
3128         // The line is longer than the buffer.  Set a flag and don't
3129         // emit an error if we were going to ignore the line, anyway.
3130         long_line = true;
3131 
3132 #define CHECK_LINE                                                             \
3133   if (long_line) {                                                             \
3134     CLEANUP_THREAD_INFO;                                                       \
3135     *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \
3136     return false;                                                              \
3137   }
3138       }
3139       (*line)++;
3140 
3141 #if KMP_ARCH_LOONGARCH64
3142       // The parsing logic of /proc/cpuinfo in this function highly depends on
3143       // the blank lines between each processor info block. But on LoongArch a
3144       // blank line exists before the first processor info block (i.e. after the
3145       // "system type" line). This blank line was added because the "system
3146       // type" line is unrelated to any of the CPUs. We must skip this line so
3147       // that the original logic works on LoongArch.
3148       if (*buf == '\n' && *line == 2)
3149         continue;
3150 #endif
3151 #if KMP_ARCH_S390X
3152       // s390x /proc/cpuinfo starts with a variable number of lines containing
3153       // the overall system information. Skip them.
3154       if (reading_s390x_sys_info) {
3155         if (*buf == '\n')
3156           reading_s390x_sys_info = false;
3157         continue;
3158       }
3159 #endif
3160 
3161 #if KMP_ARCH_S390X
3162       char s1[] = "cpu number";
3163 #else
3164       char s1[] = "processor";
3165 #endif
3166       if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
3167         CHECK_LINE;
3168         char *p = strchr(buf + sizeof(s1) - 1, ':');
3169         unsigned val;
3170         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3171           goto no_val;
3172         if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
3173 #if KMP_ARCH_AARCH64
3174           // Handle the old AArch64 /proc/cpuinfo layout differently,
3175           // it contains all of the 'processor' entries listed in a
3176           // single 'Processor' section, therefore the normal looking
3177           // for duplicates in that section will always fail.
3178           num_avail++;
3179 #else
3180           goto dup_field;
3181 #endif
3182         threadInfo[num_avail][osIdIndex] = val;
3183 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
3184         char path[256];
3185         KMP_SNPRINTF(
3186             path, sizeof(path),
3187             "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
3188             threadInfo[num_avail][osIdIndex]);
3189         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
3190 
3191 #if KMP_ARCH_S390X
3192         // Disambiguate physical_package_id.
3193         unsigned book_id;
3194         KMP_SNPRINTF(path, sizeof(path),
3195                      "/sys/devices/system/cpu/cpu%u/topology/book_id",
3196                      threadInfo[num_avail][osIdIndex]);
3197         __kmp_read_from_file(path, "%u", &book_id);
3198         threadInfo[num_avail][pkgIdIndex] |= (book_id << 8);
3199 
3200         unsigned drawer_id;
3201         KMP_SNPRINTF(path, sizeof(path),
3202                      "/sys/devices/system/cpu/cpu%u/topology/drawer_id",
3203                      threadInfo[num_avail][osIdIndex]);
3204         __kmp_read_from_file(path, "%u", &drawer_id);
3205         threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16);
3206 #endif
3207 
3208         KMP_SNPRINTF(path, sizeof(path),
3209                      "/sys/devices/system/cpu/cpu%u/topology/core_id",
3210                      threadInfo[num_avail][osIdIndex]);
3211         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
3212         continue;
3213 #else
3214       }
3215       char s2[] = "physical id";
3216       if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
3217         CHECK_LINE;
3218         char *p = strchr(buf + sizeof(s2) - 1, ':');
3219         unsigned val;
3220         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3221           goto no_val;
3222         if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
3223           goto dup_field;
3224         threadInfo[num_avail][pkgIdIndex] = val;
3225         continue;
3226       }
3227       char s3[] = "core id";
3228       if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
3229         CHECK_LINE;
3230         char *p = strchr(buf + sizeof(s3) - 1, ':');
3231         unsigned val;
3232         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3233           goto no_val;
3234         if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3235           goto dup_field;
3236         threadInfo[num_avail][coreIdIndex] = val;
3237         continue;
3238 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
3239       }
3240       char s4[] = "thread id";
3241       if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3242         CHECK_LINE;
3243         char *p = strchr(buf + sizeof(s4) - 1, ':');
3244         unsigned val;
3245         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3246           goto no_val;
3247         if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3248           goto dup_field;
3249         threadInfo[num_avail][threadIdIndex] = val;
3250         continue;
3251       }
3252       unsigned level;
3253       if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3254         CHECK_LINE;
3255         char *p = strchr(buf + sizeof(s4) - 1, ':');
3256         unsigned val;
3257         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3258           goto no_val;
3259         // validate the input before using level:
3260         if (level > (unsigned)__kmp_xproc) { // level is too big
3261           level = __kmp_xproc;
3262         }
3263         if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3264           goto dup_field;
3265         threadInfo[num_avail][nodeIdIndex + level] = val;
3266         continue;
3267       }
3268 
3269       // We didn't recognize the leading token on the line. There are lots of
3270       // leading tokens that we don't recognize - if the line isn't empty, go on
3271       // to the next line.
3272       if ((*buf != 0) && (*buf != '\n')) {
3273         // If the line is longer than the buffer, read characters
3274         // until we find a newline.
3275         if (long_line) {
3276           int ch;
3277           while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3278             ;
3279         }
3280         continue;
3281       }
3282 
3283       // A newline has signalled the end of the processor record.
3284       // Check that there aren't too many procs specified.
3285       if ((int)num_avail == __kmp_xproc) {
3286         CLEANUP_THREAD_INFO;
3287         *msg_id = kmp_i18n_str_TooManyEntries;
3288         return false;
3289       }
3290 
3291       // Check for missing fields.  The osId field must be there, and we
3292       // currently require that the physical id field is specified, also.
3293       if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3294         CLEANUP_THREAD_INFO;
3295         *msg_id = kmp_i18n_str_MissingProcField;
3296         return false;
3297       }
3298       if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3299         CLEANUP_THREAD_INFO;
3300         *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3301         return false;
3302       }
3303 
3304       // Skip this proc if it is not included in the machine model.
3305       if (KMP_AFFINITY_CAPABLE() &&
3306           !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3307                          __kmp_affin_fullMask)) {
3308         INIT_PROC_INFO(threadInfo[num_avail]);
3309         continue;
3310       }
3311 
3312       // We have a successful parse of this proc's info.
3313       // Increment the counter, and prepare for the next proc.
3314       num_avail++;
3315       KMP_ASSERT(num_avail <= num_records);
3316       INIT_PROC_INFO(threadInfo[num_avail]);
3317     }
3318     continue;
3319 
3320   no_val:
3321     CLEANUP_THREAD_INFO;
3322     *msg_id = kmp_i18n_str_MissingValCpuinfo;
3323     return false;
3324 
3325   dup_field:
3326     CLEANUP_THREAD_INFO;
3327     *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3328     return false;
3329   }
3330   *line = 0;
3331 
3332 #if KMP_MIC && REDUCE_TEAM_SIZE
3333   unsigned teamSize = 0;
3334 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3335 
3336   // check for num_records == __kmp_xproc ???
3337 
3338   // If it is configured to omit the package level when there is only a single
3339   // package, the logic at the end of this routine won't work if there is only a
3340   // single thread
3341   KMP_ASSERT(num_avail > 0);
3342   KMP_ASSERT(num_avail <= num_records);
3343 
3344   // Sort the threadInfo table by physical Id.
3345   qsort(threadInfo, num_avail, sizeof(*threadInfo),
3346         __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3347 
3348 #endif // KMP_OS_AIX
3349 
3350   // The table is now sorted by pkgId / coreId / threadId, but we really don't
3351   // know the radix of any of the fields. pkgId's may be sparsely assigned among
3352   // the chips on a system. Although coreId's are usually assigned
3353   // [0 .. coresPerPkg-1] and threadId's are usually assigned
3354   // [0..threadsPerCore-1], we don't want to make any such assumptions.
3355   //
3356   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3357   // total # packages) are at this point - we want to determine that now. We
3358   // only have an upper bound on the first two figures.
3359   unsigned *counts =
3360       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3361   unsigned *maxCt =
3362       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3363   unsigned *totals =
3364       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3365   unsigned *lastId =
3366       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3367 
3368   bool assign_thread_ids = false;
3369   unsigned threadIdCt;
3370   unsigned index;
3371 
3372 restart_radix_check:
3373   threadIdCt = 0;
3374 
3375   // Initialize the counter arrays with data from threadInfo[0].
3376   if (assign_thread_ids) {
3377     if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3378       threadInfo[0][threadIdIndex] = threadIdCt++;
3379     } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3380       threadIdCt = threadInfo[0][threadIdIndex] + 1;
3381     }
3382   }
3383   for (index = 0; index <= maxIndex; index++) {
3384     counts[index] = 1;
3385     maxCt[index] = 1;
3386     totals[index] = 1;
3387     lastId[index] = threadInfo[0][index];
3388     ;
3389   }
3390 
3391   // Run through the rest of the OS procs.
3392   for (i = 1; i < num_avail; i++) {
3393     // Find the most significant index whose id differs from the id for the
3394     // previous OS proc.
3395     for (index = maxIndex; index >= threadIdIndex; index--) {
3396       if (assign_thread_ids && (index == threadIdIndex)) {
3397         // Auto-assign the thread id field if it wasn't specified.
3398         if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3399           threadInfo[i][threadIdIndex] = threadIdCt++;
3400         }
3401         // Apparently the thread id field was specified for some entries and not
3402         // others. Start the thread id counter off at the next higher thread id.
3403         else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3404           threadIdCt = threadInfo[i][threadIdIndex] + 1;
3405         }
3406       }
3407       if (threadInfo[i][index] != lastId[index]) {
3408         // Run through all indices which are less significant, and reset the
3409         // counts to 1. At all levels up to and including index, we need to
3410         // increment the totals and record the last id.
3411         unsigned index2;
3412         for (index2 = threadIdIndex; index2 < index; index2++) {
3413           totals[index2]++;
3414           if (counts[index2] > maxCt[index2]) {
3415             maxCt[index2] = counts[index2];
3416           }
3417           counts[index2] = 1;
3418           lastId[index2] = threadInfo[i][index2];
3419         }
3420         counts[index]++;
3421         totals[index]++;
3422         lastId[index] = threadInfo[i][index];
3423 
3424         if (assign_thread_ids && (index > threadIdIndex)) {
3425 
3426 #if KMP_MIC && REDUCE_TEAM_SIZE
3427           // The default team size is the total #threads in the machine
3428           // minus 1 thread for every core that has 3 or more threads.
3429           teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3430 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3431 
3432           // Restart the thread counter, as we are on a new core.
3433           threadIdCt = 0;
3434 
3435           // Auto-assign the thread id field if it wasn't specified.
3436           if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3437             threadInfo[i][threadIdIndex] = threadIdCt++;
3438           }
3439 
3440           // Apparently the thread id field was specified for some entries and
3441           // not others. Start the thread id counter off at the next higher
3442           // thread id.
3443           else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3444             threadIdCt = threadInfo[i][threadIdIndex] + 1;
3445           }
3446         }
3447         break;
3448       }
3449     }
3450     if (index < threadIdIndex) {
3451       // If thread ids were specified, it is an error if they are not unique.
3452       // Also, check that we waven't already restarted the loop (to be safe -
3453       // shouldn't need to).
3454       if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3455         __kmp_free(lastId);
3456         __kmp_free(totals);
3457         __kmp_free(maxCt);
3458         __kmp_free(counts);
3459         CLEANUP_THREAD_INFO;
3460         *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3461         return false;
3462       }
3463 
3464       // If the thread ids were not specified and we see entries that
3465       // are duplicates, start the loop over and assign the thread ids manually.
3466       assign_thread_ids = true;
3467       goto restart_radix_check;
3468     }
3469   }
3470 
3471 #if KMP_MIC && REDUCE_TEAM_SIZE
3472   // The default team size is the total #threads in the machine
3473   // minus 1 thread for every core that has 3 or more threads.
3474   teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3475 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3476 
3477   for (index = threadIdIndex; index <= maxIndex; index++) {
3478     if (counts[index] > maxCt[index]) {
3479       maxCt[index] = counts[index];
3480     }
3481   }
3482 
3483   __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3484   nCoresPerPkg = maxCt[coreIdIndex];
3485   nPackages = totals[pkgIdIndex];
3486 
3487   // When affinity is off, this routine will still be called to set
3488   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3489   // Make sure all these vars are set correctly, and return now if affinity is
3490   // not enabled.
3491   __kmp_ncores = totals[coreIdIndex];
3492   if (!KMP_AFFINITY_CAPABLE()) {
3493     KMP_ASSERT(__kmp_affinity.type == affinity_none);
3494     return true;
3495   }
3496 
3497 #if KMP_MIC && REDUCE_TEAM_SIZE
3498   // Set the default team size.
3499   if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3500     __kmp_dflt_team_nth = teamSize;
3501     KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3502                   "__kmp_dflt_team_nth = %d\n",
3503                   __kmp_dflt_team_nth));
3504   }
3505 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3506 
3507   KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3508 
3509   // Count the number of levels which have more nodes at that level than at the
3510   // parent's level (with there being an implicit root node of the top level).
3511   // This is equivalent to saying that there is at least one node at this level
3512   // which has a sibling. These levels are in the map, and the package level is
3513   // always in the map.
3514   bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3515   for (index = threadIdIndex; index < maxIndex; index++) {
3516     KMP_ASSERT(totals[index] >= totals[index + 1]);
3517     inMap[index] = (totals[index] > totals[index + 1]);
3518   }
3519   inMap[maxIndex] = (totals[maxIndex] > 1);
3520   inMap[pkgIdIndex] = true;
3521   inMap[coreIdIndex] = true;
3522   inMap[threadIdIndex] = true;
3523 
3524   int depth = 0;
3525   int idx = 0;
3526   kmp_hw_t types[KMP_HW_LAST];
3527   int pkgLevel = -1;
3528   int coreLevel = -1;
3529   int threadLevel = -1;
3530   for (index = threadIdIndex; index <= maxIndex; index++) {
3531     if (inMap[index]) {
3532       depth++;
3533     }
3534   }
3535   if (inMap[pkgIdIndex]) {
3536     pkgLevel = idx;
3537     types[idx++] = KMP_HW_SOCKET;
3538   }
3539   if (inMap[coreIdIndex]) {
3540     coreLevel = idx;
3541     types[idx++] = KMP_HW_CORE;
3542   }
3543   if (inMap[threadIdIndex]) {
3544     threadLevel = idx;
3545     types[idx++] = KMP_HW_THREAD;
3546   }
3547   KMP_ASSERT(depth > 0);
3548 
3549   // Construct the data structure that is to be returned.
3550   __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3551 
3552   for (i = 0; i < num_avail; ++i) {
3553     unsigned os = threadInfo[i][osIdIndex];
3554     int src_index;
3555     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3556     hw_thread.clear();
3557     hw_thread.os_id = os;
3558 
3559     idx = 0;
3560     for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3561       if (!inMap[src_index]) {
3562         continue;
3563       }
3564       if (src_index == pkgIdIndex) {
3565         hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3566       } else if (src_index == coreIdIndex) {
3567         hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3568       } else if (src_index == threadIdIndex) {
3569         hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3570       }
3571     }
3572   }
3573 
3574   __kmp_free(inMap);
3575   __kmp_free(lastId);
3576   __kmp_free(totals);
3577   __kmp_free(maxCt);
3578   __kmp_free(counts);
3579   CLEANUP_THREAD_INFO;
3580   __kmp_topology->sort_ids();
3581   if (!__kmp_topology->check_ids()) {
3582     kmp_topology_t::deallocate(__kmp_topology);
3583     __kmp_topology = nullptr;
3584     *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3585     return false;
3586   }
3587   return true;
3588 }
3589 
3590 // Create and return a table of affinity masks, indexed by OS thread ID.
3591 // This routine handles OR'ing together all the affinity masks of threads
3592 // that are sufficiently close, if granularity > fine.
3593 template <typename FindNextFunctionType>
__kmp_create_os_id_masks(unsigned * numUnique,kmp_affinity_t & affinity,FindNextFunctionType find_next)3594 static void __kmp_create_os_id_masks(unsigned *numUnique,
3595                                      kmp_affinity_t &affinity,
3596                                      FindNextFunctionType find_next) {
3597   // First form a table of affinity masks in order of OS thread id.
3598   int maxOsId;
3599   int i;
3600   int numAddrs = __kmp_topology->get_num_hw_threads();
3601   int depth = __kmp_topology->get_depth();
3602   const char *env_var = __kmp_get_affinity_env_var(affinity);
3603   KMP_ASSERT(numAddrs);
3604   KMP_ASSERT(depth);
3605 
3606   i = find_next(-1);
3607   // If could not find HW thread location with attributes, then return and
3608   // fallback to increment find_next and disregard core attributes.
3609   if (i >= numAddrs)
3610     return;
3611 
3612   maxOsId = 0;
3613   for (i = numAddrs - 1;; --i) {
3614     int osId = __kmp_topology->at(i).os_id;
3615     if (osId > maxOsId) {
3616       maxOsId = osId;
3617     }
3618     if (i == 0)
3619       break;
3620   }
3621   affinity.num_os_id_masks = maxOsId + 1;
3622   KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3623   KMP_ASSERT(affinity.gran_levels >= 0);
3624   if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3625     KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3626   }
3627   if (affinity.gran_levels >= (int)depth) {
3628     KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3629   }
3630 
3631   // Run through the table, forming the masks for all threads on each core.
3632   // Threads on the same core will have identical kmp_hw_thread_t objects, not
3633   // considering the last level, which must be the thread id. All threads on a
3634   // core will appear consecutively.
3635   int unique = 0;
3636   int j = 0; // index of 1st thread on core
3637   int leader = 0;
3638   kmp_affin_mask_t *sum;
3639   KMP_CPU_ALLOC_ON_STACK(sum);
3640   KMP_CPU_ZERO(sum);
3641 
3642   i = j = leader = find_next(-1);
3643   KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3644   kmp_full_mask_modifier_t full_mask;
3645   for (i = find_next(i); i < numAddrs; i = find_next(i)) {
3646     // If this thread is sufficiently close to the leader (within the
3647     // granularity setting), then set the bit for this os thread in the
3648     // affinity mask for this group, and go on to the next thread.
3649     if (__kmp_topology->is_close(leader, i, affinity)) {
3650       KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3651       continue;
3652     }
3653 
3654     // For every thread in this group, copy the mask to the thread's entry in
3655     // the OS Id mask table. Mark the first address as a leader.
3656     for (; j < i; j = find_next(j)) {
3657       int osId = __kmp_topology->at(j).os_id;
3658       KMP_DEBUG_ASSERT(osId <= maxOsId);
3659       kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3660       KMP_CPU_COPY(mask, sum);
3661       __kmp_topology->at(j).leader = (j == leader);
3662     }
3663     unique++;
3664 
3665     // Start a new mask.
3666     leader = i;
3667     full_mask.include(sum);
3668     KMP_CPU_ZERO(sum);
3669     KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3670   }
3671 
3672   // For every thread in last group, copy the mask to the thread's
3673   // entry in the OS Id mask table.
3674   for (; j < i; j = find_next(j)) {
3675     int osId = __kmp_topology->at(j).os_id;
3676     KMP_DEBUG_ASSERT(osId <= maxOsId);
3677     kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3678     KMP_CPU_COPY(mask, sum);
3679     __kmp_topology->at(j).leader = (j == leader);
3680   }
3681   full_mask.include(sum);
3682   unique++;
3683   KMP_CPU_FREE_FROM_STACK(sum);
3684 
3685   // See if the OS Id mask table further restricts or changes the full mask
3686   if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
3687     __kmp_topology->print(env_var);
3688   }
3689 
3690   *numUnique = unique;
3691 }
3692 
3693 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
3694 // as file-static than to try and pass them through the calling sequence of
3695 // the recursive-descent OMP_PLACES parser.
3696 static kmp_affin_mask_t *newMasks;
3697 static int numNewMasks;
3698 static int nextNewMask;
3699 
3700 #define ADD_MASK(_mask)                                                        \
3701   {                                                                            \
3702     if (nextNewMask >= numNewMasks) {                                          \
3703       int i;                                                                   \
3704       numNewMasks *= 2;                                                        \
3705       kmp_affin_mask_t *temp;                                                  \
3706       KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \
3707       for (i = 0; i < numNewMasks / 2; i++) {                                  \
3708         kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \
3709         kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \
3710         KMP_CPU_COPY(dest, src);                                               \
3711       }                                                                        \
3712       KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \
3713       newMasks = temp;                                                         \
3714     }                                                                          \
3715     KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \
3716     nextNewMask++;                                                             \
3717   }
3718 
3719 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \
3720   {                                                                            \
3721     if (((_osId) > _maxOsId) ||                                                \
3722         (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \
3723       KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId);                \
3724     } else {                                                                   \
3725       ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \
3726     }                                                                          \
3727   }
3728 
3729 // Re-parse the proclist (for the explicit affinity type), and form the list
3730 // of affinity newMasks indexed by gtid.
__kmp_affinity_process_proclist(kmp_affinity_t & affinity)3731 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
3732   int i;
3733   kmp_affin_mask_t **out_masks = &affinity.masks;
3734   unsigned *out_numMasks = &affinity.num_masks;
3735   const char *proclist = affinity.proclist;
3736   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3737   int maxOsId = affinity.num_os_id_masks - 1;
3738   const char *scan = proclist;
3739   const char *next = proclist;
3740 
3741   // We use malloc() for the temporary mask vector, so that we can use
3742   // realloc() to extend it.
3743   numNewMasks = 2;
3744   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3745   nextNewMask = 0;
3746   kmp_affin_mask_t *sumMask;
3747   KMP_CPU_ALLOC(sumMask);
3748   int setSize = 0;
3749 
3750   for (;;) {
3751     int start, end, stride;
3752 
3753     SKIP_WS(scan);
3754     next = scan;
3755     if (*next == '\0') {
3756       break;
3757     }
3758 
3759     if (*next == '{') {
3760       int num;
3761       setSize = 0;
3762       next++; // skip '{'
3763       SKIP_WS(next);
3764       scan = next;
3765 
3766       // Read the first integer in the set.
3767       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3768       SKIP_DIGITS(next);
3769       num = __kmp_str_to_int(scan, *next);
3770       KMP_ASSERT2(num >= 0, "bad explicit proc list");
3771 
3772       // Copy the mask for that osId to the sum (union) mask.
3773       if ((num > maxOsId) ||
3774           (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3775         KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3776         KMP_CPU_ZERO(sumMask);
3777       } else {
3778         KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3779         setSize = 1;
3780       }
3781 
3782       for (;;) {
3783         // Check for end of set.
3784         SKIP_WS(next);
3785         if (*next == '}') {
3786           next++; // skip '}'
3787           break;
3788         }
3789 
3790         // Skip optional comma.
3791         if (*next == ',') {
3792           next++;
3793         }
3794         SKIP_WS(next);
3795 
3796         // Read the next integer in the set.
3797         scan = next;
3798         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3799 
3800         SKIP_DIGITS(next);
3801         num = __kmp_str_to_int(scan, *next);
3802         KMP_ASSERT2(num >= 0, "bad explicit proc list");
3803 
3804         // Add the mask for that osId to the sum mask.
3805         if ((num > maxOsId) ||
3806             (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3807           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3808         } else {
3809           KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3810           setSize++;
3811         }
3812       }
3813       if (setSize > 0) {
3814         ADD_MASK(sumMask);
3815       }
3816 
3817       SKIP_WS(next);
3818       if (*next == ',') {
3819         next++;
3820       }
3821       scan = next;
3822       continue;
3823     }
3824 
3825     // Read the first integer.
3826     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3827     SKIP_DIGITS(next);
3828     start = __kmp_str_to_int(scan, *next);
3829     KMP_ASSERT2(start >= 0, "bad explicit proc list");
3830     SKIP_WS(next);
3831 
3832     // If this isn't a range, then add a mask to the list and go on.
3833     if (*next != '-') {
3834       ADD_MASK_OSID(start, osId2Mask, maxOsId);
3835 
3836       // Skip optional comma.
3837       if (*next == ',') {
3838         next++;
3839       }
3840       scan = next;
3841       continue;
3842     }
3843 
3844     // This is a range.  Skip over the '-' and read in the 2nd int.
3845     next++; // skip '-'
3846     SKIP_WS(next);
3847     scan = next;
3848     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3849     SKIP_DIGITS(next);
3850     end = __kmp_str_to_int(scan, *next);
3851     KMP_ASSERT2(end >= 0, "bad explicit proc list");
3852 
3853     // Check for a stride parameter
3854     stride = 1;
3855     SKIP_WS(next);
3856     if (*next == ':') {
3857       // A stride is specified.  Skip over the ':" and read the 3rd int.
3858       int sign = +1;
3859       next++; // skip ':'
3860       SKIP_WS(next);
3861       scan = next;
3862       if (*next == '-') {
3863         sign = -1;
3864         next++;
3865         SKIP_WS(next);
3866         scan = next;
3867       }
3868       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3869       SKIP_DIGITS(next);
3870       stride = __kmp_str_to_int(scan, *next);
3871       KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3872       stride *= sign;
3873     }
3874 
3875     // Do some range checks.
3876     KMP_ASSERT2(stride != 0, "bad explicit proc list");
3877     if (stride > 0) {
3878       KMP_ASSERT2(start <= end, "bad explicit proc list");
3879     } else {
3880       KMP_ASSERT2(start >= end, "bad explicit proc list");
3881     }
3882     KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3883 
3884     // Add the mask for each OS proc # to the list.
3885     if (stride > 0) {
3886       do {
3887         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3888         start += stride;
3889       } while (start <= end);
3890     } else {
3891       do {
3892         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3893         start += stride;
3894       } while (start >= end);
3895     }
3896 
3897     // Skip optional comma.
3898     SKIP_WS(next);
3899     if (*next == ',') {
3900       next++;
3901     }
3902     scan = next;
3903   }
3904 
3905   *out_numMasks = nextNewMask;
3906   if (nextNewMask == 0) {
3907     *out_masks = NULL;
3908     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3909     return;
3910   }
3911   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3912   for (i = 0; i < nextNewMask; i++) {
3913     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3914     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3915     KMP_CPU_COPY(dest, src);
3916   }
3917   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3918   KMP_CPU_FREE(sumMask);
3919 }
3920 
3921 /*-----------------------------------------------------------------------------
3922 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3923 places.  Again, Here is the grammar:
3924 
3925 place_list := place
3926 place_list := place , place_list
3927 place := num
3928 place := place : num
3929 place := place : num : signed
3930 place := { subplacelist }
3931 place := ! place                  // (lowest priority)
3932 subplace_list := subplace
3933 subplace_list := subplace , subplace_list
3934 subplace := num
3935 subplace := num : num
3936 subplace := num : num : signed
3937 signed := num
3938 signed := + signed
3939 signed := - signed
3940 -----------------------------------------------------------------------------*/
__kmp_process_subplace_list(const char ** scan,kmp_affinity_t & affinity,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)3941 static void __kmp_process_subplace_list(const char **scan,
3942                                         kmp_affinity_t &affinity, int maxOsId,
3943                                         kmp_affin_mask_t *tempMask,
3944                                         int *setSize) {
3945   const char *next;
3946   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3947 
3948   for (;;) {
3949     int start, count, stride, i;
3950 
3951     // Read in the starting proc id
3952     SKIP_WS(*scan);
3953     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3954     next = *scan;
3955     SKIP_DIGITS(next);
3956     start = __kmp_str_to_int(*scan, *next);
3957     KMP_ASSERT(start >= 0);
3958     *scan = next;
3959 
3960     // valid follow sets are ',' ':' and '}'
3961     SKIP_WS(*scan);
3962     if (**scan == '}' || **scan == ',') {
3963       if ((start > maxOsId) ||
3964           (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3965         KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3966       } else {
3967         KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3968         (*setSize)++;
3969       }
3970       if (**scan == '}') {
3971         break;
3972       }
3973       (*scan)++; // skip ','
3974       continue;
3975     }
3976     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3977     (*scan)++; // skip ':'
3978 
3979     // Read count parameter
3980     SKIP_WS(*scan);
3981     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3982     next = *scan;
3983     SKIP_DIGITS(next);
3984     count = __kmp_str_to_int(*scan, *next);
3985     KMP_ASSERT(count >= 0);
3986     *scan = next;
3987 
3988     // valid follow sets are ',' ':' and '}'
3989     SKIP_WS(*scan);
3990     if (**scan == '}' || **scan == ',') {
3991       for (i = 0; i < count; i++) {
3992         if ((start > maxOsId) ||
3993             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3994           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3995           break; // don't proliferate warnings for large count
3996         } else {
3997           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3998           start++;
3999           (*setSize)++;
4000         }
4001       }
4002       if (**scan == '}') {
4003         break;
4004       }
4005       (*scan)++; // skip ','
4006       continue;
4007     }
4008     KMP_ASSERT2(**scan == ':', "bad explicit places list");
4009     (*scan)++; // skip ':'
4010 
4011     // Read stride parameter
4012     int sign = +1;
4013     for (;;) {
4014       SKIP_WS(*scan);
4015       if (**scan == '+') {
4016         (*scan)++; // skip '+'
4017         continue;
4018       }
4019       if (**scan == '-') {
4020         sign *= -1;
4021         (*scan)++; // skip '-'
4022         continue;
4023       }
4024       break;
4025     }
4026     SKIP_WS(*scan);
4027     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4028     next = *scan;
4029     SKIP_DIGITS(next);
4030     stride = __kmp_str_to_int(*scan, *next);
4031     KMP_ASSERT(stride >= 0);
4032     *scan = next;
4033     stride *= sign;
4034 
4035     // valid follow sets are ',' and '}'
4036     SKIP_WS(*scan);
4037     if (**scan == '}' || **scan == ',') {
4038       for (i = 0; i < count; i++) {
4039         if ((start > maxOsId) ||
4040             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4041           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4042           break; // don't proliferate warnings for large count
4043         } else {
4044           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4045           start += stride;
4046           (*setSize)++;
4047         }
4048       }
4049       if (**scan == '}') {
4050         break;
4051       }
4052       (*scan)++; // skip ','
4053       continue;
4054     }
4055 
4056     KMP_ASSERT2(0, "bad explicit places list");
4057   }
4058 }
4059 
__kmp_process_place(const char ** scan,kmp_affinity_t & affinity,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)4060 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
4061                                 int maxOsId, kmp_affin_mask_t *tempMask,
4062                                 int *setSize) {
4063   const char *next;
4064   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4065 
4066   // valid follow sets are '{' '!' and num
4067   SKIP_WS(*scan);
4068   if (**scan == '{') {
4069     (*scan)++; // skip '{'
4070     __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
4071     KMP_ASSERT2(**scan == '}', "bad explicit places list");
4072     (*scan)++; // skip '}'
4073   } else if (**scan == '!') {
4074     (*scan)++; // skip '!'
4075     __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
4076     KMP_CPU_COMPLEMENT(maxOsId, tempMask);
4077   } else if ((**scan >= '0') && (**scan <= '9')) {
4078     next = *scan;
4079     SKIP_DIGITS(next);
4080     int num = __kmp_str_to_int(*scan, *next);
4081     KMP_ASSERT(num >= 0);
4082     if ((num > maxOsId) ||
4083         (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4084       KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4085     } else {
4086       KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
4087       (*setSize)++;
4088     }
4089     *scan = next; // skip num
4090   } else {
4091     KMP_ASSERT2(0, "bad explicit places list");
4092   }
4093 }
4094 
4095 // static void
__kmp_affinity_process_placelist(kmp_affinity_t & affinity)4096 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
4097   int i, j, count, stride, sign;
4098   kmp_affin_mask_t **out_masks = &affinity.masks;
4099   unsigned *out_numMasks = &affinity.num_masks;
4100   const char *placelist = affinity.proclist;
4101   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4102   int maxOsId = affinity.num_os_id_masks - 1;
4103   const char *scan = placelist;
4104   const char *next = placelist;
4105 
4106   numNewMasks = 2;
4107   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4108   nextNewMask = 0;
4109 
4110   // tempMask is modified based on the previous or initial
4111   //   place to form the current place
4112   // previousMask contains the previous place
4113   kmp_affin_mask_t *tempMask;
4114   kmp_affin_mask_t *previousMask;
4115   KMP_CPU_ALLOC(tempMask);
4116   KMP_CPU_ZERO(tempMask);
4117   KMP_CPU_ALLOC(previousMask);
4118   KMP_CPU_ZERO(previousMask);
4119   int setSize = 0;
4120 
4121   for (;;) {
4122     __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
4123 
4124     // valid follow sets are ',' ':' and EOL
4125     SKIP_WS(scan);
4126     if (*scan == '\0' || *scan == ',') {
4127       if (setSize > 0) {
4128         ADD_MASK(tempMask);
4129       }
4130       KMP_CPU_ZERO(tempMask);
4131       setSize = 0;
4132       if (*scan == '\0') {
4133         break;
4134       }
4135       scan++; // skip ','
4136       continue;
4137     }
4138 
4139     KMP_ASSERT2(*scan == ':', "bad explicit places list");
4140     scan++; // skip ':'
4141 
4142     // Read count parameter
4143     SKIP_WS(scan);
4144     KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4145     next = scan;
4146     SKIP_DIGITS(next);
4147     count = __kmp_str_to_int(scan, *next);
4148     KMP_ASSERT(count >= 0);
4149     scan = next;
4150 
4151     // valid follow sets are ',' ':' and EOL
4152     SKIP_WS(scan);
4153     if (*scan == '\0' || *scan == ',') {
4154       stride = +1;
4155     } else {
4156       KMP_ASSERT2(*scan == ':', "bad explicit places list");
4157       scan++; // skip ':'
4158 
4159       // Read stride parameter
4160       sign = +1;
4161       for (;;) {
4162         SKIP_WS(scan);
4163         if (*scan == '+') {
4164           scan++; // skip '+'
4165           continue;
4166         }
4167         if (*scan == '-') {
4168           sign *= -1;
4169           scan++; // skip '-'
4170           continue;
4171         }
4172         break;
4173       }
4174       SKIP_WS(scan);
4175       KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4176       next = scan;
4177       SKIP_DIGITS(next);
4178       stride = __kmp_str_to_int(scan, *next);
4179       KMP_DEBUG_ASSERT(stride >= 0);
4180       scan = next;
4181       stride *= sign;
4182     }
4183 
4184     // Add places determined by initial_place : count : stride
4185     for (i = 0; i < count; i++) {
4186       if (setSize == 0) {
4187         break;
4188       }
4189       // Add the current place, then build the next place (tempMask) from that
4190       KMP_CPU_COPY(previousMask, tempMask);
4191       ADD_MASK(previousMask);
4192       KMP_CPU_ZERO(tempMask);
4193       setSize = 0;
4194       KMP_CPU_SET_ITERATE(j, previousMask) {
4195         if (!KMP_CPU_ISSET(j, previousMask)) {
4196           continue;
4197         }
4198         if ((j + stride > maxOsId) || (j + stride < 0) ||
4199             (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
4200             (!KMP_CPU_ISSET(j + stride,
4201                             KMP_CPU_INDEX(osId2Mask, j + stride)))) {
4202           if (i < count - 1) {
4203             KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
4204           }
4205           continue;
4206         }
4207         KMP_CPU_SET(j + stride, tempMask);
4208         setSize++;
4209       }
4210     }
4211     KMP_CPU_ZERO(tempMask);
4212     setSize = 0;
4213 
4214     // valid follow sets are ',' and EOL
4215     SKIP_WS(scan);
4216     if (*scan == '\0') {
4217       break;
4218     }
4219     if (*scan == ',') {
4220       scan++; // skip ','
4221       continue;
4222     }
4223 
4224     KMP_ASSERT2(0, "bad explicit places list");
4225   }
4226 
4227   *out_numMasks = nextNewMask;
4228   if (nextNewMask == 0) {
4229     *out_masks = NULL;
4230     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4231     return;
4232   }
4233   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4234   KMP_CPU_FREE(tempMask);
4235   KMP_CPU_FREE(previousMask);
4236   for (i = 0; i < nextNewMask; i++) {
4237     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4238     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4239     KMP_CPU_COPY(dest, src);
4240   }
4241   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4242 }
4243 
4244 #undef ADD_MASK
4245 #undef ADD_MASK_OSID
4246 
4247 // This function figures out the deepest level at which there is at least one
4248 // cluster/core with more than one processing unit bound to it.
__kmp_affinity_find_core_level(int nprocs,int bottom_level)4249 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
4250   int core_level = 0;
4251 
4252   for (int i = 0; i < nprocs; i++) {
4253     const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
4254     for (int j = bottom_level; j > 0; j--) {
4255       if (hw_thread.ids[j] > 0) {
4256         if (core_level < (j - 1)) {
4257           core_level = j - 1;
4258         }
4259       }
4260     }
4261   }
4262   return core_level;
4263 }
4264 
4265 // This function counts number of clusters/cores at given level.
__kmp_affinity_compute_ncores(int nprocs,int bottom_level,int core_level)4266 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4267                                          int core_level) {
4268   return __kmp_topology->get_count(core_level);
4269 }
4270 // This function finds to which cluster/core given processing unit is bound.
__kmp_affinity_find_core(int proc,int bottom_level,int core_level)4271 static int __kmp_affinity_find_core(int proc, int bottom_level,
4272                                     int core_level) {
4273   int core = 0;
4274   KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4275   for (int i = 0; i <= proc; ++i) {
4276     if (i + 1 <= proc) {
4277       for (int j = 0; j <= core_level; ++j) {
4278         if (__kmp_topology->at(i + 1).sub_ids[j] !=
4279             __kmp_topology->at(i).sub_ids[j]) {
4280           core++;
4281           break;
4282         }
4283       }
4284     }
4285   }
4286   return core;
4287 }
4288 
4289 // This function finds maximal number of processing units bound to a
4290 // cluster/core at given level.
__kmp_affinity_max_proc_per_core(int nprocs,int bottom_level,int core_level)4291 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4292                                             int core_level) {
4293   if (core_level >= bottom_level)
4294     return 1;
4295   int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4296   return __kmp_topology->calculate_ratio(thread_level, core_level);
4297 }
4298 
4299 static int *procarr = NULL;
4300 static int __kmp_aff_depth = 0;
4301 static int *__kmp_osid_to_hwthread_map = NULL;
4302 
__kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t * mask,kmp_affinity_ids_t & ids,kmp_affinity_attrs_t & attrs)4303 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4304                                                   kmp_affinity_ids_t &ids,
4305                                                   kmp_affinity_attrs_t &attrs) {
4306   if (!KMP_AFFINITY_CAPABLE())
4307     return;
4308 
4309   // Initiailze ids and attrs thread data
4310   for (int i = 0; i < KMP_HW_LAST; ++i)
4311     ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4312   attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4313 
4314   // Iterate through each os id within the mask and determine
4315   // the topology id and attribute information
4316   int cpu;
4317   int depth = __kmp_topology->get_depth();
4318   KMP_CPU_SET_ITERATE(cpu, mask) {
4319     int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4320     ids.os_id = cpu;
4321     const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
4322     for (int level = 0; level < depth; ++level) {
4323       kmp_hw_t type = __kmp_topology->get_type(level);
4324       int id = hw_thread.sub_ids[level];
4325       if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) {
4326         ids.ids[type] = id;
4327       } else {
4328         // This mask spans across multiple topology units, set it as such
4329         // and mark every level below as such as well.
4330         ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4331         for (; level < depth; ++level) {
4332           kmp_hw_t type = __kmp_topology->get_type(level);
4333           ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4334         }
4335       }
4336     }
4337     if (!attrs.valid) {
4338       attrs.core_type = hw_thread.attrs.get_core_type();
4339       attrs.core_eff = hw_thread.attrs.get_core_eff();
4340       attrs.valid = 1;
4341     } else {
4342       // This mask spans across multiple attributes, set it as such
4343       if (attrs.core_type != hw_thread.attrs.get_core_type())
4344         attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4345       if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4346         attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4347     }
4348   }
4349 }
4350 
__kmp_affinity_get_thread_topology_info(kmp_info_t * th)4351 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4352   if (!KMP_AFFINITY_CAPABLE())
4353     return;
4354   const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4355   kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4356   kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4357   __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4358 }
4359 
4360 // Assign the topology information to each place in the place list
4361 // A thread can then grab not only its affinity mask, but the topology
4362 // information associated with that mask. e.g., Which socket is a thread on
__kmp_affinity_get_topology_info(kmp_affinity_t & affinity)4363 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4364   if (!KMP_AFFINITY_CAPABLE())
4365     return;
4366   if (affinity.type != affinity_none) {
4367     KMP_ASSERT(affinity.num_os_id_masks);
4368     KMP_ASSERT(affinity.os_id_masks);
4369   }
4370   KMP_ASSERT(affinity.num_masks);
4371   KMP_ASSERT(affinity.masks);
4372   KMP_ASSERT(__kmp_affin_fullMask);
4373 
4374   int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4375   int num_hw_threads = __kmp_topology->get_num_hw_threads();
4376 
4377   // Allocate thread topology information
4378   if (!affinity.ids) {
4379     affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4380         sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4381   }
4382   if (!affinity.attrs) {
4383     affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4384         sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4385   }
4386   if (!__kmp_osid_to_hwthread_map) {
4387     // Want the +1 because max_cpu should be valid index into map
4388     __kmp_osid_to_hwthread_map =
4389         (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4390   }
4391 
4392   // Create the OS proc to hardware thread map
4393   for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) {
4394     int os_id = __kmp_topology->at(hw_thread).os_id;
4395     if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask))
4396       __kmp_osid_to_hwthread_map[os_id] = hw_thread;
4397   }
4398 
4399   for (unsigned i = 0; i < affinity.num_masks; ++i) {
4400     kmp_affinity_ids_t &ids = affinity.ids[i];
4401     kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4402     kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4403     __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4404   }
4405 }
4406 
4407 // Called when __kmp_topology is ready
__kmp_aux_affinity_initialize_other_data(kmp_affinity_t & affinity)4408 static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) {
4409   // Initialize other data structures which depend on the topology
4410   if (__kmp_topology && __kmp_topology->get_num_hw_threads()) {
4411     machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4412     __kmp_affinity_get_topology_info(affinity);
4413 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
4414     __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore();
4415 #endif
4416   }
4417 }
4418 
4419 // Create a one element mask array (set of places) which only contains the
4420 // initial process's affinity mask
__kmp_create_affinity_none_places(kmp_affinity_t & affinity)4421 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4422   KMP_ASSERT(__kmp_affin_fullMask != NULL);
4423   KMP_ASSERT(affinity.type == affinity_none);
4424   KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4425   affinity.num_masks = 1;
4426   KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4427   kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4428   KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4429   __kmp_aux_affinity_initialize_other_data(affinity);
4430 }
4431 
__kmp_aux_affinity_initialize_masks(kmp_affinity_t & affinity)4432 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4433   // Create the "full" mask - this defines all of the processors that we
4434   // consider to be in the machine model. If respect is set, then it is the
4435   // initialization thread's affinity mask. Otherwise, it is all processors that
4436   // we know about on the machine.
4437   int verbose = affinity.flags.verbose;
4438   const char *env_var = affinity.env_var;
4439 
4440   // Already initialized
4441   if (__kmp_affin_fullMask && __kmp_affin_origMask)
4442     return;
4443 
4444   if (__kmp_affin_fullMask == NULL) {
4445     KMP_CPU_ALLOC(__kmp_affin_fullMask);
4446   }
4447   if (__kmp_affin_origMask == NULL) {
4448     KMP_CPU_ALLOC(__kmp_affin_origMask);
4449   }
4450   if (KMP_AFFINITY_CAPABLE()) {
4451     __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4452     // Make a copy before possible expanding to the entire machine mask
4453     __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4454     if (affinity.flags.respect) {
4455       // Count the number of available processors.
4456       unsigned i;
4457       __kmp_avail_proc = 0;
4458       KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4459         if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4460           continue;
4461         }
4462         __kmp_avail_proc++;
4463       }
4464       if (__kmp_avail_proc > __kmp_xproc) {
4465         KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4466         affinity.type = affinity_none;
4467         KMP_AFFINITY_DISABLE();
4468         return;
4469       }
4470 
4471       if (verbose) {
4472         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4473         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4474                                   __kmp_affin_fullMask);
4475         KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4476       }
4477     } else {
4478       if (verbose) {
4479         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4480         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4481                                   __kmp_affin_fullMask);
4482         KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4483       }
4484       __kmp_avail_proc =
4485           __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4486 #if KMP_OS_WINDOWS
4487       if (__kmp_num_proc_groups <= 1) {
4488         // Copy expanded full mask if topology has single processor group
4489         __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4490       }
4491       // Set the process affinity mask since threads' affinity
4492       // masks must be subset of process mask in Windows* OS
4493       __kmp_affin_fullMask->set_process_affinity(true);
4494 #endif
4495     }
4496   }
4497 }
4498 
__kmp_aux_affinity_initialize_topology(kmp_affinity_t & affinity)4499 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4500   bool success = false;
4501   const char *env_var = affinity.env_var;
4502   kmp_i18n_id_t msg_id = kmp_i18n_null;
4503   int verbose = affinity.flags.verbose;
4504 
4505   // For backward compatibility, setting KMP_CPUINFO_FILE =>
4506   // KMP_TOPOLOGY_METHOD=cpuinfo
4507   if ((__kmp_cpuinfo_file != NULL) &&
4508       (__kmp_affinity_top_method == affinity_top_method_all)) {
4509     __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4510   }
4511 
4512   if (__kmp_affinity_top_method == affinity_top_method_all) {
4513 // In the default code path, errors are not fatal - we just try using
4514 // another method. We only emit a warning message if affinity is on, or the
4515 // verbose flag is set, an the nowarnings flag was not set.
4516 #if KMP_USE_HWLOC
4517     if (!success &&
4518         __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4519       if (!__kmp_hwloc_error) {
4520         success = __kmp_affinity_create_hwloc_map(&msg_id);
4521         if (!success && verbose) {
4522           KMP_INFORM(AffIgnoringHwloc, env_var);
4523         }
4524       } else if (verbose) {
4525         KMP_INFORM(AffIgnoringHwloc, env_var);
4526       }
4527     }
4528 #endif
4529 
4530 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4531     if (!success) {
4532       success = __kmp_affinity_create_x2apicid_map(&msg_id);
4533       if (!success && verbose && msg_id != kmp_i18n_null) {
4534         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4535       }
4536     }
4537     if (!success) {
4538       success = __kmp_affinity_create_apicid_map(&msg_id);
4539       if (!success && verbose && msg_id != kmp_i18n_null) {
4540         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4541       }
4542     }
4543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4544 
4545 #if KMP_OS_LINUX || KMP_OS_AIX
4546     if (!success) {
4547       int line = 0;
4548       success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4549       if (!success && verbose && msg_id != kmp_i18n_null) {
4550         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4551       }
4552     }
4553 #endif /* KMP_OS_LINUX */
4554 
4555 #if KMP_GROUP_AFFINITY
4556     if (!success && (__kmp_num_proc_groups > 1)) {
4557       success = __kmp_affinity_create_proc_group_map(&msg_id);
4558       if (!success && verbose && msg_id != kmp_i18n_null) {
4559         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4560       }
4561     }
4562 #endif /* KMP_GROUP_AFFINITY */
4563 
4564     if (!success) {
4565       success = __kmp_affinity_create_flat_map(&msg_id);
4566       if (!success && verbose && msg_id != kmp_i18n_null) {
4567         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4568       }
4569       KMP_ASSERT(success);
4570     }
4571   }
4572 
4573 // If the user has specified that a paricular topology discovery method is to be
4574 // used, then we abort if that method fails. The exception is group affinity,
4575 // which might have been implicitly set.
4576 #if KMP_USE_HWLOC
4577   else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4578     KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4579     success = __kmp_affinity_create_hwloc_map(&msg_id);
4580     if (!success) {
4581       KMP_ASSERT(msg_id != kmp_i18n_null);
4582       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4583     }
4584   }
4585 #endif // KMP_USE_HWLOC
4586 
4587 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4588   else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4589            __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4590     success = __kmp_affinity_create_x2apicid_map(&msg_id);
4591     if (!success) {
4592       KMP_ASSERT(msg_id != kmp_i18n_null);
4593       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4594     }
4595   } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4596     success = __kmp_affinity_create_apicid_map(&msg_id);
4597     if (!success) {
4598       KMP_ASSERT(msg_id != kmp_i18n_null);
4599       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4600     }
4601   }
4602 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4603 
4604   else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4605     int line = 0;
4606     success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4607     if (!success) {
4608       KMP_ASSERT(msg_id != kmp_i18n_null);
4609       const char *filename = __kmp_cpuinfo_get_filename();
4610       if (line > 0) {
4611         KMP_FATAL(FileLineMsgExiting, filename, line,
4612                   __kmp_i18n_catgets(msg_id));
4613       } else {
4614         KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4615       }
4616     }
4617   }
4618 
4619 #if KMP_GROUP_AFFINITY
4620   else if (__kmp_affinity_top_method == affinity_top_method_group) {
4621     success = __kmp_affinity_create_proc_group_map(&msg_id);
4622     KMP_ASSERT(success);
4623     if (!success) {
4624       KMP_ASSERT(msg_id != kmp_i18n_null);
4625       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4626     }
4627   }
4628 #endif /* KMP_GROUP_AFFINITY */
4629 
4630   else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4631     success = __kmp_affinity_create_flat_map(&msg_id);
4632     // should not fail
4633     KMP_ASSERT(success);
4634   }
4635 
4636   // Early exit if topology could not be created
4637   if (!__kmp_topology) {
4638     if (KMP_AFFINITY_CAPABLE()) {
4639       KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4640     }
4641     if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4642         __kmp_ncores > 0) {
4643       __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4644       __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4645                                    __kmp_nThreadsPerCore, __kmp_ncores);
4646       if (verbose) {
4647         __kmp_topology->print(env_var);
4648       }
4649     }
4650     return false;
4651   }
4652 
4653   // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4654   __kmp_topology->canonicalize();
4655   if (verbose)
4656     __kmp_topology->print(env_var);
4657   bool filtered = __kmp_topology->filter_hw_subset();
4658   if (filtered && verbose)
4659     __kmp_topology->print("KMP_HW_SUBSET");
4660   return success;
4661 }
4662 
__kmp_aux_affinity_initialize(kmp_affinity_t & affinity)4663 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4664   bool is_regular_affinity = (&affinity == &__kmp_affinity);
4665   bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4666   const char *env_var = __kmp_get_affinity_env_var(affinity);
4667 
4668   if (affinity.flags.initialized) {
4669     KMP_ASSERT(__kmp_affin_fullMask != NULL);
4670     return;
4671   }
4672 
4673   if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
4674     __kmp_aux_affinity_initialize_masks(affinity);
4675 
4676   if (is_regular_affinity && !__kmp_topology) {
4677     bool success = __kmp_aux_affinity_initialize_topology(affinity);
4678     if (success) {
4679       KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4680     } else {
4681       affinity.type = affinity_none;
4682       KMP_AFFINITY_DISABLE();
4683     }
4684   }
4685 
4686   // If KMP_AFFINITY=none, then only create the single "none" place
4687   // which is the process's initial affinity mask or the number of
4688   // hardware threads depending on respect,norespect
4689   if (affinity.type == affinity_none) {
4690     __kmp_create_affinity_none_places(affinity);
4691 #if KMP_USE_HIER_SCHED
4692     __kmp_dispatch_set_hierarchy_values();
4693 #endif
4694     affinity.flags.initialized = TRUE;
4695     return;
4696   }
4697 
4698   __kmp_topology->set_granularity(affinity);
4699   int depth = __kmp_topology->get_depth();
4700 
4701   // Create the table of masks, indexed by thread Id.
4702   unsigned numUnique;
4703   int numAddrs = __kmp_topology->get_num_hw_threads();
4704   // If OMP_PLACES=cores:<attribute> specified, then attempt
4705   // to make OS Id mask table using those attributes
4706   if (affinity.core_attr_gran.valid) {
4707     __kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) {
4708       KMP_ASSERT(idx >= -1);
4709       for (int i = idx + 1; i < numAddrs; ++i)
4710         if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran))
4711           return i;
4712       return numAddrs;
4713     });
4714     if (!affinity.os_id_masks) {
4715       const char *core_attribute;
4716       if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF)
4717         core_attribute = "core_efficiency";
4718       else
4719         core_attribute = "core_type";
4720       KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var,
4721                       core_attribute,
4722                       __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true))
4723     }
4724   }
4725   // If core attributes did not work, or none were specified,
4726   // then make OS Id mask table using typical incremental way.
4727   if (!affinity.os_id_masks) {
4728     __kmp_create_os_id_masks(&numUnique, affinity, [](int idx) {
4729       KMP_ASSERT(idx >= -1);
4730       return idx + 1;
4731     });
4732   }
4733   if (affinity.gran_levels == 0) {
4734     KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4735   }
4736 
4737   switch (affinity.type) {
4738 
4739   case affinity_explicit:
4740     KMP_DEBUG_ASSERT(affinity.proclist != NULL);
4741     if (is_hidden_helper_affinity ||
4742         __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4743       __kmp_affinity_process_proclist(affinity);
4744     } else {
4745       __kmp_affinity_process_placelist(affinity);
4746     }
4747     if (affinity.num_masks == 0) {
4748       KMP_AFF_WARNING(affinity, AffNoValidProcID);
4749       affinity.type = affinity_none;
4750       __kmp_create_affinity_none_places(affinity);
4751       affinity.flags.initialized = TRUE;
4752       return;
4753     }
4754     break;
4755 
4756   // The other affinity types rely on sorting the hardware threads according to
4757   // some permutation of the machine topology tree. Set affinity.compact
4758   // and affinity.offset appropriately, then jump to a common code
4759   // fragment to do the sort and create the array of affinity masks.
4760   case affinity_logical:
4761     affinity.compact = 0;
4762     if (affinity.offset) {
4763       affinity.offset =
4764           __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4765     }
4766     goto sortTopology;
4767 
4768   case affinity_physical:
4769     if (__kmp_nThreadsPerCore > 1) {
4770       affinity.compact = 1;
4771       if (affinity.compact >= depth) {
4772         affinity.compact = 0;
4773       }
4774     } else {
4775       affinity.compact = 0;
4776     }
4777     if (affinity.offset) {
4778       affinity.offset =
4779           __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4780     }
4781     goto sortTopology;
4782 
4783   case affinity_scatter:
4784     if (affinity.compact >= depth) {
4785       affinity.compact = 0;
4786     } else {
4787       affinity.compact = depth - 1 - affinity.compact;
4788     }
4789     goto sortTopology;
4790 
4791   case affinity_compact:
4792     if (affinity.compact >= depth) {
4793       affinity.compact = depth - 1;
4794     }
4795     goto sortTopology;
4796 
4797   case affinity_balanced:
4798     if (depth <= 1 || is_hidden_helper_affinity) {
4799       KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4800       affinity.type = affinity_none;
4801       __kmp_create_affinity_none_places(affinity);
4802       affinity.flags.initialized = TRUE;
4803       return;
4804     } else if (!__kmp_topology->is_uniform()) {
4805       // Save the depth for further usage
4806       __kmp_aff_depth = depth;
4807 
4808       int core_level =
4809           __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4810       int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4811                                                  core_level);
4812       int maxprocpercore = __kmp_affinity_max_proc_per_core(
4813           __kmp_avail_proc, depth - 1, core_level);
4814 
4815       int nproc = ncores * maxprocpercore;
4816       if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4817         KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4818         affinity.type = affinity_none;
4819         __kmp_create_affinity_none_places(affinity);
4820         affinity.flags.initialized = TRUE;
4821         return;
4822       }
4823 
4824       procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4825       for (int i = 0; i < nproc; i++) {
4826         procarr[i] = -1;
4827       }
4828 
4829       int lastcore = -1;
4830       int inlastcore = 0;
4831       for (int i = 0; i < __kmp_avail_proc; i++) {
4832         int proc = __kmp_topology->at(i).os_id;
4833         int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4834 
4835         if (core == lastcore) {
4836           inlastcore++;
4837         } else {
4838           inlastcore = 0;
4839         }
4840         lastcore = core;
4841 
4842         procarr[core * maxprocpercore + inlastcore] = proc;
4843       }
4844     }
4845     if (affinity.compact >= depth) {
4846       affinity.compact = depth - 1;
4847     }
4848 
4849   sortTopology:
4850     // Allocate the gtid->affinity mask table.
4851     if (affinity.flags.dups) {
4852       affinity.num_masks = __kmp_avail_proc;
4853     } else {
4854       affinity.num_masks = numUnique;
4855     }
4856 
4857     if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4858         (__kmp_affinity_num_places > 0) &&
4859         ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
4860         !is_hidden_helper_affinity) {
4861       affinity.num_masks = __kmp_affinity_num_places;
4862     }
4863 
4864     KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4865 
4866     // Sort the topology table according to the current setting of
4867     // affinity.compact, then fill out affinity.masks.
4868     __kmp_topology->sort_compact(affinity);
4869     {
4870       int i;
4871       unsigned j;
4872       int num_hw_threads = __kmp_topology->get_num_hw_threads();
4873       kmp_full_mask_modifier_t full_mask;
4874       for (i = 0, j = 0; i < num_hw_threads; i++) {
4875         if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
4876           continue;
4877         }
4878         int osId = __kmp_topology->at(i).os_id;
4879 
4880         kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4881         kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
4882         KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4883         KMP_CPU_COPY(dest, src);
4884         full_mask.include(src);
4885         if (++j >= affinity.num_masks) {
4886           break;
4887         }
4888       }
4889       KMP_DEBUG_ASSERT(j == affinity.num_masks);
4890       // See if the places list further restricts or changes the full mask
4891       if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
4892         __kmp_topology->print(env_var);
4893       }
4894     }
4895     // Sort the topology back using ids
4896     __kmp_topology->sort_ids();
4897     break;
4898 
4899   default:
4900     KMP_ASSERT2(0, "Unexpected affinity setting");
4901   }
4902   __kmp_aux_affinity_initialize_other_data(affinity);
4903   affinity.flags.initialized = TRUE;
4904 }
4905 
__kmp_affinity_initialize(kmp_affinity_t & affinity)4906 void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
4907   // Much of the code above was written assuming that if a machine was not
4908   // affinity capable, then affinity type == affinity_none.
4909   // We now explicitly represent this as affinity type == affinity_disabled.
4910   // There are too many checks for affinity type == affinity_none in this code.
4911   // Instead of trying to change them all, check if
4912   // affinity type == affinity_disabled, and if so, slam it with affinity_none,
4913   // call the real initialization routine, then restore affinity type to
4914   // affinity_disabled.
4915   int disabled = (affinity.type == affinity_disabled);
4916   if (!KMP_AFFINITY_CAPABLE())
4917     KMP_ASSERT(disabled);
4918   if (disabled)
4919     affinity.type = affinity_none;
4920   __kmp_aux_affinity_initialize(affinity);
4921   if (disabled)
4922     affinity.type = affinity_disabled;
4923 }
4924 
__kmp_affinity_uninitialize(void)4925 void __kmp_affinity_uninitialize(void) {
4926   for (kmp_affinity_t *affinity : __kmp_affinities) {
4927     if (affinity->masks != NULL)
4928       KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
4929     if (affinity->os_id_masks != NULL)
4930       KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
4931     if (affinity->proclist != NULL)
4932       __kmp_free(affinity->proclist);
4933     if (affinity->ids != NULL)
4934       __kmp_free(affinity->ids);
4935     if (affinity->attrs != NULL)
4936       __kmp_free(affinity->attrs);
4937     *affinity = KMP_AFFINITY_INIT(affinity->env_var);
4938   }
4939   if (__kmp_affin_origMask != NULL) {
4940     if (KMP_AFFINITY_CAPABLE()) {
4941 #if KMP_OS_AIX
4942       // Uninitialize by unbinding the thread.
4943       bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
4944 #else
4945       __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
4946 #endif
4947     }
4948     KMP_CPU_FREE(__kmp_affin_origMask);
4949     __kmp_affin_origMask = NULL;
4950   }
4951   __kmp_affinity_num_places = 0;
4952   if (procarr != NULL) {
4953     __kmp_free(procarr);
4954     procarr = NULL;
4955   }
4956   if (__kmp_osid_to_hwthread_map) {
4957     __kmp_free(__kmp_osid_to_hwthread_map);
4958     __kmp_osid_to_hwthread_map = NULL;
4959   }
4960 #if KMP_USE_HWLOC
4961   if (__kmp_hwloc_topology != NULL) {
4962     hwloc_topology_destroy(__kmp_hwloc_topology);
4963     __kmp_hwloc_topology = NULL;
4964   }
4965 #endif
4966   if (__kmp_hw_subset) {
4967     kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4968     __kmp_hw_subset = nullptr;
4969   }
4970   if (__kmp_topology) {
4971     kmp_topology_t::deallocate(__kmp_topology);
4972     __kmp_topology = nullptr;
4973   }
4974   KMPAffinity::destroy_api();
4975 }
4976 
__kmp_select_mask_by_gtid(int gtid,const kmp_affinity_t * affinity,int * place,kmp_affin_mask_t ** mask)4977 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
4978                                       int *place, kmp_affin_mask_t **mask) {
4979   int mask_idx;
4980   bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4981   if (is_hidden_helper)
4982     // The first gtid is the regular primary thread, the second gtid is the main
4983     // thread of hidden team which does not participate in task execution.
4984     mask_idx = gtid - 2;
4985   else
4986     mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4987   KMP_DEBUG_ASSERT(affinity->num_masks > 0);
4988   *place = (mask_idx + affinity->offset) % affinity->num_masks;
4989   *mask = KMP_CPU_INDEX(affinity->masks, *place);
4990 }
4991 
4992 // This function initializes the per-thread data concerning affinity including
4993 // the mask and topology information
__kmp_affinity_set_init_mask(int gtid,int isa_root)4994 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4995 
4996   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4997 
4998   // Set the thread topology information to default of unknown
4999   for (int id = 0; id < KMP_HW_LAST; ++id)
5000     th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
5001   th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
5002 
5003   if (!KMP_AFFINITY_CAPABLE()) {
5004     return;
5005   }
5006 
5007   if (th->th.th_affin_mask == NULL) {
5008     KMP_CPU_ALLOC(th->th.th_affin_mask);
5009   } else {
5010     KMP_CPU_ZERO(th->th.th_affin_mask);
5011   }
5012 
5013   // Copy the thread mask to the kmp_info_t structure. If
5014   // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
5015   // one that has all of the OS proc ids set, or if
5016   // __kmp_affinity.flags.respect is set, then the full mask is the
5017   // same as the mask of the initialization thread.
5018   kmp_affin_mask_t *mask;
5019   int i;
5020   const kmp_affinity_t *affinity;
5021   bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5022 
5023   if (is_hidden_helper)
5024     affinity = &__kmp_hh_affinity;
5025   else
5026     affinity = &__kmp_affinity;
5027 
5028   if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
5029     if ((affinity->type == affinity_none) ||
5030         (affinity->type == affinity_balanced) ||
5031         KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5032 #if KMP_GROUP_AFFINITY
5033       if (__kmp_num_proc_groups > 1) {
5034         return;
5035       }
5036 #endif
5037       KMP_ASSERT(__kmp_affin_fullMask != NULL);
5038       i = 0;
5039       mask = __kmp_affin_fullMask;
5040     } else {
5041       __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5042     }
5043   } else {
5044     if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
5045 #if KMP_GROUP_AFFINITY
5046       if (__kmp_num_proc_groups > 1) {
5047         return;
5048       }
5049 #endif
5050       KMP_ASSERT(__kmp_affin_fullMask != NULL);
5051       i = KMP_PLACE_ALL;
5052       mask = __kmp_affin_fullMask;
5053     } else {
5054       __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5055     }
5056   }
5057 
5058   th->th.th_current_place = i;
5059   if (isa_root && !is_hidden_helper) {
5060     th->th.th_new_place = i;
5061     th->th.th_first_place = 0;
5062     th->th.th_last_place = affinity->num_masks - 1;
5063   } else if (KMP_AFFINITY_NON_PROC_BIND) {
5064     // When using a Non-OMP_PROC_BIND affinity method,
5065     // set all threads' place-partition-var to the entire place list
5066     th->th.th_first_place = 0;
5067     th->th.th_last_place = affinity->num_masks - 1;
5068   }
5069   // Copy topology information associated with the place
5070   if (i >= 0) {
5071     th->th.th_topology_ids = __kmp_affinity.ids[i];
5072     th->th.th_topology_attrs = __kmp_affinity.attrs[i];
5073   }
5074 
5075   if (i == KMP_PLACE_ALL) {
5076     KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n",
5077                    gtid));
5078   } else {
5079     KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n",
5080                    gtid, i));
5081   }
5082 
5083   KMP_CPU_COPY(th->th.th_affin_mask, mask);
5084 }
5085 
__kmp_affinity_bind_init_mask(int gtid)5086 void __kmp_affinity_bind_init_mask(int gtid) {
5087   if (!KMP_AFFINITY_CAPABLE()) {
5088     return;
5089   }
5090   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5091   const kmp_affinity_t *affinity;
5092   const char *env_var;
5093   bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5094 
5095   if (is_hidden_helper)
5096     affinity = &__kmp_hh_affinity;
5097   else
5098     affinity = &__kmp_affinity;
5099   env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true);
5100   /* to avoid duplicate printing (will be correctly printed on barrier) */
5101   if (affinity->flags.verbose && (affinity->type == affinity_none ||
5102                                   (th->th.th_current_place != KMP_PLACE_ALL &&
5103                                    affinity->type != affinity_balanced)) &&
5104       !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5105     char buf[KMP_AFFIN_MASK_PRINT_LEN];
5106     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5107                               th->th.th_affin_mask);
5108     KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5109                gtid, buf);
5110   }
5111 
5112 #if KMP_OS_WINDOWS
5113   // On Windows* OS, the process affinity mask might have changed. If the user
5114   // didn't request affinity and this call fails, just continue silently.
5115   // See CQ171393.
5116   if (affinity->type == affinity_none) {
5117     __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
5118   } else
5119 #endif
5120 #ifndef KMP_OS_AIX
5121     // Do not set the full mask as the init mask on AIX.
5122     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5123 #endif
5124 }
5125 
__kmp_affinity_bind_place(int gtid)5126 void __kmp_affinity_bind_place(int gtid) {
5127   // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
5128   if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
5129     return;
5130   }
5131 
5132   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5133 
5134   KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current "
5135                  "place = %d)\n",
5136                  gtid, th->th.th_new_place, th->th.th_current_place));
5137 
5138   // Check that the new place is within this thread's partition.
5139   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5140   KMP_ASSERT(th->th.th_new_place >= 0);
5141   KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
5142   if (th->th.th_first_place <= th->th.th_last_place) {
5143     KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
5144                (th->th.th_new_place <= th->th.th_last_place));
5145   } else {
5146     KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
5147                (th->th.th_new_place >= th->th.th_last_place));
5148   }
5149 
5150   // Copy the thread mask to the kmp_info_t structure,
5151   // and set this thread's affinity.
5152   kmp_affin_mask_t *mask =
5153       KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
5154   KMP_CPU_COPY(th->th.th_affin_mask, mask);
5155   th->th.th_current_place = th->th.th_new_place;
5156 
5157   if (__kmp_affinity.flags.verbose) {
5158     char buf[KMP_AFFIN_MASK_PRINT_LEN];
5159     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5160                               th->th.th_affin_mask);
5161     KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
5162                __kmp_gettid(), gtid, buf);
5163   }
5164   __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5165 }
5166 
__kmp_aux_set_affinity(void ** mask)5167 int __kmp_aux_set_affinity(void **mask) {
5168   int gtid;
5169   kmp_info_t *th;
5170   int retval;
5171 
5172   if (!KMP_AFFINITY_CAPABLE()) {
5173     return -1;
5174   }
5175 
5176   gtid = __kmp_entry_gtid();
5177   KA_TRACE(
5178       1000, (""); {
5179         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5180         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5181                                   (kmp_affin_mask_t *)(*mask));
5182         __kmp_debug_printf(
5183             "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
5184             gtid, buf);
5185       });
5186 
5187   if (__kmp_env_consistency_check) {
5188     if ((mask == NULL) || (*mask == NULL)) {
5189       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5190     } else {
5191       unsigned proc;
5192       int num_procs = 0;
5193 
5194       KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
5195         if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5196           KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5197         }
5198         if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
5199           continue;
5200         }
5201         num_procs++;
5202       }
5203       if (num_procs == 0) {
5204         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5205       }
5206 
5207 #if KMP_GROUP_AFFINITY
5208       if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
5209         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5210       }
5211 #endif /* KMP_GROUP_AFFINITY */
5212     }
5213   }
5214 
5215   th = __kmp_threads[gtid];
5216   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5217   retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5218   if (retval == 0) {
5219     KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
5220   }
5221 
5222   th->th.th_current_place = KMP_PLACE_UNDEFINED;
5223   th->th.th_new_place = KMP_PLACE_UNDEFINED;
5224   th->th.th_first_place = 0;
5225   th->th.th_last_place = __kmp_affinity.num_masks - 1;
5226 
5227   // Turn off 4.0 affinity for the current tread at this parallel level.
5228   th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
5229 
5230   return retval;
5231 }
5232 
__kmp_aux_get_affinity(void ** mask)5233 int __kmp_aux_get_affinity(void **mask) {
5234   int gtid;
5235   int retval;
5236 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5237   kmp_info_t *th;
5238 #endif
5239   if (!KMP_AFFINITY_CAPABLE()) {
5240     return -1;
5241   }
5242 
5243   gtid = __kmp_entry_gtid();
5244 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5245   th = __kmp_threads[gtid];
5246 #else
5247   (void)gtid; // unused variable
5248 #endif
5249   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5250 
5251   KA_TRACE(
5252       1000, (""); {
5253         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5254         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5255                                   th->th.th_affin_mask);
5256         __kmp_printf(
5257             "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
5258             buf);
5259       });
5260 
5261   if (__kmp_env_consistency_check) {
5262     if ((mask == NULL) || (*mask == NULL)) {
5263       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
5264     }
5265   }
5266 
5267 #if !KMP_OS_WINDOWS && !KMP_OS_AIX
5268 
5269   retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5270   KA_TRACE(
5271       1000, (""); {
5272         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5273         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5274                                   (kmp_affin_mask_t *)(*mask));
5275         __kmp_printf(
5276             "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
5277             buf);
5278       });
5279   return retval;
5280 
5281 #else
5282   (void)retval;
5283 
5284   KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
5285   return 0;
5286 
5287 #endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */
5288 }
5289 
__kmp_aux_get_affinity_max_proc()5290 int __kmp_aux_get_affinity_max_proc() {
5291   if (!KMP_AFFINITY_CAPABLE()) {
5292     return 0;
5293   }
5294 #if KMP_GROUP_AFFINITY
5295   if (__kmp_num_proc_groups > 1) {
5296     return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
5297   }
5298 #endif
5299   return __kmp_xproc;
5300 }
5301 
__kmp_aux_set_affinity_mask_proc(int proc,void ** mask)5302 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5303   if (!KMP_AFFINITY_CAPABLE()) {
5304     return -1;
5305   }
5306 
5307   KA_TRACE(
5308       1000, (""); {
5309         int gtid = __kmp_entry_gtid();
5310         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5311         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5312                                   (kmp_affin_mask_t *)(*mask));
5313         __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5314                            "affinity mask for thread %d = %s\n",
5315                            proc, gtid, buf);
5316       });
5317 
5318   if (__kmp_env_consistency_check) {
5319     if ((mask == NULL) || (*mask == NULL)) {
5320       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5321     }
5322   }
5323 
5324   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5325     return -1;
5326   }
5327   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5328     return -2;
5329   }
5330 
5331   KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5332   return 0;
5333 }
5334 
__kmp_aux_unset_affinity_mask_proc(int proc,void ** mask)5335 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5336   if (!KMP_AFFINITY_CAPABLE()) {
5337     return -1;
5338   }
5339 
5340   KA_TRACE(
5341       1000, (""); {
5342         int gtid = __kmp_entry_gtid();
5343         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5344         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5345                                   (kmp_affin_mask_t *)(*mask));
5346         __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5347                            "affinity mask for thread %d = %s\n",
5348                            proc, gtid, buf);
5349       });
5350 
5351   if (__kmp_env_consistency_check) {
5352     if ((mask == NULL) || (*mask == NULL)) {
5353       KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5354     }
5355   }
5356 
5357   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5358     return -1;
5359   }
5360   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5361     return -2;
5362   }
5363 
5364   KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5365   return 0;
5366 }
5367 
__kmp_aux_get_affinity_mask_proc(int proc,void ** mask)5368 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5369   if (!KMP_AFFINITY_CAPABLE()) {
5370     return -1;
5371   }
5372 
5373   KA_TRACE(
5374       1000, (""); {
5375         int gtid = __kmp_entry_gtid();
5376         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5377         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5378                                   (kmp_affin_mask_t *)(*mask));
5379         __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5380                            "affinity mask for thread %d = %s\n",
5381                            proc, gtid, buf);
5382       });
5383 
5384   if (__kmp_env_consistency_check) {
5385     if ((mask == NULL) || (*mask == NULL)) {
5386       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5387     }
5388   }
5389 
5390   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5391     return -1;
5392   }
5393   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5394     return 0;
5395   }
5396 
5397   return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5398 }
5399 
5400 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
5401 // Returns first os proc id with ATOM core
__kmp_get_first_osid_with_ecore(void)5402 int __kmp_get_first_osid_with_ecore(void) {
5403   int low = 0;
5404   int high = __kmp_topology->get_num_hw_threads() - 1;
5405   int mid = 0;
5406   while (high - low > 1) {
5407     mid = (high + low) / 2;
5408     if (__kmp_topology->at(mid).attrs.get_core_type() ==
5409         KMP_HW_CORE_TYPE_CORE) {
5410       low = mid + 1;
5411     } else {
5412       high = mid;
5413     }
5414   }
5415   if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) {
5416     return mid;
5417   }
5418   return -1;
5419 }
5420 #endif
5421 
5422 // Dynamic affinity settings - Affinity balanced
__kmp_balanced_affinity(kmp_info_t * th,int nthreads)5423 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5424   KMP_DEBUG_ASSERT(th);
5425   bool fine_gran = true;
5426   int tid = th->th.th_info.ds.ds_tid;
5427   const char *env_var = "KMP_AFFINITY";
5428 
5429   // Do not perform balanced affinity for the hidden helper threads
5430   if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5431     return;
5432 
5433   switch (__kmp_affinity.gran) {
5434   case KMP_HW_THREAD:
5435     break;
5436   case KMP_HW_CORE:
5437     if (__kmp_nThreadsPerCore > 1) {
5438       fine_gran = false;
5439     }
5440     break;
5441   case KMP_HW_SOCKET:
5442     if (nCoresPerPkg > 1) {
5443       fine_gran = false;
5444     }
5445     break;
5446   default:
5447     fine_gran = false;
5448   }
5449 
5450   if (__kmp_topology->is_uniform()) {
5451     int coreID;
5452     int threadID;
5453     // Number of hyper threads per core in HT machine
5454     int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5455     // Number of cores
5456     int ncores = __kmp_ncores;
5457     if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5458       __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5459       ncores = nPackages;
5460     }
5461     // How many threads will be bound to each core
5462     int chunk = nthreads / ncores;
5463     // How many cores will have an additional thread bound to it - "big cores"
5464     int big_cores = nthreads % ncores;
5465     // Number of threads on the big cores
5466     int big_nth = (chunk + 1) * big_cores;
5467     if (tid < big_nth) {
5468       coreID = tid / (chunk + 1);
5469       threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5470     } else { // tid >= big_nth
5471       coreID = (tid - big_cores) / chunk;
5472       threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5473     }
5474     KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5475                       "Illegal set affinity operation when not capable");
5476 
5477     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5478     KMP_CPU_ZERO(mask);
5479 
5480     if (fine_gran) {
5481       int osID =
5482           __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5483       KMP_CPU_SET(osID, mask);
5484     } else {
5485       for (int i = 0; i < __kmp_nth_per_core; i++) {
5486         int osID;
5487         osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5488         KMP_CPU_SET(osID, mask);
5489       }
5490     }
5491     if (__kmp_affinity.flags.verbose) {
5492       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5493       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5494       KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5495                  tid, buf);
5496     }
5497     __kmp_affinity_get_thread_topology_info(th);
5498     __kmp_set_system_affinity(mask, TRUE);
5499   } else { // Non-uniform topology
5500 
5501     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5502     KMP_CPU_ZERO(mask);
5503 
5504     int core_level =
5505         __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5506     int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5507                                                __kmp_aff_depth - 1, core_level);
5508     int nth_per_core = __kmp_affinity_max_proc_per_core(
5509         __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5510 
5511     // For performance gain consider the special case nthreads ==
5512     // __kmp_avail_proc
5513     if (nthreads == __kmp_avail_proc) {
5514       if (fine_gran) {
5515         int osID = __kmp_topology->at(tid).os_id;
5516         KMP_CPU_SET(osID, mask);
5517       } else {
5518         int core =
5519             __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5520         for (int i = 0; i < __kmp_avail_proc; i++) {
5521           int osID = __kmp_topology->at(i).os_id;
5522           if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5523               core) {
5524             KMP_CPU_SET(osID, mask);
5525           }
5526         }
5527       }
5528     } else if (nthreads <= ncores) {
5529 
5530       int core = 0;
5531       for (int i = 0; i < ncores; i++) {
5532         // Check if this core from procarr[] is in the mask
5533         int in_mask = 0;
5534         for (int j = 0; j < nth_per_core; j++) {
5535           if (procarr[i * nth_per_core + j] != -1) {
5536             in_mask = 1;
5537             break;
5538           }
5539         }
5540         if (in_mask) {
5541           if (tid == core) {
5542             for (int j = 0; j < nth_per_core; j++) {
5543               int osID = procarr[i * nth_per_core + j];
5544               if (osID != -1) {
5545                 KMP_CPU_SET(osID, mask);
5546                 // For fine granularity it is enough to set the first available
5547                 // osID for this core
5548                 if (fine_gran) {
5549                   break;
5550                 }
5551               }
5552             }
5553             break;
5554           } else {
5555             core++;
5556           }
5557         }
5558       }
5559     } else { // nthreads > ncores
5560       // Array to save the number of processors at each core
5561       int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5562       // Array to save the number of cores with "x" available processors;
5563       int *ncores_with_x_procs =
5564           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5565       // Array to save the number of cores with # procs from x to nth_per_core
5566       int *ncores_with_x_to_max_procs =
5567           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5568 
5569       for (int i = 0; i <= nth_per_core; i++) {
5570         ncores_with_x_procs[i] = 0;
5571         ncores_with_x_to_max_procs[i] = 0;
5572       }
5573 
5574       for (int i = 0; i < ncores; i++) {
5575         int cnt = 0;
5576         for (int j = 0; j < nth_per_core; j++) {
5577           if (procarr[i * nth_per_core + j] != -1) {
5578             cnt++;
5579           }
5580         }
5581         nproc_at_core[i] = cnt;
5582         ncores_with_x_procs[cnt]++;
5583       }
5584 
5585       for (int i = 0; i <= nth_per_core; i++) {
5586         for (int j = i; j <= nth_per_core; j++) {
5587           ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5588         }
5589       }
5590 
5591       // Max number of processors
5592       int nproc = nth_per_core * ncores;
5593       // An array to keep number of threads per each context
5594       int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5595       for (int i = 0; i < nproc; i++) {
5596         newarr[i] = 0;
5597       }
5598 
5599       int nth = nthreads;
5600       int flag = 0;
5601       while (nth > 0) {
5602         for (int j = 1; j <= nth_per_core; j++) {
5603           int cnt = ncores_with_x_to_max_procs[j];
5604           for (int i = 0; i < ncores; i++) {
5605             // Skip the core with 0 processors
5606             if (nproc_at_core[i] == 0) {
5607               continue;
5608             }
5609             for (int k = 0; k < nth_per_core; k++) {
5610               if (procarr[i * nth_per_core + k] != -1) {
5611                 if (newarr[i * nth_per_core + k] == 0) {
5612                   newarr[i * nth_per_core + k] = 1;
5613                   cnt--;
5614                   nth--;
5615                   break;
5616                 } else {
5617                   if (flag != 0) {
5618                     newarr[i * nth_per_core + k]++;
5619                     cnt--;
5620                     nth--;
5621                     break;
5622                   }
5623                 }
5624               }
5625             }
5626             if (cnt == 0 || nth == 0) {
5627               break;
5628             }
5629           }
5630           if (nth == 0) {
5631             break;
5632           }
5633         }
5634         flag = 1;
5635       }
5636       int sum = 0;
5637       for (int i = 0; i < nproc; i++) {
5638         sum += newarr[i];
5639         if (sum > tid) {
5640           if (fine_gran) {
5641             int osID = procarr[i];
5642             KMP_CPU_SET(osID, mask);
5643           } else {
5644             int coreID = i / nth_per_core;
5645             for (int ii = 0; ii < nth_per_core; ii++) {
5646               int osID = procarr[coreID * nth_per_core + ii];
5647               if (osID != -1) {
5648                 KMP_CPU_SET(osID, mask);
5649               }
5650             }
5651           }
5652           break;
5653         }
5654       }
5655       __kmp_free(newarr);
5656     }
5657 
5658     if (__kmp_affinity.flags.verbose) {
5659       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5660       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5661       KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5662                  tid, buf);
5663     }
5664     __kmp_affinity_get_thread_topology_info(th);
5665     __kmp_set_system_affinity(mask, TRUE);
5666   }
5667 }
5668 
5669 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_AIX
5670 // We don't need this entry for Windows because
5671 // there is GetProcessAffinityMask() api
5672 //
5673 // The intended usage is indicated by these steps:
5674 // 1) The user gets the current affinity mask
5675 // 2) Then sets the affinity by calling this function
5676 // 3) Error check the return value
5677 // 4) Use non-OpenMP parallelization
5678 // 5) Reset the affinity to what was stored in step 1)
5679 #ifdef __cplusplus
5680 extern "C"
5681 #endif
5682     int
kmp_set_thread_affinity_mask_initial()5683     kmp_set_thread_affinity_mask_initial()
5684 // the function returns 0 on success,
5685 //   -1 if we cannot bind thread
5686 //   >0 (errno) if an error happened during binding
5687 {
5688   int gtid = __kmp_get_gtid();
5689   if (gtid < 0) {
5690     // Do not touch non-omp threads
5691     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5692                   "non-omp thread, returning\n"));
5693     return -1;
5694   }
5695   if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5696     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5697                   "affinity not initialized, returning\n"));
5698     return -1;
5699   }
5700   KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5701                 "set full mask for thread %d\n",
5702                 gtid));
5703   KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5704 #if KMP_OS_AIX
5705   return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
5706 #else
5707   return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5708 #endif
5709 }
5710 #endif
5711 
5712 #endif // KMP_AFFINITY_SUPPORTED
5713