1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervalCalc.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Statepoint.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55
56 using namespace llvm;
57
58 #define DEBUG_TYPE "regalloc"
59
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis",
63 false, false)
64 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
65 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
66 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
67 "Live Interval Analysis", false, false)
68
69 #ifndef NDEBUG
70 static cl::opt<bool> EnablePrecomputePhysRegs(
71 "precompute-phys-liveness", cl::Hidden,
72 cl::desc("Eagerly compute live intervals for all physreg units."));
73 #else
74 static bool EnablePrecomputePhysRegs = false;
75 #endif // NDEBUG
76
77 namespace llvm {
78
79 cl::opt<bool> UseSegmentSetForPhysRegs(
80 "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
81 cl::desc(
82 "Use segment set for the computation of the live ranges of physregs."));
83
84 } // end namespace llvm
85
getAnalysisUsage(AnalysisUsage & AU) const86 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.setPreservesCFG();
88 AU.addPreserved<LiveVariables>();
89 AU.addPreservedID(MachineLoopInfoID);
90 AU.addRequiredTransitiveID(MachineDominatorsID);
91 AU.addPreservedID(MachineDominatorsID);
92 AU.addPreserved<SlotIndexes>();
93 AU.addRequiredTransitive<SlotIndexes>();
94 MachineFunctionPass::getAnalysisUsage(AU);
95 }
96
LiveIntervals()97 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
98 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
99 }
100
~LiveIntervals()101 LiveIntervals::~LiveIntervals() { delete LICalc; }
102
releaseMemory()103 void LiveIntervals::releaseMemory() {
104 // Free the live intervals themselves.
105 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
106 delete VirtRegIntervals[Register::index2VirtReg(i)];
107 VirtRegIntervals.clear();
108 RegMaskSlots.clear();
109 RegMaskBits.clear();
110 RegMaskBlocks.clear();
111
112 for (LiveRange *LR : RegUnitRanges)
113 delete LR;
114 RegUnitRanges.clear();
115
116 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117 VNInfoAllocator.Reset();
118 }
119
runOnMachineFunction(MachineFunction & fn)120 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
121 MF = &fn;
122 MRI = &MF->getRegInfo();
123 TRI = MF->getSubtarget().getRegisterInfo();
124 TII = MF->getSubtarget().getInstrInfo();
125 Indexes = &getAnalysis<SlotIndexes>();
126 DomTree = &getAnalysis<MachineDominatorTree>();
127
128 if (!LICalc)
129 LICalc = new LiveIntervalCalc();
130
131 // Allocate space for all virtual registers.
132 VirtRegIntervals.resize(MRI->getNumVirtRegs());
133
134 computeVirtRegs();
135 computeRegMasks();
136 computeLiveInRegUnits();
137
138 if (EnablePrecomputePhysRegs) {
139 // For stress testing, precompute live ranges of all physical register
140 // units, including reserved registers.
141 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
142 getRegUnit(i);
143 }
144 LLVM_DEBUG(dump());
145 return false;
146 }
147
print(raw_ostream & OS,const Module *) const148 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
149 OS << "********** INTERVALS **********\n";
150
151 // Dump the regunits.
152 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
153 if (LiveRange *LR = RegUnitRanges[Unit])
154 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
155
156 // Dump the virtregs.
157 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
158 Register Reg = Register::index2VirtReg(i);
159 if (hasInterval(Reg))
160 OS << getInterval(Reg) << '\n';
161 }
162
163 OS << "RegMasks:";
164 for (SlotIndex Idx : RegMaskSlots)
165 OS << ' ' << Idx;
166 OS << '\n';
167
168 printInstrs(OS);
169 }
170
printInstrs(raw_ostream & OS) const171 void LiveIntervals::printInstrs(raw_ostream &OS) const {
172 OS << "********** MACHINEINSTRS **********\n";
173 MF->print(OS, Indexes);
174 }
175
176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpInstrs() const177 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
178 printInstrs(dbgs());
179 }
180 #endif
181
createInterval(Register reg)182 LiveInterval *LiveIntervals::createInterval(Register reg) {
183 float Weight = reg.isPhysical() ? huge_valf : 0.0F;
184 return new LiveInterval(reg, Weight);
185 }
186
187 /// Compute the live interval of a virtual register, based on defs and uses.
computeVirtRegInterval(LiveInterval & LI)188 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
189 assert(LICalc && "LICalc not initialized.");
190 assert(LI.empty() && "Should only compute empty intervals.");
191 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
192 LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
193 return computeDeadValues(LI, nullptr);
194 }
195
computeVirtRegs()196 void LiveIntervals::computeVirtRegs() {
197 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
198 Register Reg = Register::index2VirtReg(i);
199 if (MRI->reg_nodbg_empty(Reg))
200 continue;
201 LiveInterval &LI = createEmptyInterval(Reg);
202 bool NeedSplit = computeVirtRegInterval(LI);
203 if (NeedSplit) {
204 SmallVector<LiveInterval*, 8> SplitLIs;
205 splitSeparateComponents(LI, SplitLIs);
206 }
207 }
208 }
209
computeRegMasks()210 void LiveIntervals::computeRegMasks() {
211 RegMaskBlocks.resize(MF->getNumBlockIDs());
212
213 // Find all instructions with regmask operands.
214 for (const MachineBasicBlock &MBB : *MF) {
215 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
216 RMB.first = RegMaskSlots.size();
217
218 // Some block starts, such as EH funclets, create masks.
219 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
220 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
221 RegMaskBits.push_back(Mask);
222 }
223
224 // Unwinders may clobber additional registers.
225 // FIXME: This functionality can possibly be merged into
226 // MachineBasicBlock::getBeginClobberMask().
227 if (MBB.isEHPad())
228 if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
229 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
230 RegMaskBits.push_back(Mask);
231 }
232
233 for (const MachineInstr &MI : MBB) {
234 for (const MachineOperand &MO : MI.operands()) {
235 if (!MO.isRegMask())
236 continue;
237 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
238 RegMaskBits.push_back(MO.getRegMask());
239 }
240 }
241
242 // Some block ends, such as funclet returns, create masks. Put the mask on
243 // the last instruction of the block, because MBB slot index intervals are
244 // half-open.
245 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
246 assert(!MBB.empty() && "empty return block?");
247 RegMaskSlots.push_back(
248 Indexes->getInstructionIndex(MBB.back()).getRegSlot());
249 RegMaskBits.push_back(Mask);
250 }
251
252 // Compute the number of register mask instructions in this block.
253 RMB.second = RegMaskSlots.size() - RMB.first;
254 }
255 }
256
257 //===----------------------------------------------------------------------===//
258 // Register Unit Liveness
259 //===----------------------------------------------------------------------===//
260 //
261 // Fixed interference typically comes from ABI boundaries: Function arguments
262 // and return values are passed in fixed registers, and so are exception
263 // pointers entering landing pads. Certain instructions require values to be
264 // present in specific registers. That is also represented through fixed
265 // interference.
266 //
267
268 /// Compute the live range of a register unit, based on the uses and defs of
269 /// aliasing registers. The range should be empty, or contain only dead
270 /// phi-defs from ABI blocks.
computeRegUnitRange(LiveRange & LR,unsigned Unit)271 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
272 assert(LICalc && "LICalc not initialized.");
273 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
274
275 // The physregs aliasing Unit are the roots and their super-registers.
276 // Create all values as dead defs before extending to uses. Note that roots
277 // may share super-registers. That's OK because createDeadDefs() is
278 // idempotent. It is very rare for a register unit to have multiple roots, so
279 // uniquing super-registers is probably not worthwhile.
280 bool IsReserved = false;
281 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
282 bool IsRootReserved = true;
283 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
284 Super.isValid(); ++Super) {
285 MCRegister Reg = *Super;
286 if (!MRI->reg_empty(Reg))
287 LICalc->createDeadDefs(LR, Reg);
288 // A register unit is considered reserved if all its roots and all their
289 // super registers are reserved.
290 if (!MRI->isReserved(Reg))
291 IsRootReserved = false;
292 }
293 IsReserved |= IsRootReserved;
294 }
295 assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
296 "reserved computation mismatch");
297
298 // Now extend LR to reach all uses.
299 // Ignore uses of reserved registers. We only track defs of those.
300 if (!IsReserved) {
301 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
302 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
303 Super.isValid(); ++Super) {
304 MCRegister Reg = *Super;
305 if (!MRI->reg_empty(Reg))
306 LICalc->extendToUses(LR, Reg);
307 }
308 }
309 }
310
311 // Flush the segment set to the segment vector.
312 if (UseSegmentSetForPhysRegs)
313 LR.flushSegmentSet();
314 }
315
316 /// Precompute the live ranges of any register units that are live-in to an ABI
317 /// block somewhere. Register values can appear without a corresponding def when
318 /// entering the entry block or a landing pad.
computeLiveInRegUnits()319 void LiveIntervals::computeLiveInRegUnits() {
320 RegUnitRanges.resize(TRI->getNumRegUnits());
321 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
322
323 // Keep track of the live range sets allocated.
324 SmallVector<unsigned, 8> NewRanges;
325
326 // Check all basic blocks for live-ins.
327 for (const MachineBasicBlock &MBB : *MF) {
328 // We only care about ABI blocks: Entry + landing pads.
329 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
330 continue;
331
332 // Create phi-defs at Begin for all live-in registers.
333 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
334 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
335 for (const auto &LI : MBB.liveins()) {
336 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
337 unsigned Unit = *Units;
338 LiveRange *LR = RegUnitRanges[Unit];
339 if (!LR) {
340 // Use segment set to speed-up initial computation of the live range.
341 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
342 NewRanges.push_back(Unit);
343 }
344 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
345 (void)VNI;
346 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
347 }
348 }
349 LLVM_DEBUG(dbgs() << '\n');
350 }
351 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
352
353 // Compute the 'normal' part of the ranges.
354 for (unsigned Unit : NewRanges)
355 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
356 }
357
createSegmentsForValues(LiveRange & LR,iterator_range<LiveInterval::vni_iterator> VNIs)358 static void createSegmentsForValues(LiveRange &LR,
359 iterator_range<LiveInterval::vni_iterator> VNIs) {
360 for (VNInfo *VNI : VNIs) {
361 if (VNI->isUnused())
362 continue;
363 SlotIndex Def = VNI->def;
364 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
365 }
366 }
367
extendSegmentsToUses(LiveRange & Segments,ShrinkToUsesWorkList & WorkList,Register Reg,LaneBitmask LaneMask)368 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
369 ShrinkToUsesWorkList &WorkList,
370 Register Reg, LaneBitmask LaneMask) {
371 // Keep track of the PHIs that are in use.
372 SmallPtrSet<VNInfo*, 8> UsedPHIs;
373 // Blocks that have already been added to WorkList as live-out.
374 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
375
376 auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
377 -> const LiveRange& {
378 if (M.none())
379 return I;
380 for (const LiveInterval::SubRange &SR : I.subranges()) {
381 if ((SR.LaneMask & M).any()) {
382 assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
383 return SR;
384 }
385 }
386 llvm_unreachable("Subrange for mask not found");
387 };
388
389 const LiveInterval &LI = getInterval(Reg);
390 const LiveRange &OldRange = getSubRange(LI, LaneMask);
391
392 // Extend intervals to reach all uses in WorkList.
393 while (!WorkList.empty()) {
394 SlotIndex Idx = WorkList.back().first;
395 VNInfo *VNI = WorkList.back().second;
396 WorkList.pop_back();
397 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
398 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
399
400 // Extend the live range for VNI to be live at Idx.
401 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
402 assert(ExtVNI == VNI && "Unexpected existing value number");
403 (void)ExtVNI;
404 // Is this a PHIDef we haven't seen before?
405 if (!VNI->isPHIDef() || VNI->def != BlockStart ||
406 !UsedPHIs.insert(VNI).second)
407 continue;
408 // The PHI is live, make sure the predecessors are live-out.
409 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
410 if (!LiveOut.insert(Pred).second)
411 continue;
412 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
413 // A predecessor is not required to have a live-out value for a PHI.
414 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
415 WorkList.push_back(std::make_pair(Stop, PVNI));
416 }
417 continue;
418 }
419
420 // VNI is live-in to MBB.
421 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
422 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
423
424 // Make sure VNI is live-out from the predecessors.
425 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
426 if (!LiveOut.insert(Pred).second)
427 continue;
428 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
429 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
430 assert(OldVNI == VNI && "Wrong value out of predecessor");
431 (void)OldVNI;
432 WorkList.push_back(std::make_pair(Stop, VNI));
433 } else {
434 #ifndef NDEBUG
435 // There was no old VNI. Verify that Stop is jointly dominated
436 // by <undef>s for this live range.
437 assert(LaneMask.any() &&
438 "Missing value out of predecessor for main range");
439 SmallVector<SlotIndex,8> Undefs;
440 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
441 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
442 "Missing value out of predecessor for subrange");
443 #endif
444 }
445 }
446 }
447 }
448
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)449 bool LiveIntervals::shrinkToUses(LiveInterval *li,
450 SmallVectorImpl<MachineInstr*> *dead) {
451 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
452 assert(li->reg().isVirtual() && "Can only shrink virtual registers");
453
454 // Shrink subregister live ranges.
455 bool NeedsCleanup = false;
456 for (LiveInterval::SubRange &S : li->subranges()) {
457 shrinkToUses(S, li->reg());
458 if (S.empty())
459 NeedsCleanup = true;
460 }
461 if (NeedsCleanup)
462 li->removeEmptySubRanges();
463
464 // Find all the values used, including PHI kills.
465 ShrinkToUsesWorkList WorkList;
466
467 // Visit all instructions reading li->reg().
468 Register Reg = li->reg();
469 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
470 if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
471 continue;
472 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
473 LiveQueryResult LRQ = li->Query(Idx);
474 VNInfo *VNI = LRQ.valueIn();
475 if (!VNI) {
476 // This shouldn't happen: readsVirtualRegister returns true, but there is
477 // no live value. It is likely caused by a target getting <undef> flags
478 // wrong.
479 LLVM_DEBUG(
480 dbgs() << Idx << '\t' << UseMI
481 << "Warning: Instr claims to read non-existent value in "
482 << *li << '\n');
483 continue;
484 }
485 // Special case: An early-clobber tied operand reads and writes the
486 // register one slot early.
487 if (VNInfo *DefVNI = LRQ.valueDefined())
488 Idx = DefVNI->def;
489
490 WorkList.push_back(std::make_pair(Idx, VNI));
491 }
492
493 // Create new live ranges with only minimal live segments per def.
494 LiveRange NewLR;
495 createSegmentsForValues(NewLR, li->vnis());
496 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
497
498 // Move the trimmed segments back.
499 li->segments.swap(NewLR.segments);
500
501 // Handle dead values.
502 bool CanSeparate = computeDeadValues(*li, dead);
503 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
504 return CanSeparate;
505 }
506
computeDeadValues(LiveInterval & LI,SmallVectorImpl<MachineInstr * > * dead)507 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
508 SmallVectorImpl<MachineInstr*> *dead) {
509 bool MayHaveSplitComponents = false;
510
511 for (VNInfo *VNI : LI.valnos) {
512 if (VNI->isUnused())
513 continue;
514 SlotIndex Def = VNI->def;
515 LiveRange::iterator I = LI.FindSegmentContaining(Def);
516 assert(I != LI.end() && "Missing segment for VNI");
517
518 // Is the register live before? Otherwise we may have to add a read-undef
519 // flag for subregister defs.
520 Register VReg = LI.reg();
521 if (MRI->shouldTrackSubRegLiveness(VReg)) {
522 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
523 MachineInstr *MI = getInstructionFromIndex(Def);
524 MI->setRegisterDefReadUndef(VReg);
525 }
526 }
527
528 if (I->end != Def.getDeadSlot())
529 continue;
530 if (VNI->isPHIDef()) {
531 // This is a dead PHI. Remove it.
532 VNI->markUnused();
533 LI.removeSegment(I);
534 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
535 } else {
536 // This is a dead def. Make sure the instruction knows.
537 MachineInstr *MI = getInstructionFromIndex(Def);
538 assert(MI && "No instruction defining live value");
539 MI->addRegisterDead(LI.reg(), TRI);
540
541 if (dead && MI->allDefsAreDead()) {
542 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
543 dead->push_back(MI);
544 }
545 }
546 MayHaveSplitComponents = true;
547 }
548 return MayHaveSplitComponents;
549 }
550
shrinkToUses(LiveInterval::SubRange & SR,Register Reg)551 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
552 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
553 assert(Reg.isVirtual() && "Can only shrink virtual registers");
554 // Find all the values used, including PHI kills.
555 ShrinkToUsesWorkList WorkList;
556
557 // Visit all instructions reading Reg.
558 SlotIndex LastIdx;
559 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
560 // Skip "undef" uses.
561 if (!MO.readsReg())
562 continue;
563 // Maybe the operand is for a subregister we don't care about.
564 unsigned SubReg = MO.getSubReg();
565 if (SubReg != 0) {
566 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
567 if ((LaneMask & SR.LaneMask).none())
568 continue;
569 }
570 // We only need to visit each instruction once.
571 MachineInstr *UseMI = MO.getParent();
572 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
573 if (Idx == LastIdx)
574 continue;
575 LastIdx = Idx;
576
577 LiveQueryResult LRQ = SR.Query(Idx);
578 VNInfo *VNI = LRQ.valueIn();
579 // For Subranges it is possible that only undef values are left in that
580 // part of the subregister, so there is no real liverange at the use
581 if (!VNI)
582 continue;
583
584 // Special case: An early-clobber tied operand reads and writes the
585 // register one slot early.
586 if (VNInfo *DefVNI = LRQ.valueDefined())
587 Idx = DefVNI->def;
588
589 WorkList.push_back(std::make_pair(Idx, VNI));
590 }
591
592 // Create a new live ranges with only minimal live segments per def.
593 LiveRange NewLR;
594 createSegmentsForValues(NewLR, SR.vnis());
595 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
596
597 // Move the trimmed ranges back.
598 SR.segments.swap(NewLR.segments);
599
600 // Remove dead PHI value numbers
601 for (VNInfo *VNI : SR.valnos) {
602 if (VNI->isUnused())
603 continue;
604 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
605 assert(Segment != nullptr && "Missing segment for VNI");
606 if (Segment->end != VNI->def.getDeadSlot())
607 continue;
608 if (VNI->isPHIDef()) {
609 // This is a dead PHI. Remove it.
610 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
611 << " may separate interval\n");
612 VNI->markUnused();
613 SR.removeSegment(*Segment);
614 }
615 }
616
617 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
618 }
619
extendToIndices(LiveRange & LR,ArrayRef<SlotIndex> Indices,ArrayRef<SlotIndex> Undefs)620 void LiveIntervals::extendToIndices(LiveRange &LR,
621 ArrayRef<SlotIndex> Indices,
622 ArrayRef<SlotIndex> Undefs) {
623 assert(LICalc && "LICalc not initialized.");
624 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
625 for (SlotIndex Idx : Indices)
626 LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
627 }
628
pruneValue(LiveRange & LR,SlotIndex Kill,SmallVectorImpl<SlotIndex> * EndPoints)629 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
630 SmallVectorImpl<SlotIndex> *EndPoints) {
631 LiveQueryResult LRQ = LR.Query(Kill);
632 VNInfo *VNI = LRQ.valueOutOrDead();
633 if (!VNI)
634 return;
635
636 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
637 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
638
639 // If VNI isn't live out from KillMBB, the value is trivially pruned.
640 if (LRQ.endPoint() < MBBEnd) {
641 LR.removeSegment(Kill, LRQ.endPoint());
642 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
643 return;
644 }
645
646 // VNI is live out of KillMBB.
647 LR.removeSegment(Kill, MBBEnd);
648 if (EndPoints) EndPoints->push_back(MBBEnd);
649
650 // Find all blocks that are reachable from KillMBB without leaving VNI's live
651 // range. It is possible that KillMBB itself is reachable, so start a DFS
652 // from each successor.
653 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
654 VisitedTy Visited;
655 for (MachineBasicBlock *Succ : KillMBB->successors()) {
656 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
657 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
658 I != E;) {
659 MachineBasicBlock *MBB = *I;
660
661 // Check if VNI is live in to MBB.
662 SlotIndex MBBStart, MBBEnd;
663 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
664 LiveQueryResult LRQ = LR.Query(MBBStart);
665 if (LRQ.valueIn() != VNI) {
666 // This block isn't part of the VNI segment. Prune the search.
667 I.skipChildren();
668 continue;
669 }
670
671 // Prune the search if VNI is killed in MBB.
672 if (LRQ.endPoint() < MBBEnd) {
673 LR.removeSegment(MBBStart, LRQ.endPoint());
674 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
675 I.skipChildren();
676 continue;
677 }
678
679 // VNI is live through MBB.
680 LR.removeSegment(MBBStart, MBBEnd);
681 if (EndPoints) EndPoints->push_back(MBBEnd);
682 ++I;
683 }
684 }
685 }
686
687 //===----------------------------------------------------------------------===//
688 // Register allocator hooks.
689 //
690
addKillFlags(const VirtRegMap * VRM)691 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
692 // Keep track of regunit ranges.
693 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
694
695 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
696 Register Reg = Register::index2VirtReg(i);
697 if (MRI->reg_nodbg_empty(Reg))
698 continue;
699 const LiveInterval &LI = getInterval(Reg);
700 if (LI.empty())
701 continue;
702
703 // Target may have not allocated this yet.
704 Register PhysReg = VRM->getPhys(Reg);
705 if (!PhysReg)
706 continue;
707
708 // Find the regunit intervals for the assigned register. They may overlap
709 // the virtual register live range, cancelling any kills.
710 RU.clear();
711 for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid();
712 ++Unit) {
713 const LiveRange &RURange = getRegUnit(*Unit);
714 if (RURange.empty())
715 continue;
716 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
717 }
718 // Every instruction that kills Reg corresponds to a segment range end
719 // point.
720 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
721 ++RI) {
722 // A block index indicates an MBB edge.
723 if (RI->end.isBlock())
724 continue;
725 MachineInstr *MI = getInstructionFromIndex(RI->end);
726 if (!MI)
727 continue;
728
729 // Check if any of the regunits are live beyond the end of RI. That could
730 // happen when a physreg is defined as a copy of a virtreg:
731 //
732 // %eax = COPY %5
733 // FOO %5 <--- MI, cancel kill because %eax is live.
734 // BAR killed %eax
735 //
736 // There should be no kill flag on FOO when %5 is rewritten as %eax.
737 for (auto &RUP : RU) {
738 const LiveRange &RURange = *RUP.first;
739 LiveRange::const_iterator &I = RUP.second;
740 if (I == RURange.end())
741 continue;
742 I = RURange.advanceTo(I, RI->end);
743 if (I == RURange.end() || I->start >= RI->end)
744 continue;
745 // I is overlapping RI.
746 goto CancelKill;
747 }
748
749 if (MRI->subRegLivenessEnabled()) {
750 // When reading a partial undefined value we must not add a kill flag.
751 // The regalloc might have used the undef lane for something else.
752 // Example:
753 // %1 = ... ; R32: %1
754 // %2:high16 = ... ; R64: %2
755 // = read killed %2 ; R64: %2
756 // = read %1 ; R32: %1
757 // The <kill> flag is correct for %2, but the register allocator may
758 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
759 // are actually never written by %2. After assignment the <kill>
760 // flag at the read instruction is invalid.
761 LaneBitmask DefinedLanesMask;
762 if (LI.hasSubRanges()) {
763 // Compute a mask of lanes that are defined.
764 DefinedLanesMask = LaneBitmask::getNone();
765 for (const LiveInterval::SubRange &SR : LI.subranges())
766 for (const LiveRange::Segment &Segment : SR.segments) {
767 if (Segment.start >= RI->end)
768 break;
769 if (Segment.end == RI->end) {
770 DefinedLanesMask |= SR.LaneMask;
771 break;
772 }
773 }
774 } else
775 DefinedLanesMask = LaneBitmask::getAll();
776
777 bool IsFullWrite = false;
778 for (const MachineOperand &MO : MI->operands()) {
779 if (!MO.isReg() || MO.getReg() != Reg)
780 continue;
781 if (MO.isUse()) {
782 // Reading any undefined lanes?
783 unsigned SubReg = MO.getSubReg();
784 LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
785 : MRI->getMaxLaneMaskForVReg(Reg);
786 if ((UseMask & ~DefinedLanesMask).any())
787 goto CancelKill;
788 } else if (MO.getSubReg() == 0) {
789 // Writing to the full register?
790 assert(MO.isDef());
791 IsFullWrite = true;
792 }
793 }
794
795 // If an instruction writes to a subregister, a new segment starts in
796 // the LiveInterval. But as this is only overriding part of the register
797 // adding kill-flags is not correct here after registers have been
798 // assigned.
799 if (!IsFullWrite) {
800 // Next segment has to be adjacent in the subregister write case.
801 LiveRange::const_iterator N = std::next(RI);
802 if (N != LI.end() && N->start == RI->end)
803 goto CancelKill;
804 }
805 }
806
807 MI->addRegisterKilled(Reg, nullptr);
808 continue;
809 CancelKill:
810 MI->clearRegisterKills(Reg, nullptr);
811 }
812 }
813 }
814
815 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const816 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
817 assert(!LI.empty() && "LiveInterval is empty.");
818
819 // A local live range must be fully contained inside the block, meaning it is
820 // defined and killed at instructions, not at block boundaries. It is not
821 // live in or out of any block.
822 //
823 // It is technically possible to have a PHI-defined live range identical to a
824 // single block, but we are going to return false in that case.
825
826 SlotIndex Start = LI.beginIndex();
827 if (Start.isBlock())
828 return nullptr;
829
830 SlotIndex Stop = LI.endIndex();
831 if (Stop.isBlock())
832 return nullptr;
833
834 // getMBBFromIndex doesn't need to search the MBB table when both indexes
835 // belong to proper instructions.
836 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
837 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
838 return MBB1 == MBB2 ? MBB1 : nullptr;
839 }
840
841 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const842 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
843 for (const VNInfo *PHI : LI.valnos) {
844 if (PHI->isUnused() || !PHI->isPHIDef())
845 continue;
846 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
847 // Conservatively return true instead of scanning huge predecessor lists.
848 if (PHIMBB->pred_size() > 100)
849 return true;
850 for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
851 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
852 return true;
853 }
854 return false;
855 }
856
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineInstr & MI)857 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
858 const MachineBlockFrequencyInfo *MBFI,
859 const MachineInstr &MI) {
860 return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
861 }
862
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineBasicBlock * MBB)863 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
864 const MachineBlockFrequencyInfo *MBFI,
865 const MachineBasicBlock *MBB) {
866 return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
867 }
868
869 LiveRange::Segment
addSegmentToEndOfBlock(Register Reg,MachineInstr & startInst)870 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
871 LiveInterval &Interval = createEmptyInterval(Reg);
872 VNInfo *VN = Interval.getNextValue(
873 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
874 getVNInfoAllocator());
875 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
876 getMBBEndIdx(startInst.getParent()), VN);
877 Interval.addSegment(S);
878
879 return S;
880 }
881
882 //===----------------------------------------------------------------------===//
883 // Register mask functions
884 //===----------------------------------------------------------------------===//
885 /// Check whether use of reg in MI is live-through. Live-through means that
886 /// the value is alive on exit from Machine instruction. The example of such
887 /// use is a deopt value in statepoint instruction.
hasLiveThroughUse(const MachineInstr * MI,Register Reg)888 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
889 if (MI->getOpcode() != TargetOpcode::STATEPOINT)
890 return false;
891 StatepointOpers SO(MI);
892 if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
893 return false;
894 for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
895 ++Idx) {
896 const MachineOperand &MO = MI->getOperand(Idx);
897 if (MO.isReg() && MO.getReg() == Reg)
898 return true;
899 }
900 return false;
901 }
902
checkRegMaskInterference(const LiveInterval & LI,BitVector & UsableRegs)903 bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
904 BitVector &UsableRegs) {
905 if (LI.empty())
906 return false;
907 LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
908
909 // Use a smaller arrays for local live ranges.
910 ArrayRef<SlotIndex> Slots;
911 ArrayRef<const uint32_t*> Bits;
912 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
913 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
914 Bits = getRegMaskBitsInBlock(MBB->getNumber());
915 } else {
916 Slots = getRegMaskSlots();
917 Bits = getRegMaskBits();
918 }
919
920 // We are going to enumerate all the register mask slots contained in LI.
921 // Start with a binary search of RegMaskSlots to find a starting point.
922 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
923 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
924
925 // No slots in range, LI begins after the last call.
926 if (SlotI == SlotE)
927 return false;
928
929 bool Found = false;
930 // Utility to union regmasks.
931 auto unionBitMask = [&](unsigned Idx) {
932 if (!Found) {
933 // This is the first overlap. Initialize UsableRegs to all ones.
934 UsableRegs.clear();
935 UsableRegs.resize(TRI->getNumRegs(), true);
936 Found = true;
937 }
938 // Remove usable registers clobbered by this mask.
939 UsableRegs.clearBitsNotInMask(Bits[Idx]);
940 };
941 while (true) {
942 assert(*SlotI >= LiveI->start);
943 // Loop over all slots overlapping this segment.
944 while (*SlotI < LiveI->end) {
945 // *SlotI overlaps LI. Collect mask bits.
946 unionBitMask(SlotI - Slots.begin());
947 if (++SlotI == SlotE)
948 return Found;
949 }
950 // If segment ends with live-through use we need to collect its regmask.
951 if (*SlotI == LiveI->end)
952 if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
953 if (hasLiveThroughUse(MI, LI.reg()))
954 unionBitMask(SlotI++ - Slots.begin());
955 // *SlotI is beyond the current LI segment.
956 // Special advance implementation to not miss next LiveI->end.
957 if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
958 return Found;
959 while (LiveI->end < *SlotI)
960 ++LiveI;
961 // Advance SlotI until it overlaps.
962 while (*SlotI < LiveI->start)
963 if (++SlotI == SlotE)
964 return Found;
965 }
966 }
967
968 //===----------------------------------------------------------------------===//
969 // IntervalUpdate class.
970 //===----------------------------------------------------------------------===//
971
972 /// Toolkit used by handleMove to trim or extend live intervals.
973 class LiveIntervals::HMEditor {
974 private:
975 LiveIntervals& LIS;
976 const MachineRegisterInfo& MRI;
977 const TargetRegisterInfo& TRI;
978 SlotIndex OldIdx;
979 SlotIndex NewIdx;
980 SmallPtrSet<LiveRange*, 8> Updated;
981 bool UpdateFlags;
982
983 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex OldIdx,SlotIndex NewIdx,bool UpdateFlags)984 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
985 const TargetRegisterInfo& TRI,
986 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
987 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
988 UpdateFlags(UpdateFlags) {}
989
990 // FIXME: UpdateFlags is a workaround that creates live intervals for all
991 // physregs, even those that aren't needed for regalloc, in order to update
992 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
993 // flags, and postRA passes will use a live register utility instead.
getRegUnitLI(unsigned Unit)994 LiveRange *getRegUnitLI(unsigned Unit) {
995 if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
996 return &LIS.getRegUnit(Unit);
997 return LIS.getCachedRegUnit(Unit);
998 }
999
1000 /// Update all live ranges touched by MI, assuming a move from OldIdx to
1001 /// NewIdx.
updateAllRanges(MachineInstr * MI)1002 void updateAllRanges(MachineInstr *MI) {
1003 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
1004 << *MI);
1005 bool hasRegMask = false;
1006 for (MachineOperand &MO : MI->operands()) {
1007 if (MO.isRegMask())
1008 hasRegMask = true;
1009 if (!MO.isReg())
1010 continue;
1011 if (MO.isUse()) {
1012 if (!MO.readsReg())
1013 continue;
1014 // Aggressively clear all kill flags.
1015 // They are reinserted by VirtRegRewriter.
1016 MO.setIsKill(false);
1017 }
1018
1019 Register Reg = MO.getReg();
1020 if (!Reg)
1021 continue;
1022 if (Reg.isVirtual()) {
1023 LiveInterval &LI = LIS.getInterval(Reg);
1024 if (LI.hasSubRanges()) {
1025 unsigned SubReg = MO.getSubReg();
1026 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1027 : MRI.getMaxLaneMaskForVReg(Reg);
1028 for (LiveInterval::SubRange &S : LI.subranges()) {
1029 if ((S.LaneMask & LaneMask).none())
1030 continue;
1031 updateRange(S, Reg, S.LaneMask);
1032 }
1033 }
1034 updateRange(LI, Reg, LaneBitmask::getNone());
1035 // If main range has a hole and we are moving a subrange use across
1036 // the hole updateRange() cannot properly handle it since it only
1037 // gets the LiveRange and not the whole LiveInterval. As a result
1038 // we may end up with a main range not covering all subranges.
1039 // This is extremely rare case, so let's check and reconstruct the
1040 // main range.
1041 if (LI.hasSubRanges()) {
1042 unsigned SubReg = MO.getSubReg();
1043 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1044 : MRI.getMaxLaneMaskForVReg(Reg);
1045 for (LiveInterval::SubRange &S : LI.subranges()) {
1046 if ((S.LaneMask & LaneMask).none() || LI.covers(S))
1047 continue;
1048 LI.clear();
1049 LIS.constructMainRangeFromSubranges(LI);
1050 break;
1051 }
1052 }
1053
1054 continue;
1055 }
1056
1057 // For physregs, only update the regunits that actually have a
1058 // precomputed live range.
1059 for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid();
1060 ++Units)
1061 if (LiveRange *LR = getRegUnitLI(*Units))
1062 updateRange(*LR, *Units, LaneBitmask::getNone());
1063 }
1064 if (hasRegMask)
1065 updateRegMaskSlots();
1066 }
1067
1068 private:
1069 /// Update a single live range, assuming an instruction has been moved from
1070 /// OldIdx to NewIdx.
updateRange(LiveRange & LR,Register Reg,LaneBitmask LaneMask)1071 void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1072 if (!Updated.insert(&LR).second)
1073 return;
1074 LLVM_DEBUG({
1075 dbgs() << " ";
1076 if (Reg.isVirtual()) {
1077 dbgs() << printReg(Reg);
1078 if (LaneMask.any())
1079 dbgs() << " L" << PrintLaneMask(LaneMask);
1080 } else {
1081 dbgs() << printRegUnit(Reg, &TRI);
1082 }
1083 dbgs() << ":\t" << LR << '\n';
1084 });
1085 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1086 handleMoveDown(LR);
1087 else
1088 handleMoveUp(LR, Reg, LaneMask);
1089 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n');
1090 LR.verify();
1091 }
1092
1093 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1094 /// to NewIdx (OldIdx < NewIdx).
handleMoveDown(LiveRange & LR)1095 void handleMoveDown(LiveRange &LR) {
1096 LiveRange::iterator E = LR.end();
1097 // Segment going into OldIdx.
1098 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1099
1100 // No value live before or after OldIdx? Nothing to do.
1101 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1102 return;
1103
1104 LiveRange::iterator OldIdxOut;
1105 // Do we have a value live-in to OldIdx?
1106 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1107 // If the live-in value already extends to NewIdx, there is nothing to do.
1108 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1109 return;
1110 // Aggressively remove all kill flags from the old kill point.
1111 // Kill flags shouldn't be used while live intervals exist, they will be
1112 // reinserted by VirtRegRewriter.
1113 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1114 for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1115 if (MOP.isReg() && MOP.isUse())
1116 MOP.setIsKill(false);
1117
1118 // Is there a def before NewIdx which is not OldIdx?
1119 LiveRange::iterator Next = std::next(OldIdxIn);
1120 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1121 SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1122 // If we are here then OldIdx was just a use but not a def. We only have
1123 // to ensure liveness extends to NewIdx.
1124 LiveRange::iterator NewIdxIn =
1125 LR.advanceTo(Next, NewIdx.getBaseIndex());
1126 // Extend the segment before NewIdx if necessary.
1127 if (NewIdxIn == E ||
1128 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1129 LiveRange::iterator Prev = std::prev(NewIdxIn);
1130 Prev->end = NewIdx.getRegSlot();
1131 }
1132 // Extend OldIdxIn.
1133 OldIdxIn->end = Next->start;
1134 return;
1135 }
1136
1137 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1138 // invalid by overlapping ranges.
1139 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1140 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1141 // If this was not a kill, then there was no def and we're done.
1142 if (!isKill)
1143 return;
1144
1145 // Did we have a Def at OldIdx?
1146 OldIdxOut = Next;
1147 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1148 return;
1149 } else {
1150 OldIdxOut = OldIdxIn;
1151 }
1152
1153 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1154 // to the segment starting there.
1155 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1156 "No def?");
1157 VNInfo *OldIdxVNI = OldIdxOut->valno;
1158 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1159
1160 // If the defined value extends beyond NewIdx, just move the beginning
1161 // of the segment to NewIdx.
1162 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1163 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1164 OldIdxVNI->def = NewIdxDef;
1165 OldIdxOut->start = OldIdxVNI->def;
1166 return;
1167 }
1168
1169 // If we are here then we have a Definition at OldIdx which ends before
1170 // NewIdx.
1171
1172 // Is there an existing Def at NewIdx?
1173 LiveRange::iterator AfterNewIdx
1174 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1175 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1176 if (!OldIdxDefIsDead &&
1177 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1178 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1179 VNInfo *DefVNI;
1180 if (OldIdxOut != LR.begin() &&
1181 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1182 OldIdxOut->start)) {
1183 // There is no gap between OldIdxOut and its predecessor anymore,
1184 // merge them.
1185 LiveRange::iterator IPrev = std::prev(OldIdxOut);
1186 DefVNI = OldIdxVNI;
1187 IPrev->end = OldIdxOut->end;
1188 } else {
1189 // The value is live in to OldIdx
1190 LiveRange::iterator INext = std::next(OldIdxOut);
1191 assert(INext != E && "Must have following segment");
1192 // We merge OldIdxOut and its successor. As we're dealing with subreg
1193 // reordering, there is always a successor to OldIdxOut in the same BB
1194 // We don't need INext->valno anymore and will reuse for the new segment
1195 // we create later.
1196 DefVNI = OldIdxVNI;
1197 INext->start = OldIdxOut->end;
1198 INext->valno->def = INext->start;
1199 }
1200 // If NewIdx is behind the last segment, extend that and append a new one.
1201 if (AfterNewIdx == E) {
1202 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1203 // one position.
1204 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1205 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1206 std::copy(std::next(OldIdxOut), E, OldIdxOut);
1207 // The last segment is undefined now, reuse it for a dead def.
1208 LiveRange::iterator NewSegment = std::prev(E);
1209 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1210 DefVNI);
1211 DefVNI->def = NewIdxDef;
1212
1213 LiveRange::iterator Prev = std::prev(NewSegment);
1214 Prev->end = NewIdxDef;
1215 } else {
1216 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1217 // one position.
1218 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1219 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1220 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1221 LiveRange::iterator Prev = std::prev(AfterNewIdx);
1222 // We have two cases:
1223 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1224 // Case 1: NewIdx is inside a liverange. Split this liverange at
1225 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1226 LiveRange::iterator NewSegment = AfterNewIdx;
1227 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1228 Prev->valno->def = NewIdxDef;
1229
1230 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1231 DefVNI->def = Prev->start;
1232 } else {
1233 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1234 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1235 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1236 DefVNI->def = NewIdxDef;
1237 assert(DefVNI != AfterNewIdx->valno);
1238 }
1239 }
1240 return;
1241 }
1242
1243 if (AfterNewIdx != E &&
1244 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1245 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1246 // that value.
1247 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1248 LR.removeValNo(OldIdxVNI);
1249 } else {
1250 // There was no existing def at NewIdx. We need to create a dead def
1251 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1252 // a new segment at the place where we want to construct the dead def.
1253 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1254 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1255 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1256 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1257 // We can reuse OldIdxVNI now.
1258 LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1259 VNInfo *NewSegmentVNI = OldIdxVNI;
1260 NewSegmentVNI->def = NewIdxDef;
1261 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1262 NewSegmentVNI);
1263 }
1264 }
1265
1266 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1267 /// to NewIdx (NewIdx < OldIdx).
handleMoveUp(LiveRange & LR,Register Reg,LaneBitmask LaneMask)1268 void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1269 LiveRange::iterator E = LR.end();
1270 // Segment going into OldIdx.
1271 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1272
1273 // No value live before or after OldIdx? Nothing to do.
1274 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1275 return;
1276
1277 LiveRange::iterator OldIdxOut;
1278 // Do we have a value live-in to OldIdx?
1279 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1280 // If the live-in value isn't killed here, then we have no Def at
1281 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1282 // to do.
1283 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1284 if (!isKill)
1285 return;
1286
1287 // At this point we have to move OldIdxIn->end back to the nearest
1288 // previous use or (dead-)def but no further than NewIdx.
1289 SlotIndex DefBeforeOldIdx
1290 = std::max(OldIdxIn->start.getDeadSlot(),
1291 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1292 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1293
1294 // Did we have a Def at OldIdx? If not we are done now.
1295 OldIdxOut = std::next(OldIdxIn);
1296 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1297 return;
1298 } else {
1299 OldIdxOut = OldIdxIn;
1300 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1301 }
1302
1303 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1304 // to the segment starting there.
1305 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1306 "No def?");
1307 VNInfo *OldIdxVNI = OldIdxOut->valno;
1308 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1309 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1310
1311 // Is there an existing def at NewIdx?
1312 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1313 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1314 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1315 assert(NewIdxOut->valno != OldIdxVNI &&
1316 "Same value defined more than once?");
1317 // If OldIdx was a dead def remove it.
1318 if (!OldIdxDefIsDead) {
1319 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1320 // NewIdx so it can take its place.
1321 OldIdxVNI->def = NewIdxDef;
1322 OldIdxOut->start = NewIdxDef;
1323 LR.removeValNo(NewIdxOut->valno);
1324 } else {
1325 // Simply remove the dead def at OldIdx.
1326 LR.removeValNo(OldIdxVNI);
1327 }
1328 } else {
1329 // Previously nothing was live after NewIdx, so all we have to do now is
1330 // move the begin of OldIdxOut to NewIdx.
1331 if (!OldIdxDefIsDead) {
1332 // Do we have any intermediate Defs between OldIdx and NewIdx?
1333 if (OldIdxIn != E &&
1334 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1335 // OldIdx is not a dead def and NewIdx is before predecessor start.
1336 LiveRange::iterator NewIdxIn = NewIdxOut;
1337 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1338 const SlotIndex SplitPos = NewIdxDef;
1339 OldIdxVNI = OldIdxIn->valno;
1340
1341 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1342 LiveRange::iterator Prev = std::prev(OldIdxIn);
1343 if (OldIdxIn != LR.begin() &&
1344 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1345 // If the segment before OldIdx read a value defined earlier than
1346 // NewIdx, the moved instruction also reads and forwards that
1347 // value. Extend the lifetime of the new def point.
1348
1349 // Extend to where the previous range started, unless there is
1350 // another redef first.
1351 NewDefEndPoint = std::min(OldIdxIn->start,
1352 std::next(NewIdxOut)->start);
1353 }
1354
1355 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1356 OldIdxOut->valno->def = OldIdxIn->start;
1357 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1358 OldIdxOut->valno);
1359 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1360 // We Slide [NewIdxIn, OldIdxIn) down one position.
1361 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1362 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1363 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1364 // NewIdxIn is now considered undef so we can reuse it for the moved
1365 // value.
1366 LiveRange::iterator NewSegment = NewIdxIn;
1367 LiveRange::iterator Next = std::next(NewSegment);
1368 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1369 // There is no gap between NewSegment and its predecessor.
1370 *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1371 Next->valno);
1372
1373 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1374 Next->valno->def = SplitPos;
1375 } else {
1376 // There is a gap between NewSegment and its predecessor
1377 // Value becomes live in.
1378 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1379 NewSegment->valno->def = SplitPos;
1380 }
1381 } else {
1382 // Leave the end point of a live def.
1383 OldIdxOut->start = NewIdxDef;
1384 OldIdxVNI->def = NewIdxDef;
1385 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1386 OldIdxIn->end = NewIdxDef;
1387 }
1388 } else if (OldIdxIn != E
1389 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1390 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1391 // OldIdxVNI is a dead def that has been moved into the middle of
1392 // another value in LR. That can happen when LR is a whole register,
1393 // but the dead def is a write to a subreg that is dead at NewIdx.
1394 // The dead def may have been moved across other values
1395 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1396 // down one position.
1397 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1398 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1399 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1400 // Modify the segment at NewIdxOut and the following segment to meet at
1401 // the point of the dead def, with the following segment getting
1402 // OldIdxVNI as its value number.
1403 *NewIdxOut = LiveRange::Segment(
1404 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1405 *(NewIdxOut + 1) = LiveRange::Segment(
1406 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1407 OldIdxVNI->def = NewIdxDef;
1408 // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1409 for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1410 Idx->valno = OldIdxVNI;
1411 // Aggressively remove all dead flags from the former dead definition.
1412 // Kill/dead flags shouldn't be used while live intervals exist; they
1413 // will be reinserted by VirtRegRewriter.
1414 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1415 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1416 if (MO->isReg() && !MO->isUse())
1417 MO->setIsDead(false);
1418 } else {
1419 // OldIdxVNI is a dead def. It may have been moved across other values
1420 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1421 // down one position.
1422 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1423 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1424 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1425 // OldIdxVNI can be reused now to build a new dead def segment.
1426 LiveRange::iterator NewSegment = NewIdxOut;
1427 VNInfo *NewSegmentVNI = OldIdxVNI;
1428 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1429 NewSegmentVNI);
1430 NewSegmentVNI->def = NewIdxDef;
1431 }
1432 }
1433 }
1434
updateRegMaskSlots()1435 void updateRegMaskSlots() {
1436 SmallVectorImpl<SlotIndex>::iterator RI =
1437 llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1438 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1439 "No RegMask at OldIdx.");
1440 *RI = NewIdx.getRegSlot();
1441 assert((RI == LIS.RegMaskSlots.begin() ||
1442 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1443 "Cannot move regmask instruction above another call");
1444 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1445 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1446 "Cannot move regmask instruction below another call");
1447 }
1448
1449 // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(SlotIndex Before,Register Reg,LaneBitmask LaneMask)1450 SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1451 LaneBitmask LaneMask) {
1452 if (Reg.isVirtual()) {
1453 SlotIndex LastUse = Before;
1454 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1455 if (MO.isUndef())
1456 continue;
1457 unsigned SubReg = MO.getSubReg();
1458 if (SubReg != 0 && LaneMask.any()
1459 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1460 continue;
1461
1462 const MachineInstr &MI = *MO.getParent();
1463 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1464 if (InstSlot > LastUse && InstSlot < OldIdx)
1465 LastUse = InstSlot.getRegSlot();
1466 }
1467 return LastUse;
1468 }
1469
1470 // This is a regunit interval, so scanning the use list could be very
1471 // expensive. Scan upwards from OldIdx instead.
1472 assert(Before < OldIdx && "Expected upwards move");
1473 SlotIndexes *Indexes = LIS.getSlotIndexes();
1474 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1475
1476 // OldIdx may not correspond to an instruction any longer, so set MII to
1477 // point to the next instruction after OldIdx, or MBB->end().
1478 MachineBasicBlock::iterator MII = MBB->end();
1479 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1480 Indexes->getNextNonNullIndex(OldIdx)))
1481 if (MI->getParent() == MBB)
1482 MII = MI;
1483
1484 MachineBasicBlock::iterator Begin = MBB->begin();
1485 while (MII != Begin) {
1486 if ((--MII)->isDebugOrPseudoInstr())
1487 continue;
1488 SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1489
1490 // Stop searching when Before is reached.
1491 if (!SlotIndex::isEarlierInstr(Before, Idx))
1492 return Before;
1493
1494 // Check if MII uses Reg.
1495 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1496 if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() &&
1497 TRI.hasRegUnit(MO->getReg(), Reg))
1498 return Idx.getRegSlot();
1499 }
1500 // Didn't reach Before. It must be the first instruction in the block.
1501 return Before;
1502 }
1503 };
1504
handleMove(MachineInstr & MI,bool UpdateFlags)1505 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1506 // It is fine to move a bundle as a whole, but not an individual instruction
1507 // inside it.
1508 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1509 "Cannot move instruction in bundle");
1510 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1511 Indexes->removeMachineInstrFromMaps(MI);
1512 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1513 assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1514 OldIndex < getMBBEndIdx(MI.getParent()) &&
1515 "Cannot handle moves across basic block boundaries.");
1516
1517 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1518 HME.updateAllRanges(&MI);
1519 }
1520
handleMoveIntoNewBundle(MachineInstr & BundleStart,bool UpdateFlags)1521 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1522 bool UpdateFlags) {
1523 assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1524 "Bundle start is not a bundle");
1525 SmallVector<SlotIndex, 16> ToProcess;
1526 const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1527 auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1528
1529 auto I = BundleStart.getIterator();
1530 I++;
1531 while (I != BundleEnd) {
1532 if (!Indexes->hasIndex(*I))
1533 continue;
1534 SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1535 ToProcess.push_back(OldIndex);
1536 Indexes->removeMachineInstrFromMaps(*I, true);
1537 I++;
1538 }
1539 for (SlotIndex OldIndex : ToProcess) {
1540 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1541 HME.updateAllRanges(&BundleStart);
1542 }
1543
1544 // Fix up dead defs
1545 const SlotIndex Index = getInstructionIndex(BundleStart);
1546 for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1547 MachineOperand &MO = BundleStart.getOperand(Idx);
1548 if (!MO.isReg())
1549 continue;
1550 Register Reg = MO.getReg();
1551 if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1552 LiveInterval &LI = getInterval(Reg);
1553 LiveQueryResult LRQ = LI.Query(Index);
1554 if (LRQ.isDeadDef())
1555 MO.setIsDead();
1556 }
1557 }
1558 }
1559
repairOldRegInRange(const MachineBasicBlock::iterator Begin,const MachineBasicBlock::iterator End,const SlotIndex EndIdx,LiveRange & LR,const Register Reg,LaneBitmask LaneMask)1560 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1561 const MachineBasicBlock::iterator End,
1562 const SlotIndex EndIdx, LiveRange &LR,
1563 const Register Reg,
1564 LaneBitmask LaneMask) {
1565 LiveInterval::iterator LII = LR.find(EndIdx);
1566 SlotIndex lastUseIdx;
1567 if (LII != LR.end() && LII->start < EndIdx) {
1568 lastUseIdx = LII->end;
1569 } else if (LII == LR.begin()) {
1570 // We may not have a liverange at all if this is a subregister untouched
1571 // between \p Begin and \p End.
1572 } else {
1573 --LII;
1574 }
1575
1576 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1577 --I;
1578 MachineInstr &MI = *I;
1579 if (MI.isDebugOrPseudoInstr())
1580 continue;
1581
1582 SlotIndex instrIdx = getInstructionIndex(MI);
1583 bool isStartValid = getInstructionFromIndex(LII->start);
1584 bool isEndValid = getInstructionFromIndex(LII->end);
1585
1586 // FIXME: This doesn't currently handle early-clobber or multiple removed
1587 // defs inside of the region to repair.
1588 for (const MachineOperand &MO : MI.operands()) {
1589 if (!MO.isReg() || MO.getReg() != Reg)
1590 continue;
1591
1592 unsigned SubReg = MO.getSubReg();
1593 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1594 if ((Mask & LaneMask).none())
1595 continue;
1596
1597 if (MO.isDef()) {
1598 if (!isStartValid) {
1599 if (LII->end.isDead()) {
1600 LII = LR.removeSegment(LII, true);
1601 if (LII != LR.begin())
1602 --LII;
1603 } else {
1604 LII->start = instrIdx.getRegSlot();
1605 LII->valno->def = instrIdx.getRegSlot();
1606 if (MO.getSubReg() && !MO.isUndef())
1607 lastUseIdx = instrIdx.getRegSlot();
1608 else
1609 lastUseIdx = SlotIndex();
1610 continue;
1611 }
1612 }
1613
1614 if (!lastUseIdx.isValid()) {
1615 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1616 LiveRange::Segment S(instrIdx.getRegSlot(),
1617 instrIdx.getDeadSlot(), VNI);
1618 LII = LR.addSegment(S);
1619 } else if (LII->start != instrIdx.getRegSlot()) {
1620 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1621 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1622 LII = LR.addSegment(S);
1623 }
1624
1625 if (MO.getSubReg() && !MO.isUndef())
1626 lastUseIdx = instrIdx.getRegSlot();
1627 else
1628 lastUseIdx = SlotIndex();
1629 } else if (MO.isUse()) {
1630 // FIXME: This should probably be handled outside of this branch,
1631 // either as part of the def case (for defs inside of the region) or
1632 // after the loop over the region.
1633 if (!isEndValid && !LII->end.isBlock())
1634 LII->end = instrIdx.getRegSlot();
1635 if (!lastUseIdx.isValid())
1636 lastUseIdx = instrIdx.getRegSlot();
1637 }
1638 }
1639 }
1640
1641 bool isStartValid = getInstructionFromIndex(LII->start);
1642 if (!isStartValid && LII->end.isDead())
1643 LR.removeSegment(*LII, true);
1644 }
1645
1646 void
repairIntervalsInRange(MachineBasicBlock * MBB,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,ArrayRef<Register> OrigRegs)1647 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1648 MachineBasicBlock::iterator Begin,
1649 MachineBasicBlock::iterator End,
1650 ArrayRef<Register> OrigRegs) {
1651 // Find anchor points, which are at the beginning/end of blocks or at
1652 // instructions that already have indexes.
1653 while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
1654 --Begin;
1655 while (End != MBB->end() && !Indexes->hasIndex(*End))
1656 ++End;
1657
1658 SlotIndex EndIdx;
1659 if (End == MBB->end())
1660 EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1661 else
1662 EndIdx = getInstructionIndex(*End);
1663
1664 Indexes->repairIndexesInRange(MBB, Begin, End);
1665
1666 // Make sure a live interval exists for all register operands in the range.
1667 SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
1668 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1669 --I;
1670 MachineInstr &MI = *I;
1671 if (MI.isDebugOrPseudoInstr())
1672 continue;
1673 for (const MachineOperand &MO : MI.operands()) {
1674 if (MO.isReg() && MO.getReg().isVirtual()) {
1675 Register Reg = MO.getReg();
1676 // If the new instructions refer to subregs but the old instructions did
1677 // not, throw away any old live interval so it will be recomputed with
1678 // subranges.
1679 if (MO.getSubReg() && hasInterval(Reg) &&
1680 !getInterval(Reg).hasSubRanges() &&
1681 MRI->shouldTrackSubRegLiveness(Reg))
1682 removeInterval(Reg);
1683 if (!hasInterval(Reg)) {
1684 createAndComputeVirtRegInterval(Reg);
1685 // Don't bother to repair a freshly calculated live interval.
1686 erase_value(RegsToRepair, Reg);
1687 }
1688 }
1689 }
1690 }
1691
1692 for (Register Reg : RegsToRepair) {
1693 if (!Reg.isVirtual())
1694 continue;
1695
1696 LiveInterval &LI = getInterval(Reg);
1697 // FIXME: Should we support undefs that gain defs?
1698 if (!LI.hasAtLeastOneValue())
1699 continue;
1700
1701 for (LiveInterval::SubRange &S : LI.subranges())
1702 repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1703 LI.removeEmptySubRanges();
1704
1705 repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1706 }
1707 }
1708
removePhysRegDefAt(MCRegister Reg,SlotIndex Pos)1709 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1710 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1711 if (LiveRange *LR = getCachedRegUnit(*Unit))
1712 if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1713 LR->removeValNo(VNI);
1714 }
1715 }
1716
removeVRegDefAt(LiveInterval & LI,SlotIndex Pos)1717 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1718 // LI may not have the main range computed yet, but its subranges may
1719 // be present.
1720 VNInfo *VNI = LI.getVNInfoAt(Pos);
1721 if (VNI != nullptr) {
1722 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1723 LI.removeValNo(VNI);
1724 }
1725
1726 // Also remove the value defined in subranges.
1727 for (LiveInterval::SubRange &S : LI.subranges()) {
1728 if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1729 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1730 S.removeValNo(SVNI);
1731 }
1732 LI.removeEmptySubRanges();
1733 }
1734
splitSeparateComponents(LiveInterval & LI,SmallVectorImpl<LiveInterval * > & SplitLIs)1735 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1736 SmallVectorImpl<LiveInterval*> &SplitLIs) {
1737 ConnectedVNInfoEqClasses ConEQ(*this);
1738 unsigned NumComp = ConEQ.Classify(LI);
1739 if (NumComp <= 1)
1740 return;
1741 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
1742 Register Reg = LI.reg();
1743 for (unsigned I = 1; I < NumComp; ++I) {
1744 Register NewVReg = MRI->cloneVirtualRegister(Reg);
1745 LiveInterval &NewLI = createEmptyInterval(NewVReg);
1746 SplitLIs.push_back(&NewLI);
1747 }
1748 ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1749 }
1750
constructMainRangeFromSubranges(LiveInterval & LI)1751 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1752 assert(LICalc && "LICalc not initialized.");
1753 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1754 LICalc->constructMainRangeFromSubranges(LI);
1755 }
1756