1 /* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19  * SOFTWARE.
20  */
21 #ifndef CHIPMUNK_PRIVATE_H
22 #define CHIPMUNK_PRIVATE_H
23 #ifdef CHIPMUNK_H
24 #error Cannot include chipmunk_private.h after chipmunk.h.
25 #endif
26 
27 #define CP_ALLOW_PRIVATE_ACCESS 1
28 #include "chipmunk/chipmunk.h"
29 
30 #define CP_HASH_COEF (3344921057ul)
31 #define CP_HASH_PAIR(A, B) ((cpHashValue)(A)*CP_HASH_COEF ^ (cpHashValue)(B)*CP_HASH_COEF)
32 
33 // TODO: Eww. Magic numbers.
34 #define MAGIC_EPSILON 1e-5
35 
36 
37 //MARK: cpArray
38 
39 struct cpArray {
40 	int num, max;
41 	void **arr;
42 };
43 
44 cpArray *cpArrayNew(int size);
45 
46 void cpArrayFree(cpArray *arr);
47 
48 void cpArrayPush(cpArray *arr, void *object);
49 void *cpArrayPop(cpArray *arr);
50 void cpArrayDeleteObj(cpArray *arr, void *obj);
51 cpBool cpArrayContains(cpArray *arr, void *ptr);
52 
53 void cpArrayFreeEach(cpArray *arr, void (freeFunc)(void*));
54 
55 
56 //MARK: cpHashSet
57 
58 typedef cpBool (*cpHashSetEqlFunc)(void *ptr, void *elt);
59 typedef void *(*cpHashSetTransFunc)(void *ptr, void *data);
60 
61 cpHashSet *cpHashSetNew(int size, cpHashSetEqlFunc eqlFunc);
62 void cpHashSetSetDefaultValue(cpHashSet *set, void *default_value);
63 
64 void cpHashSetFree(cpHashSet *set);
65 
66 int cpHashSetCount(cpHashSet *set);
67 void *cpHashSetInsert(cpHashSet *set, cpHashValue hash, void *ptr, cpHashSetTransFunc trans, void *data);
68 void *cpHashSetRemove(cpHashSet *set, cpHashValue hash, void *ptr);
69 void *cpHashSetFind(cpHashSet *set, cpHashValue hash, void *ptr);
70 
71 typedef void (*cpHashSetIteratorFunc)(void *elt, void *data);
72 void cpHashSetEach(cpHashSet *set, cpHashSetIteratorFunc func, void *data);
73 
74 typedef cpBool (*cpHashSetFilterFunc)(void *elt, void *data);
75 void cpHashSetFilter(cpHashSet *set, cpHashSetFilterFunc func, void *data);
76 
77 
78 //MARK: Bodies
79 
80 struct cpBody {
81 	// Integration functions
82 	cpBodyVelocityFunc velocity_func;
83 	cpBodyPositionFunc position_func;
84 
85 	// mass and it's inverse
86 	cpFloat m;
87 	cpFloat m_inv;
88 
89 	// moment of inertia and it's inverse
90 	cpFloat i;
91 	cpFloat i_inv;
92 
93 	// center of gravity
94 	cpVect cog;
95 
96 	// position, velocity, force
97 	cpVect p;
98 	cpVect v;
99 	cpVect f;
100 
101 	// Angle, angular velocity, torque (radians)
102 	cpFloat a;
103 	cpFloat w;
104 	cpFloat t;
105 
106 	cpTransform transform;
107 
108 	cpDataPointer userData;
109 
110 	// "pseudo-velocities" used for eliminating overlap.
111 	// Erin Catto has some papers that talk about what these are.
112 	cpVect v_bias;
113 	cpFloat w_bias;
114 
115 	cpSpace *space;
116 
117 	cpShape *shapeList;
118 	cpArbiter *arbiterList;
119 	cpConstraint *constraintList;
120 
121 	struct {
122 		cpBody *root;
123 		cpBody *next;
124 		cpFloat idleTime;
125 	} sleeping;
126 };
127 
128 void cpBodyAddShape(cpBody *body, cpShape *shape);
129 void cpBodyRemoveShape(cpBody *body, cpShape *shape);
130 
131 //void cpBodyAccumulateMassForShape(cpBody *body, cpShape *shape);
132 void cpBodyAccumulateMassFromShapes(cpBody *body);
133 
134 void cpBodyRemoveConstraint(cpBody *body, cpConstraint *constraint);
135 
136 
137 //MARK: Spatial Index Functions
138 
139 cpSpatialIndex *cpSpatialIndexInit(cpSpatialIndex *index, cpSpatialIndexClass *klass, cpSpatialIndexBBFunc bbfunc, cpSpatialIndex *staticIndex);
140 
141 
142 //MARK: Arbiters
143 
144 enum cpArbiterState {
145 	// Arbiter is active and its the first collision.
146 	CP_ARBITER_STATE_FIRST_COLLISION,
147 	// Arbiter is active and its not the first collision.
148 	CP_ARBITER_STATE_NORMAL,
149 	// Collision has been explicitly ignored.
150 	// Either by returning false from a begin collision handler or calling cpArbiterIgnore().
151 	CP_ARBITER_STATE_IGNORE,
152 	// Collison is no longer active. A space will cache an arbiter for up to cpSpace.collisionPersistence more steps.
153 	CP_ARBITER_STATE_CACHED,
154 	// Collison arbiter is invalid because one of the shapes was removed.
155 	CP_ARBITER_STATE_INVALIDATED,
156 };
157 
158 struct cpArbiterThread {
159 	struct cpArbiter *next, *prev;
160 };
161 
162 struct cpContact {
163 	cpVect r1, r2;
164 
165 	cpFloat nMass, tMass;
166 	cpFloat bounce; // TODO: look for an alternate bounce solution.
167 
168 	cpFloat jnAcc, jtAcc, jBias;
169 	cpFloat bias;
170 
171 	cpHashValue hash;
172 };
173 
174 struct cpCollisionInfo {
175 	const cpShape *a, *b;
176 	cpCollisionID id;
177 
178 	cpVect n;
179 
180 	int count;
181 	// TODO Should this be a unique struct type?
182 	struct cpContact *arr;
183 };
184 
185 struct cpArbiter {
186 	cpFloat e;
187 	cpFloat u;
188 	cpVect surface_vr;
189 
190 	cpDataPointer data;
191 
192 	const cpShape *a, *b;
193 	cpBody *body_a, *body_b;
194 	struct cpArbiterThread thread_a, thread_b;
195 
196 	int count;
197 	struct cpContact *contacts;
198 	cpVect n;
199 
200 	// Regular, wildcard A and wildcard B collision handlers.
201 	cpCollisionHandler *handler, *handlerA, *handlerB;
202 	cpBool swapped;
203 
204 	cpTimestamp stamp;
205 	enum cpArbiterState state;
206 };
207 
208 cpArbiter* cpArbiterInit(cpArbiter *arb, cpShape *a, cpShape *b);
209 
210 static inline struct cpArbiterThread *
cpArbiterThreadForBody(cpArbiter * arb,cpBody * body)211 cpArbiterThreadForBody(cpArbiter *arb, cpBody *body)
212 {
213 	return (arb->body_a == body ? &arb->thread_a : &arb->thread_b);
214 }
215 
216 void cpArbiterUnthread(cpArbiter *arb);
217 
218 void cpArbiterUpdate(cpArbiter *arb, struct cpCollisionInfo *info, cpSpace *space);
219 void cpArbiterPreStep(cpArbiter *arb, cpFloat dt, cpFloat bias, cpFloat slop);
220 void cpArbiterApplyCachedImpulse(cpArbiter *arb, cpFloat dt_coef);
221 void cpArbiterApplyImpulse(cpArbiter *arb);
222 
223 
224 //MARK: Shapes/Collisions
225 
226 struct cpShapeMassInfo {
227 	cpFloat m;
228 	cpFloat i;
229 	cpVect cog;
230 	cpFloat area;
231 };
232 
233 typedef enum cpShapeType{
234 	CP_CIRCLE_SHAPE,
235 	CP_SEGMENT_SHAPE,
236 	CP_POLY_SHAPE,
237 	CP_NUM_SHAPES
238 } cpShapeType;
239 
240 typedef cpBB (*cpShapeCacheDataImpl)(cpShape *shape, cpTransform transform);
241 typedef void (*cpShapeDestroyImpl)(cpShape *shape);
242 typedef void (*cpShapePointQueryImpl)(const cpShape *shape, cpVect p, cpPointQueryInfo *info);
243 typedef void (*cpShapeSegmentQueryImpl)(const cpShape *shape, cpVect a, cpVect b, cpFloat radius, cpSegmentQueryInfo *info);
244 
245 typedef struct cpShapeClass cpShapeClass;
246 
247 struct cpShapeClass {
248 	cpShapeType type;
249 
250 	cpShapeCacheDataImpl cacheData;
251 	cpShapeDestroyImpl destroy;
252 	cpShapePointQueryImpl pointQuery;
253 	cpShapeSegmentQueryImpl segmentQuery;
254 };
255 
256 struct cpShape {
257 	const cpShapeClass *klass;
258 
259 	cpSpace *space;
260 	cpBody *body;
261 	struct cpShapeMassInfo massInfo;
262 	cpBB bb;
263 
264 	cpBool sensor;
265 
266 	cpFloat e;
267 	cpFloat u;
268 	cpVect surfaceV;
269 
270 	cpDataPointer userData;
271 
272 	cpCollisionType type;
273 	cpShapeFilter filter;
274 
275 	cpShape *next;
276 	cpShape *prev;
277 
278 	cpHashValue hashid;
279 };
280 
281 struct cpCircleShape {
282 	cpShape shape;
283 
284 	cpVect c, tc;
285 	cpFloat r;
286 };
287 
288 struct cpSegmentShape {
289 	cpShape shape;
290 
291 	cpVect a, b, n;
292 	cpVect ta, tb, tn;
293 	cpFloat r;
294 
295 	cpVect a_tangent, b_tangent;
296 };
297 
298 struct cpSplittingPlane {
299 	cpVect v0, n;
300 };
301 
302 #define CP_POLY_SHAPE_INLINE_ALLOC 6
303 
304 struct cpPolyShape {
305 	cpShape shape;
306 
307 	cpFloat r;
308 
309 	int count;
310 	// The untransformed planes are appended at the end of the transformed planes.
311 	struct cpSplittingPlane *planes;
312 
313 	// Allocate a small number of splitting planes internally for simple poly.
314 	struct cpSplittingPlane _planes[2*CP_POLY_SHAPE_INLINE_ALLOC];
315 };
316 
317 cpShape *cpShapeInit(cpShape *shape, const cpShapeClass *klass, cpBody *body, struct cpShapeMassInfo massInfo);
318 
319 static inline cpBool
cpShapeActive(cpShape * shape)320 cpShapeActive(cpShape *shape)
321 {
322 	// checks if the shape is added to a shape list.
323 	// TODO could this just check the space now?
324 	return (shape->prev || (shape->body && shape->body->shapeList == shape));
325 }
326 
327 // Note: This function returns contact points with r1/r2 in absolute coordinates, not body relative.
328 struct cpCollisionInfo cpCollide(const cpShape *a, const cpShape *b, cpCollisionID id, struct cpContact *contacts);
329 
330 static inline void
CircleSegmentQuery(cpShape * shape,cpVect center,cpFloat r1,cpVect a,cpVect b,cpFloat r2,cpSegmentQueryInfo * info)331 CircleSegmentQuery(cpShape *shape, cpVect center, cpFloat r1, cpVect a, cpVect b, cpFloat r2, cpSegmentQueryInfo *info)
332 {
333 	cpVect da = cpvsub(a, center);
334 	cpVect db = cpvsub(b, center);
335 	cpFloat rsum = r1 + r2;
336 
337 	cpFloat qa = cpvdot(da, da) - 2.0f*cpvdot(da, db) + cpvdot(db, db);
338 	cpFloat qb = cpvdot(da, db) - cpvdot(da, da);
339 	cpFloat det = qb*qb - qa*(cpvdot(da, da) - rsum*rsum);
340 
341 	if(det >= 0.0f){
342 		cpFloat t = (-qb - cpfsqrt(det))/(qa);
343 		if(0.0f<= t && t <= 1.0f){
344 			cpVect n = cpvnormalize(cpvlerp(da, db, t));
345 
346 			info->shape = shape;
347 			info->point = cpvsub(cpvlerp(a, b, t), cpvmult(n, r2));
348 			info->normal = n;
349 			info->alpha = t;
350 		}
351 	}
352 }
353 
354 static inline cpBool
cpShapeFilterReject(cpShapeFilter a,cpShapeFilter b)355 cpShapeFilterReject(cpShapeFilter a, cpShapeFilter b)
356 {
357 	// Reject the collision if:
358 	return (
359 		// They are in the same non-zero group.
360 		(a.group != 0 && a.group == b.group) ||
361 		// One of the category/mask combinations fails.
362 		(a.categories & b.mask) == 0 ||
363 		(b.categories & a.mask) == 0
364 	);
365 }
366 
367 void cpLoopIndexes(const cpVect *verts, int count, int *start, int *end);
368 
369 
370 //MARK: Constraints
371 // TODO naming conventions here
372 
373 typedef void (*cpConstraintPreStepImpl)(cpConstraint *constraint, cpFloat dt);
374 typedef void (*cpConstraintApplyCachedImpulseImpl)(cpConstraint *constraint, cpFloat dt_coef);
375 typedef void (*cpConstraintApplyImpulseImpl)(cpConstraint *constraint, cpFloat dt);
376 typedef cpFloat (*cpConstraintGetImpulseImpl)(cpConstraint *constraint);
377 
378 typedef struct cpConstraintClass {
379 	cpConstraintPreStepImpl preStep;
380 	cpConstraintApplyCachedImpulseImpl applyCachedImpulse;
381 	cpConstraintApplyImpulseImpl applyImpulse;
382 	cpConstraintGetImpulseImpl getImpulse;
383 } cpConstraintClass;
384 
385 struct cpConstraint {
386 	const cpConstraintClass *klass;
387 
388 	cpSpace *space;
389 
390 	cpBody *a, *b;
391 	cpConstraint *next_a, *next_b;
392 
393 	cpFloat maxForce;
394 	cpFloat errorBias;
395 	cpFloat maxBias;
396 
397 	cpBool collideBodies;
398 
399 	cpConstraintPreSolveFunc preSolve;
400 	cpConstraintPostSolveFunc postSolve;
401 
402 	cpDataPointer userData;
403 };
404 
405 struct cpPinJoint {
406 	cpConstraint constraint;
407 	cpVect anchorA, anchorB;
408 	cpFloat dist;
409 
410 	cpVect r1, r2;
411 	cpVect n;
412 	cpFloat nMass;
413 
414 	cpFloat jnAcc;
415 	cpFloat bias;
416 };
417 
418 struct cpSlideJoint {
419 	cpConstraint constraint;
420 	cpVect anchorA, anchorB;
421 	cpFloat min, max;
422 
423 	cpVect r1, r2;
424 	cpVect n;
425 	cpFloat nMass;
426 
427 	cpFloat jnAcc;
428 	cpFloat bias;
429 };
430 
431 struct cpPivotJoint {
432 	cpConstraint constraint;
433 	cpVect anchorA, anchorB;
434 
435 	cpVect r1, r2;
436 	cpMat2x2 k;
437 
438 	cpVect jAcc;
439 	cpVect bias;
440 };
441 
442 struct cpGrooveJoint {
443 	cpConstraint constraint;
444 	cpVect grv_n, grv_a, grv_b;
445 	cpVect  anchorB;
446 
447 	cpVect grv_tn;
448 	cpFloat clamp;
449 	cpVect r1, r2;
450 	cpMat2x2 k;
451 
452 	cpVect jAcc;
453 	cpVect bias;
454 };
455 
456 struct cpDampedSpring {
457 	cpConstraint constraint;
458 	cpVect anchorA, anchorB;
459 	cpFloat restLength;
460 	cpFloat stiffness;
461 	cpFloat damping;
462 	cpDampedSpringForceFunc springForceFunc;
463 
464 	cpFloat target_vrn;
465 	cpFloat v_coef;
466 
467 	cpVect r1, r2;
468 	cpFloat nMass;
469 	cpVect n;
470 
471 	cpFloat jAcc;
472 };
473 
474 struct cpDampedRotarySpring {
475 	cpConstraint constraint;
476 	cpFloat restAngle;
477 	cpFloat stiffness;
478 	cpFloat damping;
479 	cpDampedRotarySpringTorqueFunc springTorqueFunc;
480 
481 	cpFloat target_wrn;
482 	cpFloat w_coef;
483 
484 	cpFloat iSum;
485 	cpFloat jAcc;
486 };
487 
488 struct cpRotaryLimitJoint {
489 	cpConstraint constraint;
490 	cpFloat min, max;
491 
492 	cpFloat iSum;
493 
494 	cpFloat bias;
495 	cpFloat jAcc;
496 };
497 
498 struct cpRatchetJoint {
499 	cpConstraint constraint;
500 	cpFloat angle, phase, ratchet;
501 
502 	cpFloat iSum;
503 
504 	cpFloat bias;
505 	cpFloat jAcc;
506 };
507 
508 struct cpGearJoint {
509 	cpConstraint constraint;
510 	cpFloat phase, ratio;
511 	cpFloat ratio_inv;
512 
513 	cpFloat iSum;
514 
515 	cpFloat bias;
516 	cpFloat jAcc;
517 };
518 
519 struct cpSimpleMotor {
520 	cpConstraint constraint;
521 	cpFloat rate;
522 
523 	cpFloat iSum;
524 
525 	cpFloat jAcc;
526 };
527 
528 void cpConstraintInit(cpConstraint *constraint, const struct cpConstraintClass *klass, cpBody *a, cpBody *b);
529 
530 static inline void
cpConstraintActivateBodies(cpConstraint * constraint)531 cpConstraintActivateBodies(cpConstraint *constraint)
532 {
533 	cpBody *a = constraint->a; cpBodyActivate(a);
534 	cpBody *b = constraint->b; cpBodyActivate(b);
535 }
536 
537 static inline cpVect
relative_velocity(cpBody * a,cpBody * b,cpVect r1,cpVect r2)538 relative_velocity(cpBody *a, cpBody *b, cpVect r1, cpVect r2){
539 	cpVect v1_sum = cpvadd(a->CP_PRIVATE(v), cpvmult(cpvperp(r1), a->CP_PRIVATE(w)));
540 	cpVect v2_sum = cpvadd(b->CP_PRIVATE(v), cpvmult(cpvperp(r2), b->CP_PRIVATE(w)));
541 
542 	return cpvsub(v2_sum, v1_sum);
543 }
544 
545 static inline cpFloat
normal_relative_velocity(cpBody * a,cpBody * b,cpVect r1,cpVect r2,cpVect n)546 normal_relative_velocity(cpBody *a, cpBody *b, cpVect r1, cpVect r2, cpVect n){
547 	return cpvdot(relative_velocity(a, b, r1, r2), n);
548 }
549 
550 static inline void
apply_impulse(cpBody * body,cpVect j,cpVect r)551 apply_impulse(cpBody *body, cpVect j, cpVect r){
552 	body->CP_PRIVATE(v) = cpvadd(body->CP_PRIVATE(v), cpvmult(j, body->CP_PRIVATE(m_inv)));
553 	body->CP_PRIVATE(w) += body->CP_PRIVATE(i_inv)*cpvcross(r, j);
554 }
555 
556 static inline void
apply_impulses(cpBody * a,cpBody * b,cpVect r1,cpVect r2,cpVect j)557 apply_impulses(cpBody *a , cpBody *b, cpVect r1, cpVect r2, cpVect j)
558 {
559 	apply_impulse(a, cpvneg(j), r1);
560 	apply_impulse(b, j, r2);
561 }
562 
563 static inline void
apply_bias_impulse(cpBody * body,cpVect j,cpVect r)564 apply_bias_impulse(cpBody *body, cpVect j, cpVect r)
565 {
566 	body->CP_PRIVATE(v_bias) = cpvadd(body->CP_PRIVATE(v_bias), cpvmult(j, body->CP_PRIVATE(m_inv)));
567 	body->CP_PRIVATE(w_bias) += body->CP_PRIVATE(i_inv)*cpvcross(r, j);
568 }
569 
570 static inline void
apply_bias_impulses(cpBody * a,cpBody * b,cpVect r1,cpVect r2,cpVect j)571 apply_bias_impulses(cpBody *a , cpBody *b, cpVect r1, cpVect r2, cpVect j)
572 {
573 	apply_bias_impulse(a, cpvneg(j), r1);
574 	apply_bias_impulse(b, j, r2);
575 }
576 
577 static inline cpFloat
k_scalar_body(cpBody * body,cpVect r,cpVect n)578 k_scalar_body(cpBody *body, cpVect r, cpVect n)
579 {
580 	cpFloat rcn = cpvcross(r, n);
581 	return body->CP_PRIVATE(m_inv) + body->CP_PRIVATE(i_inv)*rcn*rcn;
582 }
583 
584 static inline cpFloat
k_scalar(cpBody * a,cpBody * b,cpVect r1,cpVect r2,cpVect n)585 k_scalar(cpBody *a, cpBody *b, cpVect r1, cpVect r2, cpVect n)
586 {
587 	cpFloat value = k_scalar_body(a, r1, n) + k_scalar_body(b, r2, n);
588 	cpAssertSoft(value != 0.0, "Unsolvable collision or constraint.");
589 
590 	return value;
591 }
592 
593 static inline cpMat2x2
k_tensor(cpBody * a,cpBody * b,cpVect r1,cpVect r2)594 k_tensor(cpBody *a, cpBody *b, cpVect r1, cpVect r2)
595 {
596 	cpFloat m_sum = a->CP_PRIVATE(m_inv) + b->CP_PRIVATE(m_inv);
597 
598 	// start with Identity*m_sum
599 	cpFloat k11 = m_sum, k12 = 0.0f;
600 	cpFloat k21 = 0.0f,  k22 = m_sum;
601 
602 	// add the influence from r1
603 	cpFloat a_i_inv = a->CP_PRIVATE(i_inv);
604 	cpFloat r1xsq =  r1.x * r1.x * a_i_inv;
605 	cpFloat r1ysq =  r1.y * r1.y * a_i_inv;
606 	cpFloat r1nxy = -r1.x * r1.y * a_i_inv;
607 	k11 += r1ysq; k12 += r1nxy;
608 	k21 += r1nxy; k22 += r1xsq;
609 
610 	// add the influnce from r2
611 	cpFloat b_i_inv = b->CP_PRIVATE(i_inv);
612 	cpFloat r2xsq =  r2.x * r2.x * b_i_inv;
613 	cpFloat r2ysq =  r2.y * r2.y * b_i_inv;
614 	cpFloat r2nxy = -r2.x * r2.y * b_i_inv;
615 	k11 += r2ysq; k12 += r2nxy;
616 	k21 += r2nxy; k22 += r2xsq;
617 
618 	// invert
619 	cpFloat det = k11*k22 - k12*k21;
620 	cpAssertSoft(det != 0.0, "Unsolvable constraint.");
621 
622 	cpFloat det_inv = 1.0f/det;
623 	return cpMat2x2New(
624 		 k22*det_inv, -k12*det_inv,
625 		-k21*det_inv,  k11*det_inv
626  	);
627 }
628 
629 static inline cpFloat
bias_coef(cpFloat errorBias,cpFloat dt)630 bias_coef(cpFloat errorBias, cpFloat dt)
631 {
632 	return 1.0f - cpfpow(errorBias, dt);
633 }
634 
635 
636 //MARK: Spaces
637 
638 typedef struct cpContactBufferHeader cpContactBufferHeader;
639 typedef void (*cpSpaceArbiterApplyImpulseFunc)(cpArbiter *arb);
640 
641 struct cpSpace {
642 	int iterations;
643 
644 	cpVect gravity;
645 	cpFloat damping;
646 
647 	cpFloat idleSpeedThreshold;
648 	cpFloat sleepTimeThreshold;
649 
650 	cpFloat collisionSlop;
651 	cpFloat collisionBias;
652 	cpTimestamp collisionPersistence;
653 
654 	cpDataPointer userData;
655 
656 	cpTimestamp stamp;
657 	cpFloat curr_dt;
658 
659 	cpArray *dynamicBodies;
660 	cpArray *staticBodies;
661 	cpArray *rousedBodies;
662 	cpArray *sleepingComponents;
663 
664 	cpHashValue shapeIDCounter;
665 	cpSpatialIndex *staticShapes;
666 	cpSpatialIndex *dynamicShapes;
667 
668 	cpArray *constraints;
669 
670 	cpArray *arbiters;
671 	cpContactBufferHeader *contactBuffersHead;
672 	cpHashSet *cachedArbiters;
673 	cpArray *pooledArbiters;
674 
675 	cpArray *allocatedBuffers;
676 	unsigned int locked;
677 
678 	cpBool usesWildcards;
679 	cpHashSet *collisionHandlers;
680 	cpCollisionHandler defaultHandler;
681 
682 	cpBool skipPostStep;
683 	cpArray *postStepCallbacks;
684 
685 	cpBody *staticBody;
686 	cpBody _staticBody;
687 };
688 
689 #define cpAssertSpaceUnlocked(space) \
690 	cpAssertHard(!space->locked, \
691 		"This operation cannot be done safely during a call to cpSpaceStep() or during a query. " \
692 		"Put these calls into a post-step callback." \
693 	);
694 
695 void cpSpaceSetStaticBody(cpSpace *space, cpBody *body);
696 
697 extern cpCollisionHandler cpCollisionHandlerDoNothing;
698 
699 void cpSpaceProcessComponents(cpSpace *space, cpFloat dt);
700 
701 void cpSpacePushFreshContactBuffer(cpSpace *space);
702 struct cpContact *cpContactBufferGetArray(cpSpace *space);
703 void cpSpacePushContacts(cpSpace *space, int count);
704 
705 typedef struct cpPostStepCallback {
706 	cpPostStepFunc func;
707 	void *key;
708 	void *data;
709 } cpPostStepCallback;
710 
711 cpPostStepCallback *cpSpaceGetPostStepCallback(cpSpace *space, void *key);
712 
713 cpBool cpSpaceArbiterSetFilter(cpArbiter *arb, cpSpace *space);
714 void cpSpaceFilterArbiters(cpSpace *space, cpBody *body, cpShape *filter);
715 
716 void cpSpaceActivateBody(cpSpace *space, cpBody *body);
717 void cpSpaceLock(cpSpace *space);
718 void cpSpaceUnlock(cpSpace *space, cpBool runPostStep);
719 
720 static inline void
cpSpaceUncacheArbiter(cpSpace * space,cpArbiter * arb)721 cpSpaceUncacheArbiter(cpSpace *space, cpArbiter *arb)
722 {
723 	const cpShape *a = arb->a, *b = arb->b;
724 	const cpShape *shape_pair[] = {a, b};
725 	cpHashValue arbHashID = CP_HASH_PAIR((cpHashValue)a, (cpHashValue)b);
726 	cpHashSetRemove(space->cachedArbiters, arbHashID, shape_pair);
727 	cpArrayDeleteObj(space->arbiters, arb);
728 }
729 
730 static inline cpArray *
cpSpaceArrayForBodyType(cpSpace * space,cpBodyType type)731 cpSpaceArrayForBodyType(cpSpace *space, cpBodyType type)
732 {
733 	return (type == CP_BODY_TYPE_STATIC ? space->staticBodies : space->dynamicBodies);
734 }
735 
736 void cpShapeUpdateFunc(cpShape *shape, void *unused);
737 cpCollisionID cpSpaceCollideShapes(cpShape *a, cpShape *b, cpCollisionID id, cpSpace *space);
738 
739 
740 //MARK: Foreach loops
741 
742 static inline cpConstraint *
cpConstraintNext(cpConstraint * node,cpBody * body)743 cpConstraintNext(cpConstraint *node, cpBody *body)
744 {
745 	return (node->a == body ? node->next_a : node->next_b);
746 }
747 
748 #define CP_BODY_FOREACH_CONSTRAINT(bdy, var)\
749 	for(cpConstraint *var = bdy->constraintList; var; var = cpConstraintNext(var, bdy))
750 
751 static inline cpArbiter *
cpArbiterNext(cpArbiter * node,cpBody * body)752 cpArbiterNext(cpArbiter *node, cpBody *body)
753 {
754 	return (node->body_a == body ? node->thread_a.next : node->thread_b.next);
755 }
756 
757 #define CP_BODY_FOREACH_ARBITER(bdy, var)\
758 	for(cpArbiter *var = bdy->arbiterList; var; var = cpArbiterNext(var, bdy))
759 
760 #define CP_BODY_FOREACH_SHAPE(body, var)\
761 	for(cpShape *var = body->shapeList; var; var = var->next)
762 
763 #define CP_BODY_FOREACH_COMPONENT(root, var)\
764 	for(cpBody *var = root; var; var = var->sleeping.next)
765 
766 #endif
767