1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervalCalc.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Statepoint.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "regalloc"
59 
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis",
63                       false, false)
64 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
65 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
66 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
67                 "Live Interval Analysis", false, false)
68 
69 #ifndef NDEBUG
70 static cl::opt<bool> EnablePrecomputePhysRegs(
71   "precompute-phys-liveness", cl::Hidden,
72   cl::desc("Eagerly compute live intervals for all physreg units."));
73 #else
74 static bool EnablePrecomputePhysRegs = false;
75 #endif // NDEBUG
76 
77 namespace llvm {
78 
79 cl::opt<bool> UseSegmentSetForPhysRegs(
80     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
81     cl::desc(
82         "Use segment set for the computation of the live ranges of physregs."));
83 
84 } // end namespace llvm
85 
getAnalysisUsage(AnalysisUsage & AU) const86 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
87   AU.setPreservesCFG();
88   AU.addPreserved<LiveVariables>();
89   AU.addPreservedID(MachineLoopInfoID);
90   AU.addRequiredTransitiveID(MachineDominatorsID);
91   AU.addPreservedID(MachineDominatorsID);
92   AU.addPreserved<SlotIndexes>();
93   AU.addRequiredTransitive<SlotIndexes>();
94   MachineFunctionPass::getAnalysisUsage(AU);
95 }
96 
LiveIntervals()97 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
98   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
99 }
100 
~LiveIntervals()101 LiveIntervals::~LiveIntervals() { delete LICalc; }
102 
releaseMemory()103 void LiveIntervals::releaseMemory() {
104   // Free the live intervals themselves.
105   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
106     delete VirtRegIntervals[Register::index2VirtReg(i)];
107   VirtRegIntervals.clear();
108   RegMaskSlots.clear();
109   RegMaskBits.clear();
110   RegMaskBlocks.clear();
111 
112   for (LiveRange *LR : RegUnitRanges)
113     delete LR;
114   RegUnitRanges.clear();
115 
116   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117   VNInfoAllocator.Reset();
118 }
119 
runOnMachineFunction(MachineFunction & fn)120 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
121   MF = &fn;
122   MRI = &MF->getRegInfo();
123   TRI = MF->getSubtarget().getRegisterInfo();
124   TII = MF->getSubtarget().getInstrInfo();
125   Indexes = &getAnalysis<SlotIndexes>();
126   DomTree = &getAnalysis<MachineDominatorTree>();
127 
128   if (!LICalc)
129     LICalc = new LiveIntervalCalc();
130 
131   // Allocate space for all virtual registers.
132   VirtRegIntervals.resize(MRI->getNumVirtRegs());
133 
134   computeVirtRegs();
135   computeRegMasks();
136   computeLiveInRegUnits();
137 
138   if (EnablePrecomputePhysRegs) {
139     // For stress testing, precompute live ranges of all physical register
140     // units, including reserved registers.
141     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
142       getRegUnit(i);
143   }
144   LLVM_DEBUG(dump());
145   return false;
146 }
147 
print(raw_ostream & OS,const Module *) const148 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
149   OS << "********** INTERVALS **********\n";
150 
151   // Dump the regunits.
152   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
153     if (LiveRange *LR = RegUnitRanges[Unit])
154       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
155 
156   // Dump the virtregs.
157   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
158     Register Reg = Register::index2VirtReg(i);
159     if (hasInterval(Reg))
160       OS << getInterval(Reg) << '\n';
161   }
162 
163   OS << "RegMasks:";
164   for (SlotIndex Idx : RegMaskSlots)
165     OS << ' ' << Idx;
166   OS << '\n';
167 
168   printInstrs(OS);
169 }
170 
printInstrs(raw_ostream & OS) const171 void LiveIntervals::printInstrs(raw_ostream &OS) const {
172   OS << "********** MACHINEINSTRS **********\n";
173   MF->print(OS, Indexes);
174 }
175 
176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpInstrs() const177 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
178   printInstrs(dbgs());
179 }
180 #endif
181 
createInterval(Register reg)182 LiveInterval *LiveIntervals::createInterval(Register reg) {
183   float Weight = reg.isPhysical() ? huge_valf : 0.0F;
184   return new LiveInterval(reg, Weight);
185 }
186 
187 /// Compute the live interval of a virtual register, based on defs and uses.
computeVirtRegInterval(LiveInterval & LI)188 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
189   assert(LICalc && "LICalc not initialized.");
190   assert(LI.empty() && "Should only compute empty intervals.");
191   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
192   LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
193   return computeDeadValues(LI, nullptr);
194 }
195 
computeVirtRegs()196 void LiveIntervals::computeVirtRegs() {
197   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
198     Register Reg = Register::index2VirtReg(i);
199     if (MRI->reg_nodbg_empty(Reg))
200       continue;
201     LiveInterval &LI = createEmptyInterval(Reg);
202     bool NeedSplit = computeVirtRegInterval(LI);
203     if (NeedSplit) {
204       SmallVector<LiveInterval*, 8> SplitLIs;
205       splitSeparateComponents(LI, SplitLIs);
206     }
207   }
208 }
209 
computeRegMasks()210 void LiveIntervals::computeRegMasks() {
211   RegMaskBlocks.resize(MF->getNumBlockIDs());
212 
213   // Find all instructions with regmask operands.
214   for (const MachineBasicBlock &MBB : *MF) {
215     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
216     RMB.first = RegMaskSlots.size();
217 
218     // Some block starts, such as EH funclets, create masks.
219     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
220       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
221       RegMaskBits.push_back(Mask);
222     }
223 
224     // Unwinders may clobber additional registers.
225     // FIXME: This functionality can possibly be merged into
226     // MachineBasicBlock::getBeginClobberMask().
227     if (MBB.isEHPad())
228       if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
229         RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
230         RegMaskBits.push_back(Mask);
231       }
232 
233     for (const MachineInstr &MI : MBB) {
234       for (const MachineOperand &MO : MI.operands()) {
235         if (!MO.isRegMask())
236           continue;
237         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
238         RegMaskBits.push_back(MO.getRegMask());
239       }
240     }
241 
242     // Some block ends, such as funclet returns, create masks. Put the mask on
243     // the last instruction of the block, because MBB slot index intervals are
244     // half-open.
245     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
246       assert(!MBB.empty() && "empty return block?");
247       RegMaskSlots.push_back(
248           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
249       RegMaskBits.push_back(Mask);
250     }
251 
252     // Compute the number of register mask instructions in this block.
253     RMB.second = RegMaskSlots.size() - RMB.first;
254   }
255 }
256 
257 //===----------------------------------------------------------------------===//
258 //                           Register Unit Liveness
259 //===----------------------------------------------------------------------===//
260 //
261 // Fixed interference typically comes from ABI boundaries: Function arguments
262 // and return values are passed in fixed registers, and so are exception
263 // pointers entering landing pads. Certain instructions require values to be
264 // present in specific registers. That is also represented through fixed
265 // interference.
266 //
267 
268 /// Compute the live range of a register unit, based on the uses and defs of
269 /// aliasing registers.  The range should be empty, or contain only dead
270 /// phi-defs from ABI blocks.
computeRegUnitRange(LiveRange & LR,unsigned Unit)271 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
272   assert(LICalc && "LICalc not initialized.");
273   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
274 
275   // The physregs aliasing Unit are the roots and their super-registers.
276   // Create all values as dead defs before extending to uses. Note that roots
277   // may share super-registers. That's OK because createDeadDefs() is
278   // idempotent. It is very rare for a register unit to have multiple roots, so
279   // uniquing super-registers is probably not worthwhile.
280   bool IsReserved = false;
281   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
282     bool IsRootReserved = true;
283     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
284          Super.isValid(); ++Super) {
285       MCRegister Reg = *Super;
286       if (!MRI->reg_empty(Reg))
287         LICalc->createDeadDefs(LR, Reg);
288       // A register unit is considered reserved if all its roots and all their
289       // super registers are reserved.
290       if (!MRI->isReserved(Reg))
291         IsRootReserved = false;
292     }
293     IsReserved |= IsRootReserved;
294   }
295   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
296          "reserved computation mismatch");
297 
298   // Now extend LR to reach all uses.
299   // Ignore uses of reserved registers. We only track defs of those.
300   if (!IsReserved) {
301     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
302       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
303            Super.isValid(); ++Super) {
304         MCRegister Reg = *Super;
305         if (!MRI->reg_empty(Reg))
306           LICalc->extendToUses(LR, Reg);
307       }
308     }
309   }
310 
311   // Flush the segment set to the segment vector.
312   if (UseSegmentSetForPhysRegs)
313     LR.flushSegmentSet();
314 }
315 
316 /// Precompute the live ranges of any register units that are live-in to an ABI
317 /// block somewhere. Register values can appear without a corresponding def when
318 /// entering the entry block or a landing pad.
computeLiveInRegUnits()319 void LiveIntervals::computeLiveInRegUnits() {
320   RegUnitRanges.resize(TRI->getNumRegUnits());
321   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
322 
323   // Keep track of the live range sets allocated.
324   SmallVector<unsigned, 8> NewRanges;
325 
326   // Check all basic blocks for live-ins.
327   for (const MachineBasicBlock &MBB : *MF) {
328     // We only care about ABI blocks: Entry + landing pads.
329     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
330       continue;
331 
332     // Create phi-defs at Begin for all live-in registers.
333     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
334     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
335     for (const auto &LI : MBB.liveins()) {
336       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
337         unsigned Unit = *Units;
338         LiveRange *LR = RegUnitRanges[Unit];
339         if (!LR) {
340           // Use segment set to speed-up initial computation of the live range.
341           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
342           NewRanges.push_back(Unit);
343         }
344         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
345         (void)VNI;
346         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
347       }
348     }
349     LLVM_DEBUG(dbgs() << '\n');
350   }
351   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
352 
353   // Compute the 'normal' part of the ranges.
354   for (unsigned Unit : NewRanges)
355     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
356 }
357 
createSegmentsForValues(LiveRange & LR,iterator_range<LiveInterval::vni_iterator> VNIs)358 static void createSegmentsForValues(LiveRange &LR,
359     iterator_range<LiveInterval::vni_iterator> VNIs) {
360   for (VNInfo *VNI : VNIs) {
361     if (VNI->isUnused())
362       continue;
363     SlotIndex Def = VNI->def;
364     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
365   }
366 }
367 
extendSegmentsToUses(LiveRange & Segments,ShrinkToUsesWorkList & WorkList,Register Reg,LaneBitmask LaneMask)368 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
369                                          ShrinkToUsesWorkList &WorkList,
370                                          Register Reg, LaneBitmask LaneMask) {
371   // Keep track of the PHIs that are in use.
372   SmallPtrSet<VNInfo*, 8> UsedPHIs;
373   // Blocks that have already been added to WorkList as live-out.
374   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
375 
376   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
377         -> const LiveRange& {
378     if (M.none())
379       return I;
380     for (const LiveInterval::SubRange &SR : I.subranges()) {
381       if ((SR.LaneMask & M).any()) {
382         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
383         return SR;
384       }
385     }
386     llvm_unreachable("Subrange for mask not found");
387   };
388 
389   const LiveInterval &LI = getInterval(Reg);
390   const LiveRange &OldRange = getSubRange(LI, LaneMask);
391 
392   // Extend intervals to reach all uses in WorkList.
393   while (!WorkList.empty()) {
394     SlotIndex Idx = WorkList.back().first;
395     VNInfo *VNI = WorkList.back().second;
396     WorkList.pop_back();
397     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
398     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
399 
400     // Extend the live range for VNI to be live at Idx.
401     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
402       assert(ExtVNI == VNI && "Unexpected existing value number");
403       (void)ExtVNI;
404       // Is this a PHIDef we haven't seen before?
405       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
406           !UsedPHIs.insert(VNI).second)
407         continue;
408       // The PHI is live, make sure the predecessors are live-out.
409       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
410         if (!LiveOut.insert(Pred).second)
411           continue;
412         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
413         // A predecessor is not required to have a live-out value for a PHI.
414         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
415           WorkList.push_back(std::make_pair(Stop, PVNI));
416       }
417       continue;
418     }
419 
420     // VNI is live-in to MBB.
421     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
422     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
423 
424     // Make sure VNI is live-out from the predecessors.
425     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
426       if (!LiveOut.insert(Pred).second)
427         continue;
428       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
429       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
430         assert(OldVNI == VNI && "Wrong value out of predecessor");
431         (void)OldVNI;
432         WorkList.push_back(std::make_pair(Stop, VNI));
433       } else {
434 #ifndef NDEBUG
435         // There was no old VNI. Verify that Stop is jointly dominated
436         // by <undef>s for this live range.
437         assert(LaneMask.any() &&
438                "Missing value out of predecessor for main range");
439         SmallVector<SlotIndex,8> Undefs;
440         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
441         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
442                "Missing value out of predecessor for subrange");
443 #endif
444       }
445     }
446   }
447 }
448 
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)449 bool LiveIntervals::shrinkToUses(LiveInterval *li,
450                                  SmallVectorImpl<MachineInstr*> *dead) {
451   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
452   assert(li->reg().isVirtual() && "Can only shrink virtual registers");
453 
454   // Shrink subregister live ranges.
455   bool NeedsCleanup = false;
456   for (LiveInterval::SubRange &S : li->subranges()) {
457     shrinkToUses(S, li->reg());
458     if (S.empty())
459       NeedsCleanup = true;
460   }
461   if (NeedsCleanup)
462     li->removeEmptySubRanges();
463 
464   // Find all the values used, including PHI kills.
465   ShrinkToUsesWorkList WorkList;
466 
467   // Visit all instructions reading li->reg().
468   Register Reg = li->reg();
469   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
470     if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
471       continue;
472     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
473     LiveQueryResult LRQ = li->Query(Idx);
474     VNInfo *VNI = LRQ.valueIn();
475     if (!VNI) {
476       // This shouldn't happen: readsVirtualRegister returns true, but there is
477       // no live value. It is likely caused by a target getting <undef> flags
478       // wrong.
479       LLVM_DEBUG(
480           dbgs() << Idx << '\t' << UseMI
481                  << "Warning: Instr claims to read non-existent value in "
482                  << *li << '\n');
483       continue;
484     }
485     // Special case: An early-clobber tied operand reads and writes the
486     // register one slot early.
487     if (VNInfo *DefVNI = LRQ.valueDefined())
488       Idx = DefVNI->def;
489 
490     WorkList.push_back(std::make_pair(Idx, VNI));
491   }
492 
493   // Create new live ranges with only minimal live segments per def.
494   LiveRange NewLR;
495   createSegmentsForValues(NewLR, li->vnis());
496   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
497 
498   // Move the trimmed segments back.
499   li->segments.swap(NewLR.segments);
500 
501   // Handle dead values.
502   bool CanSeparate = computeDeadValues(*li, dead);
503   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
504   return CanSeparate;
505 }
506 
computeDeadValues(LiveInterval & LI,SmallVectorImpl<MachineInstr * > * dead)507 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
508                                       SmallVectorImpl<MachineInstr*> *dead) {
509   bool MayHaveSplitComponents = false;
510 
511   for (VNInfo *VNI : LI.valnos) {
512     if (VNI->isUnused())
513       continue;
514     SlotIndex Def = VNI->def;
515     LiveRange::iterator I = LI.FindSegmentContaining(Def);
516     assert(I != LI.end() && "Missing segment for VNI");
517 
518     // Is the register live before? Otherwise we may have to add a read-undef
519     // flag for subregister defs.
520     Register VReg = LI.reg();
521     if (MRI->shouldTrackSubRegLiveness(VReg)) {
522       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
523         MachineInstr *MI = getInstructionFromIndex(Def);
524         MI->setRegisterDefReadUndef(VReg);
525       }
526     }
527 
528     if (I->end != Def.getDeadSlot())
529       continue;
530     if (VNI->isPHIDef()) {
531       // This is a dead PHI. Remove it.
532       VNI->markUnused();
533       LI.removeSegment(I);
534       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
535     } else {
536       // This is a dead def. Make sure the instruction knows.
537       MachineInstr *MI = getInstructionFromIndex(Def);
538       assert(MI && "No instruction defining live value");
539       MI->addRegisterDead(LI.reg(), TRI);
540 
541       if (dead && MI->allDefsAreDead()) {
542         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
543         dead->push_back(MI);
544       }
545     }
546     MayHaveSplitComponents = true;
547   }
548   return MayHaveSplitComponents;
549 }
550 
shrinkToUses(LiveInterval::SubRange & SR,Register Reg)551 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
552   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
553   assert(Reg.isVirtual() && "Can only shrink virtual registers");
554   // Find all the values used, including PHI kills.
555   ShrinkToUsesWorkList WorkList;
556 
557   // Visit all instructions reading Reg.
558   SlotIndex LastIdx;
559   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
560     // Skip "undef" uses.
561     if (!MO.readsReg())
562       continue;
563     // Maybe the operand is for a subregister we don't care about.
564     unsigned SubReg = MO.getSubReg();
565     if (SubReg != 0) {
566       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
567       if ((LaneMask & SR.LaneMask).none())
568         continue;
569     }
570     // We only need to visit each instruction once.
571     MachineInstr *UseMI = MO.getParent();
572     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
573     if (Idx == LastIdx)
574       continue;
575     LastIdx = Idx;
576 
577     LiveQueryResult LRQ = SR.Query(Idx);
578     VNInfo *VNI = LRQ.valueIn();
579     // For Subranges it is possible that only undef values are left in that
580     // part of the subregister, so there is no real liverange at the use
581     if (!VNI)
582       continue;
583 
584     // Special case: An early-clobber tied operand reads and writes the
585     // register one slot early.
586     if (VNInfo *DefVNI = LRQ.valueDefined())
587       Idx = DefVNI->def;
588 
589     WorkList.push_back(std::make_pair(Idx, VNI));
590   }
591 
592   // Create a new live ranges with only minimal live segments per def.
593   LiveRange NewLR;
594   createSegmentsForValues(NewLR, SR.vnis());
595   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
596 
597   // Move the trimmed ranges back.
598   SR.segments.swap(NewLR.segments);
599 
600   // Remove dead PHI value numbers
601   for (VNInfo *VNI : SR.valnos) {
602     if (VNI->isUnused())
603       continue;
604     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
605     assert(Segment != nullptr && "Missing segment for VNI");
606     if (Segment->end != VNI->def.getDeadSlot())
607       continue;
608     if (VNI->isPHIDef()) {
609       // This is a dead PHI. Remove it.
610       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
611                         << " may separate interval\n");
612       VNI->markUnused();
613       SR.removeSegment(*Segment);
614     }
615   }
616 
617   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
618 }
619 
extendToIndices(LiveRange & LR,ArrayRef<SlotIndex> Indices,ArrayRef<SlotIndex> Undefs)620 void LiveIntervals::extendToIndices(LiveRange &LR,
621                                     ArrayRef<SlotIndex> Indices,
622                                     ArrayRef<SlotIndex> Undefs) {
623   assert(LICalc && "LICalc not initialized.");
624   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
625   for (SlotIndex Idx : Indices)
626     LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
627 }
628 
pruneValue(LiveRange & LR,SlotIndex Kill,SmallVectorImpl<SlotIndex> * EndPoints)629 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
630                                SmallVectorImpl<SlotIndex> *EndPoints) {
631   LiveQueryResult LRQ = LR.Query(Kill);
632   VNInfo *VNI = LRQ.valueOutOrDead();
633   if (!VNI)
634     return;
635 
636   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
637   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
638 
639   // If VNI isn't live out from KillMBB, the value is trivially pruned.
640   if (LRQ.endPoint() < MBBEnd) {
641     LR.removeSegment(Kill, LRQ.endPoint());
642     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
643     return;
644   }
645 
646   // VNI is live out of KillMBB.
647   LR.removeSegment(Kill, MBBEnd);
648   if (EndPoints) EndPoints->push_back(MBBEnd);
649 
650   // Find all blocks that are reachable from KillMBB without leaving VNI's live
651   // range. It is possible that KillMBB itself is reachable, so start a DFS
652   // from each successor.
653   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
654   VisitedTy Visited;
655   for (MachineBasicBlock *Succ : KillMBB->successors()) {
656     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
657          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
658          I != E;) {
659       MachineBasicBlock *MBB = *I;
660 
661       // Check if VNI is live in to MBB.
662       SlotIndex MBBStart, MBBEnd;
663       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
664       LiveQueryResult LRQ = LR.Query(MBBStart);
665       if (LRQ.valueIn() != VNI) {
666         // This block isn't part of the VNI segment. Prune the search.
667         I.skipChildren();
668         continue;
669       }
670 
671       // Prune the search if VNI is killed in MBB.
672       if (LRQ.endPoint() < MBBEnd) {
673         LR.removeSegment(MBBStart, LRQ.endPoint());
674         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
675         I.skipChildren();
676         continue;
677       }
678 
679       // VNI is live through MBB.
680       LR.removeSegment(MBBStart, MBBEnd);
681       if (EndPoints) EndPoints->push_back(MBBEnd);
682       ++I;
683     }
684   }
685 }
686 
687 //===----------------------------------------------------------------------===//
688 // Register allocator hooks.
689 //
690 
addKillFlags(const VirtRegMap * VRM)691 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
692   // Keep track of regunit ranges.
693   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
694 
695   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
696     Register Reg = Register::index2VirtReg(i);
697     if (MRI->reg_nodbg_empty(Reg))
698       continue;
699     const LiveInterval &LI = getInterval(Reg);
700     if (LI.empty())
701       continue;
702 
703     // Target may have not allocated this yet.
704     Register PhysReg = VRM->getPhys(Reg);
705     if (!PhysReg)
706       continue;
707 
708     // Find the regunit intervals for the assigned register. They may overlap
709     // the virtual register live range, cancelling any kills.
710     RU.clear();
711     for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid();
712          ++Unit) {
713       const LiveRange &RURange = getRegUnit(*Unit);
714       if (RURange.empty())
715         continue;
716       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
717     }
718     // Every instruction that kills Reg corresponds to a segment range end
719     // point.
720     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
721          ++RI) {
722       // A block index indicates an MBB edge.
723       if (RI->end.isBlock())
724         continue;
725       MachineInstr *MI = getInstructionFromIndex(RI->end);
726       if (!MI)
727         continue;
728 
729       // Check if any of the regunits are live beyond the end of RI. That could
730       // happen when a physreg is defined as a copy of a virtreg:
731       //
732       //   %eax = COPY %5
733       //   FOO %5             <--- MI, cancel kill because %eax is live.
734       //   BAR killed %eax
735       //
736       // There should be no kill flag on FOO when %5 is rewritten as %eax.
737       for (auto &RUP : RU) {
738         const LiveRange &RURange = *RUP.first;
739         LiveRange::const_iterator &I = RUP.second;
740         if (I == RURange.end())
741           continue;
742         I = RURange.advanceTo(I, RI->end);
743         if (I == RURange.end() || I->start >= RI->end)
744           continue;
745         // I is overlapping RI.
746         goto CancelKill;
747       }
748 
749       if (MRI->subRegLivenessEnabled()) {
750         // When reading a partial undefined value we must not add a kill flag.
751         // The regalloc might have used the undef lane for something else.
752         // Example:
753         //     %1 = ...                  ; R32: %1
754         //     %2:high16 = ...           ; R64: %2
755         //        = read killed %2        ; R64: %2
756         //        = read %1              ; R32: %1
757         // The <kill> flag is correct for %2, but the register allocator may
758         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
759         // are actually never written by %2. After assignment the <kill>
760         // flag at the read instruction is invalid.
761         LaneBitmask DefinedLanesMask;
762         if (LI.hasSubRanges()) {
763           // Compute a mask of lanes that are defined.
764           DefinedLanesMask = LaneBitmask::getNone();
765           for (const LiveInterval::SubRange &SR : LI.subranges())
766             for (const LiveRange::Segment &Segment : SR.segments) {
767               if (Segment.start >= RI->end)
768                 break;
769               if (Segment.end == RI->end) {
770                 DefinedLanesMask |= SR.LaneMask;
771                 break;
772               }
773             }
774         } else
775           DefinedLanesMask = LaneBitmask::getAll();
776 
777         bool IsFullWrite = false;
778         for (const MachineOperand &MO : MI->operands()) {
779           if (!MO.isReg() || MO.getReg() != Reg)
780             continue;
781           if (MO.isUse()) {
782             // Reading any undefined lanes?
783             unsigned SubReg = MO.getSubReg();
784             LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
785                                          : MRI->getMaxLaneMaskForVReg(Reg);
786             if ((UseMask & ~DefinedLanesMask).any())
787               goto CancelKill;
788           } else if (MO.getSubReg() == 0) {
789             // Writing to the full register?
790             assert(MO.isDef());
791             IsFullWrite = true;
792           }
793         }
794 
795         // If an instruction writes to a subregister, a new segment starts in
796         // the LiveInterval. But as this is only overriding part of the register
797         // adding kill-flags is not correct here after registers have been
798         // assigned.
799         if (!IsFullWrite) {
800           // Next segment has to be adjacent in the subregister write case.
801           LiveRange::const_iterator N = std::next(RI);
802           if (N != LI.end() && N->start == RI->end)
803             goto CancelKill;
804         }
805       }
806 
807       MI->addRegisterKilled(Reg, nullptr);
808       continue;
809 CancelKill:
810       MI->clearRegisterKills(Reg, nullptr);
811     }
812   }
813 }
814 
815 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const816 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
817   assert(!LI.empty() && "LiveInterval is empty.");
818 
819   // A local live range must be fully contained inside the block, meaning it is
820   // defined and killed at instructions, not at block boundaries. It is not
821   // live in or out of any block.
822   //
823   // It is technically possible to have a PHI-defined live range identical to a
824   // single block, but we are going to return false in that case.
825 
826   SlotIndex Start = LI.beginIndex();
827   if (Start.isBlock())
828     return nullptr;
829 
830   SlotIndex Stop = LI.endIndex();
831   if (Stop.isBlock())
832     return nullptr;
833 
834   // getMBBFromIndex doesn't need to search the MBB table when both indexes
835   // belong to proper instructions.
836   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
837   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
838   return MBB1 == MBB2 ? MBB1 : nullptr;
839 }
840 
841 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const842 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
843   for (const VNInfo *PHI : LI.valnos) {
844     if (PHI->isUnused() || !PHI->isPHIDef())
845       continue;
846     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
847     // Conservatively return true instead of scanning huge predecessor lists.
848     if (PHIMBB->pred_size() > 100)
849       return true;
850     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
851       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
852         return true;
853   }
854   return false;
855 }
856 
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineInstr & MI)857 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
858                                     const MachineBlockFrequencyInfo *MBFI,
859                                     const MachineInstr &MI) {
860   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
861 }
862 
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineBasicBlock * MBB)863 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
864                                     const MachineBlockFrequencyInfo *MBFI,
865                                     const MachineBasicBlock *MBB) {
866   return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
867 }
868 
869 LiveRange::Segment
addSegmentToEndOfBlock(Register Reg,MachineInstr & startInst)870 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
871   LiveInterval &Interval = createEmptyInterval(Reg);
872   VNInfo *VN = Interval.getNextValue(
873       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
874       getVNInfoAllocator());
875   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
876                        getMBBEndIdx(startInst.getParent()), VN);
877   Interval.addSegment(S);
878 
879   return S;
880 }
881 
882 //===----------------------------------------------------------------------===//
883 //                          Register mask functions
884 //===----------------------------------------------------------------------===//
885 /// Check whether use of reg in MI is live-through. Live-through means that
886 /// the value is alive on exit from Machine instruction. The example of such
887 /// use is a deopt value in statepoint instruction.
hasLiveThroughUse(const MachineInstr * MI,Register Reg)888 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
889   if (MI->getOpcode() != TargetOpcode::STATEPOINT)
890     return false;
891   StatepointOpers SO(MI);
892   if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
893     return false;
894   for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
895        ++Idx) {
896     const MachineOperand &MO = MI->getOperand(Idx);
897     if (MO.isReg() && MO.getReg() == Reg)
898       return true;
899   }
900   return false;
901 }
902 
checkRegMaskInterference(const LiveInterval & LI,BitVector & UsableRegs)903 bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
904                                              BitVector &UsableRegs) {
905   if (LI.empty())
906     return false;
907   LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
908 
909   // Use a smaller arrays for local live ranges.
910   ArrayRef<SlotIndex> Slots;
911   ArrayRef<const uint32_t*> Bits;
912   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
913     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
914     Bits = getRegMaskBitsInBlock(MBB->getNumber());
915   } else {
916     Slots = getRegMaskSlots();
917     Bits = getRegMaskBits();
918   }
919 
920   // We are going to enumerate all the register mask slots contained in LI.
921   // Start with a binary search of RegMaskSlots to find a starting point.
922   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
923   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
924 
925   // No slots in range, LI begins after the last call.
926   if (SlotI == SlotE)
927     return false;
928 
929   bool Found = false;
930   // Utility to union regmasks.
931   auto unionBitMask = [&](unsigned Idx) {
932       if (!Found) {
933         // This is the first overlap. Initialize UsableRegs to all ones.
934         UsableRegs.clear();
935         UsableRegs.resize(TRI->getNumRegs(), true);
936         Found = true;
937       }
938       // Remove usable registers clobbered by this mask.
939       UsableRegs.clearBitsNotInMask(Bits[Idx]);
940   };
941   while (true) {
942     assert(*SlotI >= LiveI->start);
943     // Loop over all slots overlapping this segment.
944     while (*SlotI < LiveI->end) {
945       // *SlotI overlaps LI. Collect mask bits.
946       unionBitMask(SlotI - Slots.begin());
947       if (++SlotI == SlotE)
948         return Found;
949     }
950     // If segment ends with live-through use we need to collect its regmask.
951     if (*SlotI == LiveI->end)
952       if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
953         if (hasLiveThroughUse(MI, LI.reg()))
954           unionBitMask(SlotI++ - Slots.begin());
955     // *SlotI is beyond the current LI segment.
956     // Special advance implementation to not miss next LiveI->end.
957     if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
958       return Found;
959     while (LiveI->end < *SlotI)
960       ++LiveI;
961     // Advance SlotI until it overlaps.
962     while (*SlotI < LiveI->start)
963       if (++SlotI == SlotE)
964         return Found;
965   }
966 }
967 
968 //===----------------------------------------------------------------------===//
969 //                         IntervalUpdate class.
970 //===----------------------------------------------------------------------===//
971 
972 /// Toolkit used by handleMove to trim or extend live intervals.
973 class LiveIntervals::HMEditor {
974 private:
975   LiveIntervals& LIS;
976   const MachineRegisterInfo& MRI;
977   const TargetRegisterInfo& TRI;
978   SlotIndex OldIdx;
979   SlotIndex NewIdx;
980   SmallPtrSet<LiveRange*, 8> Updated;
981   bool UpdateFlags;
982 
983 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex OldIdx,SlotIndex NewIdx,bool UpdateFlags)984   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
985            const TargetRegisterInfo& TRI,
986            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
987     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
988       UpdateFlags(UpdateFlags) {}
989 
990   // FIXME: UpdateFlags is a workaround that creates live intervals for all
991   // physregs, even those that aren't needed for regalloc, in order to update
992   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
993   // flags, and postRA passes will use a live register utility instead.
getRegUnitLI(unsigned Unit)994   LiveRange *getRegUnitLI(unsigned Unit) {
995     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
996       return &LIS.getRegUnit(Unit);
997     return LIS.getCachedRegUnit(Unit);
998   }
999 
1000   /// Update all live ranges touched by MI, assuming a move from OldIdx to
1001   /// NewIdx.
updateAllRanges(MachineInstr * MI)1002   void updateAllRanges(MachineInstr *MI) {
1003     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
1004                       << *MI);
1005     bool hasRegMask = false;
1006     for (MachineOperand &MO : MI->operands()) {
1007       if (MO.isRegMask())
1008         hasRegMask = true;
1009       if (!MO.isReg())
1010         continue;
1011       if (MO.isUse()) {
1012         if (!MO.readsReg())
1013           continue;
1014         // Aggressively clear all kill flags.
1015         // They are reinserted by VirtRegRewriter.
1016         MO.setIsKill(false);
1017       }
1018 
1019       Register Reg = MO.getReg();
1020       if (!Reg)
1021         continue;
1022       if (Reg.isVirtual()) {
1023         LiveInterval &LI = LIS.getInterval(Reg);
1024         if (LI.hasSubRanges()) {
1025           unsigned SubReg = MO.getSubReg();
1026           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1027                                         : MRI.getMaxLaneMaskForVReg(Reg);
1028           for (LiveInterval::SubRange &S : LI.subranges()) {
1029             if ((S.LaneMask & LaneMask).none())
1030               continue;
1031             updateRange(S, Reg, S.LaneMask);
1032           }
1033         }
1034         updateRange(LI, Reg, LaneBitmask::getNone());
1035         // If main range has a hole and we are moving a subrange use across
1036         // the hole updateRange() cannot properly handle it since it only
1037         // gets the LiveRange and not the whole LiveInterval. As a result
1038         // we may end up with a main range not covering all subranges.
1039         // This is extremely rare case, so let's check and reconstruct the
1040         // main range.
1041         if (LI.hasSubRanges()) {
1042           unsigned SubReg = MO.getSubReg();
1043           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1044                                         : MRI.getMaxLaneMaskForVReg(Reg);
1045           for (LiveInterval::SubRange &S : LI.subranges()) {
1046             if ((S.LaneMask & LaneMask).none() || LI.covers(S))
1047               continue;
1048             LI.clear();
1049             LIS.constructMainRangeFromSubranges(LI);
1050             break;
1051           }
1052         }
1053 
1054         continue;
1055       }
1056 
1057       // For physregs, only update the regunits that actually have a
1058       // precomputed live range.
1059       for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid();
1060            ++Units)
1061         if (LiveRange *LR = getRegUnitLI(*Units))
1062           updateRange(*LR, *Units, LaneBitmask::getNone());
1063     }
1064     if (hasRegMask)
1065       updateRegMaskSlots();
1066   }
1067 
1068 private:
1069   /// Update a single live range, assuming an instruction has been moved from
1070   /// OldIdx to NewIdx.
updateRange(LiveRange & LR,Register Reg,LaneBitmask LaneMask)1071   void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1072     if (!Updated.insert(&LR).second)
1073       return;
1074     LLVM_DEBUG({
1075       dbgs() << "     ";
1076       if (Reg.isVirtual()) {
1077         dbgs() << printReg(Reg);
1078         if (LaneMask.any())
1079           dbgs() << " L" << PrintLaneMask(LaneMask);
1080       } else {
1081         dbgs() << printRegUnit(Reg, &TRI);
1082       }
1083       dbgs() << ":\t" << LR << '\n';
1084     });
1085     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1086       handleMoveDown(LR);
1087     else
1088       handleMoveUp(LR, Reg, LaneMask);
1089     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1090     LR.verify();
1091   }
1092 
1093   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1094   /// to NewIdx (OldIdx < NewIdx).
handleMoveDown(LiveRange & LR)1095   void handleMoveDown(LiveRange &LR) {
1096     LiveRange::iterator E = LR.end();
1097     // Segment going into OldIdx.
1098     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1099 
1100     // No value live before or after OldIdx? Nothing to do.
1101     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1102       return;
1103 
1104     LiveRange::iterator OldIdxOut;
1105     // Do we have a value live-in to OldIdx?
1106     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1107       // If the live-in value already extends to NewIdx, there is nothing to do.
1108       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1109         return;
1110       // Aggressively remove all kill flags from the old kill point.
1111       // Kill flags shouldn't be used while live intervals exist, they will be
1112       // reinserted by VirtRegRewriter.
1113       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1114         for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1115           if (MOP.isReg() && MOP.isUse())
1116             MOP.setIsKill(false);
1117 
1118       // Is there a def before NewIdx which is not OldIdx?
1119       LiveRange::iterator Next = std::next(OldIdxIn);
1120       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1121           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1122         // If we are here then OldIdx was just a use but not a def. We only have
1123         // to ensure liveness extends to NewIdx.
1124         LiveRange::iterator NewIdxIn =
1125           LR.advanceTo(Next, NewIdx.getBaseIndex());
1126         // Extend the segment before NewIdx if necessary.
1127         if (NewIdxIn == E ||
1128             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1129           LiveRange::iterator Prev = std::prev(NewIdxIn);
1130           Prev->end = NewIdx.getRegSlot();
1131         }
1132         // Extend OldIdxIn.
1133         OldIdxIn->end = Next->start;
1134         return;
1135       }
1136 
1137       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1138       // invalid by overlapping ranges.
1139       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1140       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1141       // If this was not a kill, then there was no def and we're done.
1142       if (!isKill)
1143         return;
1144 
1145       // Did we have a Def at OldIdx?
1146       OldIdxOut = Next;
1147       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1148         return;
1149     } else {
1150       OldIdxOut = OldIdxIn;
1151     }
1152 
1153     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1154     // to the segment starting there.
1155     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1156            "No def?");
1157     VNInfo *OldIdxVNI = OldIdxOut->valno;
1158     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1159 
1160     // If the defined value extends beyond NewIdx, just move the beginning
1161     // of the segment to NewIdx.
1162     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1163     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1164       OldIdxVNI->def = NewIdxDef;
1165       OldIdxOut->start = OldIdxVNI->def;
1166       return;
1167     }
1168 
1169     // If we are here then we have a Definition at OldIdx which ends before
1170     // NewIdx.
1171 
1172     // Is there an existing Def at NewIdx?
1173     LiveRange::iterator AfterNewIdx
1174       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1175     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1176     if (!OldIdxDefIsDead &&
1177         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1178       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1179       VNInfo *DefVNI;
1180       if (OldIdxOut != LR.begin() &&
1181           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1182                                      OldIdxOut->start)) {
1183         // There is no gap between OldIdxOut and its predecessor anymore,
1184         // merge them.
1185         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1186         DefVNI = OldIdxVNI;
1187         IPrev->end = OldIdxOut->end;
1188       } else {
1189         // The value is live in to OldIdx
1190         LiveRange::iterator INext = std::next(OldIdxOut);
1191         assert(INext != E && "Must have following segment");
1192         // We merge OldIdxOut and its successor. As we're dealing with subreg
1193         // reordering, there is always a successor to OldIdxOut in the same BB
1194         // We don't need INext->valno anymore and will reuse for the new segment
1195         // we create later.
1196         DefVNI = OldIdxVNI;
1197         INext->start = OldIdxOut->end;
1198         INext->valno->def = INext->start;
1199       }
1200       // If NewIdx is behind the last segment, extend that and append a new one.
1201       if (AfterNewIdx == E) {
1202         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1203         // one position.
1204         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1205         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1206         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1207         // The last segment is undefined now, reuse it for a dead def.
1208         LiveRange::iterator NewSegment = std::prev(E);
1209         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1210                                          DefVNI);
1211         DefVNI->def = NewIdxDef;
1212 
1213         LiveRange::iterator Prev = std::prev(NewSegment);
1214         Prev->end = NewIdxDef;
1215       } else {
1216         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1217         // one position.
1218         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1219         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1220         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1221         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1222         // We have two cases:
1223         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1224           // Case 1: NewIdx is inside a liverange. Split this liverange at
1225           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1226           LiveRange::iterator NewSegment = AfterNewIdx;
1227           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1228           Prev->valno->def = NewIdxDef;
1229 
1230           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1231           DefVNI->def = Prev->start;
1232         } else {
1233           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1234           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1235           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1236           DefVNI->def = NewIdxDef;
1237           assert(DefVNI != AfterNewIdx->valno);
1238         }
1239       }
1240       return;
1241     }
1242 
1243     if (AfterNewIdx != E &&
1244         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1245       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1246       // that value.
1247       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1248       LR.removeValNo(OldIdxVNI);
1249     } else {
1250       // There was no existing def at NewIdx. We need to create a dead def
1251       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1252       // a new segment at the place where we want to construct the dead def.
1253       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1254       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1255       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1256       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1257       // We can reuse OldIdxVNI now.
1258       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1259       VNInfo *NewSegmentVNI = OldIdxVNI;
1260       NewSegmentVNI->def = NewIdxDef;
1261       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1262                                        NewSegmentVNI);
1263     }
1264   }
1265 
1266   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1267   /// to NewIdx (NewIdx < OldIdx).
handleMoveUp(LiveRange & LR,Register Reg,LaneBitmask LaneMask)1268   void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1269     LiveRange::iterator E = LR.end();
1270     // Segment going into OldIdx.
1271     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1272 
1273     // No value live before or after OldIdx? Nothing to do.
1274     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1275       return;
1276 
1277     LiveRange::iterator OldIdxOut;
1278     // Do we have a value live-in to OldIdx?
1279     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1280       // If the live-in value isn't killed here, then we have no Def at
1281       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1282       // to do.
1283       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1284       if (!isKill)
1285         return;
1286 
1287       // At this point we have to move OldIdxIn->end back to the nearest
1288       // previous use or (dead-)def but no further than NewIdx.
1289       SlotIndex DefBeforeOldIdx
1290         = std::max(OldIdxIn->start.getDeadSlot(),
1291                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1292       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1293 
1294       // Did we have a Def at OldIdx? If not we are done now.
1295       OldIdxOut = std::next(OldIdxIn);
1296       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1297         return;
1298     } else {
1299       OldIdxOut = OldIdxIn;
1300       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1301     }
1302 
1303     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1304     // to the segment starting there.
1305     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1306            "No def?");
1307     VNInfo *OldIdxVNI = OldIdxOut->valno;
1308     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1309     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1310 
1311     // Is there an existing def at NewIdx?
1312     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1313     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1314     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1315       assert(NewIdxOut->valno != OldIdxVNI &&
1316              "Same value defined more than once?");
1317       // If OldIdx was a dead def remove it.
1318       if (!OldIdxDefIsDead) {
1319         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1320         // NewIdx so it can take its place.
1321         OldIdxVNI->def = NewIdxDef;
1322         OldIdxOut->start = NewIdxDef;
1323         LR.removeValNo(NewIdxOut->valno);
1324       } else {
1325         // Simply remove the dead def at OldIdx.
1326         LR.removeValNo(OldIdxVNI);
1327       }
1328     } else {
1329       // Previously nothing was live after NewIdx, so all we have to do now is
1330       // move the begin of OldIdxOut to NewIdx.
1331       if (!OldIdxDefIsDead) {
1332         // Do we have any intermediate Defs between OldIdx and NewIdx?
1333         if (OldIdxIn != E &&
1334             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1335           // OldIdx is not a dead def and NewIdx is before predecessor start.
1336           LiveRange::iterator NewIdxIn = NewIdxOut;
1337           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1338           const SlotIndex SplitPos = NewIdxDef;
1339           OldIdxVNI = OldIdxIn->valno;
1340 
1341           SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1342           LiveRange::iterator Prev = std::prev(OldIdxIn);
1343           if (OldIdxIn != LR.begin() &&
1344               SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1345             // If the segment before OldIdx read a value defined earlier than
1346             // NewIdx, the moved instruction also reads and forwards that
1347             // value. Extend the lifetime of the new def point.
1348 
1349             // Extend to where the previous range started, unless there is
1350             // another redef first.
1351             NewDefEndPoint = std::min(OldIdxIn->start,
1352                                       std::next(NewIdxOut)->start);
1353           }
1354 
1355           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1356           OldIdxOut->valno->def = OldIdxIn->start;
1357           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1358                                           OldIdxOut->valno);
1359           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1360           // We Slide [NewIdxIn, OldIdxIn) down one position.
1361           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1362           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1363           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1364           // NewIdxIn is now considered undef so we can reuse it for the moved
1365           // value.
1366           LiveRange::iterator NewSegment = NewIdxIn;
1367           LiveRange::iterator Next = std::next(NewSegment);
1368           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1369             // There is no gap between NewSegment and its predecessor.
1370             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1371                                              Next->valno);
1372 
1373             *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1374             Next->valno->def = SplitPos;
1375           } else {
1376             // There is a gap between NewSegment and its predecessor
1377             // Value becomes live in.
1378             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1379             NewSegment->valno->def = SplitPos;
1380           }
1381         } else {
1382           // Leave the end point of a live def.
1383           OldIdxOut->start = NewIdxDef;
1384           OldIdxVNI->def = NewIdxDef;
1385           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1386             OldIdxIn->end = NewIdxDef;
1387         }
1388       } else if (OldIdxIn != E
1389           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1390           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1391         // OldIdxVNI is a dead def that has been moved into the middle of
1392         // another value in LR. That can happen when LR is a whole register,
1393         // but the dead def is a write to a subreg that is dead at NewIdx.
1394         // The dead def may have been moved across other values
1395         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1396         // down one position.
1397         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1398         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1399         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1400         // Modify the segment at NewIdxOut and the following segment to meet at
1401         // the point of the dead def, with the following segment getting
1402         // OldIdxVNI as its value number.
1403         *NewIdxOut = LiveRange::Segment(
1404             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1405         *(NewIdxOut + 1) = LiveRange::Segment(
1406             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1407         OldIdxVNI->def = NewIdxDef;
1408         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1409         for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1410           Idx->valno = OldIdxVNI;
1411         // Aggressively remove all dead flags from the former dead definition.
1412         // Kill/dead flags shouldn't be used while live intervals exist; they
1413         // will be reinserted by VirtRegRewriter.
1414         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1415           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1416             if (MO->isReg() && !MO->isUse())
1417               MO->setIsDead(false);
1418       } else {
1419         // OldIdxVNI is a dead def. It may have been moved across other values
1420         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1421         // down one position.
1422         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1423         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1424         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1425         // OldIdxVNI can be reused now to build a new dead def segment.
1426         LiveRange::iterator NewSegment = NewIdxOut;
1427         VNInfo *NewSegmentVNI = OldIdxVNI;
1428         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1429                                          NewSegmentVNI);
1430         NewSegmentVNI->def = NewIdxDef;
1431       }
1432     }
1433   }
1434 
updateRegMaskSlots()1435   void updateRegMaskSlots() {
1436     SmallVectorImpl<SlotIndex>::iterator RI =
1437         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1438     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1439            "No RegMask at OldIdx.");
1440     *RI = NewIdx.getRegSlot();
1441     assert((RI == LIS.RegMaskSlots.begin() ||
1442             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1443            "Cannot move regmask instruction above another call");
1444     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1445             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1446            "Cannot move regmask instruction below another call");
1447   }
1448 
1449   // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(SlotIndex Before,Register Reg,LaneBitmask LaneMask)1450   SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1451                               LaneBitmask LaneMask) {
1452     if (Reg.isVirtual()) {
1453       SlotIndex LastUse = Before;
1454       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1455         if (MO.isUndef())
1456           continue;
1457         unsigned SubReg = MO.getSubReg();
1458         if (SubReg != 0 && LaneMask.any()
1459             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1460           continue;
1461 
1462         const MachineInstr &MI = *MO.getParent();
1463         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1464         if (InstSlot > LastUse && InstSlot < OldIdx)
1465           LastUse = InstSlot.getRegSlot();
1466       }
1467       return LastUse;
1468     }
1469 
1470     // This is a regunit interval, so scanning the use list could be very
1471     // expensive. Scan upwards from OldIdx instead.
1472     assert(Before < OldIdx && "Expected upwards move");
1473     SlotIndexes *Indexes = LIS.getSlotIndexes();
1474     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1475 
1476     // OldIdx may not correspond to an instruction any longer, so set MII to
1477     // point to the next instruction after OldIdx, or MBB->end().
1478     MachineBasicBlock::iterator MII = MBB->end();
1479     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1480                            Indexes->getNextNonNullIndex(OldIdx)))
1481       if (MI->getParent() == MBB)
1482         MII = MI;
1483 
1484     MachineBasicBlock::iterator Begin = MBB->begin();
1485     while (MII != Begin) {
1486       if ((--MII)->isDebugOrPseudoInstr())
1487         continue;
1488       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1489 
1490       // Stop searching when Before is reached.
1491       if (!SlotIndex::isEarlierInstr(Before, Idx))
1492         return Before;
1493 
1494       // Check if MII uses Reg.
1495       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1496         if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() &&
1497             TRI.hasRegUnit(MO->getReg(), Reg))
1498           return Idx.getRegSlot();
1499     }
1500     // Didn't reach Before. It must be the first instruction in the block.
1501     return Before;
1502   }
1503 };
1504 
handleMove(MachineInstr & MI,bool UpdateFlags)1505 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1506   // It is fine to move a bundle as a whole, but not an individual instruction
1507   // inside it.
1508   assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1509          "Cannot move instruction in bundle");
1510   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1511   Indexes->removeMachineInstrFromMaps(MI);
1512   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1513   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1514          OldIndex < getMBBEndIdx(MI.getParent()) &&
1515          "Cannot handle moves across basic block boundaries.");
1516 
1517   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1518   HME.updateAllRanges(&MI);
1519 }
1520 
handleMoveIntoNewBundle(MachineInstr & BundleStart,bool UpdateFlags)1521 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1522                                             bool UpdateFlags) {
1523   assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1524          "Bundle start is not a bundle");
1525   SmallVector<SlotIndex, 16> ToProcess;
1526   const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1527   auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1528 
1529   auto I = BundleStart.getIterator();
1530   I++;
1531   while (I != BundleEnd) {
1532     if (!Indexes->hasIndex(*I))
1533       continue;
1534     SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1535     ToProcess.push_back(OldIndex);
1536     Indexes->removeMachineInstrFromMaps(*I, true);
1537     I++;
1538   }
1539   for (SlotIndex OldIndex : ToProcess) {
1540     HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1541     HME.updateAllRanges(&BundleStart);
1542   }
1543 
1544   // Fix up dead defs
1545   const SlotIndex Index = getInstructionIndex(BundleStart);
1546   for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1547     MachineOperand &MO = BundleStart.getOperand(Idx);
1548     if (!MO.isReg())
1549       continue;
1550     Register Reg = MO.getReg();
1551     if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1552       LiveInterval &LI = getInterval(Reg);
1553       LiveQueryResult LRQ = LI.Query(Index);
1554       if (LRQ.isDeadDef())
1555         MO.setIsDead();
1556     }
1557   }
1558 }
1559 
repairOldRegInRange(const MachineBasicBlock::iterator Begin,const MachineBasicBlock::iterator End,const SlotIndex EndIdx,LiveRange & LR,const Register Reg,LaneBitmask LaneMask)1560 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1561                                         const MachineBasicBlock::iterator End,
1562                                         const SlotIndex EndIdx, LiveRange &LR,
1563                                         const Register Reg,
1564                                         LaneBitmask LaneMask) {
1565   LiveInterval::iterator LII = LR.find(EndIdx);
1566   SlotIndex lastUseIdx;
1567   if (LII != LR.end() && LII->start < EndIdx) {
1568     lastUseIdx = LII->end;
1569   } else if (LII == LR.begin()) {
1570     // We may not have a liverange at all if this is a subregister untouched
1571     // between \p Begin and \p End.
1572   } else {
1573     --LII;
1574   }
1575 
1576   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1577     --I;
1578     MachineInstr &MI = *I;
1579     if (MI.isDebugOrPseudoInstr())
1580       continue;
1581 
1582     SlotIndex instrIdx = getInstructionIndex(MI);
1583     bool isStartValid = getInstructionFromIndex(LII->start);
1584     bool isEndValid = getInstructionFromIndex(LII->end);
1585 
1586     // FIXME: This doesn't currently handle early-clobber or multiple removed
1587     // defs inside of the region to repair.
1588     for (const MachineOperand &MO : MI.operands()) {
1589       if (!MO.isReg() || MO.getReg() != Reg)
1590         continue;
1591 
1592       unsigned SubReg = MO.getSubReg();
1593       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1594       if ((Mask & LaneMask).none())
1595         continue;
1596 
1597       if (MO.isDef()) {
1598         if (!isStartValid) {
1599           if (LII->end.isDead()) {
1600             LII = LR.removeSegment(LII, true);
1601             if (LII != LR.begin())
1602               --LII;
1603           } else {
1604             LII->start = instrIdx.getRegSlot();
1605             LII->valno->def = instrIdx.getRegSlot();
1606             if (MO.getSubReg() && !MO.isUndef())
1607               lastUseIdx = instrIdx.getRegSlot();
1608             else
1609               lastUseIdx = SlotIndex();
1610             continue;
1611           }
1612         }
1613 
1614         if (!lastUseIdx.isValid()) {
1615           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1616           LiveRange::Segment S(instrIdx.getRegSlot(),
1617                                instrIdx.getDeadSlot(), VNI);
1618           LII = LR.addSegment(S);
1619         } else if (LII->start != instrIdx.getRegSlot()) {
1620           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1621           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1622           LII = LR.addSegment(S);
1623         }
1624 
1625         if (MO.getSubReg() && !MO.isUndef())
1626           lastUseIdx = instrIdx.getRegSlot();
1627         else
1628           lastUseIdx = SlotIndex();
1629       } else if (MO.isUse()) {
1630         // FIXME: This should probably be handled outside of this branch,
1631         // either as part of the def case (for defs inside of the region) or
1632         // after the loop over the region.
1633         if (!isEndValid && !LII->end.isBlock())
1634           LII->end = instrIdx.getRegSlot();
1635         if (!lastUseIdx.isValid())
1636           lastUseIdx = instrIdx.getRegSlot();
1637       }
1638     }
1639   }
1640 
1641   bool isStartValid = getInstructionFromIndex(LII->start);
1642   if (!isStartValid && LII->end.isDead())
1643     LR.removeSegment(*LII, true);
1644 }
1645 
1646 void
repairIntervalsInRange(MachineBasicBlock * MBB,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,ArrayRef<Register> OrigRegs)1647 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1648                                       MachineBasicBlock::iterator Begin,
1649                                       MachineBasicBlock::iterator End,
1650                                       ArrayRef<Register> OrigRegs) {
1651   // Find anchor points, which are at the beginning/end of blocks or at
1652   // instructions that already have indexes.
1653   while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
1654     --Begin;
1655   while (End != MBB->end() && !Indexes->hasIndex(*End))
1656     ++End;
1657 
1658   SlotIndex EndIdx;
1659   if (End == MBB->end())
1660     EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1661   else
1662     EndIdx = getInstructionIndex(*End);
1663 
1664   Indexes->repairIndexesInRange(MBB, Begin, End);
1665 
1666   // Make sure a live interval exists for all register operands in the range.
1667   SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
1668   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1669     --I;
1670     MachineInstr &MI = *I;
1671     if (MI.isDebugOrPseudoInstr())
1672       continue;
1673     for (const MachineOperand &MO : MI.operands()) {
1674       if (MO.isReg() && MO.getReg().isVirtual()) {
1675         Register Reg = MO.getReg();
1676         // If the new instructions refer to subregs but the old instructions did
1677         // not, throw away any old live interval so it will be recomputed with
1678         // subranges.
1679         if (MO.getSubReg() && hasInterval(Reg) &&
1680             !getInterval(Reg).hasSubRanges() &&
1681             MRI->shouldTrackSubRegLiveness(Reg))
1682           removeInterval(Reg);
1683         if (!hasInterval(Reg)) {
1684           createAndComputeVirtRegInterval(Reg);
1685           // Don't bother to repair a freshly calculated live interval.
1686           erase_value(RegsToRepair, Reg);
1687         }
1688       }
1689     }
1690   }
1691 
1692   for (Register Reg : RegsToRepair) {
1693     if (!Reg.isVirtual())
1694       continue;
1695 
1696     LiveInterval &LI = getInterval(Reg);
1697     // FIXME: Should we support undefs that gain defs?
1698     if (!LI.hasAtLeastOneValue())
1699       continue;
1700 
1701     for (LiveInterval::SubRange &S : LI.subranges())
1702       repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1703     LI.removeEmptySubRanges();
1704 
1705     repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1706   }
1707 }
1708 
removePhysRegDefAt(MCRegister Reg,SlotIndex Pos)1709 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1710   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1711     if (LiveRange *LR = getCachedRegUnit(*Unit))
1712       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1713         LR->removeValNo(VNI);
1714   }
1715 }
1716 
removeVRegDefAt(LiveInterval & LI,SlotIndex Pos)1717 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1718   // LI may not have the main range computed yet, but its subranges may
1719   // be present.
1720   VNInfo *VNI = LI.getVNInfoAt(Pos);
1721   if (VNI != nullptr) {
1722     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1723     LI.removeValNo(VNI);
1724   }
1725 
1726   // Also remove the value defined in subranges.
1727   for (LiveInterval::SubRange &S : LI.subranges()) {
1728     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1729       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1730         S.removeValNo(SVNI);
1731   }
1732   LI.removeEmptySubRanges();
1733 }
1734 
splitSeparateComponents(LiveInterval & LI,SmallVectorImpl<LiveInterval * > & SplitLIs)1735 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1736     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1737   ConnectedVNInfoEqClasses ConEQ(*this);
1738   unsigned NumComp = ConEQ.Classify(LI);
1739   if (NumComp <= 1)
1740     return;
1741   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1742   Register Reg = LI.reg();
1743   for (unsigned I = 1; I < NumComp; ++I) {
1744     Register NewVReg = MRI->cloneVirtualRegister(Reg);
1745     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1746     SplitLIs.push_back(&NewLI);
1747   }
1748   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1749 }
1750 
constructMainRangeFromSubranges(LiveInterval & LI)1751 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1752   assert(LICalc && "LICalc not initialized.");
1753   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1754   LICalc->constructMainRangeFromSubranges(LI);
1755 }
1756