1 /* Basic block path solver.
2    Copyright (C) 2021-2022 Free Software Foundation, Inc.
3    Contributed by Aldy Hernandez <aldyh@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfganal.h"
28 #include "value-range.h"
29 #include "gimple-range.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-range-path.h"
32 #include "ssa.h"
33 #include "tree-cfg.h"
34 #include "gimple-iterator.h"
35 
36 // Internal construct to help facilitate debugging of solver.
37 #define DEBUG_SOLVER (dump_file && (param_threader_debug == THREADER_DEBUG_ALL))
38 
path_range_query(bool resolve,gimple_ranger * ranger)39 path_range_query::path_range_query (bool resolve, gimple_ranger *ranger)
40   : m_cache (new ssa_global_cache),
41     m_has_cache_entry (BITMAP_ALLOC (NULL)),
42     m_resolve (resolve),
43     m_alloced_ranger (!ranger)
44 {
45   if (m_alloced_ranger)
46     m_ranger = new gimple_ranger;
47   else
48     m_ranger = ranger;
49 
50   m_oracle = new path_oracle (m_ranger->oracle ());
51 
52   if (m_resolve && flag_checking)
53     verify_marked_backedges (cfun);
54 }
55 
~path_range_query()56 path_range_query::~path_range_query ()
57 {
58   delete m_oracle;
59   if (m_alloced_ranger)
60     delete m_ranger;
61   BITMAP_FREE (m_has_cache_entry);
62   delete m_cache;
63 }
64 
65 // Return TRUE if NAME is in the import bitmap.
66 
67 bool
import_p(tree name)68 path_range_query::import_p (tree name)
69 {
70   return (TREE_CODE (name) == SSA_NAME
71 	  && bitmap_bit_p (m_imports, SSA_NAME_VERSION (name)));
72 }
73 
74 // Mark cache entry for NAME as unused.
75 
76 void
clear_cache(tree name)77 path_range_query::clear_cache (tree name)
78 {
79   unsigned v = SSA_NAME_VERSION (name);
80   bitmap_clear_bit (m_has_cache_entry, v);
81 }
82 
83 // If NAME has a cache entry, return it in R, and return TRUE.
84 
85 inline bool
get_cache(irange & r,tree name)86 path_range_query::get_cache (irange &r, tree name)
87 {
88   if (!gimple_range_ssa_p (name))
89     return get_global_range_query ()->range_of_expr (r, name);
90 
91   unsigned v = SSA_NAME_VERSION (name);
92   if (bitmap_bit_p (m_has_cache_entry, v))
93     return m_cache->get_global_range (r, name);
94 
95   return false;
96 }
97 
98 // Set the cache entry for NAME to R.
99 
100 void
set_cache(const irange & r,tree name)101 path_range_query::set_cache (const irange &r, tree name)
102 {
103   unsigned v = SSA_NAME_VERSION (name);
104   bitmap_set_bit (m_has_cache_entry, v);
105   m_cache->set_global_range (name, r);
106 }
107 
108 void
dump(FILE * dump_file)109 path_range_query::dump (FILE *dump_file)
110 {
111   push_dump_file save (dump_file, dump_flags & ~TDF_DETAILS);
112 
113   if (m_path.is_empty ())
114     return;
115 
116   unsigned i;
117   bitmap_iterator bi;
118 
119   dump_ranger (dump_file, m_path);
120 
121   fprintf (dump_file, "Imports:\n");
122   EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
123     {
124       tree name = ssa_name (i);
125       print_generic_expr (dump_file, name, TDF_SLIM);
126       fprintf (dump_file, "\n");
127     }
128 
129   m_cache->dump (dump_file);
130 }
131 
132 void
debug()133 path_range_query::debug ()
134 {
135   dump (stderr);
136 }
137 
138 // Return TRUE if NAME is defined outside the current path.
139 
140 bool
defined_outside_path(tree name)141 path_range_query::defined_outside_path (tree name)
142 {
143   gimple *def = SSA_NAME_DEF_STMT (name);
144   basic_block bb = gimple_bb (def);
145 
146   return !bb || !m_path.contains (bb);
147 }
148 
149 // Return the range of NAME on entry to the path.
150 
151 void
range_on_path_entry(irange & r,tree name)152 path_range_query::range_on_path_entry (irange &r, tree name)
153 {
154   gcc_checking_assert (defined_outside_path (name));
155   basic_block entry = entry_bb ();
156 
157   // Prefer to use range_of_expr if we have a statement to look at,
158   // since it has better caching than range_on_edge.
159   gimple *last = last_stmt (entry);
160   if (last)
161     {
162       if (m_ranger->range_of_expr (r, name, last))
163 	return;
164       gcc_unreachable ();
165     }
166 
167   // If we have no statement, look at all the incoming ranges to the
168   // block.  This can happen when we're querying a block with only an
169   // outgoing edge (no statement but the fall through edge), but for
170   // which we can determine a range on entry to the block.
171   int_range_max tmp;
172   bool changed = false;
173   r.set_undefined ();
174   for (unsigned i = 0; i < EDGE_COUNT (entry->preds); ++i)
175     {
176       edge e = EDGE_PRED (entry, i);
177       if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
178 	  && m_ranger->range_on_edge (tmp, e, name))
179 	{
180 	  r.union_ (tmp);
181 	  changed = true;
182 	}
183     }
184 
185   // Make sure we don't return UNDEFINED by mistake.
186   if (!changed)
187     r.set_varying (TREE_TYPE (name));
188 }
189 
190 // Return the range of NAME at the end of the path being analyzed.
191 
192 bool
internal_range_of_expr(irange & r,tree name,gimple * stmt)193 path_range_query::internal_range_of_expr (irange &r, tree name, gimple *stmt)
194 {
195   if (!irange::supports_type_p (TREE_TYPE (name)))
196     return false;
197 
198   if (get_cache (r, name))
199     return true;
200 
201   if (m_resolve && defined_outside_path (name))
202     {
203       range_on_path_entry (r, name);
204       set_cache (r, name);
205       return true;
206     }
207 
208   if (stmt
209       && range_defined_in_block (r, name, gimple_bb (stmt)))
210     {
211       if (TREE_CODE (name) == SSA_NAME)
212 	r.intersect (gimple_range_global (name));
213 
214       set_cache (r, name);
215       return true;
216     }
217 
218   r = gimple_range_global (name);
219   return true;
220 }
221 
222 bool
range_of_expr(irange & r,tree name,gimple * stmt)223 path_range_query::range_of_expr (irange &r, tree name, gimple *stmt)
224 {
225   if (internal_range_of_expr (r, name, stmt))
226     {
227       if (r.undefined_p ())
228 	m_undefined_path = true;
229 
230       return true;
231     }
232   return false;
233 }
234 
235 bool
unreachable_path_p()236 path_range_query::unreachable_path_p ()
237 {
238   return m_undefined_path;
239 }
240 
241 // Initialize the current path to PATH.  The current block is set to
242 // the entry block to the path.
243 //
244 // Note that the blocks are in reverse order, so the exit block is
245 // path[0].
246 
247 void
set_path(const vec<basic_block> & path)248 path_range_query::set_path (const vec<basic_block> &path)
249 {
250   gcc_checking_assert (path.length () > 1);
251   m_path = path.copy ();
252   m_pos = m_path.length () - 1;
253   bitmap_clear (m_has_cache_entry);
254 }
255 
256 bool
ssa_defined_in_bb(tree name,basic_block bb)257 path_range_query::ssa_defined_in_bb (tree name, basic_block bb)
258 {
259   return (TREE_CODE (name) == SSA_NAME
260 	  && SSA_NAME_DEF_STMT (name)
261 	  && gimple_bb (SSA_NAME_DEF_STMT (name)) == bb);
262 }
263 
264 // Return the range of the result of PHI in R.
265 //
266 // Since PHIs are calculated in parallel at the beginning of the
267 // block, we must be careful to never save anything to the cache here.
268 // It is the caller's responsibility to adjust the cache.  Also,
269 // calculating the PHI's range must not trigger additional lookups.
270 
271 void
ssa_range_in_phi(irange & r,gphi * phi)272 path_range_query::ssa_range_in_phi (irange &r, gphi *phi)
273 {
274   tree name = gimple_phi_result (phi);
275   basic_block bb = gimple_bb (phi);
276   unsigned nargs = gimple_phi_num_args (phi);
277 
278   if (at_entry ())
279     {
280       if (m_resolve && m_ranger->range_of_expr (r, name, phi))
281 	return;
282 
283       // Try to fold the phi exclusively with global or cached values.
284       // This will get things like PHI <5(99), 6(88)>.  We do this by
285       // calling range_of_expr with no context.
286       int_range_max arg_range;
287       r.set_undefined ();
288       for (size_t i = 0; i < nargs; ++i)
289 	{
290 	  tree arg = gimple_phi_arg_def (phi, i);
291 	  if (range_of_expr (arg_range, arg, /*stmt=*/NULL))
292 	    r.union_ (arg_range);
293 	  else
294 	    {
295 	      r.set_varying (TREE_TYPE (name));
296 	      return;
297 	    }
298 	}
299       return;
300     }
301 
302   basic_block prev = prev_bb ();
303   edge e_in = find_edge (prev, bb);
304 
305   for (size_t i = 0; i < nargs; ++i)
306     if (e_in == gimple_phi_arg_edge (phi, i))
307       {
308 	tree arg = gimple_phi_arg_def (phi, i);
309 	// Avoid using the cache for ARGs defined in this block, as
310 	// that could create an ordering problem.
311 	if (ssa_defined_in_bb (arg, bb) || !get_cache (r, arg))
312 	  {
313 	    if (m_resolve)
314 	      {
315 		int_range_max tmp;
316 		// Using both the range on entry to the path, and the
317 		// range on this edge yields significantly better
318 		// results.
319 		if (defined_outside_path (arg))
320 		  range_on_path_entry (r, arg);
321 		else
322 		  r.set_varying (TREE_TYPE (name));
323 		m_ranger->range_on_edge (tmp, e_in, arg);
324 		r.intersect (tmp);
325 		return;
326 	      }
327 	    r.set_varying (TREE_TYPE (name));
328 	  }
329 	return;
330       }
331   gcc_unreachable ();
332 }
333 
334 // If NAME is defined in BB, set R to the range of NAME, and return
335 // TRUE.  Otherwise, return FALSE.
336 
337 bool
range_defined_in_block(irange & r,tree name,basic_block bb)338 path_range_query::range_defined_in_block (irange &r, tree name, basic_block bb)
339 {
340   gimple *def_stmt = SSA_NAME_DEF_STMT (name);
341   basic_block def_bb = gimple_bb (def_stmt);
342 
343   if (def_bb != bb)
344     return false;
345 
346   if (get_cache (r, name))
347     return true;
348 
349   if (gimple_code (def_stmt) == GIMPLE_PHI)
350     ssa_range_in_phi (r, as_a<gphi *> (def_stmt));
351   else
352     {
353       if (name)
354 	get_path_oracle ()->killing_def (name);
355 
356       if (!range_of_stmt (r, def_stmt, name))
357 	r.set_varying (TREE_TYPE (name));
358     }
359 
360   if (bb)
361     m_non_null.adjust_range (r, name, bb, false);
362 
363   if (DEBUG_SOLVER && (bb || !r.varying_p ()))
364     {
365       fprintf (dump_file, "range_defined_in_block (BB%d) for ", bb ? bb->index : -1);
366       print_generic_expr (dump_file, name, TDF_SLIM);
367       fprintf (dump_file, " is ");
368       r.dump (dump_file);
369       fprintf (dump_file, "\n");
370     }
371 
372   return true;
373 }
374 
375 // Compute ranges defined in the PHIs in this block.
376 
377 void
compute_ranges_in_phis(basic_block bb)378 path_range_query::compute_ranges_in_phis (basic_block bb)
379 {
380   int_range_max r;
381   auto_bitmap phi_set;
382 
383   // PHIs must be resolved simultaneously on entry to the block
384   // because any dependencies must be satistifed with values on entry.
385   // Thus, we calculate all PHIs first, and then update the cache at
386   // the end.
387 
388   for (auto iter = gsi_start_phis (bb); !gsi_end_p (iter); gsi_next (&iter))
389     {
390       gphi *phi = iter.phi ();
391       tree name = gimple_phi_result (phi);
392 
393       if (import_p (name) && range_defined_in_block (r, name, bb))
394 	{
395 	  unsigned v = SSA_NAME_VERSION (name);
396 	  set_cache (r, name);
397 	  bitmap_set_bit (phi_set, v);
398 	  // Pretend we don't have a cache entry for this name until
399 	  // we're done with all PHIs.
400 	  bitmap_clear_bit (m_has_cache_entry, v);
401 	}
402     }
403   bitmap_ior_into (m_has_cache_entry, phi_set);
404 }
405 
406 // Return TRUE if relations may be invalidated after crossing edge E.
407 
408 bool
relations_may_be_invalidated(edge e)409 path_range_query::relations_may_be_invalidated (edge e)
410 {
411   // As soon as the path crosses a back edge, we can encounter
412   // definitions of SSA_NAMEs that may have had a use in the path
413   // already, so this will then be a new definition.  The relation
414   // code is all designed around seeing things in dominator order, and
415   // crossing a back edge in the path violates this assumption.
416   return (e->flags & EDGE_DFS_BACK);
417 }
418 
419 // Compute ranges defined in the current block, or exported to the
420 // next block.
421 
422 void
compute_ranges_in_block(basic_block bb)423 path_range_query::compute_ranges_in_block (basic_block bb)
424 {
425   bitmap_iterator bi;
426   int_range_max r, cached_range;
427   unsigned i;
428 
429   if (m_resolve && !at_entry ())
430     compute_phi_relations (bb, prev_bb ());
431 
432   // Force recalculation of any names in the cache that are defined in
433   // this block.  This can happen on interdependent SSA/phis in loops.
434   EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
435     {
436       tree name = ssa_name (i);
437       if (ssa_defined_in_bb (name, bb))
438 	clear_cache (name);
439     }
440 
441   // Solve imports defined in this block, starting with the PHIs...
442   compute_ranges_in_phis (bb);
443   // ...and then the rest of the imports.
444   EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
445     {
446       tree name = ssa_name (i);
447 
448       if (gimple_code (SSA_NAME_DEF_STMT (name)) != GIMPLE_PHI
449 	  && range_defined_in_block (r, name, bb))
450 	set_cache (r, name);
451     }
452 
453   if (at_exit ())
454     return;
455 
456   // Solve imports that are exported to the next block.
457   basic_block next = next_bb ();
458   edge e = find_edge (bb, next);
459 
460   if (m_resolve && relations_may_be_invalidated (e))
461     {
462       if (DEBUG_SOLVER)
463 	fprintf (dump_file,
464 		 "Resetting relations as they may be invalidated in %d->%d.\n",
465 		 e->src->index, e->dest->index);
466 
467       path_oracle *p = get_path_oracle ();
468       p->reset_path ();
469       // ?? Instead of nuking the root oracle altogether, we could
470       // reset the path oracle to search for relations from the top of
471       // the loop with the root oracle.  Something for future development.
472       p->set_root_oracle (nullptr);
473     }
474 
475   EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
476     {
477       tree name = ssa_name (i);
478       gori_compute &g = m_ranger->gori ();
479       bitmap exports = g.exports (bb);
480 
481       if (bitmap_bit_p (exports, i))
482 	{
483 	  if (g.outgoing_edge_range_p (r, e, name, *this))
484 	    {
485 	      if (get_cache (cached_range, name))
486 		r.intersect (cached_range);
487 
488 	      set_cache (r, name);
489 	      if (DEBUG_SOLVER)
490 		{
491 		  fprintf (dump_file, "outgoing_edge_range_p for ");
492 		  print_generic_expr (dump_file, name, TDF_SLIM);
493 		  fprintf (dump_file, " on edge %d->%d ",
494 			   e->src->index, e->dest->index);
495 		  fprintf (dump_file, "is ");
496 		  r.dump (dump_file);
497 		  fprintf (dump_file, "\n");
498 		}
499 	    }
500 	}
501     }
502 
503   if (m_resolve)
504     compute_outgoing_relations (bb, next);
505 }
506 
507 // Adjust all pointer imports in BB with non-null information.
508 
509 void
adjust_for_non_null_uses(basic_block bb)510 path_range_query::adjust_for_non_null_uses (basic_block bb)
511 {
512   int_range_max r;
513   bitmap_iterator bi;
514   unsigned i;
515 
516   EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
517     {
518       tree name = ssa_name (i);
519 
520       if (!POINTER_TYPE_P (TREE_TYPE (name)))
521 	continue;
522 
523       if (get_cache (r, name))
524 	{
525 	  if (r.nonzero_p ())
526 	    continue;
527 	}
528       else
529 	r.set_varying (TREE_TYPE (name));
530 
531       if (m_non_null.adjust_range (r, name, bb, false))
532 	set_cache (r, name);
533     }
534 }
535 
536 // If NAME is a supported SSA_NAME, add it the bitmap in IMPORTS.
537 
538 bool
add_to_imports(tree name,bitmap imports)539 path_range_query::add_to_imports (tree name, bitmap imports)
540 {
541   if (TREE_CODE (name) == SSA_NAME
542       && irange::supports_type_p (TREE_TYPE (name)))
543     return bitmap_set_bit (imports, SSA_NAME_VERSION (name));
544   return false;
545 }
546 
547 // Compute the imports to the path ending in EXIT.  These are
548 // essentially the SSA names used to calculate the final conditional
549 // along the path.
550 //
551 // They are hints for the solver.  Adding more elements doesn't slow
552 // us down, because we don't solve anything that doesn't appear in the
553 // path.  On the other hand, not having enough imports will limit what
554 // we can solve.
555 
556 void
compute_imports(bitmap imports,basic_block exit)557 path_range_query::compute_imports (bitmap imports, basic_block exit)
558 {
559   // Start with the imports from the exit block...
560   gori_compute &gori = m_ranger->gori ();
561   bitmap r_imports = gori.imports (exit);
562   bitmap_copy (imports, r_imports);
563 
564   auto_vec<tree> worklist (bitmap_count_bits (imports));
565   bitmap_iterator bi;
566   unsigned i;
567   EXECUTE_IF_SET_IN_BITMAP (imports, 0, i, bi)
568     {
569       tree name = ssa_name (i);
570       worklist.quick_push (name);
571     }
572 
573   // ...and add any operands used to define these imports.
574   while (!worklist.is_empty ())
575     {
576       tree name = worklist.pop ();
577       gimple *def_stmt = SSA_NAME_DEF_STMT (name);
578 
579       if (is_gimple_assign (def_stmt))
580 	{
581 	  add_to_imports (gimple_assign_rhs1 (def_stmt), imports);
582 	  tree rhs = gimple_assign_rhs2 (def_stmt);
583 	  if (rhs && add_to_imports (rhs, imports))
584 	    worklist.safe_push (rhs);
585 	  rhs = gimple_assign_rhs3 (def_stmt);
586 	  if (rhs && add_to_imports (rhs, imports))
587 	    worklist.safe_push (rhs);
588 	}
589       else if (gphi *phi = dyn_cast <gphi *> (def_stmt))
590 	{
591 	  for (size_t i = 0; i < gimple_phi_num_args (phi); ++i)
592 	    {
593 	      edge e = gimple_phi_arg_edge (phi, i);
594 	      tree arg = gimple_phi_arg (phi, i)->def;
595 
596 	      if (TREE_CODE (arg) == SSA_NAME
597 		  && m_path.contains (e->src)
598 		  && bitmap_set_bit (imports, SSA_NAME_VERSION (arg)))
599 		worklist.safe_push (arg);
600 	    }
601 	}
602     }
603   // Exported booleans along the path, may help conditionals.
604   if (m_resolve)
605     for (i = 0; i < m_path.length (); ++i)
606       {
607 	basic_block bb = m_path[i];
608 	tree name;
609 	FOR_EACH_GORI_EXPORT_NAME (gori, bb, name)
610 	  if (TREE_CODE (TREE_TYPE (name)) == BOOLEAN_TYPE)
611 	    bitmap_set_bit (imports, SSA_NAME_VERSION (name));
612       }
613 }
614 
615 // Compute the ranges for IMPORTS along PATH.
616 //
617 // IMPORTS are the set of SSA names, any of which could potentially
618 // change the value of the final conditional in PATH.  Default to the
619 // imports of the last block in the path if none is given.
620 
621 void
compute_ranges(const vec<basic_block> & path,const bitmap_head * imports)622 path_range_query::compute_ranges (const vec<basic_block> &path,
623 				  const bitmap_head *imports)
624 {
625   if (DEBUG_SOLVER)
626     fprintf (dump_file, "\n==============================================\n");
627 
628   set_path (path);
629   m_undefined_path = false;
630 
631   if (imports)
632     bitmap_copy (m_imports, imports);
633   else
634     compute_imports (m_imports, exit_bb ());
635 
636   if (m_resolve)
637     get_path_oracle ()->reset_path ();
638 
639   if (DEBUG_SOLVER)
640     {
641       fprintf (dump_file, "path_range_query: compute_ranges for path: ");
642       for (unsigned i = path.length (); i > 0; --i)
643 	{
644 	  basic_block bb = path[i - 1];
645 	  fprintf (dump_file, "%d", bb->index);
646 	  if (i > 1)
647 	    fprintf (dump_file, "->");
648 	}
649       fprintf (dump_file, "\n");
650     }
651 
652   while (1)
653     {
654       basic_block bb = curr_bb ();
655 
656       compute_ranges_in_block (bb);
657       adjust_for_non_null_uses (bb);
658 
659       if (at_exit ())
660 	break;
661 
662       move_next ();
663     }
664 
665   if (DEBUG_SOLVER)
666     {
667       get_path_oracle ()->dump (dump_file);
668       dump (dump_file);
669     }
670 }
671 
672 // Convenience function to compute ranges along a path consisting of
673 // E->SRC and E->DEST.
674 
675 void
compute_ranges(edge e)676 path_range_query::compute_ranges (edge e)
677 {
678   auto_vec<basic_block> bbs (2);
679   bbs.quick_push (e->dest);
680   bbs.quick_push (e->src);
681   compute_ranges (bbs);
682 }
683 
684 // A folding aid used to register and query relations along a path.
685 // When queried, it returns relations as they would appear on exit to
686 // the path.
687 //
688 // Relations are registered on entry so the path_oracle knows which
689 // block to query the root oracle at when a relation lies outside the
690 // path.  However, when queried we return the relation on exit to the
691 // path, since the root_oracle ignores the registered.
692 
693 class jt_fur_source : public fur_depend
694 {
695 public:
696   jt_fur_source (gimple *s, path_range_query *, gori_compute *,
697 		 const vec<basic_block> &);
698   relation_kind query_relation (tree op1, tree op2) override;
699   void register_relation (gimple *, relation_kind, tree op1, tree op2) override;
700   void register_relation (edge, relation_kind, tree op1, tree op2) override;
701 private:
702   basic_block m_entry;
703 };
704 
jt_fur_source(gimple * s,path_range_query * query,gori_compute * gori,const vec<basic_block> & path)705 jt_fur_source::jt_fur_source (gimple *s,
706 			      path_range_query *query,
707 			      gori_compute *gori,
708 			      const vec<basic_block> &path)
709   : fur_depend (s, gori, query)
710 {
711   gcc_checking_assert (!path.is_empty ());
712 
713   m_entry = path[path.length () - 1];
714 
715   if (dom_info_available_p (CDI_DOMINATORS))
716     m_oracle = query->oracle ();
717   else
718     m_oracle = NULL;
719 }
720 
721 // Ignore statement and register relation on entry to path.
722 
723 void
register_relation(gimple *,relation_kind k,tree op1,tree op2)724 jt_fur_source::register_relation (gimple *, relation_kind k, tree op1, tree op2)
725 {
726   if (m_oracle)
727     m_oracle->register_relation (m_entry, k, op1, op2);
728 }
729 
730 // Ignore edge and register relation on entry to path.
731 
732 void
register_relation(edge,relation_kind k,tree op1,tree op2)733 jt_fur_source::register_relation (edge, relation_kind k, tree op1, tree op2)
734 {
735   if (m_oracle)
736     m_oracle->register_relation (m_entry, k, op1, op2);
737 }
738 
739 relation_kind
query_relation(tree op1,tree op2)740 jt_fur_source::query_relation (tree op1, tree op2)
741 {
742   if (!m_oracle)
743     return VREL_NONE;
744 
745   if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
746     return VREL_NONE;
747 
748   return m_oracle->query_relation (m_entry, op1, op2);
749 }
750 
751 // Return the range of STMT at the end of the path being analyzed.
752 
753 bool
range_of_stmt(irange & r,gimple * stmt,tree)754 path_range_query::range_of_stmt (irange &r, gimple *stmt, tree)
755 {
756   tree type = gimple_range_type (stmt);
757 
758   if (!irange::supports_type_p (type))
759     return false;
760 
761   // If resolving unknowns, fold the statement making use of any
762   // relations along the path.
763   if (m_resolve)
764     {
765       fold_using_range f;
766       jt_fur_source src (stmt, this, &m_ranger->gori (), m_path);
767       if (!f.fold_stmt (r, stmt, src))
768 	r.set_varying (type);
769     }
770   // Otherwise, fold without relations.
771   else if (!fold_range (r, stmt, this))
772     r.set_varying (type);
773 
774   return true;
775 }
776 
777 // If possible, register the relation on the incoming edge E into PHI.
778 
779 void
maybe_register_phi_relation(gphi * phi,edge e)780 path_range_query::maybe_register_phi_relation (gphi *phi, edge e)
781 {
782   tree arg = gimple_phi_arg_def (phi, e->dest_idx);
783 
784   if (!gimple_range_ssa_p (arg))
785     return;
786 
787   if (relations_may_be_invalidated (e))
788     return;
789 
790   basic_block bb = gimple_bb (phi);
791   tree result = gimple_phi_result (phi);
792 
793   // Avoid recording the equivalence if the arg is defined in this
794   // block, as that could create an ordering problem.
795   if (ssa_defined_in_bb (arg, bb))
796     return;
797 
798   if (dump_file && (dump_flags & TDF_DETAILS))
799     fprintf (dump_file, "maybe_register_phi_relation in bb%d:", bb->index);
800 
801   get_path_oracle ()->killing_def (result);
802   m_oracle->register_relation (entry_bb (), EQ_EXPR, arg, result);
803 }
804 
805 // Compute relations for each PHI in BB.  For example:
806 //
807 //   x_5 = PHI<y_9(5),...>
808 //
809 // If the path flows through BB5, we can register that x_5 == y_9.
810 
811 void
compute_phi_relations(basic_block bb,basic_block prev)812 path_range_query::compute_phi_relations (basic_block bb, basic_block prev)
813 {
814   if (prev == NULL)
815     return;
816 
817   edge e_in = find_edge (prev, bb);
818 
819   for (gphi_iterator iter = gsi_start_phis (bb); !gsi_end_p (iter);
820        gsi_next (&iter))
821     {
822       gphi *phi = iter.phi ();
823       tree result = gimple_phi_result (phi);
824       unsigned nargs = gimple_phi_num_args (phi);
825 
826       if (!import_p (result))
827 	continue;
828 
829       for (size_t i = 0; i < nargs; ++i)
830 	if (e_in == gimple_phi_arg_edge (phi, i))
831 	  {
832 	    maybe_register_phi_relation (phi, e_in);
833 	    break;
834 	  }
835     }
836 }
837 
838 // Compute outgoing relations from BB to NEXT.
839 
840 void
compute_outgoing_relations(basic_block bb,basic_block next)841 path_range_query::compute_outgoing_relations (basic_block bb, basic_block next)
842 {
843   gimple *stmt = last_stmt (bb);
844 
845   if (stmt
846       && gimple_code (stmt) == GIMPLE_COND
847       && (import_p (gimple_cond_lhs (stmt))
848 	  || import_p (gimple_cond_rhs (stmt))))
849     {
850       int_range<2> r;
851       gcond *cond = as_a<gcond *> (stmt);
852       edge e0 = EDGE_SUCC (bb, 0);
853       edge e1 = EDGE_SUCC (bb, 1);
854 
855       if (e0->dest == next)
856 	gcond_edge_range (r, e0);
857       else if (e1->dest == next)
858 	gcond_edge_range (r, e1);
859       else
860 	gcc_unreachable ();
861 
862       jt_fur_source src (NULL, this, &m_ranger->gori (), m_path);
863       src.register_outgoing_edges (cond, r, e0, e1);
864     }
865 }
866