xref: /linux/mm/damon/core.c (revision 3b15f9d1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sj@kernel.org>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/damon.h>
20 
21 #ifdef CONFIG_DAMON_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25 
26 static DEFINE_MUTEX(damon_lock);
27 static int nr_running_ctxs;
28 static bool running_exclusive_ctxs;
29 
30 static DEFINE_MUTEX(damon_ops_lock);
31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
32 
33 static struct kmem_cache *damon_region_cache __ro_after_init;
34 
35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)36 static bool __damon_is_registered_ops(enum damon_ops_id id)
37 {
38 	struct damon_operations empty_ops = {};
39 
40 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
41 		return false;
42 	return true;
43 }
44 
45 /**
46  * damon_is_registered_ops() - Check if a given damon_operations is registered.
47  * @id:	Id of the damon_operations to check if registered.
48  *
49  * Return: true if the ops is set, false otherwise.
50  */
damon_is_registered_ops(enum damon_ops_id id)51 bool damon_is_registered_ops(enum damon_ops_id id)
52 {
53 	bool registered;
54 
55 	if (id >= NR_DAMON_OPS)
56 		return false;
57 	mutex_lock(&damon_ops_lock);
58 	registered = __damon_is_registered_ops(id);
59 	mutex_unlock(&damon_ops_lock);
60 	return registered;
61 }
62 
63 /**
64  * damon_register_ops() - Register a monitoring operations set to DAMON.
65  * @ops:	monitoring operations set to register.
66  *
67  * This function registers a monitoring operations set of valid &struct
68  * damon_operations->id so that others can find and use them later.
69  *
70  * Return: 0 on success, negative error code otherwise.
71  */
damon_register_ops(struct damon_operations * ops)72 int damon_register_ops(struct damon_operations *ops)
73 {
74 	int err = 0;
75 
76 	if (ops->id >= NR_DAMON_OPS)
77 		return -EINVAL;
78 	mutex_lock(&damon_ops_lock);
79 	/* Fail for already registered ops */
80 	if (__damon_is_registered_ops(ops->id)) {
81 		err = -EINVAL;
82 		goto out;
83 	}
84 	damon_registered_ops[ops->id] = *ops;
85 out:
86 	mutex_unlock(&damon_ops_lock);
87 	return err;
88 }
89 
90 /**
91  * damon_select_ops() - Select a monitoring operations to use with the context.
92  * @ctx:	monitoring context to use the operations.
93  * @id:		id of the registered monitoring operations to select.
94  *
95  * This function finds registered monitoring operations set of @id and make
96  * @ctx to use it.
97  *
98  * Return: 0 on success, negative error code otherwise.
99  */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 	int err = 0;
103 
104 	if (id >= NR_DAMON_OPS)
105 		return -EINVAL;
106 
107 	mutex_lock(&damon_ops_lock);
108 	if (!__damon_is_registered_ops(id))
109 		err = -EINVAL;
110 	else
111 		ctx->ops = damon_registered_ops[id];
112 	mutex_unlock(&damon_ops_lock);
113 	return err;
114 }
115 
116 /*
117  * Construct a damon_region struct
118  *
119  * Returns the pointer to the new struct if success, or NULL otherwise
120  */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 	struct damon_region *region;
124 
125 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 	if (!region)
127 		return NULL;
128 
129 	region->ar.start = start;
130 	region->ar.end = end;
131 	region->nr_accesses = 0;
132 	region->nr_accesses_bp = 0;
133 	INIT_LIST_HEAD(&region->list);
134 
135 	region->age = 0;
136 	region->last_nr_accesses = 0;
137 
138 	return region;
139 }
140 
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 	list_add_tail(&r->list, &t->regions_list);
144 	t->nr_regions++;
145 }
146 
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 	list_del(&r->list);
150 	t->nr_regions--;
151 }
152 
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 	kmem_cache_free(damon_region_cache, r);
156 }
157 
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 	damon_del_region(r, t);
161 	damon_free_region(r);
162 }
163 
164 /*
165  * Check whether a region is intersecting an address range
166  *
167  * Returns true if it is.
168  */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 		struct damon_addr_range *re)
171 {
172 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174 
175 /*
176  * Fill holes in regions with new regions.
177  */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 		struct damon_region *last, struct damon_target *t)
180 {
181 	struct damon_region *r = first;
182 
183 	damon_for_each_region_from(r, t) {
184 		struct damon_region *next, *newr;
185 
186 		if (r == last)
187 			break;
188 		next = damon_next_region(r);
189 		if (r->ar.end != next->ar.start) {
190 			newr = damon_new_region(r->ar.end, next->ar.start);
191 			if (!newr)
192 				return -ENOMEM;
193 			damon_insert_region(newr, r, next, t);
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * damon_set_regions() - Set regions of a target for given address ranges.
201  * @t:		the given target.
202  * @ranges:	array of new monitoring target ranges.
203  * @nr_ranges:	length of @ranges.
204  *
205  * This function adds new regions to, or modify existing regions of a
206  * monitoring target to fit in specific ranges.
207  *
208  * Return: 0 if success, or negative error code otherwise.
209  */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 		unsigned int nr_ranges)
212 {
213 	struct damon_region *r, *next;
214 	unsigned int i;
215 	int err;
216 
217 	/* Remove regions which are not in the new ranges */
218 	damon_for_each_region_safe(r, next, t) {
219 		for (i = 0; i < nr_ranges; i++) {
220 			if (damon_intersect(r, &ranges[i]))
221 				break;
222 		}
223 		if (i == nr_ranges)
224 			damon_destroy_region(r, t);
225 	}
226 
227 	r = damon_first_region(t);
228 	/* Add new regions or resize existing regions to fit in the ranges */
229 	for (i = 0; i < nr_ranges; i++) {
230 		struct damon_region *first = NULL, *last, *newr;
231 		struct damon_addr_range *range;
232 
233 		range = &ranges[i];
234 		/* Get the first/last regions intersecting with the range */
235 		damon_for_each_region_from(r, t) {
236 			if (damon_intersect(r, range)) {
237 				if (!first)
238 					first = r;
239 				last = r;
240 			}
241 			if (r->ar.start >= range->end)
242 				break;
243 		}
244 		if (!first) {
245 			/* no region intersects with this range */
246 			newr = damon_new_region(
247 					ALIGN_DOWN(range->start,
248 						DAMON_MIN_REGION),
249 					ALIGN(range->end, DAMON_MIN_REGION));
250 			if (!newr)
251 				return -ENOMEM;
252 			damon_insert_region(newr, damon_prev_region(r), r, t);
253 		} else {
254 			/* resize intersecting regions to fit in this range */
255 			first->ar.start = ALIGN_DOWN(range->start,
256 					DAMON_MIN_REGION);
257 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258 
259 			/* fill possible holes in the range */
260 			err = damon_fill_regions_holes(first, last, t);
261 			if (err)
262 				return err;
263 		}
264 	}
265 	return 0;
266 }
267 
damos_new_filter(enum damos_filter_type type,bool matching)268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 		bool matching)
270 {
271 	struct damos_filter *filter;
272 
273 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 	if (!filter)
275 		return NULL;
276 	filter->type = type;
277 	filter->matching = matching;
278 	INIT_LIST_HEAD(&filter->list);
279 	return filter;
280 }
281 
damos_add_filter(struct damos * s,struct damos_filter * f)282 void damos_add_filter(struct damos *s, struct damos_filter *f)
283 {
284 	list_add_tail(&f->list, &s->filters);
285 }
286 
damos_del_filter(struct damos_filter * f)287 static void damos_del_filter(struct damos_filter *f)
288 {
289 	list_del(&f->list);
290 }
291 
damos_free_filter(struct damos_filter * f)292 static void damos_free_filter(struct damos_filter *f)
293 {
294 	kfree(f);
295 }
296 
damos_destroy_filter(struct damos_filter * f)297 void damos_destroy_filter(struct damos_filter *f)
298 {
299 	damos_del_filter(f);
300 	damos_free_filter(f);
301 }
302 
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)303 struct damos_quota_goal *damos_new_quota_goal(
304 		enum damos_quota_goal_metric metric,
305 		unsigned long target_value)
306 {
307 	struct damos_quota_goal *goal;
308 
309 	goal = kmalloc(sizeof(*goal), GFP_KERNEL);
310 	if (!goal)
311 		return NULL;
312 	goal->metric = metric;
313 	goal->target_value = target_value;
314 	INIT_LIST_HEAD(&goal->list);
315 	return goal;
316 }
317 
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)318 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
319 {
320 	list_add_tail(&g->list, &q->goals);
321 }
322 
damos_del_quota_goal(struct damos_quota_goal * g)323 static void damos_del_quota_goal(struct damos_quota_goal *g)
324 {
325 	list_del(&g->list);
326 }
327 
damos_free_quota_goal(struct damos_quota_goal * g)328 static void damos_free_quota_goal(struct damos_quota_goal *g)
329 {
330 	kfree(g);
331 }
332 
damos_destroy_quota_goal(struct damos_quota_goal * g)333 void damos_destroy_quota_goal(struct damos_quota_goal *g)
334 {
335 	damos_del_quota_goal(g);
336 	damos_free_quota_goal(g);
337 }
338 
339 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)340 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
341 {
342 	quota->esz = 0;
343 	quota->total_charged_sz = 0;
344 	quota->total_charged_ns = 0;
345 	quota->charged_sz = 0;
346 	quota->charged_from = 0;
347 	quota->charge_target_from = NULL;
348 	quota->charge_addr_from = 0;
349 	quota->esz_bp = 0;
350 	return quota;
351 }
352 
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks)353 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
354 			enum damos_action action,
355 			unsigned long apply_interval_us,
356 			struct damos_quota *quota,
357 			struct damos_watermarks *wmarks)
358 {
359 	struct damos *scheme;
360 
361 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
362 	if (!scheme)
363 		return NULL;
364 	scheme->pattern = *pattern;
365 	scheme->action = action;
366 	scheme->apply_interval_us = apply_interval_us;
367 	/*
368 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
369 	 * running, it will also updated when it is added to the DAMON context,
370 	 * or damon_attrs are updated.
371 	 */
372 	scheme->next_apply_sis = 0;
373 	INIT_LIST_HEAD(&scheme->filters);
374 	scheme->stat = (struct damos_stat){};
375 	INIT_LIST_HEAD(&scheme->list);
376 
377 	scheme->quota = *(damos_quota_init(quota));
378 	/* quota.goals should be separately set by caller */
379 	INIT_LIST_HEAD(&scheme->quota.goals);
380 
381 	scheme->wmarks = *wmarks;
382 	scheme->wmarks.activated = true;
383 
384 	return scheme;
385 }
386 
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)387 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
388 {
389 	unsigned long sample_interval = ctx->attrs.sample_interval ?
390 		ctx->attrs.sample_interval : 1;
391 	unsigned long apply_interval = s->apply_interval_us ?
392 		s->apply_interval_us : ctx->attrs.aggr_interval;
393 
394 	s->next_apply_sis = ctx->passed_sample_intervals +
395 		apply_interval / sample_interval;
396 }
397 
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)398 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
399 {
400 	list_add_tail(&s->list, &ctx->schemes);
401 	damos_set_next_apply_sis(s, ctx);
402 }
403 
damon_del_scheme(struct damos * s)404 static void damon_del_scheme(struct damos *s)
405 {
406 	list_del(&s->list);
407 }
408 
damon_free_scheme(struct damos * s)409 static void damon_free_scheme(struct damos *s)
410 {
411 	kfree(s);
412 }
413 
damon_destroy_scheme(struct damos * s)414 void damon_destroy_scheme(struct damos *s)
415 {
416 	struct damos_quota_goal *g, *g_next;
417 	struct damos_filter *f, *next;
418 
419 	damos_for_each_quota_goal_safe(g, g_next, &s->quota)
420 		damos_destroy_quota_goal(g);
421 
422 	damos_for_each_filter_safe(f, next, s)
423 		damos_destroy_filter(f);
424 	damon_del_scheme(s);
425 	damon_free_scheme(s);
426 }
427 
428 /*
429  * Construct a damon_target struct
430  *
431  * Returns the pointer to the new struct if success, or NULL otherwise
432  */
damon_new_target(void)433 struct damon_target *damon_new_target(void)
434 {
435 	struct damon_target *t;
436 
437 	t = kmalloc(sizeof(*t), GFP_KERNEL);
438 	if (!t)
439 		return NULL;
440 
441 	t->pid = NULL;
442 	t->nr_regions = 0;
443 	INIT_LIST_HEAD(&t->regions_list);
444 	INIT_LIST_HEAD(&t->list);
445 
446 	return t;
447 }
448 
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)449 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
450 {
451 	list_add_tail(&t->list, &ctx->adaptive_targets);
452 }
453 
damon_targets_empty(struct damon_ctx * ctx)454 bool damon_targets_empty(struct damon_ctx *ctx)
455 {
456 	return list_empty(&ctx->adaptive_targets);
457 }
458 
damon_del_target(struct damon_target * t)459 static void damon_del_target(struct damon_target *t)
460 {
461 	list_del(&t->list);
462 }
463 
damon_free_target(struct damon_target * t)464 void damon_free_target(struct damon_target *t)
465 {
466 	struct damon_region *r, *next;
467 
468 	damon_for_each_region_safe(r, next, t)
469 		damon_free_region(r);
470 	kfree(t);
471 }
472 
damon_destroy_target(struct damon_target * t)473 void damon_destroy_target(struct damon_target *t)
474 {
475 	damon_del_target(t);
476 	damon_free_target(t);
477 }
478 
damon_nr_regions(struct damon_target * t)479 unsigned int damon_nr_regions(struct damon_target *t)
480 {
481 	return t->nr_regions;
482 }
483 
damon_new_ctx(void)484 struct damon_ctx *damon_new_ctx(void)
485 {
486 	struct damon_ctx *ctx;
487 
488 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
489 	if (!ctx)
490 		return NULL;
491 
492 	init_completion(&ctx->kdamond_started);
493 
494 	ctx->attrs.sample_interval = 5 * 1000;
495 	ctx->attrs.aggr_interval = 100 * 1000;
496 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
497 
498 	ctx->passed_sample_intervals = 0;
499 	/* These will be set from kdamond_init_intervals_sis() */
500 	ctx->next_aggregation_sis = 0;
501 	ctx->next_ops_update_sis = 0;
502 
503 	mutex_init(&ctx->kdamond_lock);
504 
505 	ctx->attrs.min_nr_regions = 10;
506 	ctx->attrs.max_nr_regions = 1000;
507 
508 	INIT_LIST_HEAD(&ctx->adaptive_targets);
509 	INIT_LIST_HEAD(&ctx->schemes);
510 
511 	return ctx;
512 }
513 
damon_destroy_targets(struct damon_ctx * ctx)514 static void damon_destroy_targets(struct damon_ctx *ctx)
515 {
516 	struct damon_target *t, *next_t;
517 
518 	if (ctx->ops.cleanup) {
519 		ctx->ops.cleanup(ctx);
520 		return;
521 	}
522 
523 	damon_for_each_target_safe(t, next_t, ctx)
524 		damon_destroy_target(t);
525 }
526 
damon_destroy_ctx(struct damon_ctx * ctx)527 void damon_destroy_ctx(struct damon_ctx *ctx)
528 {
529 	struct damos *s, *next_s;
530 
531 	damon_destroy_targets(ctx);
532 
533 	damon_for_each_scheme_safe(s, next_s, ctx)
534 		damon_destroy_scheme(s);
535 
536 	kfree(ctx);
537 }
538 
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)539 static unsigned int damon_age_for_new_attrs(unsigned int age,
540 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
541 {
542 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
543 }
544 
545 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)546 static unsigned int damon_accesses_bp_to_nr_accesses(
547 		unsigned int accesses_bp, struct damon_attrs *attrs)
548 {
549 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
550 }
551 
552 /* convert nr_accesses to access ratio in bp (per 10,000) */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)553 static unsigned int damon_nr_accesses_to_accesses_bp(
554 		unsigned int nr_accesses, struct damon_attrs *attrs)
555 {
556 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
557 }
558 
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)559 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
560 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
561 {
562 	return damon_accesses_bp_to_nr_accesses(
563 			damon_nr_accesses_to_accesses_bp(
564 				nr_accesses, old_attrs),
565 			new_attrs);
566 }
567 
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)568 static void damon_update_monitoring_result(struct damon_region *r,
569 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
570 {
571 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
572 			old_attrs, new_attrs);
573 	r->nr_accesses_bp = r->nr_accesses * 10000;
574 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
575 }
576 
577 /*
578  * region->nr_accesses is the number of sampling intervals in the last
579  * aggregation interval that access to the region has found, and region->age is
580  * the number of aggregation intervals that its access pattern has maintained.
581  * For the reason, the real meaning of the two fields depend on current
582  * sampling interval and aggregation interval.  This function updates
583  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
584  */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs)585 static void damon_update_monitoring_results(struct damon_ctx *ctx,
586 		struct damon_attrs *new_attrs)
587 {
588 	struct damon_attrs *old_attrs = &ctx->attrs;
589 	struct damon_target *t;
590 	struct damon_region *r;
591 
592 	/* if any interval is zero, simply forgive conversion */
593 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
594 			!new_attrs->sample_interval ||
595 			!new_attrs->aggr_interval)
596 		return;
597 
598 	damon_for_each_target(t, ctx)
599 		damon_for_each_region(r, t)
600 			damon_update_monitoring_result(
601 					r, old_attrs, new_attrs);
602 }
603 
604 /**
605  * damon_set_attrs() - Set attributes for the monitoring.
606  * @ctx:		monitoring context
607  * @attrs:		monitoring attributes
608  *
609  * This function should be called while the kdamond is not running, or an
610  * access check results aggregation is not ongoing (e.g., from
611  * &struct damon_callback->after_aggregation or
612  * &struct damon_callback->after_wmarks_check callbacks).
613  *
614  * Every time interval is in micro-seconds.
615  *
616  * Return: 0 on success, negative error code otherwise.
617  */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)618 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
619 {
620 	unsigned long sample_interval = attrs->sample_interval ?
621 		attrs->sample_interval : 1;
622 	struct damos *s;
623 
624 	if (attrs->min_nr_regions < 3)
625 		return -EINVAL;
626 	if (attrs->min_nr_regions > attrs->max_nr_regions)
627 		return -EINVAL;
628 	if (attrs->sample_interval > attrs->aggr_interval)
629 		return -EINVAL;
630 
631 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
632 		attrs->aggr_interval / sample_interval;
633 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
634 		attrs->ops_update_interval / sample_interval;
635 
636 	damon_update_monitoring_results(ctx, attrs);
637 	ctx->attrs = *attrs;
638 
639 	damon_for_each_scheme(s, ctx)
640 		damos_set_next_apply_sis(s, ctx);
641 
642 	return 0;
643 }
644 
645 /**
646  * damon_set_schemes() - Set data access monitoring based operation schemes.
647  * @ctx:	monitoring context
648  * @schemes:	array of the schemes
649  * @nr_schemes:	number of entries in @schemes
650  *
651  * This function should not be called while the kdamond of the context is
652  * running.
653  */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)654 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
655 			ssize_t nr_schemes)
656 {
657 	struct damos *s, *next;
658 	ssize_t i;
659 
660 	damon_for_each_scheme_safe(s, next, ctx)
661 		damon_destroy_scheme(s);
662 	for (i = 0; i < nr_schemes; i++)
663 		damon_add_scheme(ctx, schemes[i]);
664 }
665 
666 /**
667  * damon_nr_running_ctxs() - Return number of currently running contexts.
668  */
damon_nr_running_ctxs(void)669 int damon_nr_running_ctxs(void)
670 {
671 	int nr_ctxs;
672 
673 	mutex_lock(&damon_lock);
674 	nr_ctxs = nr_running_ctxs;
675 	mutex_unlock(&damon_lock);
676 
677 	return nr_ctxs;
678 }
679 
680 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)681 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
682 {
683 	struct damon_target *t;
684 	struct damon_region *r;
685 	unsigned long sz = 0;
686 
687 	damon_for_each_target(t, ctx) {
688 		damon_for_each_region(r, t)
689 			sz += damon_sz_region(r);
690 	}
691 
692 	if (ctx->attrs.min_nr_regions)
693 		sz /= ctx->attrs.min_nr_regions;
694 	if (sz < DAMON_MIN_REGION)
695 		sz = DAMON_MIN_REGION;
696 
697 	return sz;
698 }
699 
700 static int kdamond_fn(void *data);
701 
702 /*
703  * __damon_start() - Starts monitoring with given context.
704  * @ctx:	monitoring context
705  *
706  * This function should be called while damon_lock is hold.
707  *
708  * Return: 0 on success, negative error code otherwise.
709  */
__damon_start(struct damon_ctx * ctx)710 static int __damon_start(struct damon_ctx *ctx)
711 {
712 	int err = -EBUSY;
713 
714 	mutex_lock(&ctx->kdamond_lock);
715 	if (!ctx->kdamond) {
716 		err = 0;
717 		reinit_completion(&ctx->kdamond_started);
718 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
719 				nr_running_ctxs);
720 		if (IS_ERR(ctx->kdamond)) {
721 			err = PTR_ERR(ctx->kdamond);
722 			ctx->kdamond = NULL;
723 		} else {
724 			wait_for_completion(&ctx->kdamond_started);
725 		}
726 	}
727 	mutex_unlock(&ctx->kdamond_lock);
728 
729 	return err;
730 }
731 
732 /**
733  * damon_start() - Starts the monitorings for a given group of contexts.
734  * @ctxs:	an array of the pointers for contexts to start monitoring
735  * @nr_ctxs:	size of @ctxs
736  * @exclusive:	exclusiveness of this contexts group
737  *
738  * This function starts a group of monitoring threads for a group of monitoring
739  * contexts.  One thread per each context is created and run in parallel.  The
740  * caller should handle synchronization between the threads by itself.  If
741  * @exclusive is true and a group of threads that created by other
742  * 'damon_start()' call is currently running, this function does nothing but
743  * returns -EBUSY.
744  *
745  * Return: 0 on success, negative error code otherwise.
746  */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)747 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
748 {
749 	int i;
750 	int err = 0;
751 
752 	mutex_lock(&damon_lock);
753 	if ((exclusive && nr_running_ctxs) ||
754 			(!exclusive && running_exclusive_ctxs)) {
755 		mutex_unlock(&damon_lock);
756 		return -EBUSY;
757 	}
758 
759 	for (i = 0; i < nr_ctxs; i++) {
760 		err = __damon_start(ctxs[i]);
761 		if (err)
762 			break;
763 		nr_running_ctxs++;
764 	}
765 	if (exclusive && nr_running_ctxs)
766 		running_exclusive_ctxs = true;
767 	mutex_unlock(&damon_lock);
768 
769 	return err;
770 }
771 
772 /*
773  * __damon_stop() - Stops monitoring of a given context.
774  * @ctx:	monitoring context
775  *
776  * Return: 0 on success, negative error code otherwise.
777  */
__damon_stop(struct damon_ctx * ctx)778 static int __damon_stop(struct damon_ctx *ctx)
779 {
780 	struct task_struct *tsk;
781 
782 	mutex_lock(&ctx->kdamond_lock);
783 	tsk = ctx->kdamond;
784 	if (tsk) {
785 		get_task_struct(tsk);
786 		mutex_unlock(&ctx->kdamond_lock);
787 		kthread_stop_put(tsk);
788 		return 0;
789 	}
790 	mutex_unlock(&ctx->kdamond_lock);
791 
792 	return -EPERM;
793 }
794 
795 /**
796  * damon_stop() - Stops the monitorings for a given group of contexts.
797  * @ctxs:	an array of the pointers for contexts to stop monitoring
798  * @nr_ctxs:	size of @ctxs
799  *
800  * Return: 0 on success, negative error code otherwise.
801  */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)802 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
803 {
804 	int i, err = 0;
805 
806 	for (i = 0; i < nr_ctxs; i++) {
807 		/* nr_running_ctxs is decremented in kdamond_fn */
808 		err = __damon_stop(ctxs[i]);
809 		if (err)
810 			break;
811 	}
812 	return err;
813 }
814 
815 /*
816  * Reset the aggregated monitoring results ('nr_accesses' of each region).
817  */
kdamond_reset_aggregated(struct damon_ctx * c)818 static void kdamond_reset_aggregated(struct damon_ctx *c)
819 {
820 	struct damon_target *t;
821 	unsigned int ti = 0;	/* target's index */
822 
823 	damon_for_each_target(t, c) {
824 		struct damon_region *r;
825 
826 		damon_for_each_region(r, t) {
827 			trace_damon_aggregated(ti, r, damon_nr_regions(t));
828 			r->last_nr_accesses = r->nr_accesses;
829 			r->nr_accesses = 0;
830 		}
831 		ti++;
832 	}
833 }
834 
835 static void damon_split_region_at(struct damon_target *t,
836 				  struct damon_region *r, unsigned long sz_r);
837 
__damos_valid_target(struct damon_region * r,struct damos * s)838 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
839 {
840 	unsigned long sz;
841 	unsigned int nr_accesses = r->nr_accesses_bp / 10000;
842 
843 	sz = damon_sz_region(r);
844 	return s->pattern.min_sz_region <= sz &&
845 		sz <= s->pattern.max_sz_region &&
846 		s->pattern.min_nr_accesses <= nr_accesses &&
847 		nr_accesses <= s->pattern.max_nr_accesses &&
848 		s->pattern.min_age_region <= r->age &&
849 		r->age <= s->pattern.max_age_region;
850 }
851 
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)852 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
853 		struct damon_region *r, struct damos *s)
854 {
855 	bool ret = __damos_valid_target(r, s);
856 
857 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
858 		return ret;
859 
860 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
861 }
862 
863 /*
864  * damos_skip_charged_region() - Check if the given region or starting part of
865  * it is already charged for the DAMOS quota.
866  * @t:	The target of the region.
867  * @rp:	The pointer to the region.
868  * @s:	The scheme to be applied.
869  *
870  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
871  * action would applied to only a part of the target access pattern fulfilling
872  * regions.  To avoid applying the scheme action to only already applied
873  * regions, DAMON skips applying the scheme action to the regions that charged
874  * in the previous charge window.
875  *
876  * This function checks if a given region should be skipped or not for the
877  * reason.  If only the starting part of the region has previously charged,
878  * this function splits the region into two so that the second one covers the
879  * area that not charged in the previous charge widnow and saves the second
880  * region in *rp and returns false, so that the caller can apply DAMON action
881  * to the second one.
882  *
883  * Return: true if the region should be entirely skipped, false otherwise.
884  */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)885 static bool damos_skip_charged_region(struct damon_target *t,
886 		struct damon_region **rp, struct damos *s)
887 {
888 	struct damon_region *r = *rp;
889 	struct damos_quota *quota = &s->quota;
890 	unsigned long sz_to_skip;
891 
892 	/* Skip previously charged regions */
893 	if (quota->charge_target_from) {
894 		if (t != quota->charge_target_from)
895 			return true;
896 		if (r == damon_last_region(t)) {
897 			quota->charge_target_from = NULL;
898 			quota->charge_addr_from = 0;
899 			return true;
900 		}
901 		if (quota->charge_addr_from &&
902 				r->ar.end <= quota->charge_addr_from)
903 			return true;
904 
905 		if (quota->charge_addr_from && r->ar.start <
906 				quota->charge_addr_from) {
907 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
908 					r->ar.start, DAMON_MIN_REGION);
909 			if (!sz_to_skip) {
910 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
911 					return true;
912 				sz_to_skip = DAMON_MIN_REGION;
913 			}
914 			damon_split_region_at(t, r, sz_to_skip);
915 			r = damon_next_region(r);
916 			*rp = r;
917 		}
918 		quota->charge_target_from = NULL;
919 		quota->charge_addr_from = 0;
920 	}
921 	return false;
922 }
923 
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied)924 static void damos_update_stat(struct damos *s,
925 		unsigned long sz_tried, unsigned long sz_applied)
926 {
927 	s->stat.nr_tried++;
928 	s->stat.sz_tried += sz_tried;
929 	if (sz_applied)
930 		s->stat.nr_applied++;
931 	s->stat.sz_applied += sz_applied;
932 }
933 
__damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)934 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
935 		struct damon_region *r, struct damos_filter *filter)
936 {
937 	bool matched = false;
938 	struct damon_target *ti;
939 	int target_idx = 0;
940 	unsigned long start, end;
941 
942 	switch (filter->type) {
943 	case DAMOS_FILTER_TYPE_TARGET:
944 		damon_for_each_target(ti, ctx) {
945 			if (ti == t)
946 				break;
947 			target_idx++;
948 		}
949 		matched = target_idx == filter->target_idx;
950 		break;
951 	case DAMOS_FILTER_TYPE_ADDR:
952 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
953 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
954 
955 		/* inside the range */
956 		if (start <= r->ar.start && r->ar.end <= end) {
957 			matched = true;
958 			break;
959 		}
960 		/* outside of the range */
961 		if (r->ar.end <= start || end <= r->ar.start) {
962 			matched = false;
963 			break;
964 		}
965 		/* start before the range and overlap */
966 		if (r->ar.start < start) {
967 			damon_split_region_at(t, r, start - r->ar.start);
968 			matched = false;
969 			break;
970 		}
971 		/* start inside the range */
972 		damon_split_region_at(t, r, end - r->ar.start);
973 		matched = true;
974 		break;
975 	default:
976 		return false;
977 	}
978 
979 	return matched == filter->matching;
980 }
981 
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)982 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
983 		struct damon_region *r, struct damos *s)
984 {
985 	struct damos_filter *filter;
986 
987 	damos_for_each_filter(filter, s) {
988 		if (__damos_filter_out(ctx, t, r, filter))
989 			return true;
990 	}
991 	return false;
992 }
993 
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)994 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
995 		struct damon_region *r, struct damos *s)
996 {
997 	struct damos_quota *quota = &s->quota;
998 	unsigned long sz = damon_sz_region(r);
999 	struct timespec64 begin, end;
1000 	unsigned long sz_applied = 0;
1001 	int err = 0;
1002 	/*
1003 	 * We plan to support multiple context per kdamond, as DAMON sysfs
1004 	 * implies with 'nr_contexts' file.  Nevertheless, only single context
1005 	 * per kdamond is supported for now.  So, we can simply use '0' context
1006 	 * index here.
1007 	 */
1008 	unsigned int cidx = 0;
1009 	struct damos *siter;		/* schemes iterator */
1010 	unsigned int sidx = 0;
1011 	struct damon_target *titer;	/* targets iterator */
1012 	unsigned int tidx = 0;
1013 	bool do_trace = false;
1014 
1015 	/* get indices for trace_damos_before_apply() */
1016 	if (trace_damos_before_apply_enabled()) {
1017 		damon_for_each_scheme(siter, c) {
1018 			if (siter == s)
1019 				break;
1020 			sidx++;
1021 		}
1022 		damon_for_each_target(titer, c) {
1023 			if (titer == t)
1024 				break;
1025 			tidx++;
1026 		}
1027 		do_trace = true;
1028 	}
1029 
1030 	if (c->ops.apply_scheme) {
1031 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
1032 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1033 					DAMON_MIN_REGION);
1034 			if (!sz)
1035 				goto update_stat;
1036 			damon_split_region_at(t, r, sz);
1037 		}
1038 		if (damos_filter_out(c, t, r, s))
1039 			return;
1040 		ktime_get_coarse_ts64(&begin);
1041 		if (c->callback.before_damos_apply)
1042 			err = c->callback.before_damos_apply(c, t, r, s);
1043 		if (!err) {
1044 			trace_damos_before_apply(cidx, sidx, tidx, r,
1045 					damon_nr_regions(t), do_trace);
1046 			sz_applied = c->ops.apply_scheme(c, t, r, s);
1047 		}
1048 		ktime_get_coarse_ts64(&end);
1049 		quota->total_charged_ns += timespec64_to_ns(&end) -
1050 			timespec64_to_ns(&begin);
1051 		quota->charged_sz += sz;
1052 		if (quota->esz && quota->charged_sz >= quota->esz) {
1053 			quota->charge_target_from = t;
1054 			quota->charge_addr_from = r->ar.end + 1;
1055 		}
1056 	}
1057 	if (s->action != DAMOS_STAT)
1058 		r->age = 0;
1059 
1060 update_stat:
1061 	damos_update_stat(s, sz, sz_applied);
1062 }
1063 
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1064 static void damon_do_apply_schemes(struct damon_ctx *c,
1065 				   struct damon_target *t,
1066 				   struct damon_region *r)
1067 {
1068 	struct damos *s;
1069 
1070 	damon_for_each_scheme(s, c) {
1071 		struct damos_quota *quota = &s->quota;
1072 
1073 		if (c->passed_sample_intervals != s->next_apply_sis)
1074 			continue;
1075 
1076 		if (!s->wmarks.activated)
1077 			continue;
1078 
1079 		/* Check the quota */
1080 		if (quota->esz && quota->charged_sz >= quota->esz)
1081 			continue;
1082 
1083 		if (damos_skip_charged_region(t, &r, s))
1084 			continue;
1085 
1086 		if (!damos_valid_target(c, t, r, s))
1087 			continue;
1088 
1089 		damos_apply_scheme(c, t, r, s);
1090 	}
1091 }
1092 
1093 /*
1094  * damon_feed_loop_next_input() - get next input to achieve a target score.
1095  * @last_input	The last input.
1096  * @score	Current score that made with @last_input.
1097  *
1098  * Calculate next input to achieve the target score, based on the last input
1099  * and current score.  Assuming the input and the score are positively
1100  * proportional, calculate how much compensation should be added to or
1101  * subtracted from the last input as a proportion of the last input.  Avoid
1102  * next input always being zero by setting it non-zero always.  In short form
1103  * (assuming support of float and signed calculations), the algorithm is as
1104  * below.
1105  *
1106  * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1107  *
1108  * For simple implementation, we assume the target score is always 10,000.  The
1109  * caller should adjust @score for this.
1110  *
1111  * Returns next input that assumed to achieve the target score.
1112  */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1113 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1114 		unsigned long score)
1115 {
1116 	const unsigned long goal = 10000;
1117 	unsigned long score_goal_diff = max(goal, score) - min(goal, score);
1118 	unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal;
1119 	unsigned long compensation = last_input * score_goal_diff_bp / 10000;
1120 	/* Set minimum input as 10000 to avoid compensation be zero */
1121 	const unsigned long min_input = 10000;
1122 
1123 	if (goal > score)
1124 		return last_input + compensation;
1125 	if (last_input > compensation + min_input)
1126 		return last_input - compensation;
1127 	return min_input;
1128 }
1129 
1130 #ifdef CONFIG_PSI
1131 
damos_get_some_mem_psi_total(void)1132 static u64 damos_get_some_mem_psi_total(void)
1133 {
1134 	if (static_branch_likely(&psi_disabled))
1135 		return 0;
1136 	return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1137 			NSEC_PER_USEC);
1138 }
1139 
1140 #else	/* CONFIG_PSI */
1141 
damos_get_some_mem_psi_total(void)1142 static inline u64 damos_get_some_mem_psi_total(void)
1143 {
1144 	return 0;
1145 };
1146 
1147 #endif	/* CONFIG_PSI */
1148 
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)1149 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1150 {
1151 	u64 now_psi_total;
1152 
1153 	switch (goal->metric) {
1154 	case DAMOS_QUOTA_USER_INPUT:
1155 		/* User should already set goal->current_value */
1156 		break;
1157 	case DAMOS_QUOTA_SOME_MEM_PSI_US:
1158 		now_psi_total = damos_get_some_mem_psi_total();
1159 		goal->current_value = now_psi_total - goal->last_psi_total;
1160 		goal->last_psi_total = now_psi_total;
1161 		break;
1162 	default:
1163 		break;
1164 	}
1165 }
1166 
1167 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)1168 static unsigned long damos_quota_score(struct damos_quota *quota)
1169 {
1170 	struct damos_quota_goal *goal;
1171 	unsigned long highest_score = 0;
1172 
1173 	damos_for_each_quota_goal(goal, quota) {
1174 		damos_set_quota_goal_current_value(goal);
1175 		highest_score = max(highest_score,
1176 				goal->current_value * 10000 /
1177 				goal->target_value);
1178 	}
1179 
1180 	return highest_score;
1181 }
1182 
1183 /*
1184  * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1185  */
damos_set_effective_quota(struct damos_quota * quota)1186 static void damos_set_effective_quota(struct damos_quota *quota)
1187 {
1188 	unsigned long throughput;
1189 	unsigned long esz;
1190 
1191 	if (!quota->ms && list_empty(&quota->goals)) {
1192 		quota->esz = quota->sz;
1193 		return;
1194 	}
1195 
1196 	if (!list_empty(&quota->goals)) {
1197 		unsigned long score = damos_quota_score(quota);
1198 
1199 		quota->esz_bp = damon_feed_loop_next_input(
1200 				max(quota->esz_bp, 10000UL),
1201 				score);
1202 		esz = quota->esz_bp / 10000;
1203 	}
1204 
1205 	if (quota->ms) {
1206 		if (quota->total_charged_ns)
1207 			throughput = quota->total_charged_sz * 1000000 /
1208 				quota->total_charged_ns;
1209 		else
1210 			throughput = PAGE_SIZE * 1024;
1211 		if (!list_empty(&quota->goals))
1212 			esz = min(throughput * quota->ms, esz);
1213 		else
1214 			esz = throughput * quota->ms;
1215 	}
1216 
1217 	if (quota->sz && quota->sz < esz)
1218 		esz = quota->sz;
1219 
1220 	quota->esz = esz;
1221 }
1222 
damos_adjust_quota(struct damon_ctx * c,struct damos * s)1223 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1224 {
1225 	struct damos_quota *quota = &s->quota;
1226 	struct damon_target *t;
1227 	struct damon_region *r;
1228 	unsigned long cumulated_sz;
1229 	unsigned int score, max_score = 0;
1230 
1231 	if (!quota->ms && !quota->sz && list_empty(&quota->goals))
1232 		return;
1233 
1234 	/* New charge window starts */
1235 	if (time_after_eq(jiffies, quota->charged_from +
1236 				msecs_to_jiffies(quota->reset_interval))) {
1237 		if (quota->esz && quota->charged_sz >= quota->esz)
1238 			s->stat.qt_exceeds++;
1239 		quota->total_charged_sz += quota->charged_sz;
1240 		quota->charged_from = jiffies;
1241 		quota->charged_sz = 0;
1242 		damos_set_effective_quota(quota);
1243 	}
1244 
1245 	if (!c->ops.get_scheme_score)
1246 		return;
1247 
1248 	/* Fill up the score histogram */
1249 	memset(quota->histogram, 0, sizeof(quota->histogram));
1250 	damon_for_each_target(t, c) {
1251 		damon_for_each_region(r, t) {
1252 			if (!__damos_valid_target(r, s))
1253 				continue;
1254 			score = c->ops.get_scheme_score(c, t, r, s);
1255 			quota->histogram[score] += damon_sz_region(r);
1256 			if (score > max_score)
1257 				max_score = score;
1258 		}
1259 	}
1260 
1261 	/* Set the min score limit */
1262 	for (cumulated_sz = 0, score = max_score; ; score--) {
1263 		cumulated_sz += quota->histogram[score];
1264 		if (cumulated_sz >= quota->esz || !score)
1265 			break;
1266 	}
1267 	quota->min_score = score;
1268 }
1269 
kdamond_apply_schemes(struct damon_ctx * c)1270 static void kdamond_apply_schemes(struct damon_ctx *c)
1271 {
1272 	struct damon_target *t;
1273 	struct damon_region *r, *next_r;
1274 	struct damos *s;
1275 	unsigned long sample_interval = c->attrs.sample_interval ?
1276 		c->attrs.sample_interval : 1;
1277 	bool has_schemes_to_apply = false;
1278 
1279 	damon_for_each_scheme(s, c) {
1280 		if (c->passed_sample_intervals != s->next_apply_sis)
1281 			continue;
1282 
1283 		if (!s->wmarks.activated)
1284 			continue;
1285 
1286 		has_schemes_to_apply = true;
1287 
1288 		damos_adjust_quota(c, s);
1289 	}
1290 
1291 	if (!has_schemes_to_apply)
1292 		return;
1293 
1294 	damon_for_each_target(t, c) {
1295 		damon_for_each_region_safe(r, next_r, t)
1296 			damon_do_apply_schemes(c, t, r);
1297 	}
1298 
1299 	damon_for_each_scheme(s, c) {
1300 		if (c->passed_sample_intervals != s->next_apply_sis)
1301 			continue;
1302 		s->next_apply_sis +=
1303 			(s->apply_interval_us ? s->apply_interval_us :
1304 			 c->attrs.aggr_interval) / sample_interval;
1305 	}
1306 }
1307 
1308 /*
1309  * Merge two adjacent regions into one region
1310  */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)1311 static void damon_merge_two_regions(struct damon_target *t,
1312 		struct damon_region *l, struct damon_region *r)
1313 {
1314 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1315 
1316 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1317 			(sz_l + sz_r);
1318 	l->nr_accesses_bp = l->nr_accesses * 10000;
1319 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1320 	l->ar.end = r->ar.end;
1321 	damon_destroy_region(r, t);
1322 }
1323 
1324 /*
1325  * Merge adjacent regions having similar access frequencies
1326  *
1327  * t		target affected by this merge operation
1328  * thres	'->nr_accesses' diff threshold for the merge
1329  * sz_limit	size upper limit of each region
1330  */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)1331 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1332 				   unsigned long sz_limit)
1333 {
1334 	struct damon_region *r, *prev = NULL, *next;
1335 
1336 	damon_for_each_region_safe(r, next, t) {
1337 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1338 			r->age = 0;
1339 		else
1340 			r->age++;
1341 
1342 		if (prev && prev->ar.end == r->ar.start &&
1343 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1344 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1345 			damon_merge_two_regions(t, prev, r);
1346 		else
1347 			prev = r;
1348 	}
1349 }
1350 
1351 /*
1352  * Merge adjacent regions having similar access frequencies
1353  *
1354  * threshold	'->nr_accesses' diff threshold for the merge
1355  * sz_limit	size upper limit of each region
1356  *
1357  * This function merges monitoring target regions which are adjacent and their
1358  * access frequencies are similar.  This is for minimizing the monitoring
1359  * overhead under the dynamically changeable access pattern.  If a merge was
1360  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1361  */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)1362 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1363 				  unsigned long sz_limit)
1364 {
1365 	struct damon_target *t;
1366 
1367 	damon_for_each_target(t, c)
1368 		damon_merge_regions_of(t, threshold, sz_limit);
1369 }
1370 
1371 /*
1372  * Split a region in two
1373  *
1374  * r		the region to be split
1375  * sz_r		size of the first sub-region that will be made
1376  */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)1377 static void damon_split_region_at(struct damon_target *t,
1378 				  struct damon_region *r, unsigned long sz_r)
1379 {
1380 	struct damon_region *new;
1381 
1382 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1383 	if (!new)
1384 		return;
1385 
1386 	r->ar.end = new->ar.start;
1387 
1388 	new->age = r->age;
1389 	new->last_nr_accesses = r->last_nr_accesses;
1390 	new->nr_accesses_bp = r->nr_accesses_bp;
1391 	new->nr_accesses = r->nr_accesses;
1392 
1393 	damon_insert_region(new, r, damon_next_region(r), t);
1394 }
1395 
1396 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)1397 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1398 {
1399 	struct damon_region *r, *next;
1400 	unsigned long sz_region, sz_sub = 0;
1401 	int i;
1402 
1403 	damon_for_each_region_safe(r, next, t) {
1404 		sz_region = damon_sz_region(r);
1405 
1406 		for (i = 0; i < nr_subs - 1 &&
1407 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1408 			/*
1409 			 * Randomly select size of left sub-region to be at
1410 			 * least 10 percent and at most 90% of original region
1411 			 */
1412 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1413 					sz_region / 10, DAMON_MIN_REGION);
1414 			/* Do not allow blank region */
1415 			if (sz_sub == 0 || sz_sub >= sz_region)
1416 				continue;
1417 
1418 			damon_split_region_at(t, r, sz_sub);
1419 			sz_region = sz_sub;
1420 		}
1421 	}
1422 }
1423 
1424 /*
1425  * Split every target region into randomly-sized small regions
1426  *
1427  * This function splits every target region into random-sized small regions if
1428  * current total number of the regions is equal or smaller than half of the
1429  * user-specified maximum number of regions.  This is for maximizing the
1430  * monitoring accuracy under the dynamically changeable access patterns.  If a
1431  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1432  * it.
1433  */
kdamond_split_regions(struct damon_ctx * ctx)1434 static void kdamond_split_regions(struct damon_ctx *ctx)
1435 {
1436 	struct damon_target *t;
1437 	unsigned int nr_regions = 0;
1438 	static unsigned int last_nr_regions;
1439 	int nr_subregions = 2;
1440 
1441 	damon_for_each_target(t, ctx)
1442 		nr_regions += damon_nr_regions(t);
1443 
1444 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1445 		return;
1446 
1447 	/* Maybe the middle of the region has different access frequency */
1448 	if (last_nr_regions == nr_regions &&
1449 			nr_regions < ctx->attrs.max_nr_regions / 3)
1450 		nr_subregions = 3;
1451 
1452 	damon_for_each_target(t, ctx)
1453 		damon_split_regions_of(t, nr_subregions);
1454 
1455 	last_nr_regions = nr_regions;
1456 }
1457 
1458 /*
1459  * Check whether current monitoring should be stopped
1460  *
1461  * The monitoring is stopped when either the user requested to stop, or all
1462  * monitoring targets are invalid.
1463  *
1464  * Returns true if need to stop current monitoring.
1465  */
kdamond_need_stop(struct damon_ctx * ctx)1466 static bool kdamond_need_stop(struct damon_ctx *ctx)
1467 {
1468 	struct damon_target *t;
1469 
1470 	if (kthread_should_stop())
1471 		return true;
1472 
1473 	if (!ctx->ops.target_valid)
1474 		return false;
1475 
1476 	damon_for_each_target(t, ctx) {
1477 		if (ctx->ops.target_valid(t))
1478 			return false;
1479 	}
1480 
1481 	return true;
1482 }
1483 
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)1484 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
1485 					unsigned long *metric_value)
1486 {
1487 	switch (metric) {
1488 	case DAMOS_WMARK_FREE_MEM_RATE:
1489 		*metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
1490 		       totalram_pages();
1491 		return 0;
1492 	default:
1493 		break;
1494 	}
1495 	return -EINVAL;
1496 }
1497 
1498 /*
1499  * Returns zero if the scheme is active.  Else, returns time to wait for next
1500  * watermark check in micro-seconds.
1501  */
damos_wmark_wait_us(struct damos * scheme)1502 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1503 {
1504 	unsigned long metric;
1505 
1506 	if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
1507 		return 0;
1508 
1509 	/* higher than high watermark or lower than low watermark */
1510 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1511 		if (scheme->wmarks.activated)
1512 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1513 					scheme->action,
1514 					metric > scheme->wmarks.high ?
1515 					"high" : "low");
1516 		scheme->wmarks.activated = false;
1517 		return scheme->wmarks.interval;
1518 	}
1519 
1520 	/* inactive and higher than middle watermark */
1521 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1522 			!scheme->wmarks.activated)
1523 		return scheme->wmarks.interval;
1524 
1525 	if (!scheme->wmarks.activated)
1526 		pr_debug("activate a scheme (%d)\n", scheme->action);
1527 	scheme->wmarks.activated = true;
1528 	return 0;
1529 }
1530 
kdamond_usleep(unsigned long usecs)1531 static void kdamond_usleep(unsigned long usecs)
1532 {
1533 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1534 	if (usecs > 20 * USEC_PER_MSEC)
1535 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1536 	else
1537 		usleep_idle_range(usecs, usecs + 1);
1538 }
1539 
1540 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)1541 static int kdamond_wait_activation(struct damon_ctx *ctx)
1542 {
1543 	struct damos *s;
1544 	unsigned long wait_time;
1545 	unsigned long min_wait_time = 0;
1546 	bool init_wait_time = false;
1547 
1548 	while (!kdamond_need_stop(ctx)) {
1549 		damon_for_each_scheme(s, ctx) {
1550 			wait_time = damos_wmark_wait_us(s);
1551 			if (!init_wait_time || wait_time < min_wait_time) {
1552 				init_wait_time = true;
1553 				min_wait_time = wait_time;
1554 			}
1555 		}
1556 		if (!min_wait_time)
1557 			return 0;
1558 
1559 		kdamond_usleep(min_wait_time);
1560 
1561 		if (ctx->callback.after_wmarks_check &&
1562 				ctx->callback.after_wmarks_check(ctx))
1563 			break;
1564 	}
1565 	return -EBUSY;
1566 }
1567 
kdamond_init_intervals_sis(struct damon_ctx * ctx)1568 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1569 {
1570 	unsigned long sample_interval = ctx->attrs.sample_interval ?
1571 		ctx->attrs.sample_interval : 1;
1572 	unsigned long apply_interval;
1573 	struct damos *scheme;
1574 
1575 	ctx->passed_sample_intervals = 0;
1576 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1577 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1578 		sample_interval;
1579 
1580 	damon_for_each_scheme(scheme, ctx) {
1581 		apply_interval = scheme->apply_interval_us ?
1582 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
1583 		scheme->next_apply_sis = apply_interval / sample_interval;
1584 	}
1585 }
1586 
1587 /*
1588  * The monitoring daemon that runs as a kernel thread
1589  */
kdamond_fn(void * data)1590 static int kdamond_fn(void *data)
1591 {
1592 	struct damon_ctx *ctx = data;
1593 	struct damon_target *t;
1594 	struct damon_region *r, *next;
1595 	unsigned int max_nr_accesses = 0;
1596 	unsigned long sz_limit = 0;
1597 
1598 	pr_debug("kdamond (%d) starts\n", current->pid);
1599 
1600 	complete(&ctx->kdamond_started);
1601 	kdamond_init_intervals_sis(ctx);
1602 
1603 	if (ctx->ops.init)
1604 		ctx->ops.init(ctx);
1605 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1606 		goto done;
1607 
1608 	sz_limit = damon_region_sz_limit(ctx);
1609 
1610 	while (!kdamond_need_stop(ctx)) {
1611 		/*
1612 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1613 		 * be changed from after_wmarks_check() or after_aggregation()
1614 		 * callbacks.  Read the values here, and use those for this
1615 		 * iteration.  That is, damon_set_attrs() updated new values
1616 		 * are respected from next iteration.
1617 		 */
1618 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1619 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1620 		unsigned long sample_interval = ctx->attrs.sample_interval;
1621 
1622 		if (kdamond_wait_activation(ctx))
1623 			break;
1624 
1625 		if (ctx->ops.prepare_access_checks)
1626 			ctx->ops.prepare_access_checks(ctx);
1627 		if (ctx->callback.after_sampling &&
1628 				ctx->callback.after_sampling(ctx))
1629 			break;
1630 
1631 		kdamond_usleep(sample_interval);
1632 		ctx->passed_sample_intervals++;
1633 
1634 		if (ctx->ops.check_accesses)
1635 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1636 
1637 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1638 			kdamond_merge_regions(ctx,
1639 					max_nr_accesses / 10,
1640 					sz_limit);
1641 			if (ctx->callback.after_aggregation &&
1642 					ctx->callback.after_aggregation(ctx))
1643 				break;
1644 		}
1645 
1646 		/*
1647 		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
1648 		 * possible, to reduce overhead
1649 		 */
1650 		if (!list_empty(&ctx->schemes))
1651 			kdamond_apply_schemes(ctx);
1652 
1653 		sample_interval = ctx->attrs.sample_interval ?
1654 			ctx->attrs.sample_interval : 1;
1655 		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1656 			ctx->next_aggregation_sis = next_aggregation_sis +
1657 				ctx->attrs.aggr_interval / sample_interval;
1658 
1659 			kdamond_reset_aggregated(ctx);
1660 			kdamond_split_regions(ctx);
1661 			if (ctx->ops.reset_aggregated)
1662 				ctx->ops.reset_aggregated(ctx);
1663 		}
1664 
1665 		if (ctx->passed_sample_intervals == next_ops_update_sis) {
1666 			ctx->next_ops_update_sis = next_ops_update_sis +
1667 				ctx->attrs.ops_update_interval /
1668 				sample_interval;
1669 			if (ctx->ops.update)
1670 				ctx->ops.update(ctx);
1671 			sz_limit = damon_region_sz_limit(ctx);
1672 		}
1673 	}
1674 done:
1675 	damon_for_each_target(t, ctx) {
1676 		damon_for_each_region_safe(r, next, t)
1677 			damon_destroy_region(r, t);
1678 	}
1679 
1680 	if (ctx->callback.before_terminate)
1681 		ctx->callback.before_terminate(ctx);
1682 	if (ctx->ops.cleanup)
1683 		ctx->ops.cleanup(ctx);
1684 
1685 	pr_debug("kdamond (%d) finishes\n", current->pid);
1686 	mutex_lock(&ctx->kdamond_lock);
1687 	ctx->kdamond = NULL;
1688 	mutex_unlock(&ctx->kdamond_lock);
1689 
1690 	mutex_lock(&damon_lock);
1691 	nr_running_ctxs--;
1692 	if (!nr_running_ctxs && running_exclusive_ctxs)
1693 		running_exclusive_ctxs = false;
1694 	mutex_unlock(&damon_lock);
1695 
1696 	return 0;
1697 }
1698 
1699 /*
1700  * struct damon_system_ram_region - System RAM resource address region of
1701  *				    [@start, @end).
1702  * @start:	Start address of the region (inclusive).
1703  * @end:	End address of the region (exclusive).
1704  */
1705 struct damon_system_ram_region {
1706 	unsigned long start;
1707 	unsigned long end;
1708 };
1709 
walk_system_ram(struct resource * res,void * arg)1710 static int walk_system_ram(struct resource *res, void *arg)
1711 {
1712 	struct damon_system_ram_region *a = arg;
1713 
1714 	if (a->end - a->start < resource_size(res)) {
1715 		a->start = res->start;
1716 		a->end = res->end;
1717 	}
1718 	return 0;
1719 }
1720 
1721 /*
1722  * Find biggest 'System RAM' resource and store its start and end address in
1723  * @start and @end, respectively.  If no System RAM is found, returns false.
1724  */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)1725 static bool damon_find_biggest_system_ram(unsigned long *start,
1726 						unsigned long *end)
1727 
1728 {
1729 	struct damon_system_ram_region arg = {};
1730 
1731 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1732 	if (arg.end <= arg.start)
1733 		return false;
1734 
1735 	*start = arg.start;
1736 	*end = arg.end;
1737 	return true;
1738 }
1739 
1740 /**
1741  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1742  * monitoring target as requested, or biggest 'System RAM'.
1743  * @t:		The monitoring target to set the region.
1744  * @start:	The pointer to the start address of the region.
1745  * @end:	The pointer to the end address of the region.
1746  *
1747  * This function sets the region of @t as requested by @start and @end.  If the
1748  * values of @start and @end are zero, however, this function finds the biggest
1749  * 'System RAM' resource and sets the region to cover the resource.  In the
1750  * latter case, this function saves the start and end addresses of the resource
1751  * in @start and @end, respectively.
1752  *
1753  * Return: 0 on success, negative error code otherwise.
1754  */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)1755 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1756 			unsigned long *start, unsigned long *end)
1757 {
1758 	struct damon_addr_range addr_range;
1759 
1760 	if (*start > *end)
1761 		return -EINVAL;
1762 
1763 	if (!*start && !*end &&
1764 		!damon_find_biggest_system_ram(start, end))
1765 		return -EINVAL;
1766 
1767 	addr_range.start = *start;
1768 	addr_range.end = *end;
1769 	return damon_set_regions(t, &addr_range, 1);
1770 }
1771 
1772 /*
1773  * damon_moving_sum() - Calculate an inferred moving sum value.
1774  * @mvsum:	Inferred sum of the last @len_window values.
1775  * @nomvsum:	Non-moving sum of the last discrete @len_window window values.
1776  * @len_window:	The number of last values to take care of.
1777  * @new_value:	New value that will be added to the pseudo moving sum.
1778  *
1779  * Moving sum (moving average * window size) is good for handling noise, but
1780  * the cost of keeping past values can be high for arbitrary window size.  This
1781  * function implements a lightweight pseudo moving sum function that doesn't
1782  * keep the past window values.
1783  *
1784  * It simply assumes there was no noise in the past, and get the no-noise
1785  * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a
1786  * non-moving sum of the last window.  For example, if @len_window is 10 and we
1787  * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
1788  * values.  Hence, this function simply drops @nomvsum / @len_window from
1789  * given @mvsum and add @new_value.
1790  *
1791  * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
1792  * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For
1793  * calculating next moving sum with a new value, we should drop 0 from 50 and
1794  * add the new value.  However, this function assumes it got value 5 for each
1795  * of the last ten times.  Based on the assumption, when the next value is
1796  * measured, it drops the assumed past value, 5 from the current sum, and add
1797  * the new value to get the updated pseduo-moving average.
1798  *
1799  * This means the value could have errors, but the errors will be disappeared
1800  * for every @len_window aligned calls.  For example, if @len_window is 10, the
1801  * pseudo moving sum with 11th value to 19th value would have an error.  But
1802  * the sum with 20th value will not have the error.
1803  *
1804  * Return: Pseudo-moving average after getting the @new_value.
1805  */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)1806 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
1807 		unsigned int len_window, unsigned int new_value)
1808 {
1809 	return mvsum - nomvsum / len_window + new_value;
1810 }
1811 
1812 /**
1813  * damon_update_region_access_rate() - Update the access rate of a region.
1814  * @r:		The DAMON region to update for its access check result.
1815  * @accessed:	Whether the region has accessed during last sampling interval.
1816  * @attrs:	The damon_attrs of the DAMON context.
1817  *
1818  * Update the access rate of a region with the region's last sampling interval
1819  * access check result.
1820  *
1821  * Usually this will be called by &damon_operations->check_accesses callback.
1822  */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)1823 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
1824 		struct damon_attrs *attrs)
1825 {
1826 	unsigned int len_window = 1;
1827 
1828 	/*
1829 	 * sample_interval can be zero, but cannot be larger than
1830 	 * aggr_interval, owing to validation of damon_set_attrs().
1831 	 */
1832 	if (attrs->sample_interval)
1833 		len_window = damon_max_nr_accesses(attrs);
1834 	r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
1835 			r->last_nr_accesses * 10000, len_window,
1836 			accessed ? 10000 : 0);
1837 
1838 	if (accessed)
1839 		r->nr_accesses++;
1840 }
1841 
damon_init(void)1842 static int __init damon_init(void)
1843 {
1844 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1845 	if (unlikely(!damon_region_cache)) {
1846 		pr_err("creating damon_region_cache fails\n");
1847 		return -ENOMEM;
1848 	}
1849 
1850 	return 0;
1851 }
1852 
1853 subsys_initcall(damon_init);
1854 
1855 #include "core-test.h"
1856