1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/IPO.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "called-value-propagation"
32
33 /// The maximum number of functions to track per lattice value. Once the number
34 /// of functions a call site can possibly target exceeds this threshold, it's
35 /// lattice value becomes overdefined. The number of possible lattice values is
36 /// bounded by Ch(F, M), where F is the number of functions in the module and M
37 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
38 /// likely can't do anything useful for call sites with a large number of
39 /// possible targets, anyway.
40 static cl::opt<unsigned> MaxFunctionsPerValue(
41 "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
42 cl::desc("The maximum number of functions to track per lattice value"));
43
44 namespace {
45 /// To enable interprocedural analysis, we assign LLVM values to the following
46 /// groups. The register group represents SSA registers, the return group
47 /// represents the return values of functions, and the memory group represents
48 /// in-memory values. An LLVM Value can technically be in more than one group.
49 /// It's necessary to distinguish these groups so we can, for example, track a
50 /// global variable separately from the value stored at its location.
51 enum class IPOGrouping { Register, Return, Memory };
52
53 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
54 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
55
56 /// The lattice value type used by our custom lattice function. It holds the
57 /// lattice state, and a set of functions.
58 class CVPLatticeVal {
59 public:
60 /// The states of the lattice values. Only the FunctionSet state is
61 /// interesting. It indicates the set of functions to which an LLVM value may
62 /// refer.
63 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
64
65 /// Comparator for sorting the functions set. We want to keep the order
66 /// deterministic for testing, etc.
67 struct Compare {
operator ()__anond4bde0780111::CVPLatticeVal::Compare68 bool operator()(const Function *LHS, const Function *RHS) const {
69 return LHS->getName() < RHS->getName();
70 }
71 };
72
73 CVPLatticeVal() = default;
CVPLatticeVal(CVPLatticeStateTy LatticeState)74 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
CVPLatticeVal(std::vector<Function * > && Functions)75 CVPLatticeVal(std::vector<Function *> &&Functions)
76 : LatticeState(FunctionSet), Functions(std::move(Functions)) {
77 assert(llvm::is_sorted(this->Functions, Compare()));
78 }
79
80 /// Get a reference to the functions held by this lattice value. The number
81 /// of functions will be zero for states other than FunctionSet.
getFunctions() const82 const std::vector<Function *> &getFunctions() const {
83 return Functions;
84 }
85
86 /// Returns true if the lattice value is in the FunctionSet state.
isFunctionSet() const87 bool isFunctionSet() const { return LatticeState == FunctionSet; }
88
operator ==(const CVPLatticeVal & RHS) const89 bool operator==(const CVPLatticeVal &RHS) const {
90 return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
91 }
92
operator !=(const CVPLatticeVal & RHS) const93 bool operator!=(const CVPLatticeVal &RHS) const {
94 return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
95 }
96
97 private:
98 /// Holds the state this lattice value is in.
99 CVPLatticeStateTy LatticeState = Undefined;
100
101 /// Holds functions indicating the possible targets of call sites. This set
102 /// is empty for lattice values in the undefined, overdefined, and untracked
103 /// states. The maximum size of the set is controlled by
104 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
105 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
106 /// small and efficiently copyable.
107 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
108 std::vector<Function *> Functions;
109 };
110
111 /// The custom lattice function used by the generic sparse propagation solver.
112 /// It handles merging lattice values and computing new lattice values for
113 /// constants, arguments, values returned from trackable functions, and values
114 /// located in trackable global variables. It also computes the lattice values
115 /// that change as a result of executing instructions.
116 class CVPLatticeFunc
117 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
118 public:
CVPLatticeFunc()119 CVPLatticeFunc()
120 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
121 CVPLatticeVal(CVPLatticeVal::Overdefined),
122 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
123
124 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
ComputeLatticeVal(CVPLatticeKey Key)125 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
126 switch (Key.getInt()) {
127 case IPOGrouping::Register:
128 if (isa<Instruction>(Key.getPointer())) {
129 return getUndefVal();
130 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
131 if (canTrackArgumentsInterprocedurally(A->getParent()))
132 return getUndefVal();
133 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
134 return computeConstant(C);
135 }
136 return getOverdefinedVal();
137 case IPOGrouping::Memory:
138 case IPOGrouping::Return:
139 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
140 if (canTrackGlobalVariableInterprocedurally(GV))
141 return computeConstant(GV->getInitializer());
142 } else if (auto *F = cast<Function>(Key.getPointer()))
143 if (canTrackReturnsInterprocedurally(F))
144 return getUndefVal();
145 }
146 return getOverdefinedVal();
147 }
148
149 /// Merge the two given lattice values. The interesting cases are merging two
150 /// FunctionSet values and a FunctionSet value with an Undefined value. For
151 /// these cases, we simply union the function sets. If the size of the union
152 /// is greater than the maximum functions we track, the merged value is
153 /// overdefined.
MergeValues(CVPLatticeVal X,CVPLatticeVal Y)154 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
155 if (X == getOverdefinedVal() || Y == getOverdefinedVal())
156 return getOverdefinedVal();
157 if (X == getUndefVal() && Y == getUndefVal())
158 return getUndefVal();
159 std::vector<Function *> Union;
160 std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
161 Y.getFunctions().begin(), Y.getFunctions().end(),
162 std::back_inserter(Union), CVPLatticeVal::Compare{});
163 if (Union.size() > MaxFunctionsPerValue)
164 return getOverdefinedVal();
165 return CVPLatticeVal(std::move(Union));
166 }
167
168 /// Compute the lattice values that change as a result of executing the given
169 /// instruction. The changed values are stored in \p ChangedValues. We handle
170 /// just a few kinds of instructions since we're only propagating values that
171 /// can be called.
ComputeInstructionState(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)172 void ComputeInstructionState(
173 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
174 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
175 switch (I.getOpcode()) {
176 case Instruction::Call:
177 case Instruction::Invoke:
178 return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
179 case Instruction::Load:
180 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
181 case Instruction::Ret:
182 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
183 case Instruction::Select:
184 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
185 case Instruction::Store:
186 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
187 default:
188 return visitInst(I, ChangedValues, SS);
189 }
190 }
191
192 /// Print the given CVPLatticeVal to the specified stream.
PrintLatticeVal(CVPLatticeVal LV,raw_ostream & OS)193 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
194 if (LV == getUndefVal())
195 OS << "Undefined ";
196 else if (LV == getOverdefinedVal())
197 OS << "Overdefined";
198 else if (LV == getUntrackedVal())
199 OS << "Untracked ";
200 else
201 OS << "FunctionSet";
202 }
203
204 /// Print the given CVPLatticeKey to the specified stream.
PrintLatticeKey(CVPLatticeKey Key,raw_ostream & OS)205 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
206 if (Key.getInt() == IPOGrouping::Register)
207 OS << "<reg> ";
208 else if (Key.getInt() == IPOGrouping::Memory)
209 OS << "<mem> ";
210 else if (Key.getInt() == IPOGrouping::Return)
211 OS << "<ret> ";
212 if (isa<Function>(Key.getPointer()))
213 OS << Key.getPointer()->getName();
214 else
215 OS << *Key.getPointer();
216 }
217
218 /// We collect a set of indirect calls when visiting call sites. This method
219 /// returns a reference to that set.
getIndirectCalls()220 SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
221
222 private:
223 /// Holds the indirect calls we encounter during the analysis. We will attach
224 /// metadata to these calls after the analysis indicating the functions the
225 /// calls can possibly target.
226 SmallPtrSet<CallBase *, 32> IndirectCalls;
227
228 /// Compute a new lattice value for the given constant. The constant, after
229 /// stripping any pointer casts, should be a Function. We ignore null
230 /// pointers as an optimization, since calling these values is undefined
231 /// behavior.
computeConstant(Constant * C)232 CVPLatticeVal computeConstant(Constant *C) {
233 if (isa<ConstantPointerNull>(C))
234 return CVPLatticeVal(CVPLatticeVal::FunctionSet);
235 if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
236 return CVPLatticeVal({F});
237 return getOverdefinedVal();
238 }
239
240 /// Handle return instructions. The function's return state is the merge of
241 /// the returned value state and the function's return state.
visitReturn(ReturnInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)242 void visitReturn(ReturnInst &I,
243 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
244 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
245 Function *F = I.getParent()->getParent();
246 if (F->getReturnType()->isVoidTy())
247 return;
248 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
249 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
250 ChangedValues[RetF] =
251 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
252 }
253
254 /// Handle call sites. The state of a called function's formal arguments is
255 /// the merge of the argument state with the call sites corresponding actual
256 /// argument state. The call site state is the merge of the call site state
257 /// with the returned value state of the called function.
visitCallBase(CallBase & CB,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)258 void visitCallBase(CallBase &CB,
259 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
260 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
261 Function *F = CB.getCalledFunction();
262 auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
263
264 // If this is an indirect call, save it so we can quickly revisit it when
265 // attaching metadata.
266 if (!F)
267 IndirectCalls.insert(&CB);
268
269 // If we can't track the function's return values, there's nothing to do.
270 if (!F || !canTrackReturnsInterprocedurally(F)) {
271 // Void return, No need to create and update CVPLattice state as no one
272 // can use it.
273 if (CB.getType()->isVoidTy())
274 return;
275 ChangedValues[RegI] = getOverdefinedVal();
276 return;
277 }
278
279 // Inform the solver that the called function is executable, and perform
280 // the merges for the arguments and return value.
281 SS.MarkBlockExecutable(&F->front());
282 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
283 for (Argument &A : F->args()) {
284 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
285 auto RegActual =
286 CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
287 ChangedValues[RegFormal] =
288 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
289 }
290
291 // Void return, No need to create and update CVPLattice state as no one can
292 // use it.
293 if (CB.getType()->isVoidTy())
294 return;
295
296 ChangedValues[RegI] =
297 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
298 }
299
300 /// Handle select instructions. The select instruction state is the merge the
301 /// true and false value states.
visitSelect(SelectInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)302 void visitSelect(SelectInst &I,
303 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
304 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
305 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
306 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
307 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
308 ChangedValues[RegI] =
309 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
310 }
311
312 /// Handle load instructions. If the pointer operand of the load is a global
313 /// variable, we attempt to track the value. The loaded value state is the
314 /// merge of the loaded value state with the global variable state.
visitLoad(LoadInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)315 void visitLoad(LoadInst &I,
316 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
317 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
318 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
319 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
320 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
321 ChangedValues[RegI] =
322 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
323 } else {
324 ChangedValues[RegI] = getOverdefinedVal();
325 }
326 }
327
328 /// Handle store instructions. If the pointer operand of the store is a
329 /// global variable, we attempt to track the value. The global variable state
330 /// is the merge of the stored value state with the global variable state.
visitStore(StoreInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)331 void visitStore(StoreInst &I,
332 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
333 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
334 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
335 if (!GV)
336 return;
337 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
338 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
339 ChangedValues[MemGV] =
340 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
341 }
342
343 /// Handle all other instructions. All other instructions are marked
344 /// overdefined.
visitInst(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)345 void visitInst(Instruction &I,
346 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
347 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
348 // Simply bail if this instruction has no user.
349 if (I.use_empty())
350 return;
351 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
352 ChangedValues[RegI] = getOverdefinedVal();
353 }
354 };
355 } // namespace
356
357 namespace llvm {
358 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
359 /// must translate between LatticeKeys and LLVM Values when adding Values to
360 /// its work list and inspecting the state of control-flow related values.
361 template <> struct LatticeKeyInfo<CVPLatticeKey> {
getValueFromLatticeKeyllvm::LatticeKeyInfo362 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
363 return Key.getPointer();
364 }
getLatticeKeyFromValuellvm::LatticeKeyInfo365 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
366 return CVPLatticeKey(V, IPOGrouping::Register);
367 }
368 };
369 } // namespace llvm
370
runCVP(Module & M)371 static bool runCVP(Module &M) {
372 // Our custom lattice function and generic sparse propagation solver.
373 CVPLatticeFunc Lattice;
374 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
375
376 // For each function in the module, if we can't track its arguments, let the
377 // generic solver assume it is executable.
378 for (Function &F : M)
379 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
380 Solver.MarkBlockExecutable(&F.front());
381
382 // Solver our custom lattice. In doing so, we will also build a set of
383 // indirect call sites.
384 Solver.Solve();
385
386 // Attach metadata to the indirect call sites that were collected indicating
387 // the set of functions they can possibly target.
388 bool Changed = false;
389 MDBuilder MDB(M.getContext());
390 for (CallBase *C : Lattice.getIndirectCalls()) {
391 auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
392 CVPLatticeVal LV = Solver.getExistingValueState(RegI);
393 if (!LV.isFunctionSet() || LV.getFunctions().empty())
394 continue;
395 MDNode *Callees = MDB.createCallees(LV.getFunctions());
396 C->setMetadata(LLVMContext::MD_callees, Callees);
397 Changed = true;
398 }
399
400 return Changed;
401 }
402
run(Module & M,ModuleAnalysisManager &)403 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
404 ModuleAnalysisManager &) {
405 runCVP(M);
406 return PreservedAnalyses::all();
407 }
408
409 namespace {
410 class CalledValuePropagationLegacyPass : public ModulePass {
411 public:
412 static char ID;
413
getAnalysisUsage(AnalysisUsage & AU) const414 void getAnalysisUsage(AnalysisUsage &AU) const override {
415 AU.setPreservesAll();
416 }
417
CalledValuePropagationLegacyPass()418 CalledValuePropagationLegacyPass() : ModulePass(ID) {
419 initializeCalledValuePropagationLegacyPassPass(
420 *PassRegistry::getPassRegistry());
421 }
422
runOnModule(Module & M)423 bool runOnModule(Module &M) override {
424 if (skipModule(M))
425 return false;
426 return runCVP(M);
427 }
428 };
429 } // namespace
430
431 char CalledValuePropagationLegacyPass::ID = 0;
432 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
433 "Called Value Propagation", false, false)
434
createCalledValuePropagationPass()435 ModulePass *llvm::createCalledValuePropagationPass() {
436 return new CalledValuePropagationLegacyPass();
437 }
438